代数证明与恒等变形
代数式的恒等变形

教学·信息 课程教育研究 Course Education Ressearch 2015年9月 下旬刊174· ·著名教育家裴斯泰洛奇说过:“教学最大的挑战是她的不可预知性。
”语文课堂教学是师生、生生、生本之间相互对话、相互碰撞的动态过程,课堂随时会出现一些非预设性的新情况、新动态。
这就是所谓的“不可预知性”,通常也叫做节外生枝。
教师该如何运用教学的节外生枝,使其也能绽放出春天的光彩,我谈两个看法。
一、节外生枝,巧在引导有位教师教学苏教版五年级下册的《埃及的金字塔》第二自然段,形成下面的对话:师:读了这段话,谁来说说金字塔有什么作用?生:金字塔是拿来看的!(全班同学哄堂大笑,该同学满脸通红)师:这位同学已经跳出课文,融入了自己的理解,他把今天金字塔的作用用一个“看”字进行了高度的概括。
这个“看”字可不一般呀,同学们请想一想,你能给“看”换个词吗?生(纷纷举手):欣赏、研究、考察、勘探、瞻仰。
师:说得好!下面请同学们认真的默读第3、4、5、自然段,想一想,不同身份的人站在金字塔前,他们是怎么“看”的?《课标》指出:“阅读是学生的个性化行为。
”学生对文本的阅读感悟,是依据自己的阅读经验和情感而产生自然而真实的反应,有时会出现教师不可预料的阅读感悟。
上述教学,由于学生的生活经验和对文本的感悟不同,其认识确实偏离了课文内容。
但执教老师却没有简单地否定,而是充分尊重学生的个性化理解,顺学而导,由“看”引出“欣赏、研究、考察、勘探、瞻仰”等意思,让学生带着问题与文本进行一番深层次的对话,再次交流自己的体会和感悟。
看似离谱的回答,在老师巧妙地引导下,竟化腐朽为神奇。
学生的思维火花被点燃了,“欣赏金字塔、研究金字塔、勘探金字塔……”,对金字塔的崇敬之情、热爱之情油然而生,课堂呈现百花齐放、百家争鸣的局面,也加深了学生对文本的理解和感悟。
这样的引导,既呵护了学生,化解课堂教学的尴尬,又引发学生深入阅读探究,发表见解,从而获得真知求知。
整式恒等变形

