有理数经典测试题及答案

合集下载

语法知识—有理数的经典测试题及答案

语法知识—有理数的经典测试题及答案

一、填空题1.有理数a ,b ,c 在数轴上表示的点如图所示,则化简|a|﹣|b ﹣a|+|c ﹣a|=_____.2.如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点的数据;则被淹没的整数点有______个,负整数点有______个,被淹没的最小的负整数点所表示的数是______.3.如图,数轴上的单位长度为1,有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是_________.4.若2(2)30x y -+-=,则代数式xy 的值是 ________.5.已知||3-=a ,||5=b ,0abc >,且b a c <<,2a b c ++=,则c =_______. 6.已知4x =,12y =,且x y <,则x y ÷的值为______. 7.若m n - =n-m ,且m =4,n =3,则m +n =_________ 8.32-的相反数是_________; 二、解答题9.已知关于x 、y 的方程组2743x y m x y m +=+⎧⎨-=-⎩的解都为正数.(1)求m 的取值范围; (2)化简:|3m+2|﹣|m ﹣5|.10.有理数a ,b ,c 在数轴上的位置如图所示: (1)比较a ,|b|,c 的大小(用“<”连接);(2)若m =|a+b|﹣|c ﹣a|﹣|b ﹣1|,求1﹣2019(m+c)2019的值.11.若一数轴上存在两动点,当第一次相遇后,速度都变为原来的两倍,第二次相遇后又都能恢复到原来的速度,则称这条数轴为魔幻数轴.如图,已知一魔幻数轴上有A ,O ,B 三点,其中A ,O 对应的数分别为﹣10,0,AB 为47个单位长度,甲,乙分别从A ,O 两点同时出发,沿数轴正方向同向而行,甲的速度为3个单位/秒,乙的速度为1个单位/秒,甲到达点B 后以当时速度立即返回,当甲回到点A 时,甲、乙同时停止运动.问:(1)点B 对应的数为 ,甲出发 秒后追上乙(即第一次相遇) (2)当甲到达点B 立即返回后第二次与乙相遇,求出相遇点在数轴上表示的数是多少? (3)甲、乙同时出发多少秒后,二者相距2个单位长度?(请直接写出答案) 12.已知A -B =7a 2-7ab ,且B =-4a 2+6ab +7. (1)求A 等于多少?(2)若|a +1|+(b -2)2=0,求A 的值.13.如图,点P 、Q 在数轴上表示的数分别是-8、4,点P 以每秒2个单位的速度运动,点Q 以每秒1个单位的速度运动.设点P 、Q 同时出发向右运动,运动时间为t 秒.(1)若运动2秒时,则点P 表示的数为_______,点P 、Q 之间的距离是______个单位; (2)求经过多少秒后,点P 、Q 重合?(3)试探究:经过多少秒后,点P 、Q 两点间的距离为6个单位. 14.有理数a ,b ,c 在数轴上的位置如图所示:(1)在数轴标出表示||a ,b -的点的位置,并用“<”将0,c ,||a ,b -连接起来; (2)化简|||2||||2|+------a b b a c c .15.某食品厂从生产的食品罐头中抽出20听检测质量,将超过标准质量用正数表示,不足标准质量的用负数表示,结果记录如下表: 偏差/克 -10 -5 0 +5 +10 +15 听数127541三、1316.一个数的相反数与该数的倒数的和等于0,则这个数的绝对值等于( ) A .2B .-2C .1D .-117.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .+2.4B .−0.5C .+0.6D .−3.418.学校、家、书店座落在一条南北走向的大街上,学校在家南边20米,书店在家北边10米,张明从家里出发,向北走了50米,又向南走了70米,此时张明的位置在( ) A .在家 B .在学校 C .在书店D .不在上述地方19.若数轴上A ,B 两点之间的距离为8个单位长度,点A 表示的有理数是﹣10,并且A ,B 两点经折叠后重合,此时折线与数轴的交点表示的有理数是( )A .﹣6B .﹣9C .﹣6或﹣14D .﹣1或﹣920.如图,a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .a+b <0B .ab <0C .b ﹣a <0D .0ab≥ 21.已知3m +与2(2)n -互为相反数,则2m 等于( )A .6B .6-C .9D .9-22.已知ab <0,则2a b -化简后为:( ) A .--a bB .a b -C .a bD .-a b23.已知2x =,9y =,则x y +的值为( ) A .11B .7C .11 或 7D .11 或-724.如图所示,a 、b 、c 表示有理数,则a 、b 、c 的大小顺序是( )A .a b c <<B .a c b <<C .b a c <<D .c b a <<25.对于有理数,a b ,有以下四个判断:①若a b =则a=b ;②若a b >则a b >;③若a=-b,则a b =;④若a b <则a<b ,其中正确的判定个数是( ) A .4个B .3个C .2个D .1个【参考答案】***试卷处理标记,请不要删除一、填空题1.a ﹣b ﹣c 【分析】根据数轴上点的位置判断出ab ﹣a 及c ﹣a 的正负利用绝对值的代数意义化简去括号合并即可得到结果【详解】解:由数轴得:c <a <0b >0∴b﹣a >0c ﹣a <0∴|a|﹣|b ﹣a|+|c ﹣ 解析:a ﹣b ﹣c 【分析】根据数轴上点的位置判断出a ,b ﹣a 及c ﹣a 的正负,利用绝对值的代数意义化简,去括号合并即可得到结果. 【详解】解:由数轴得:c <a <0,b >0, ∴b ﹣a >0,c ﹣a <0,∴|a|﹣|b ﹣a|+|c ﹣a|=﹣a ﹣b+a+a ﹣c =a ﹣b ﹣c , 故答案为:a ﹣b ﹣c . 【点睛】此题考查的是去绝对值化简,掌握绝对值的性质和利用数轴判断符号是解决此题的关键.2.52-72【分析】通过观察数轴列出淹没的整数点根据题目的要求计算出个数即可【详解】由数轴可知:和之间的整数点有:-72-71-42共个;和之间的整数点有:-21-201516共个;其中非负整数点有:解析:52 -72 【分析】通过观察数轴,列出淹没的整数点,根据题目的要求计算出个数即可. 【详解】 由数轴可知:1722-和1415-之间的整数点有:-72,-71,,-42,共()4272131--+-=个;3214-和2163之间的整数点有:-21,-20,,15,16,共()1621138-+-=个; 其中非负整数点有:0,1,2,3,,15,16,共17个;所以淹没的整数点有69个,负整数点有691752-=个; 被淹没的最小的负整数点所表示的数是:-72 故答案是:69;52;-72 【点睛】本题考查了数轴上两点之间的距离,注意数形结合是解题的关键.3.1【分析】首先确定原点位置可得B 点对应的数进而可得C 点对应的数【详解】解:∵点AB 对应的数互为相反数∴线段AB 的中点为数轴的原点∵AB=6∴B 点对应的数为3∵BC=2且C 点在B 点左侧∴点C 对应的数为解析:1 【分析】首先确定原点位置,可得B 点对应的数,进而可得C 点对应的数. 【详解】解:∵点A 、B 对应的数互为相反数, ∴线段AB 的中点为数轴的原点, ∵AB=6,∴B 点对应的数为3, ∵BC=2,且C 点在B 点左侧, ∴点C 对应的数为1. 故答案为:1 【点睛】本题主要考查了数轴,正确确定原点位置是解答此题的关键.4.9【分析】要求的值必须先求出的值而通过已知条件可知则可求的值【详解】代入中得【点睛】本题主要考查平方数和绝对值的性质都是非负性两个非负数相加为零则这两个数都为零利用这点解题即可解析:9 【分析】要求xy 的值,必须先求出,x y 的值,而通过已知条件可知20,30x y ∴-=-=,则可求,x y 的值.【详解】2(2)30x y -+-=20,30x y ∴-=-= 2,3x y ∴==代入xy 中,得239= 【点睛】本题主要考查平方数和绝对值的性质都是非负性,两个非负数相加为零,则这两个数都为零,利用这点解题即可.5.10【分析】先根据绝对值的性质和已知条件得出abc 的值再根据进行判断得出c 的值即可【详解】解:∵∴a=b=∵∴a=b=;∵∴a=3b=-5c=4或a=-3b=-5c=10∵∴c=10故答案为10【点解析:10 【分析】先根据绝对值的性质和已知条件2a b c ++=,b a c <<得出a 、b 、c 的值,再根据0abc >进行判断得出c 的值即可. 【详解】解:∵3a -=,5b =,∴a=3±,b=5± ∵b a c <<,∴a=3±,b=5-; ∵2a b c ++=,∴a=3,b=-5,c=4或a=-3,b=-5,c=10 ∵0abc > ∴c=10 故答案为10 【点睛】本题考查了绝对值、有理数的加减法和乘法法则,熟练掌握相关的知识是解题的关键.6.±8【分析】根据绝对值的意义求出x 与y 的值然后因为所以判别出符号题意的x 与y 的值代入计算即可【详解】∵∴又∵∴当时=当时=所以答案为±8【点睛】本题主要考查了绝对值的性质以及有理数的运算熟练掌握相关解析:±8【分析】根据绝对值的意义求出x 与y 的值,然后因为x y <,所以判别出符号题意的x 与y 的值代入计算即可 【详解】 ∵4x =,12y =∴4x =±,12y =± 又∵x y < ∴当4x =-,12y =时,x y ÷=8- 当4x =-,12y =-时,x y ÷=8 所以答案为±8 【点睛】本题主要考查了绝对值的性质以及有理数的运算,熟练掌握相关概念是解题关键7.-1或-7【分析】根据绝对值的意义求出m 和n 的值然后分别代入m+n 中计算即可【详解】解:∵|m|=4|n|=3∴m=±4n=±3而|m-n|=n-m∴n>m∴n=3n=-4或n=-3m=-4∴m+n解析:-1或-7 【分析】根据绝对值的意义求出m 和n 的值,然后分别代入m+n 中计算即可. 【详解】解:∵|m|=4,|n|=3, ∴m=±4,n=±3, 而|m-n|=n-m , ∴n >m ,∴n=3,n=-4或n=-3,m=-4,∴m+n=3+(-4)=-1;或m+n=-3+(-4)=-7. 故答案为-1或-7. 【点睛】本题考查了绝对值,掌握:若a >0,则|a|=a ;若a=0,则|a|=0;若a <0,则|a|=-a ,是解题的关键.8.【分析】利用相反数的概念可得的相反数等于【详解】的相反数是故答案为【点睛】本题考查了相反数的意义一个数的相反数就是在这个数前面添上-号;一个正数的相反数是负数一个负数的相反数是正数0的相反数是0解析:32. 