第8讲整式恒等变形模块一恒等变形→降幂迭代与换元基础夯实题型一降幂迭代法与大除法【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________.【练1】(1990年第一届希望杯初二第一试)已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.题型二 整体代入消元法【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值.【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值.题型三 换元法强化挑战【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2.【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求()()()()()()222111111yz zx xy x y z ++++++的值.模块二 恒等变形→因式分解与不定方程题型一 因式分解基础夯实【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________.(2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________.【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x 2012=__________.(2)已知15x 2-47xy +28y 2=0,求x y的值.强化挑战【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c .【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .(2)已知△ABC 三边a 、b 、c ,满足条件a 2c -a 2b +ab 2-b 2c +c 2b -ac 2=0,试判断△ABC 的形状,并说明理由.题型二 不定方程【例6】(1)方程xy -2x -2y +7=0的整数解(x ≤y )为___________.(2)已知a >b >c ≥0,求适合等式abc +ab +ac +bc +a +b +c =2011的整数a ,b ,c 的值.【练6】(1)长方形的周长为16cm ,它的两边长x ,y 均为整数,且满足x -y -x 2+2xy -y 2+2=0,求它的面积.(2)矩形的周长28cm ,两边长为x cm 、y cm ,且x 3+x 2y -xy 2-y 3=0,求矩形的面积.【例7】(2000年联赛)实数x ,y 满足x ≥y ≥1和2x 2-xy -5x +y +4=0,则x +y =_______.【练7】当x 变化时,分式22365112x x x x ++++的最小值是________.模块三 恒等变形→配方法【例8】已知x 2+2xy +2y 2+4y +4=0,求x ,y .【练8】已知x 2-6xy +10y 2-4y +4=0,求x ,y .【例9】已知x2+2xy+2y2+4x+8=0,求x,y.【练9】已知x2-6xy+10y2+2x-8y+2=0,求x,y.【例10】已知实数a、b、c满足a-b+c=7,ab+bc+b+c2+16=0.则ba的值等于____.【练10】已知a-b=4,ab+c2+4=0,则a+b=________.模块四恒等变形→乘法公式知识点睛【常见乘法公式】1、二元二次:(1)(a+b)(a-b)=__________.(2)(a-b)2=__________.2、三元二次:(3)(a+b+c)2=_________.(4)a2+b2+c2+ab+bc+ca=_______.3、二元三次:(5)(a+b)3=______________.(6)a3+b3=______________.4、三元三次:(7)(a+1)(b+1)(c+1)=abc+ab+bc+ca+a+b+c+1(8)(a+b)(b+c)(c+a)=a2b+b2c+c2a+ab2+bc2+ca2+2abc(9)(a+b+c)(ab+bc+ca)=a2b+b2c+c2a+ab2+bc2+ca2+3abc(10)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)5、三元四次:(11)(a+b+c)(a+b-c)(b+c-a)(c+a-b)=-a4-b4-c4+2a2b2+2b2c2+2c2a26、二元n次:(12)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)(13)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2+…-ab n-2+b n-1)(n为奇数)7、n元二次:(14)(a1+a2+…+a n)2=a12+a22+…+a n2+2a1a2+2a1a3+…+2a1a n+2a2a3+2a2a4+…+2a n-1a n.(15)a12+…+a n2+a1a2+…+a1a n+a2a3+…+a2a n+…+a n-1a n=1[(a1+a2)2+…+(a n-1+a n)2]强化挑战【例11】已知实数a、b、x、y满足a+b=x+y=3,ax+by=4,求(a2+b2)xy+ab(x2+y2)的值.【练11】(第6届希望杯初一)已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406,试求1995(x+y)+6xy-172(a+b)的值.【例12】若a+b+c=0,a3+b3+c3=0,求证:a2011+b2011+c2011=0.【练12】若a+b-c=3,a2+b2+c2=3,那么a2012+b2012+c2012=___________.【例13】(2009年北京市初二数学竞赛)设a+b+c=0,a2+b2+c2=1.(1)求ab+bc+ca的值;(2)求a4+b4+c4的值.【练13】若a+b+c=1,a2+b2+c2=2,a3+b3+c3=83,(1)求abc的值;(2)求a4+b4+c4的值.巅峰突破【例14】若x+y=a+b,且x2+y2=a2+b2,求证:x2014+y2014=a2014+b2014.【练14】已知a+b=c+d,a3+b3=c3+d3,求证:a2013+b2013=c2013+d2013.【拓14】已知a+b=c+d,a5+b5=c5+d5,求证:a2013+b2013=c2013+d2013.第8讲课后作业【习l】已知x2+x-1=0,求x8-7x4+11的值.【习2】已知a+b+c=1,b2+c2-4ac+6c+1=0,求abc的值.【习3】若m=20062+20062×20072+20072,则m( )A.是完全平方数,还是奇数B.是完全平方数,还是偶数C.不是完全平方数,但是奇数D.不是完全平方数,但是偶数【习4】正整数a、b、c是等腰三角形三边的长,并且a+bc+b+ca=24,则这样的三角形有( ) A.1个B.2个C.3个D.4个【习5】已知a、b、c是一个三角形的三边,则a4+b4+c4-2a2b2-2b2c2-2c22a2的值( ) A.恒正B.恒负C.可正可负D.非负【习6】如果a+2b+3c=12,且a2+b2+c2=ab+bc+ca,求a+b2+c3的值.【习7】已知实数a、b、x、y满足a+b=x+y=2,ax+by=5,求(a2+b2)xy+ab(x2+y2)的值.【习8】已知x是实数并且x3+2x2+2x+1=0.求x2008+x2011+x2014的值.【习9】(1999年北京市初二数学竞赛)若3x3-x=1,求9x4+12x3-3x2-7x+2010的值.的值.【习11】(十八届希望杯初二二试)已知a1,a2,a3,…,a2007,是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),试比较M、N的大小.【习12】(2013年联赛)已知实数x,y,z满足x+y=4,|z+1|=xy+2y-9,则x+2y+3z=_______.【习13】(2013年竞赛)已知正整数a、b、c满足a+b2-2c-2=0,3a2-8b+c=0,则abc的最大值为____________.【习14】(2001年联赛)求实数x,y的值,使得(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值.。
初一数学竞赛系列讲座(6)整式的恒等变形