【分析】利用相反数的概念,可得32-的相反数等于32. 【详解】32-的相反数是32. 故答案为32. 【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.二、解答题9.(1)﹣23<m <5;(2)4m ﹣3 【分析】(1)利用加减消元法解关于x 、y 的二元一次方程,用m 表示出x 、y ,再根据方程组的解都是正数列出不等式组,然后解不等式组即可; (2)根据m 的取值范围去掉绝对值号合并同类项即可. 【详解】 解:(1)2743x y m x y m +=+⎧⎨-=-⎩①②,①+②得,2x =6m+4, 解得x =3m+2,①﹣②得,2y =﹣2m+10, 解得y =﹣m+5, ∵x 、y 都是正数, ∴32050m m +>⎧⎨-+>⎩③④,由③得,m >﹣23, 由④得,m <5,∴m 的取值范围是﹣23<m <5;(2)根据(1)﹣23<m <5, ∴|3m+2|﹣|m ﹣5| =3m+2+m ﹣5 =4m ﹣3.【点睛】本题考查了解一元一次不等式组,解二元一次方程组,把方程组中的字母m看作常数求出x、y的表达式是解题的关键.10.(1)a<c<|b|;(2)2020.【分析】(1)直接利用a,b,c在数轴上的位置得出答案;(2)直接利用绝对值的性质化简得出答案.【详解】(1)∵0<c<1,b<a<﹣1,∴a<c<|b|;(2)∵a+b<0,c﹣a>0,b﹣1<0,∴m=(﹣a﹣b)﹣(c﹣a)﹣(﹣b+1)=﹣a﹣b﹣c+a+b﹣1=﹣c﹣1,∴原式=1﹣2019×(﹣1)2019=2020.【点睛】、、的情况以及本题考查了数轴与绝对值的性质,根据数轴判断出a b c()()()1﹣﹣、﹣、﹣的正负情况是解题的关键,也是难点.a b c a b+11.(1)点B对应的数为37,甲出发5秒后追上乙(即第一次相遇);(2)相遇点在数轴上表示的数是21;(3)甲、乙同时出发4秒或5.5秒或12.75秒或13.5秒后,二者相距2个单位长度.【分析】(1)根据两点间的距离可求点B对应的数,可设甲出发x秒后追上乙(即第一次相遇),根据速度差×时间=路程差,列出方程求解即可;(2)先求出第二次与乙相遇需要的时间,进一步可求相遇点在数轴上表示的数;(3)分第一次相遇前后相距2个单位长度,第二次相遇前后相距2个单位长度,进行讨论即可求解.【详解】解:(1)点B对应的数为:﹣10+47=37,设甲出发x秒后追上乙(即第一次相遇),依题意有:(3﹣1)x=10,解得:x=5.故甲出发5秒后追上乙(即第一次相遇);(2)﹣10+5×3=﹣10+15=5,37﹣5=32,32×2÷(3×2+1×2)=8(秒),5+1×2×8=21.故相遇点在数轴上表示的数是:21;(3)第一次相遇前后相距2个单位长度,5﹣2÷(3﹣1)=5﹣1=4(秒)5+2÷(3×2﹣1×2)=5+0.5=5.5(秒)第二次相遇前后相距2个单位长度,5+8﹣2÷(3×2+1×2)=12.75(秒)5+8+2÷(3+1)=13.5(秒)故甲、乙同时出发4秒或5.5秒或12.75秒或13.5秒后,二者相距2个单位长度.【点睛】考查了一元一次方程的应用、数轴,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.12.(1)3a2-ab+7;(2)12.【分析】(1)把B代入A-B=7a2-7ab可以求得A的值,本题得以解决;(2)根据|a+1|+(b-2)2=0,可以求得a、b的值,然后代入(1)中的A的代数式,即可解答本题.【详解】解:(1)∵A-B=7a2-7ab,且B=-4a2+6ab+7,∴A-(-4a2+6ab+7)=7a2-7ab,解得,A=3a2-ab+7;(2)∵|a+1|+(b-2)2=0,∴a+1=0,b-2=0,解得,a=-1,b=2,∴A=3a2-ab+7=3×(-1)2-(-1)×2+7=12.【点睛】本题考查整式的加减、非负数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用非负数的性质解答.13.(1)-4,10;(2)12秒;(3)6秒或18秒【分析】(1)根据数轴上的数向右移动加列式计算即可得解,写出出P、Q两点表示的数,计算即可;(2)用t列出P、Q表示的数,列出等式求解即可;(3)点P、Q同时出发向右运动,运动时间为t秒,分为两种情况讨论①未追上时,②追上且超过时,分别算出即可.【详解】解:(1)点P表示的数是: -8+2×2=-4点Q表示的数是: 4+2×1=6点P、Q之间的距离是: 6-(-4)=10;(2)∵点P、Q同时出发向右运动,运动时间为t秒,点P、Q重合时,-8+2t=4+t, 解得:t=12 (秒)经过12秒后,点P、Q重合;(3)点P、Q同时出发向右运动,运动时间为t秒,故分为两种情况讨论:①未追上时:(4+t)-(-8+2t)= 6解得:t= 6 (秒)②追上且超过时:(-8+2t)—(4+t)= 6解得:t= 18 (秒)答:经过6秒或18秒后,点P、Q两点间的距离为6个单位.【点睛】本题考查了数轴,主要利用了数轴上两点间的距离的表示,数轴上的数向右移动加向左移动减,难点在于(3)分情况讨论.14.(1)图见解析,0<||a<b-<c,(2)-4【分析】(1)根据绝对值和相反数的意义,再根据数轴上点的位置判断大小即可;(2)判断出绝对值里边式子的正负,利用绝对值的代数意义化简即可得到结果.【详解】解:(1)-<c,由图可得:0<||a<b<(2)由数轴可得:b<a<0<c2a+b<0,b-2<0,a-c<0,2-c>0,a b b a c c+------|||2||||2|=-(a+b)+(b-2)+(a-c)-(2-c)=-a-b+b-2-c+a-2+c=-4.【点睛】本题考查了绝对值、数轴和有理数的大小比较,能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.15.这批样品平均每听的质量比标准质量多,相差3克【分析】首先计算出与标准质量的偏差总量,再计算平均质量比标准质量相差多少,如果得到正数则多,否则少【详解】由题意得:-⨯-⨯+⨯+⨯+⨯+⨯=60与标准质量的偏差总量为:101520755104151平均质量比标准质量相差为:60÷20=3∵60是正数∴这批罐头的平均质量比标准质量多答:这批样品平均每听的质量比标准质量多,相差3克本题主要考查了正负数意义的运用以及有理数混合运算,熟练掌握相关概念是解题关键三、1316.C解析:C【解析】【分析】根据只有符号不同的两个数互为相反数,乘积为1的两个数互为倒数得出此数具体为何数,然后求出其绝对值即可.【详解】∵一个数的相反数与该数的倒数的和等于0,∴这个数为±1,∴|±1|=1,故选:C.【点睛】本题主要考查了相反数与倒数及绝对值相关性质的综合运用,熟练掌握相关概念是解题关键.17.B解析:B【分析】根据绝对值的意义,求得绝对值最小的即可得答案.【详解】|+2.5|=2.5,|-0.5|=0.5,|+0.6|=0.6,|-3.4|=3.4,3.4>2.5>0.6>0.5,故选B.【点睛】本题考查了正数和负数,利用绝对值的意义是解题关键.18.B解析:B【分析】可规定家的位置为0,向北走为正,向南走为负,把所得数相加即可得到相应位置.【详解】解:规定家的位置为0,向北走为正,向南走为负,则0-50+70=20米,张明的位置在家南边20米处.即在学校,故选:B.【点睛】本题考查了数轴的性质,解决本题的关键是确定原点和正负方向.解析:C【分析】分点B在点A的左侧和点B在点A的右侧两种情况找出点B表示的有理数,结合折线与数轴的交点表示的有理数为点A,B表示的有理数的平均数,即可求出结论.【详解】解:当点B在点A的左侧时,点B表示的有理数是﹣10﹣8=﹣18,∴折线与数轴的交点表示的有理数是10182--=﹣14;当点B在点A的右侧时,点B表示的有理数是﹣10+8=﹣2,∴折线与数轴的交点表示的有理数是1022--=﹣6.故选:C.【点睛】此题综合考查了数轴上的点和数之间的对应关系以及数轴上中点的求法.注意数轴上的点和数之间的对应关系.20.B解析:B【分析】先根据a、b在数轴上的位置确定出a、b的符号即|a|、|b|的大小,再进行解答即可.【详解】∵a在原点的左侧,b在原点的右侧,∴a<0,b>0,∴ab<0,∴B正确;∵a到原点的距离小于b到原点的距离,∴|a|<|b|,∴a+b>0,b﹣a>0,∴A、C错误;∵a、b异号,∴ab<0,∴D错误.故选B.【点睛】本题考查了数轴的特点,即原点左边的数都小于0,右边的数都大于0,右边的数总大于左边的数.21.C解析:C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n−2)2互为相反数,∴|m+3|+(n−2)2=0,∴m+3=0,n−2=0,解得m=−3,n=2,所以,m 2=(−3)2=9.故选C.【点睛】此题考查非负数的性质:绝对值,非负数的性质:偶次方,解题关键在于掌握运算法则.22.D解析:D【分析】根据二次根式有意义的条件结合ab <0,可得出0,0b a ≤>.再根据算术平方根和绝对值的||a =,进行化简即可.【详解】根据二次根式有意义的条件20a b -≥,20a ≥0b ∴-≥,即0b ≤,又∵ab <0∴a>0,|a ==故选D.【点睛】本题考查二次根式的性质与化简,二次根式有意义的条件.解决本题需注意两点:①能根据二次根式有意义的条件和ab <0得出a>0||a =对根式进行化简.23.C解析:C【分析】本题主要考查的是绝对值的相关知识.绝对值:一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.当已知|a|=b(b >0),则a=±b. 【详解】 ∵2x =,∴x=2或x=-2,∴x y +=2+9=11或x y +=-2+9=7,故选:C.【点睛】此题考查绝对值,解题关键在于掌握绝对值的定义.24.C解析:C【分析】根据数轴上的各数右边的数总比左边的大进行比较即可.【详解】因为数轴上的数右边的总比左边的大,所以从左到右把各字母用“<”连接为:b<a<c .故选C .【点睛】考查的是数轴的特点及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.25.D解析:D【分析】分别判断①②③④是否正确即可解答.【详解】 解:①若a b =,则a= b 或a=-b ;②若a b >,则a b 不一定大于;③若a=-b,则a b =;④若a b <则a 不一定大于b ;所以正确的个数是1;故选D【点睛】本题考查了绝对值的性质,熟练掌握是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明。

有理数试题及答案

有理数试题及答案

有理数试题及答案一、选择题1. 下列哪个数是有理数?A. πB. √2C. 0.33333...(3无限循环)D. 0.1010010001...答案:C2. 如果a是有理数,b是有理数,那么a+b一定是:A. 有理数B. 无理数C. 整数D. 实数答案:A3. 计算下列式子的结果,哪个是有理数?A. √4B. √9C. √(-1)D. √(2)答案:B二、填空题1. 有理数可以表示为两个整数的比,即a/b的形式,其中a和b都是整数,且b不等于______。

答案:02. 有理数包括所有整数和分数,但不包括______。

答案:无理数三、解答题1. 计算下列式子,并判断结果是否为有理数:(1) 3/4 + 5/6(2) √9(3) 2 - √3答案:(1) 3/4 + 5/6 = 9/12 + 10/12 = 19/12,是有理数。

(2) √9 = 3,是有理数。

(3) 2 - √3,由于√3是无理数,所以2 - √3是无理数。

2. 判断下列数是否为有理数,并说明理由:(1) √4(2) 0.12345678901234567891...答案:(1) √4 = 2,2是有理数,因为它可以表示为整数2/1。

(2) 0.12345678901234567891...是一个无限不循环小数,因此它是无理数。

四、简答题1. 请解释什么是有理数,并给出两个例子。

答案:有理数是可以表示为两个整数的比,即a/b的形式,其中a和b都是整数,且b不等于0。

例如,3/2和-5都是有理数。

初一数学有理数试题及答案

初一数学有理数试题及答案

有理数测试题一、 选择题〔每题3分,共30分〕 1、1999年国家财政收入到达11377亿元,用四舍五入法保存两个有效数字的近似值为〔 〕亿元〔A 〕4101.1⨯ 〔B 〕5101.1⨯ 〔C 〕3104.11⨯ 〔D 〕3103.11⨯ 2、大于–3.5,小于2.5的整数共有〔 〕个. 〔A 〕6 〔B 〕5 〔C 〕4 〔D 〕33、数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于〔 〕〔A 〕2 〔B 〕–2 〔C 〕1 〔D 〕–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数〔 〕 〔A 〕同号,且均为负数 〔B 〕异号,且正数的绝对值比负数的绝对值大 〔C 〕同号,且均为正数 〔D 〕异号,且负数的绝对值比正数的绝对值大5、在以下说法中,正确的个数是〔 〕⑴任何一个有理数都可以用数轴上的一个点来表示 ⑵数轴上的每一个点都表示一个有理数 ⑶任何有理数的绝对值都不可能是负数 ⑷每个有理数都有相反数A 、1B 、2C 、3D 、46、如果一个数的相反数比它本身大,那么这个数为〔 〕 A 、正数 B 、负数 C 、整数 D 、不等于零的有理数7、以下说法正确的选项是〔 〕A 、几个有理数相乘,当因数有奇数个时,积为负;B 、几个有理数相乘,当正因数有奇数个时,积为负;C 、几个有理数相乘,当负因数有奇数个时,积为负;D 、几个有理数相乘,当积为负数时,负因数有奇数个; 8、在有理数中,绝对值等于它本身的数有〔〕A.1个B.2个C. 3个D.无穷多个 9、以下计算正确的选项是〔〕A.-22=-4B.-〔-2〕2=4C.〔-3〕2=6D.〔-1〕3=1 10、如果a <0,那么a 和它的相反数的差的绝对值等于〔 〕 A.a B.0 C.-a D.-2a 二、填空题:〔每题2分,共42分〕 1、()642=.2、小明与小刚规定了一种新运算*:假设a 、b 是有理数,那么a*b = b a 23-.小明计算出2*5=-4,请你帮小刚计算2*〔-5〕= .3、假设056=++-y x ,那么y x -= ;4、大于-2而小于3的整数分别是_________________、5、〔-3.2〕3中底数是______,乘方的结果符号为______.6、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大7、在数轴上表示两个数, 的数总比 的大.〔用“左边〞“右边〞填空〕8、仔细观察、思考下面一列数有哪些..规律:-2 ,4 ,-8 ,16 ,-32 ,64 ,…………然后填出下面两空:〔1〕第7个数是 ;〔2〕第 n 个 数是 .9、假设│-a │=5,那么a=________. 10、:, (15)441544,833833,322322222⨯=+⨯=+⨯=+假设bab a ⨯=+21010〔a,b 均为整数〕那么a+b= .11、写出三个有理数数,使它们满足:①是负数;②是整数;③能被2、3、5 整除.答:____________. 12、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________.13、0||=--a a ,那么a 是__________数;()01||<-=b abab ,那么a 是_________数.14、计算:()()()200021111-+-+- =_________.15、()02|4|2=-++b a a ,那么b a 2+=_________.16、____________________范围内的有理数经过四舍五入得到的近似数3.142. 17、:200019991431321211⨯++⨯+⨯+⨯ = . 18、数5的绝对值是5,是它的本身;数–5的绝对值是5,是它的相反数;以上由定理非负数的绝对值等于它本身,非正数的绝对值等于它的相反数而来.由这句话,正数–a 的绝对值为__________;负数–b 的绝对值为________;负数1+a 的绝对值为________,正数–a+1的绝对值___________.19、|a|=3,|b|=5,且a<b,那么a-b 的值为 .20、观察以下等式,你会发现什么规律:22131=+⨯ ,23142=+⨯,24153=+⨯,...请将你发现的规律用只含一个字母n 〔n 为正整数〕的等式表示出来21 、观察以下各式32353,22242,12131222⨯+=⨯⨯+=⨯⨯+=⨯,...请你将猜到的规律用n 〔n ≥1〕表示出来 .22、0||||=+b b a a ,那么=⨯⨯ba b a ||___________. 23、当31<<x 时,化简2|1||3|--+-x x x 的结果是24、a 是整数,5232++a a 是一个偶数,那么a 是 〔奇,偶〕25、当6-<a 时,化简||3|3|a +-的结果为 .三、计算以下各题〔要求写出解题关键步骤〕:1、 ()()()54321132---⨯--- 2、)31()21(54)32(21-+-++-+3、()()43223133213423-⨯⎥⎥⎦⎤⎢⎢⎣⎡---⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-4、〔-81〕÷214×〔-49〕÷〔-16〕 5、()2523-⨯-6、)1611318521(48-+-⨯-7、432226)(0.5)31(⨯-⨯⨯-四、我们已经学过:任意两个有理数的和仍是有理数,在数学上就称有理数集合对加法运算是封闭的.同样,有理数集合对减法、乘法、除法〔除数不为0〕也是封闭的.请你判断整数集合对加、减、乘、除四那么运算是否具有封闭性?〔4分〕利用你的结论,解答:假设a 、b 、c 为整数,且1=-+-a c b a ,求a c c b b a -+-+-的值.答案:一、1、A 2 A 3 B 4 C 5 C 6 B 7 D 8 D 9 A 10 D二、1±8,2,16,3,11,4,-1、0、1、2,5,-3.2,6,-7.2,7、右、左,8,2)2(- 9,±5 10,109,11,-30,-60,-90 12,-120,13,a ≥0,正数,14,0,15,-8,16,大于或等于 3.1415且小于 3.1425,17,2000199918、-a,b,-1-a,-a+1,19、-2或-8,20,2)1(1)2(+=++n n n ,21,n n n n 2)2(2+=+ 22,-1,23,22-x ,24,奇数,25,-a-6 三、1、24 2、-1/5 3、-30 4、-1 5、-47 6、23 7、-96 四、加减乘封闭,除不封闭. 五、2。

【绝对经典】初一数学有理数30题含详细答案

【绝对经典】初一数学有理数30题含详细答案
(3)当代数式|x+1|+|x﹣2|+|x﹣3|取最小值时,x的值为_____.
30.a、b、c三个数在数轴上位置如图所示,且|a|=|b|
(1)求出a、b、c各数的绝对值;
(2)比较a,﹣a、﹣c的大小;
(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.
参考答案
1.D
【解析】
【分析】
负数小于0,可将各项化简,然后再进行判断.
3.C
【解析】
【分析】
(25±0.2)的字样表明质量最大为25.2,最小为24.8,二者之差为0.4.
【详解】
解:根据题意得:标有质量为(25±0.2)的字样,
(3)如果点A、C表示的数互为相反数,求点B表示的数.
29.数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为|2﹣3|=1,2与﹣3的距离可表示为|2﹣(﹣3)|=5
(1)数轴上表示3和8的两点之间的距离是_____;数轴上表示﹣3和﹣9的两点之间的距离是_____;
(2)数轴上表示x和﹣2的两点A和B之间的距离是_____;如果|AB|=4,则x为_____;
2.B
【解析】
【分析】
根据有理数的分类逐一作出判断即可.
【详解】
解:A.0既不是正数也不是负数,故A错误;B.整数和分数统称为有理数;故B正确;C.若|a|=|b|,则a=b或a与b互为相反数.故C错误;D.整数包括正整数、0和负整数,故D错误.
【点睛】
本题考查了有理数的分类,掌握有理数的分类是解题的关键.
A.0.2 kgB.0.3 kgC.0.4 kgD.50.4 kg
4.小丽在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示-4的点重合;若数轴上A、B两点之间的距离为10(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数是()

有理数测试题及答案

有理数测试题及答案

有理数测试题及答案一、选择题1. 下列哪个数是有理数?A. √2B. πC. 1/3D. 0.8080080008…(每两个8之间依次增加一个0)答案:C2. 有理数的英文是什么?A. Rational numberB. Irrational numberC. Real numberD. Complex number答案:A3. 若a和b是有理数,且a/b ≠ 0,那么a和b至少有一个数是?A. 正数B. 负数C. 零D. 整数答案:D4. 两个有理数相加,结果必然是?A. 有理数B. 无理数C. 整数D. 零答案:A5. 以下哪个操作不会改变一个有理数的值?A. 乘以一个非零有理数B. 加上一个无理数C. 除以一个非零有理数D. 减去一个相同的有理数答案:D二、填空题1. 请写出一个有理数的例子:__________。

答案:2/32. 有理数可以表示为两个整数的比,即 a/b,其中a和b都是__________。

答案:整数3. 若一个有理数的分母为零,则该有理数是__________。

答案:未定义4. 一个有理数可以是__________或__________。

答案:正数负数5. 请写出一个无限循环小数的有理数例子:__________。

答案:1/3 = 0.33333…三、简答题1. 请简述什么是有理数。

答案:有理数是可以表示为两个整数的比的数,其中分母不为零。

这包括有限小数、无限循环小数以及整数。

2. 有理数和无理数有什么区别?答案:有理数可以表示为两个整数的比,而无理数则不能。

有理数可以是有限小数或无限循环小数,而无理数则是无限不循环小数。

3. 如何判断一个数是否是有理数?答案:如果一个数可以表示为两个整数的比,并且分母不为零,那么这个数就是有理数。

例如,所有整数、分数和无限循环小数都是有理数。

4. 请举例说明有理数的加法和减法。

答案:例如,1/2 + 1/3 = 5/6,这是一个有理数的加法例子。

有理数及其运算测试题及答案

有理数及其运算测试题及答案

有理数综合测试题一、选择题(每小题3分,共30分)1、据《宁波市休闲基地和商务会议基地建设五年行动计划》,预计到2015年,宁波市接待游客容量将达到4640万人,起重4640万用科学计数法表示( ) A.0.46×109B.4.64×108C.4.64×107D.46.4×1072、 下列四种说法,正确的是( )A 、 所有的正数都是整数; B、不是正数的一定是负数C、正有理数包括整数和分数。

D、一个有理数不是正数就是负数或者是零。

3、 下列说法中,正确的是 ( )i. 正整数、负整数统称整数 B 、正分数和负分数统称分数 C 、零既可以是正整数也可以是负整数 D 、一个有理数不是正数就是负数 4、一个数的相反数小于它本身,这个数是( )A 、任意有理数B 、零C 、负有理数D 、正有理数 5、若两个有理数的差是正数,那么( ) A 、 被减数是正数,减数是负数 B 、 被减数和减数都是正数 C 、 被减数大于减数D 、 被减数和减数不能同为负数。

6、下列计算正确的是( )2243A.1134C.2510-÷⨯=-⨯= 1B.8[()]24151D.2883-⨯--=--÷=- 7、计算212)36()1(÷+-等于( )A. 4B. 5C. 3D.-168、若四个有理数之和的,则第四个数是,,,其中三个数是是9612431--( ) A -9 B 15 C -18 D 21 9、算式22+22+22+22可化为( )A 24 B 28C 82D 21610、 如果、a b 适合下列四个式中的( ),那么、a b 一定同时为0 A 、||0a b += B 、||0ab = C 、||||0a b += D 、||||0a b -=二、填空题:(每小题2分,共30分)1、-3的相反数是 ,倒数是 。

2、1||2a =,则a = 3、、光的速度约为300000000米/秒,可用科学记数法表示为 4、最大的负整数是 ,最小的正整数是 。

语法知识—有理数的经典测试题及答案

语法知识—有理数的经典测试题及答案

一、填空题1.|x +1|+|y -2|=0,则y -x -13的值是____. 2.大于-112而小于213的整数有是___________; 3.小贝认为:若a b >,则a b >.小贝的观点正确吗?___________(填“正确”或“不正确”),请说明理由___________.4.与原点的距离为3个单位的点所表示的有理数是_____.5.若代数式45x -的值与7互为相反数,则x 的值是_________.6.有理数a 、b 、c 在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|= ________.7.绝对值小于5的所有整数是_____,它们的和是_____.8.已知|x ﹣2|+|y+2|=0,则x+y=_____.二、解答题9.一辆货车从永福超市出发负责送货,向东走了5千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了9.5千米到达小刚家,最后返回永福超市.(1)以永福超市为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.6升,那么这辆货车此次送货共耗油多少升?10.在数轴上画出表示下列各数的点,并把它们用“>”连接起来.3,﹣1,0,﹣2.5,1.5,212. 11.对于数轴上的两点P ,Q 给出如下定义: P ,Q 两点到原点O 的距离之差的绝对值称为P ,Q 两点的绝对距离,记为POQ .例如:P ,Q 两点表示的数如图1所示,则312POQ PO QO =-=-=. (1)A ,B 两点表示的数如图2所示.①求A ,B 两点的绝对距离;②若C 为数轴上一点(不与点O 重合),且2AOB AOC =,求点C 表示的数; (2)M ,N 为数轴上的两点(点M 在点N 左边),且MN =2,若1MON =,直接写出点M 表示的数.12.如图在数轴上A 点表示数a,B 点表示数b,AB 表示A 点和B 点之间的距离,且a 、b 满足|2a+4|+|b-6|=0(1)求A,B 两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C 点表示的数;(3)若在原点O 处放一个挡板,一个小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为(秒).①分别表示甲、乙两小球到原点的距离(用t 表示);②求甲、乙两小球到原点的距离相等时经历的时间13.已知数轴上两点A ,B 对应的数分别为﹣4,8.(1)如图1,如果点P 和点Q 分别从点A ,B 同时出发,沿数轴负方向运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒6个单位.①A ,B 两点之间的距离为 .②当P ,Q 两点相遇时,点P 在数轴上对应的数是 .③求点P 出发多少秒后,与点Q 之间相距4个单位长度?(3)如图2,如果点P 从点A 出发沿数轴的正方向以每秒2个单位的速度运动,点Q 从点B 出发沿数轴的负方向以每秒6个单位的速度运动,点M 从数轴原点O 出发沿数轴的正方向以每秒1个单位的速度运动,若三个点同时出发,经过多少秒后有MP =MQ ?14.某茶叶加工厂一周生产任务为182kg ,计划平均每天生产26kg ,由于各种原因实际每天产量与计划量相比有出入,某周七天的生产情况记录如下(超产为正、减产为负): +3,﹣2,﹣4,+1,﹣1,+6,﹣5(1)这一周的实际产量是多少kg ?(2)若该厂工人工资实际计件工资制,按计划每生产1kg 茶叶50元,每超产1kg 奖10元,每天少生产1kg 扣10元,那么该厂工人这一周的工资总额是多少?15.如图,已知数轴上点A 表示的数为﹣7,点B 表示的数为5,点C 到点A ,点B 的距离相等,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为t (t >0)秒.(1)点C 表示的数是 ; (2)求当t 等于多少秒时,点P 到达点B 处;(3)点P 表示的数是 (用含有t 的代数式表示);(4)求当t 等于多少秒时,PC 之间的距离为2个单位长度.16.材料阅读:已知点A 、B 在数轴上分别表示有理数a 、b ,|a ﹣b |表示A 、B 两点之间的距离.如:|1﹣2|表示数轴上1与2两点之间的距离,所以数轴上1与2两点之间的距离是|1﹣2|=1.(1)数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x 和﹣1的两点A 和B 之间的距离是 ,如果|AB |=2,那么x 为 ;(3)若x 表示一个有理数,则|x ﹣1|+|x +3|有最小值吗?若有,请求出最小值;若没有,请说明理由.三、1317.有理数a ,b 在数轴上的位置如图所示,则下列结论正确的是 ( )A .1a >-B .0a b +>C .1b <D .0ab >18.如图所示的数轴上,被叶子盖住的点表示的数可能是( )A .-1.3B .1.3C .πD .2.319.下列说法中,正确的个数有( )①-a 一定是负数;②|-a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤两个有理数的和一定大于其中每一个加数;⑥若a b = ,则a=b.A .1个B .2个C .3个D .4个20.x 、y 、z 在数轴上的位置如图所示,则化简|x ﹣y|+|z ﹣y|的结果是( )A .x ﹣zB .z ﹣xC .x+z ﹣2yD .以上都不对21.数轴上点A ,M ,B 分别表示数a ,+a b ,b ,那么下列运算结果一定是正数的是( )A.+a b B.-a b C.ab D.a b-22.a,b,c是三个有理数,且abc<0,a+b<0,a+b+c﹣1=0,下列式子正确的是()A.|a|>|b+c|B.c﹣1<0C.|a+b﹣c|﹣|a+b﹣1|=c﹣1D.b+c>0 23.已知 x﹣y=4,|x|+|y|=7,那么 x+y 的值是()A.±32B.±112C.±7D.±124.如图,数轴上两定点A、B对应的数分别为-18和14,现在有甲、乙两只电子蚂蚁分别从A、B同时出发,沿着数轴爬行,速度分别为每秒1.5个单位和1.7个单位,它们第一次相向爬行1秒,第二次反向爬行2秒,第三次相向爬行3秒,第四次反向爬行4秒,第五次相向爬行5秒,……,按如此规律,则它们第一次相遇所需的时间为()A.55秒B.190秒C.200秒D.210秒25.有理数a、b在数轴上的位置如下图所示,则下列判断正确的是()A.0ab>B.0ab>C.a b<D.0a b>>【参考答案】***试卷处理标记,请不要删除一、填空题1.【解析】【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0列出二元一次方程组解出xy的值再代入原式即可【详解】解:根据题意得:解得:则原式=2-(-1)-故答案是:【点睛】本题解析:83【解析】【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”列出二元一次方程组,解出x、y的值,再代入原式即可.【详解】解:根据题意得:1020xy⎧⎨-⎩+==,解得:12xy-⎧⎨⎩==,则原式=2-(-1)-1833=.故答案是:83.【点睛】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.2.-1012【解析】【分析】根据题意先画出数轴然后根据整数定义即可解答【详解】如图所示:∴大于-1而小于2的整数有-1012故答案是:-1012【点睛】由于引进了数轴我们把数和点对应起来也就是把数和形解析:-1,0,1,2【解析】【分析】根据题意先画出数轴,然后根据整数定义即可解答.【详解】如图所示:∴大于-112而小于213的整数有-1,0,1,2.故答案是:-1,0,1,2.【点睛】由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.3.不正确;两个负数比较大小绝对值大的反而小【分析】根据数轴具有方向性的特征即可解题【详解】解:绝对值的几何含义表示数轴上该点与原点的距离但是因为数轴是有方向的所以不能单纯的认为如果则比如一正一负的情况解析:不正确;两个负数比较大小,绝对值大的反而小.【分析】根据数轴具有方向性的特征即可解题.【详解】解:绝对值的几何含义表示数轴上该点与原点的距离,但是因为数轴是有方向的,所以不能单纯的认为如果a b >,则a b >,比如一正一负的情况,所以小贝的观点错误.理由如下:两个负数比较大小,绝对值大的反而小.【点睛】本题考查了绝对值的大小比较,属于简单题,熟悉绝对值法则是解题关键.4.±3【解析】【分析】根据数轴上两点间距离的定义进行解答即可【详解】设数轴上到原点的距离等于3个单位长度的点所表示的有理数是x 则解得:故本题答案为:【点睛】本题考查了数轴解决本题的关键突破口是知道原点解析:±3【解析】【分析】根据数轴上两点间距离的定义进行解答即可.【详解】设数轴上,到原点的距离等于3个单位长度的点所表示的有理数是 x ,则 x =3, 解得: x=3±.故本题答案为: 3±.【点睛】本题考查了数轴,解决本题的关键突破口是知道原点距离为3的长度有两个,不要遗漏.5.;【解析】【分析】根据相反数的定义得到方程(4x-5)+7=0通过解该方程可以求得x 的值【详解】∵代数式的值与7互为相反数∴(4x -5)+7=0∴4x=-2∴x=故答案为【点睛】本题考查了相反数的定 解析:12-; 【解析】【分析】 根据相反数的定义得到方程(4x-5)+7=0,通过解该方程可以求得x 的值.【详解】∵代数式4x 5-的值与7互为相反数,∴(4x-5)+7=0,∴4x=-2,∴x=12-, 故答案为12-. 【点睛】本题考查了相反数的定义,解一元一次方程,根据相反数的定义列出关于x 的方程是解题的关键.6.b+2c【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=(c-a解析:b+2c【分析】由图可知, c-a<0,根据正数的绝对值等于它本身,负数的绝对值等于它的相反数,分别求出绝对值,再根据整式的加减运算,去括号,合并同类项即可.【详解】由图可知c<0,0<a<b,则c-a<0,原式=(c-a)+b+a-(-c)=c-a+b+a+c=b+2c.【点睛】本题考查的知识点是整式的加减和绝对值,解题关键是熟记整式的加减运算实际上就是去括号、合并同类项.7.0±1±2±3±40【解析】【分析】根据绝对值的意义得到整数0±1±2±3±4的绝对值都小于5然后利用互为相反数的两数的和为0即可得到所有这些数的和为0【详解】绝对值小于5的所有整数有0±1±2±3解析:0,±1,±2,±3,±40.【解析】【分析】根据绝对值的意义得到整数0,±1,±2,±3,±4的绝对值都小于5,然后利用互为相反数的两数的和为0即可得到所有这些数的和为0.【详解】绝对值小于5的所有整数有0,±1,±2,±3,±4;它们的和为0.故答案为0,±1,±2,±3,±4;0.【点睛】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.8.0【解析】【分析】直接利用绝对值的性质得出xy的值进而得出答案【详解】∵|x-2|+|y+2|=0∴x=2y=-2∴x+y=2-2=0故答案为0【点睛】此题主要考查了非负数的性质正确应用绝对值的性质解析:0【解析】【分析】直接利用绝对值的性质得出x,y的值,进而得出答案.【详解】∵|x-2|+|y+2|=0,∴x=2,y=-2,∴x+y=2-2=0.故答案为0.【点睛】此题主要考查了非负数的性质,正确应用绝对值的性质是解题关键.二、解答题9.(1)详见解析;(2)小明家与小刚家相距8千米;(3)这辆货车此次送货共耗油11.4升.【解析】【分析】(1)根据已知,以百货大楼为原点,以向东为正方向,用1个单位长度表示1千米,一辆货车从百货大楼出发,向东走了5千米,到达小明家,继续向东走了1.5千米到达小红家,然后向西走了9.5千米,到达小刚家,最后返回百货大楼,则小明家、小红家和小刚家在数轴上的位置可知;(2)用小明家的坐标减去小刚家的坐标即可;(3)这辆货车一共行走的路程,实际上就是5+1.5+9.5+3 (千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.【详解】解:(1)如图所示:(2)小明家与小刚家相距:5-(-3)=8(千米);答:小明家与小刚家相距8千米;(3)这辆货车此次送货共耗油:(5+1.5+9.5+3)×0.6=11.4(升).答:这辆货车此次送货共耗油11.4升.【点睛】熟练掌握能够使用数轴将应用问题转化为有理数的混合运算是解题关键.10.3>212>1.5>0>﹣1>﹣2.5【解析】【分析】依据在数轴上右边的数比左边的数大进行比较即可完成解答.【详解】解:,3>2>1.5>0>﹣1>﹣2.5.【点睛】本题考查数轴上的点,熟悉掌握相关知识是解题关键.11.(1)①2;②点C 表示的数为2或-2;(2)点M 表示的数为-0.5或-1.5.【分析】根据绝对距离的定义即可解题.【详解】(1)①求A ,B 两点的绝对距离=AO BO 132-=-=, ②∵AOB AO BO 132=-=-=,又AOB 2AOC =,∴AOC 1=,即AO CO 1-=, 或CO AO 1-=,∴点C 表示的数为2或-2;(2)由题可知MON =|MO-NO|=1或|NO-MO|=1∵MN=2,∴点M 表示的数为-0.5或-1.5.【点睛】本题考查了绝对值的实际应用,绝对距离的含义,中等难度,熟悉绝对距离的概念是解题关键.12.(1)8;(2)c =103或c =14;(3)①甲球与原点的距离为t +2;乙球到原点的距离分两种情况:当0⩽t ⩽3时,乙球到原点的距离为6−2t ;当t >3时,乙球到原点的距离为:2t −6;②当t =43秒或t =8秒时,甲乙两小球到原点的距离相等. 【分析】(1)先根据非负数的性质求出a 、b 的值,再根据两点间的距离公式即可求得A 、B 两点之间的距离;(2)分C 点在线段AB 上和线段AB 的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA 的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B 处开始向左运动,一直到原点O ,此时OB 的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t >3时,乙球从原点O 处开始向右运动,此时乙球运动的路程-OB 的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0≤t≤3,(Ⅱ)t >3,根据甲、乙两小球到原点的距离相等列出关于t 的方程,解方程即可.【详解】(1)因为2460a b ++-=,所以2a +4=0,b -6=0,所以a =−2,b =6;所以AB 的距离=|b −a |=8;(2)设数轴上点C 表示的数为c .因为AC =2BC ,所以|c −a |=2|c −b |,即|c +2|=2|c −6|.因为AC =2BC >BC ,所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.①当C点在线段AB上时,则有−2<c<6,得c+2=2(6−c),解得c =103;②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c−6),解得c =14.故当AC=2BC时, c =103或c =14;(3)①因为甲球运动的路程为:1×t =t,OA=2,所以甲球与原点的距离为:t+2;乙球到原点的距离分两种情况:(Ⅰ)当0⩽t⩽3时,乙球从点B处开始向左运动,一直到原点O,因为OB=6,乙球运动的路程为:2×t =2t,所以乙球到原点的距离为:6−2t;(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2t−6;②当0<t⩽3时,得t+2=6−2t,解得t =43;当t>3时,得t+2=2t−6,解得t =8.故当t=43秒或t =8秒时,甲乙两小球到原点的距离相等.【点睛】本题考查了非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.13.(1)①12;②﹣10;③点P出发2或4秒后,与点Q之间相距4个单位长度;(2)三个点同时出发,经过23或32秒后有MP=MQ.【解析】【分析】(1)①根据两点间的距离公式即可求解;②根据相遇时间=路程差÷速度差先求出时间,再根据路程=速度×时间求解即可;③分两种情况:P,Q两点相遇前;P,Q两点相遇后;进行讨论即可求解;(2)分两种情况:M在P,Q两点之间;P,Q两点相遇;进行讨论即可求解.【详解】(1)①A,B两点之间的距离为8﹣(﹣4)=12,故答案为:12;②12÷(6﹣2)=3(秒),﹣4﹣2×3=﹣10,故当P,Q两点相遇时,点P在数轴上对应的数是﹣10,故答案为:-10;③P,Q两点相遇前,(12﹣4)÷(6﹣2)=2(秒),P,Q两点相遇后,(12+4)÷(6﹣2)=4(秒),故点P出发2或4秒后,与点Q之间相距4个单位长度;(2)设三个点同时出发,经过t秒后有MP=MQ,M在P,Q两点之间,8﹣6t﹣t=t﹣(﹣4+2t),解得t=23;P,Q两点相遇,2t+6t=12,解得t=32,故若三个点同时出发,经过23或32秒后有MP=MQ.【点睛】本题考查了数轴上两点的距离、数轴上点的表示、一元一次方程的应用,比较复杂,要认真理清题意,并注意数轴上的点,原点左边表示负数,右边表示正数,在数轴上,两点的距离等于任意两点表示的数的差的绝对值.14.(1)180kg;(2)8980元【解析】【分析】(1)根据七天的生产情况记录(超产为正、减产为负),可以计算每天实际产量,求和即可.(2)根据(1)中结果,算出金额,再将一周的超产、减产相加乘以10元,求出二者之和即可以得出答案.【详解】(1)∵七天的生产情况记录如下(超产为正、减产为负):+3,﹣2,﹣4,+1,﹣1,+6,﹣5,∴七天的生产情况实际值为:29kg、24kg、22kg、27kg、25kg、32kg、21kg,∴一周总产量:29+24+22+27+25+32+21=180(kg).答:这一周的实际产量是180kg.(2)∵+3+(﹣2)+(﹣4)+1+(﹣1)+6+(﹣5)=﹣2∴180×50+(﹣2)×10=9000﹣20=8980(元).答:该厂工人这一周的工资总额是8980元.【点睛】本题考查了正数负数在实际生活中的应用,通过实际例子,可以让学生体会数学与生活的密切相关,提升学生在实际生活中发现数学、应用数学的情商.15.(1) -1;(2)6;(3)﹣7+2t;(4)t=2 或t=4.【解析】【分析】(1)根据线段中点坐标公式可求点C表示的数;(2)根据时间=路程÷速度,可求t的值;(3)根据两点之间的距离公式可求点P表示的数;(4)分P在点C左边和点C右边两种情况讨论求解.【详解】(1)(﹣7+5)÷2=﹣2÷2=﹣1.故点C表示的数是﹣1.故答案为:﹣1;(2)()572--=6;(3)﹣7+2t;故答案为:﹣7+2t;(4)因为PC之间的距离为2个单位长度,所以点P运动到﹣3或1,即﹣7+2t=﹣3或﹣7+2t=1,即t=2 或t=4.【点睛】此题考查了数轴,一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意分类思想的应用.16.(1)3;(2)|x+1|,1或﹣3;(3)代数式|x﹣1|+|x+3|有最小值,为4.【解析】【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a-b|.代入数值运用绝对值即可求任意两点间的距离;(2)直接根据数轴上A、B两点之间的距离|AB|=|a-b|.代入数值运用绝对值即可求任意两点间的距离;(3)根据绝对值的性质,根据得到结论.【详解】(1)数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3.故答案为3;(2)数轴上表示x和﹣1的两点A和B之间的距离是|x﹣(﹣1)|=|x+1|,如果|AB|=2,那么x为1或﹣3.故答案为|x+1|,1或﹣3;(3)当代数式|x﹣1|+|x+3|有最小值,理由:根据数轴上两点之间的距离定义有:|x﹣1|+|x+3|表示x与﹣3两点的距离之和,根据几何意义分析可知:当x在﹣3与1之间时,|x﹣1|+|x+3|有最小值4.【点睛】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.三、1317.C解析:C【分析】根据数轴判断a,b的取值范围即可解题.【详解】-<<-<<A、B项错误,解:由数轴可知,2a1,0b1,a,b异号,D错误,故选C.【点睛】本题考查了数轴的应用,属于简单题,在数轴中判断出有理数的取值范围是解题关键. 18.D解析:D【解析】【分析】设被叶子盖住的点表示的数为x,则1<x<3,再根据每个选项中实数的范围进行判断即可.【详解】解:设被叶子盖住的点表示的数为x,则1<x<3,又因为x的位置比较靠近3,则表示的数可能是2.3.故选D.【点睛】本题考查实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.19.A解析:A【解析】【分析】根据正数和负数、绝对值、倒数等相关的性质,逐句判断即可.【详解】∵如果a为负数时,则-a为正数,∴-a一定是负数是错的.∵当a=0时,|-a|=0,∴|-a|一定是正数是错的.∵倒数等于它本身的数只有±1,∴③对.∵绝对值都等于它本身的数是非负数,不只是1,∴绝对值等于它本身的数是1的说法是错误的.两个有理数的和一定大于其中每一个加数,∴⑤错误. 若a b =,则a=b 或a=-b 或-a=b 或-a=-b ∴⑥错误.所以正确的说法共有1个.故选A .【点睛】本题考查的知识点是正数和负数、绝对值、倒数,解题关键是能熟记相关的定义及其性质.20.B解析:B【解析】【分析】根据x 、y 、z 在数轴上的位置,先判断出x-y 和z-y 的符号,在此基础上,根据绝对值的性质来化简给出的式子.【详解】由数轴上x 、y 、z 的位置,知:x <y <z ;所以x-y <0,z-y >0;故|x-y|+|z-y|=-(x-y )+z-y=z-x .故选B .【点睛】此题借助数轴考查了用几何方法化简含有绝对值的式子,能够正确的判断出各数的符号是解答此类题的关键.21.A解析:A【解析】【分析】先根据数轴判断出a 、b 的正负性及a 、b 之间的关系,然后对各选项逐一分析即可.【详解】∵a <+a b ,∴b >0.∵+a b <b ,∴a <0.∵AM >BM , ∴a b a a b b +->+-, ∴b a >.∵a <0,b >0,b a >,A. ∵a <0,b >0,b a >,a b +>0,故正确;B. ∵a <0,b >0, 0a b -<,故不正确;C. ∵a <0,b >0, 0ab <,故不正确;D. ∵a <0,b >0,b a >, 0a b -<,故不正确;故选A.【点睛】本题考查的是利用数轴比较大小及数轴上两点之间的距离,数轴上两点之间的距离等于两点所表示数的差的绝对值.22.C解析:C【解析】【分析】由a +b +c ﹣1=0,表示出a +b =1﹣c ,再由a +b 小于0,列出关于c 的不等式,求出不等式的解集确定出c 大于1,将a +b =1﹣c ,a +b ﹣1=c 代入|a +b ﹣c |﹣|a +b +1|中,利用绝对值的代数意义化简,去括号合并得到结果为c ﹣1,即可得答案.【详解】∵a +b +c ﹣1=0,a +b <0,∴a +b =1﹣c <0,即c >1,则|a +b ﹣c |﹣|a +b ﹣1|=|1﹣2c |﹣|c |=2c ﹣1﹣(c ﹣1)=2c ﹣1﹣c =c ﹣1,故选C .【点睛】本题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.23.C解析:C【解析】【分析】根据x -y =4,可得:x =y +4,代入|x |+|y |=7,然后分类讨论y 的取值即可。

有理数经典测试题附答案

有理数经典测试题附答案
根据数轴可以发现a<b,且-3<a<-2,1<b<2,由此即可判断以上选项正确与否.
【详解】
∵-3<a<-2,1<b<2,∴|a|>|b|,∴答案A错误;
∵a<0<b,且|a|>|b|,∴a+b<0,∴a<-b,∴答案B错误;
∵-3<a<-2,∴答案C错误;
∵a<0<b,∴b>a,∴答案D正确.
故选:D.
11.下列各数中,绝对值最大的数是( )
A.1B.﹣1C.3.14D.π
【答案】D
【解析】
分析:先求出每个数的绝对值,再根据实数的大小比较法则比较即可.
详解:∵1、-1、3.14、π的绝对值依次为1、1、3.14、π,
∴绝对值最大的数是π,
故选D.
点睛:本题考查了实数的大小比较和绝对值,能比较实数的大小是解此题的关键.
【详解】
当 时, , ,此选项错误;
B、当a<b<c时, , ,此项错误;
C、当c<a<b时, , ,此项正确
D、当c<b<a时, , ,此选项错误;
故选C.
【点睛】
本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.
15.下列运算正确的是( )
A. =-2B.|﹣3|=3C. = 2D. =3
【详解】
由题意可知:ab=1,c+d=0, ,f=64,
∴ , ,

= ;
故答案为:D
【点睛】
此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.
7.下列各数中,最大的数是( )
A. B. C.0D.-2
【答案】B
【解析】
【分析】
将四个数进行排序,进而确定出最大的数即可.

七年级有理数练习题集及答案(10套)

七年级有理数练习题集及答案(10套)

有理数单元检测001有理数及其运算(综合)(测试5)一、境空题(每空2分,共28分) 1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____. 3、计算:._____59____;2123=--=+-4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C7、计算:.______)1()1(101100=-+-8、平方得412的数是____;立方得–64的数是____. 9、用计算器计算:._________95=10、观察下面一列数的规律并填空:0,3,8,15,24,_______. 二、选择题(每小题3分,共24分)11、–5的绝对值是………………………………………………………( ) A 、5 B 、–5 C 、51 D 、51- 12、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………( ) A 、l 个 B 、2个 C 、3个 D 、4个13、下列算式中,积为负数的是………………………………………………( ) A 、)5(0-⨯ B 、)10()5.0(4-⨯⨯ C 、)2()5.1(-⨯ D 、)32()51()2(-⨯-⨯-14、下列各组数中,相等的是…………………………………………………( ) A 、–1与(–4)+(–3) B 、3-与–(–3)C 、432与169 D 、2)4(-与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二 次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………( ) A 、90分 B 、75分 C 、91分 D 、81分16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………( ) A 、121 B 、321 C 、641 D 、128117、不超过3)23(-的最大整数是………………………………………( )A 、–4B –3C 、3D 、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28% 三、解答题(共48分) 19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数: –3,+l ,212,-l.5,6.20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分? 21、(8分)比较下列各对数的大小. (1)54-与43- (2)54+-与54+- (3)25与52 (4)232⨯与2)32(⨯ 22、(8分)计算.(1)15783--+- (2))6141(21-- (3))4(2)3(623-⨯+-⨯- (4)61)3161(1⨯-÷23、(12分)计算.(l )51)2(423⨯-÷- (2)75.04.34353.075.053.1⨯-⨯+⨯- (3)[]2)4(231)5.01(-+⨯÷-- (4))411()2(32)53()5(23-⨯-÷+-⨯-24、(4分)已知水结成冰的温度是0C ,酒精冻结的温度是–117℃。

有理数单元测试题及答案

有理数单元测试题及答案

有理数单元测试题及答案一、选择题(每题 3 分,共 30 分)1、下列说法正确的是()A 整数就是正整数和负整数B 负整数的相反数就是非负整数C 有理数中不是负数就是正数D 零是自然数,但不是正整数答案:D解析:整数包括正整数、零和负整数,A 选项错误;负整数的相反数是正整数,不是非负整数,B 选项错误;有理数包括正数、零和负数,C 选项错误;零是自然数,但不是正整数,D 选项正确。

2、在有理数中,绝对值等于它本身的数有()A 1 个B 2 个C 3 个D 无数个答案:D解析:绝对值等于它本身的数是非负数,包括零和所有正数,有无数个。

3、下列计算正确的是()A (-3) =-3B |-3| =-3C (-3)²=-9D -3²= 9答案:B解析:(-3) = 3,A 选项错误;|-3| =-3,B 选项正确;(-3)²= 9,C 选项错误;-3²=-9,D 选项错误。

4、比-3 大 2 的数是()A -5B -1C 1D 5答案:B解析:-3 + 2 =-15、两个有理数的和为负数,那么这两个数一定()A 都是负数B 至少有一个负数C 有一个是 0D 绝对值相等答案:B解析:两个有理数的和为负数,那么这两个数至少有一个负数。

6、计算(-1)×(-2)的结果是()A 2B 1C -2D -1答案:A解析:(-1)×(-2) = 27、若 a < 0 , b > 0 ,且|a| >|b| ,则 a + b 的值()A 是正数B 是负数C 是零D 不能确定答案:B解析:因为 a < 0 , b > 0 ,且|a| >|b| ,所以 a + b 的值是负数。

8、下列说法正确的是()A 倒数等于它本身的数只有 1B 平方等于它本身的数只有 0C 立方等于它本身的数只有 0 和 1D 相反数等于它本身的数只有 0答案:D解析:倒数等于它本身的数有 1 和-1,A 选项错误;平方等于它本身的数有 0 和 1,B 选项错误;立方等于它本身的数有 0 、 1 和-1,C 选项错误;相反数等于它本身的数只有 0,D 选项正确。

初一数学有理数试题答案及解析

初一数学有理数试题答案及解析

初一数学有理数试题答案及解析1.的倒数是A.B.C.D.【答案】B.【解析】的倒数是1÷()=-3.故选B.【考点】倒数.2.绝对值小于4的所有整数的和是.【解析】绝对值小于4的所有整数是,其和为.3.在,-2,,这四个数中,有理数的个数有A.1个B.2个C.3个D.4个【答案】C.【解析】本题中只有不是有理数,故有理数有3个.【考点】有理数的概念.4.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,其中AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边 B.点A与点B之间C.点B与点C之间 D.点C的右边【答案】C.【解析】∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选C.【考点】实数与数轴.5. 2012年伦敦奥运会上,中国选手吕小军在男子举重77公斤级比赛中,打破了原奥运会纪录,创造了新抓举纪录,成绩是175公斤,下列说法正确的是()A.原来奥运会纪录是175公斤B.原来奥运会纪录是77公斤C.原来奥运会纪录小于77公斤D.原来奥运会纪录小于175公斤【答案】D【解析】根据“成绩是175公斤,打破了原奥运会纪录”即可作出判断.解:由题意得原来奥运会纪录小于175公斤,故选D.【考点】生活中的数学点评:本题属于基础应用题,只需学生熟练掌握数学的基本应用,即可完成.6.比较大小:______(填“>”、“<”或“=”).【答案】<【解析】有理数的大小比较法则:正数大于0,负数小于0,正数大于一切负数;两个负数,绝对值大的反而小.解:∵,,∴<.【考点】有理数的大小比较点评:本题属于基础应用题,只需学生熟练掌握有理数的大小比较法则,即可完成.7.一个数的相反数是这个数本身,这样的数的个数是().A.0B.1C.2D.无数【答案】B【解析】相反数的定义:符号不同,绝对值相同的两个数互为相反数.解:相反数是这个数本身的数只有0这1个,故选B.【考点】相反数的定义点评:本题属于基础应用题,只需学生熟练掌握相反数的定义,即可完成.8.下列式子一定成立的是()A.x4+x4=2x8B.x4·x4 =x8C.(x4)4=x8D.x4÷x4=0【答案】B【解析】A.错误:x4+x4=2x4;C.错误:(x4)4=x16 D.错误:x4÷x4=1,选B正确。

有理数试题及答案

有理数试题及答案

有理数试题及答案一、选择题1. 下列哪个数是有理数?A. √2B. πC. 0.123456...(无限循环小数)D. 1/3答案:D2. 有理数的定义是什么?A. 可以表示为两个整数的比B. 有限小数C. 无限循环小数D. 所有实数答案:A3. 计算下列表达式的值:5 × (-3) - 2 ÷ (-1)A. 13B. 17C. 15D. 19答案:C4. 两个有理数相加,结果一定是:A. 有理数B. 无理数C. 整数D. 分数答案:A5. 如果a是有理数,那么下列哪个选项是错误的?A. a可以表示为一个有限小数B. a可以表示为一个无限循环小数C. a可以表示为两个整数的比D. a的平方可能是无理数答案:D二、填空题1. 请写出一个有理数的例子:________。

答案:2/32. 有理数和无理数的主要区别在于是否可以表示为________。

答案:两个整数的比3. 如果一个数的小数部分是有限的或者无限的循环,则这个数是有理数。

例如,0.5和0.33333...(无限循环的3)都是有理数,因为它们可以表示为________和________。

答案:1/2;1/3三、计算题1. 计算下列表达式的值:(3 × 2 - 4) ÷ 6 + 1/2答案:1.52. 简化下列表达式:5/9 + 3/4 - 2/3答案:1 1/183. 一个班级有40名学生,其中25名学生参加了足球队,18名学生参加了篮球队,有5名学生同时参加了两个队伍。

请问至少有多少名学生没有参加任何队伍?答案:这个班级至少有7名学生没有参加任何队伍。

四、解答题1. 请解释为什么√2不是有理数。

答案:有理数可以表示为两个整数的比,即a/b的形式,其中a和b 都是整数,且b不为零。

如果√2是有理数,那么它应该可以表示为两个整数的比。

但是,没有任何两个整数a和b能够满足√2 = a/b的关系,因为√2的小数部分是无限不循环的。

有理数专题练习题(有答案)

有理数专题练习题(有答案)

【典型例题】一、有理数的概念及分类1、对有理数的分类进行考查20|,0,-(-2017),-2,95%,5.7-3.8,-10,5,-|-7正数集合:{ 5、-(-2017)、95% 、5.7 };20| 、-2 };负数集合:{-3.8、-10、 -|-7非负整数集合:{ 5、0 、-(-2017) };20| };负分数集合:{ -|-72、对有理数的概念进行考查下列说法中正确的是( D )A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数D.整数和分数统称有理数二、数轴1、综合互为相反数、互为倒数、绝对值来进行考查已知a,b互为相反数,c,d互为倒数,x的绝对值是2,试求代数式20032)2004+x-a++-的值.+b+x()()(cdabcd解:因为a,b 互为相反数,c,d 互为倒数,所以a+b=0,cd=1, |x|=2,所以x=2或x=-2,x ²=4.代入原式中 当x=2时,原式=4-(0+1)×2+0+(-1)=1 当x=-2时,原式=4-(0+1)×(-2)+0+(-1)=5 三、绝对值1、绝对值的几何意义若a,b,c,d 为有理数,且|a-b|=|b-c|=|c-d|=1,则|a-d|= . 3或12、化简绝对值若有理数a,b,c 在数轴上的位置如图所示,则|a+b|-|b-1|-|a-c|-|1-c|= .|a+b|-|b-1|-|a-c|-|1-c|=-(a+b )-(1-b)-(c-a)-(1-c)=-2 3、零点分段法已知632=++-x x ,则x = .当x<-3时,|x-2|+|x+3|=-(x-2)-(x+3)=6 x=-7/2 当-3<x<2时,|x-2|+|x+3|=-(x-2) +(x+3)=6 x 无解a b 1c当x>2时,|x-2|+|x+3|=(x-2) +(x+3)=6 x=5/2 4、绝对值的非负性及分数列项综合考查①已知|2|-ab 与|1|-a 互为相反数,试求下式的值:)2017)(2017(1...)2)(2(1)1)(1(11++++++++++b a b a b a ab . ②若c b a 、、为有理数,且0≠abc ,则abcabc c c b b a a ||||||||-++= . 解:①因为|2|-ab 与|1|-a 互为相反数,则|2|-ab =0,|1|-a =0, 所以ab=2,即a=1, b=2,所以原式=1/(1*2)+1/(2*3)+....+1/(2018*2019) =1-1/2+1/2-1/3+.....+1/2018-1/2019 (约去中间项) =1-1/2019 =2018/2019②当a 、b 、c 、都为正时,原式=1+1+1-1=2当a 、b 、c 、有一个为负,两个正时,原式=1+1-1+1=2 当a 、b 、c 、有两个为负,一个正时,原式=1-1-1-1=-2 当a 、b 、c 、都为负时,原式=-1-1-1-1=-4 四、科学记数法(此类考题很简单)据统计,2016年“十一”国庆长假期间,成都市共接待国内外游客约319万人次,与2015年同比增长16.43%,数据319万用科学记数法表示为 。

有理数经典测试题含答案

有理数经典测试题含答案

有理数经典测试题含答案理数经典测试题1. 将4.2和3.5相加,得出的结果是多少?请写出详细计算过程和结果。

解答:要将4.2和3.5相加,我们首先对齐小数点,然后逐位相加。

4.2的小数部分是2,3.5的小数部分是5。

将它们相加得到7。

然后,将整数部分4和3相加得到7。

所以,4.2加上3.5的结果是7.7。

2. 将-5/6和3/4相减,得出的结果是多少?请写出详细计算过程和结果。

解答:要将-5/6和3/4相减,我们需要找到它们的最小公倍数,并将分子进行调整。

首先,我们计算5和6的最小公倍数,它们的最小公倍数是30,所以我们可以将-5/6变为-25/30,将3/4变为22/30。

然后,我们将它们相减:-25/30 - 22/30 = -47/30。

所以,-5/6减去3/4的结果是-47/30。

3. 将2/3和7/8相乘,得出的结果是多少?请写出详细计算过程和结果。

解答:要将2/3和7/8相乘,我们将分数的分子相乘,分母相乘。

2乘以7得到14,3乘以8得到24。

所以,2/3乘以7/8的结果是14/24。

我们可以进一步约分这个分数,得到7/12。

4. 将9/10除以3/5,得出的结果是多少?请写出详细计算过程和结果。

解答:要将9/10除以3/5,我们需要将除法转化为乘法的倒数操作。

我们先计算3/5的倒数,也就是5/3。

然后,我们将9/10和5/3相乘:9/10 × 5/3 = 45/30。

我们可以进一步约分这个分数,得到3/2。

5. 将-2/3和5/6相加,得出的结果是多少?请写出详细计算过程和结果。

解答:要将-2/3和5/6相加,我们需要找到它们的最小公倍数,并将分子进行调整。

首先,我们计算3和6的最小公倍数,它们的最小公倍数是6,所以我们可以将-2/3变为-4/6,将5/6保持不变。

然后,我们将它们相加:-4/6 + 5/6 = 1/6。

所以,-2/3加上5/6的结果是1/6。

6. 将-7/8和2/5相减,得出的结果是多少?请写出详细计算过程和结果。

有理数练习题(含答案)

有理数练习题(含答案)

有理数练习题(含答案)
1. 简答题
1.1 什么是有理数?
有理数是可以被表示为两个整数的比值的数。

它包括整数、正分数、负分数和零。

1.2 有理数的特点是什么?
有理数具有以下特点:
- 可以由有限的小数或无限循环小数表示;
- 可以进行加减乘除运算;
- 可以进行大小比较。

2. 简单练题
2.1 将下列数化为最简分数形式:
2.1.1 4/8 = 1/2
2.1.2 -12/15 = -4/5
2.1.3
3.6 = 18/5
2.2 求下列有理数的绝对值:
2.2.1 |-7| = 7
2.2.2 |4/5| = 4/5
2.2.3 |-1.8| = 1.8
2.3 计算下列有理数的和或差,并化简:
2.3.1 3/5 + 1/10 = 7/10
2.3.2 -2/3 - 1/6 = -5/6
2.3.3 -1/4 + 3/8 = 1/8
2.4 比较下列有理数的大小:
2.4.1 -1/2 和 -3/4,-1/2 > -3/4
2.4.2 0.5 和 0.55,0.5 < 0.55
2.4.3 -0.125 和 -0.15,-0.125 > -0.15
3. 解决问题
小明有14支细铅笔,小红的铅笔数是小明的1.5倍,两人总共有多少支铅笔?
解答:小红的铅笔数为14 x 1.5 = 21支,两人总共有14 + 21 = 35支铅笔。

4. 总结
本练习题主要涵盖了有理数的定义与特点、化简分数、求绝对值、进行加减运算和大小比较等基础知识点。

通过解决问题的方式,帮助学生更好地理解有理数的概念和运算规则。

有理数的运算经典测试题含答案

有理数的运算经典测试题含答案

有理数的运算经典测试题含答案一、选择题1.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km .用科学记数法表示1.496亿是( )A .71.49610⨯B .714.9610⨯C .80.149610⨯D .81.49610⨯【答案】D【解析】分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:数据1.496亿用科学记数法表示为1.496×108.故选D .点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.为促进义务教育办学条件均衡,2019年某地区计划投入4200000元资金为该地区农村学校添置实验仪器,4200000这个数用科学记数法表示为( )A .44210⨯B .64.210⨯C .84210⨯D .60.4210⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4200000=4.2×106,故选:B .【点睛】本题考查科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( ) A .4B .6C .7D .10【答案】B【解析】【分析】把8.1555×1010写成不用科学记数法表示的原数的形式即可得.【详解】∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选B .【点睛】本题考查了把科学记数法表示的数还原成原数,科学记数法的表示的数a×10n 还成成原数时, n >0时,小数点就向右移动n 位得到原数;n<0时,小数点则向左移动|n|位得到原数.4.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,=e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.5.如果a 是实数,下列说法正确的是( )A .2a 和a 都是正数B .(-a +2可能在x 轴上C .a 的倒数是1a D .a 的相反数的绝对值是它本身【答案】B【解析】【分析】A 、根据平方和绝对值的意义即可作出判断;B 、根据算术平方根的意义即可作出判断;C 、根据倒数的定义即可作出判断;D 、根据绝对值的意义即可作出判断.【详解】A、2a和a都是非负数,故错误;B、当a=0时,(-a+2在x轴上,故正确;C、当a=0时,a没有倒数,故错误;D、当a≥0时,a的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.6.2018-2019学年度七星关区区级配套“教育精准扶贫”资金约1410000元,1410000用科学计数法表示为()A.6⨯D.41.41101.4110⨯1.4110⨯C.5⨯B.71.4110【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将1410000用科学记数法表示为6⨯,1.4110故选:A.【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A.6⨯C.71161011.610⨯B.71.1610⨯⨯D.81.1610【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.0000084=8.4×10-6故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A.﹣1 B.﹣2 C.﹣3 D.﹣6【答案】A【解析】【分析】由正方体各个面之间的关系知道,它的展开图中相对的两个面之间应该隔一个正方形,可以得到相对面的两个数,相加后比较即可.【详解】解:根据展开图可得,2和﹣2是相对的两个面;0和1是相对的两个面;﹣4和3是相对的两个面,∵2+(﹣2)=0,0+1=1,﹣4+3=﹣1,∴原正方体相对两个面上的数字和的最小值是﹣1.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析解答问题.10.2019的倒数的相反数是()A.-2019 B.12019C.12019D.2019【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是1 2019,1 2019的相反数为12019-,所以2019的倒数的相反数是1 2019 -,故选B.【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.11.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为()A.94.610⨯B.74610⨯C.84.610⨯D.90.4610⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.按如图所示的运算程序,能使输出结果为10的是()A.x=7,y=2 B.x=﹣4,y=﹣2 C.x=﹣3,y=4 D.x=12,y=3【答案】D【解析】【分析】根据运算程序,结合输出结果确定的值即可.【详解】解:A、x=7、y=2时,输出结果为2×7+22=18,不符合题意;B、x=﹣4、y=﹣2时,输出结果为2×(﹣4)﹣(﹣2)2=﹣12,不符合题意;C、x=﹣3、y=4时,输出结果为2×(﹣3)﹣42=﹣22,不符合题意;D、x=12、y=3时,输出结果为2×12+32=10,符合题意;故选:D.【点睛】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.13.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km,把 384 000km 用科学记数法可以表示为()A.38.4 ×10 4 km B.3.84×10 5 km C.0.384× 10 6 km D.3.84 ×10 6 km【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】科学记数法表示:384 000=3.84×105km故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.一根1m长的小棒,第一次截去它的12,第二次截去剩下的12,如此截下去,第五次后剩下的小棒的长度是()A.12m B.15m C.116m D.132m【答案】D【解析】【分析】根据题意和乘方的定义可以解答本题.【详解】解:第一次是12m,第二次是211112224⎛⎫⨯==⎪⎝⎭m,第三次是31111122228⎛⎫⨯⨯==⎪⎝⎭m,第四次是411216⎛⎫= ⎪⎝⎭m ,…, ∴第五次后剩下的小棒的长度是511232⎛⎫= ⎪⎝⎭m , 故选:D .【点睛】本题考查了有理数的乘方运算,此题的关键是联系生活实际,从中找出规律,利用有理数的乘方解答.15.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为( ) A .0.278 09×105B .27.809×103C .2.780 9×103D .2.780 9×104【答案】D【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】27 809=2.780 9×410,故选D .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值16.2019年我省实施降成本的30条措施,全年为企业减负960亿元以上,用科学记数法表示数据960亿为( )A .79.610⨯B .89.610⨯C .99.610⨯D .109.610⨯【答案】D【解析】【分析】科学记数法的表示形式为a 10n ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:960亿=96000000000=109.610⨯故选:D.此题主要考查科学记数法,熟练确定a和n是解题的关键.17.用科学记数方法表示0.0000907,得()A.49.0710-⨯B.59.0710-⨯C.690.710-⨯D.790.710-⨯【答案】B【解析】【分析】【详解】解:根据科学记数法的表示—较小的数为10na⨯,可知a=9.07,n=-5,即可求解.故选B【点睛】本题考查科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.18.按如图所示的运算程序,能使输出y的值为1的是()A.a=3,b=2 B.a=﹣3,b=﹣1 C.a=1,b=3 D.a=4,b=2【答案】A【解析】【分析】根据题意,每个选项进行计算,即可判断.【详解】解:A、当a=3,b=2时,y=12a-=132-=1,符合题意;B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y=12a-=142-=12,不符合题意.故选:A.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考x=时,y的值是()19.如图,是一个计算流程图.当16A2B.2C.2±D.2±【答案】A【解析】【分析】观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复上述步骤,即可得到答案.【详解】x=后,取算术平方根的结果为2,判断2不是无理数,再取2的算术平方根解:输入1622是无理数,数出结果.故A为答案.【点睛】本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基本概念,看懂流程图是做题的关键,注意算术平方根只有正数.20.(﹣1)4可表示为()A.(﹣1)×4 B.(﹣1)+(﹣1)+(﹣1)+(﹣1)C.﹣1×1×1×1 D.(﹣1)×(﹣1)×(﹣1)×(﹣1)【答案】D【解析】【分析】根据有理数乘法的定义可得出结论.【详解】(﹣1)4=(-1)×(-1)×(-1)×(-1).故答案选D.【点睛】本题考查的知识点是有理数的乘方,解题的关键是熟练的掌握有理数的乘方.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数经典测试题及答案一、选择题1.在数轴上,点A,B在原点O的两侧,分别表示数a和3,将点A向左平移1个单位=,则a的值为().长度,得到点C.若OC OBA.3-B.2-C.1-D.2【答案】B【解析】【分析】先用含a的式子表示出点C,根据CO=BO列出方程,求解即可.【详解】解:由题意知:A点表示的数为a,B点表示的数为3, C点表示的数为a-1.因为CO=BO,所以|a-1| =3, 解得a=-2或4,∵a<0,∴a=-2.故选B.【点睛】本题主要考查了数轴和绝对值方程的解法,用含a的式子表示出点C,是解决本题的关键.2.如图,a、b在数轴上的位置如图,则下列各式正确的是()A.ab>0 B.a﹣b>0 C.a+b>0 D.﹣b<a【答案】B【解析】解:A、由图可得:a>0,b<0,且﹣b>a,a>b∴ab<0,故本选项错误;B、由图可得:a>0,b<0,a﹣b>0,且a>b∴a+b<0,故本选项正确;C、由图可得:a>0,b<0,a﹣b>0,且﹣b>a∴a+b<0;D、由图可得:﹣b>a,故本选项错误.故选B.3.若a为有理数,且|a|=2,那么a是()A.2 B.﹣2 C.2或﹣2 D.4【答案】C【解析】【分析】利用绝对值的代数意义求出a 的值即可.【详解】若a 为有理数,且|a|=2,那么a 是2或﹣2,故选C .【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.4.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,=e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.5.下列等式一定成立的是( )A =B .11=C 3=±D .6=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】321-=,故错误;B. 11=,故正确;C. 93=, 故错误;D. ()321666--=--=,故错误;故答案为:B.【点睛】 本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.6.如果a 是实数,下列说法正确的是( )A .2a 和a 都是正数B .(-a +2,2a )可能在x 轴上C .a 的倒数是1a D .a 的相反数的绝对值是它本身【答案】B【解析】【分析】A 、根据平方和绝对值的意义即可作出判断;B 、根据算术平方根的意义即可作出判断;C 、根据倒数的定义即可作出判断;D 、根据绝对值的意义即可作出判断.【详解】A 、2a 和a 都是非负数,故错误;B 、当a=0时,(-a +2,2a )在x 轴上,故正确;C 、当a=0时,a 没有倒数,故错误;D 、当a≥0时,a 的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.7.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是( )A .B .C .D .【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答. 【详解】解:,原点在a,b的中间,如图,由图可得:,,,,,故选项A错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.8.﹣3的绝对值是()A.﹣3 B.3 C.-13D.13【答案】B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 9.实数a、b在数轴上的位置如图所示用下列结论正确的是( )A.a+b>a>b>a−b B.a>a+b>b>a−bC.a−b>a>b>a+b D.a−b>a>a+b>b【答案】D【解析】【分析】首先根据实数a,b在数轴上的位置可以确定a、b的取值范围,然后利用有理数的加减运算即可比较数的大小.【详解】解:由数轴上a,b两点的位置可知,∵b<0,a>0,|b|<|a|,设a=6,b=-2,则a+b=6-2=4,a-b=6+2=8,又∵-2<4<6<8,∴a-b>a>a+b>b.【点睛】此题主要考查了实数与数轴之间的对应关系,解答此题的关键是根据数轴上a,b的位置估算其大小,再取特殊值进行计算即可比较数的大小.10.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.11.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.12.如图数轴所示,下列结论正确的是()A.a>0 B.b>0 C.b>a D.a>b【答案】A【解析】【分析】根据数轴,可判断出a为正,b为负,且a距0点的位置较近,根据这些特点,判定求解【详解】∵a在原点右侧,∴a>0,A正确;∵b在原点左侧,∴b<0,B错误;∵a在b的右侧,∴a>b,C错误;∵b距离0点的位置远,∴a<b,D错误【点睛】本题是对数轴的考查,需要注意3点:(1)在0点右侧的数为正数,0点左侧的数为负数;(2)数轴上的数,从左到右依次增大;(3)离0点越远,则绝对值越大13.已知|m+3|与(n﹣2)2互为相反数,那么m n等于()A.6 B.﹣6 C.9 D.﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n﹣2)2互为相反数,∴|m+3|+(n﹣2)2=0,∴m+3=0,n﹣2=0,解得m=﹣3,n=2,所以,m n =(﹣3)2=9.故选C .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13D .513【答案】D【解析】【分析】【详解】解:∵|x 2-4|≥02(2)1y --,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形, 22222+=②当2,3222313+=③当2为一直角边,3为斜边时,则第三边是直角,22325-=. 故选D .考点:1.非负数的性质;2.勾股定理.15.2019的倒数的相反数是( )A .-2019B .12019- C .12019D .2019【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是12019,12019的相反数为12019-,所以2019的倒数的相反数是12019-,故选B .【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.16.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b - 【答案】A【解析】【分析】 2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b <<> 0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.17.在﹣6,0,﹣1,4这四个数中,最大的数是( )A .4B .﹣6C .0D .﹣1 【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A .【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.18.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“6cm ”分别对应数轴上表示﹣2和实数x 的两点,那么x 的值为( )A .3B .4C .5D .6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x 之间的距离为6,∴x 表示的数为:﹣2+6=4,故选:B .【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.19.已知整数01234,,,,,a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+a a a a a a a 以此类推,2019a 的值为( )A .1007-B .1008-C .1009-D .1010- 【答案】D【解析】【分析】 通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:00a =,101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a =-+=--+=-,545253a a =-+=--+=-,656363a a =-+=--+=-,767374a a =-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a =-,故选:D .【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.20.已知整数1a ,2a ,3a ,4a ⋯满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+⋯依此类推,则2017a 的值为( )A .1007-B .1008-C .1009-D .2016- 【答案】B【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -;然后把n 的值代入进行计算即可得解. 【详解】解:10a =,21|1|011a a =-+=-+=-,32|2|121a a =-+=--+=-,43|3|132=-+=--+=-a a ,54|4|242=-+=--+=-a a ,……∴n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -; ∴20172017110082a -=-=-; 故选:B .【点睛】此题考查数字的变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.。

相关文档
最新文档