初一数学竞赛系列讲座(6)整式的恒等变形一、知识要点1、 整式的恒等变形把一个整式通过运算变换成另一个与它恒等的整式叫做整式的恒等变形2、 整式的四则运算整式的四则运算是指整式的加、减、乘、除,熟练掌握整式的四则运算,善于将一个整式变换成另一个与它恒等的整式,可以解决许多复杂的代数问题,是进一步学习数学的基础。
3、 乘法公式乘法公式是进行整式恒等变形的重要工具,最常用的乘法公式有以下几条: ① (a+b) (a-b)=a 2-b 2② (a±b)2=a 2±2ab+b 2③ (a+b) (a 2-ab+b 2)=a 3+b 3④ (a-b) (a 2+ab+b 2)=a 3-b 3⑤ (a+b+c)2= a 2+b 2+c 2+2ab+2bc+2ca⑥ (a+b+c) (a 2+b 2+c 2-ab-bc-ca)= a 3+b 3+c 3-3abc⑦ (a±b)3= a 3±3a 2b+3a b 2±b 34、 整式的整除如果一个整式除以另一个整式的余式为零,就说这个整式能被另一个整式整除,也可说除式能整除被除式。
5、 余数定理多项式()x f 除以 (x-a) 所得的余数等于()a f 。
特别地()a f =0时,多项式()x f 能被(x-a) 整除二、例题精讲例1 在数1,2,3,…,1998前添符号“+”和“-”并依次运算,所得可能的最小非负数是多少?分析 要得最小非负数,必须通过合理的添符号来产生尽可能多的“0”解 因1+2+3+…+1998=()19999992199811998⨯=+⨯是一个奇数, 又在1,2,3,…,1998前添符号“+”和“-”,并不改变其代数和的奇偶数,故所得最小非负数不会小于1。
先考虑四个连续的自然数n 、n+1、n+2、n+3之间如何添符号,使其代数和最小。
很明显 n-(n+1)-(n+2)+(n+3)=0所以我们将1,2,3,…,1998中每相邻四个分成一组,再按上述方法添符号, 即(-1+2)+(3-4-5+6)+ (7-8-9+10)+…+ (1995-1996-1997+1998)= -1+2=1故所求最小的非负数是1。
专题01代数式的恒等变形【2022中考数学专题复习高频考点拓展讲练】(原卷版)

专题1 代数式的恒等变形(原卷版)专题诠释:代数式的恒等变形是中考最常见的题型,恒等变形所用的核心知识是整式的乘除、因式分解、方程、函数、不等式等;运用到的主要方法是整体代入,配方法,作差比较法等。
通过恒等变形可以求值,求最值,确定字母的范围,比较大小等。
第一部分 典例剖析+针对训练类型一 通过恒等变形求代数式的值典例1 设m >n >0,m 2+n 2=4mn ,求m 2−n 2mn 的值.典例2 已知:m 2﹣2m ﹣1=0,n 2+2n ﹣1=0且mn ≠1,则mn+n+1n 的值为 .针对练习11.(2020秋•锦江区校级期末)已知2a ﹣3b +1=0,则代数式6a ﹣9b +1= .2.已知实数a 、b 满足a +b =8,ab =15,且a >b ,求a ﹣b 的值.解:∵a +b =8 ab =15∴(a ﹣b )2=a 2﹣2ab +b 2﹣4ab =(a +b )2﹣4ab =82﹣4×15=4又∵a >b∴a ﹣b >0∴a ﹣b =2.请利用上面的解法,解答下面的问题.已知实数x 满足x −1x =√5,且x <0,求x +1x 的值.类型二 通过恒等变形求代数式的最值典例3 (2021秋•下城区期中)已知实数m ,n 满足m ﹣n 2=1,则代数式m 2+2n 2+4m ﹣2的最小值等于 .典例4(2021秋•鼓楼区校级期末)阅读下面的材料,并解答后面的问题材料:将分式2x 2+4x−3x−1拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x ﹣1,可设2x 2+4x ﹣3=(x ﹣1)(2x +m )+n .因为(x ﹣1)(2x +m )+n =2x 2+mx ﹣2x ﹣m +n =2x 2+(m ﹣2)x ﹣m +n ,所以2x 2+4x ﹣3=2x 2+(m ﹣2)x ﹣m +n ,所以{m −2=4−m +n =−3,解得{m =6n =3,所以2x 2+4x−3x−1=(x−1)(2x+6)+3x−1=2x +6+3x−1. 这样,分式就被拆分成了一个整式2x +6与一个分式3x−1的和的形式, 根据你的理解解决下列问题:(1)请将分式3x 2+4x−1x+1拆分成一个整式与一个分式(分子为整数)的和(差)的形式; (2)若分式5x 2+9x−3x+2拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m ﹣11+1n−6,求m 2﹣n 2+mn 的最大值.针对练习23.若m ,n 是方程x 2﹣2ax +1=0且a ≥1的两个实数根,则(m ﹣1)2+(n ﹣1)2的最小值是 .类型三 通过代数式的恒等变形求字母的取值范围典例5已知:2a ﹣3x +1=0,3b ﹣2x ﹣16=0,且a ≤4<b ,求x 的取值范围.针对训练34.平面直角坐标系中,已知点(a ,b )在双曲线(0)k y k x 上,且满足22a b m ,22b a m ,a b ,求k 的取值范围。
(完整word版)线性代数经典试题4套及答案

线性代数经典试题4套及答案试卷1一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
创新人才选拔系列—代数恒等变形

创新人才选拔系列—代数恒等变形代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一..两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.例1已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.例2已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且1x+1y+1z=1,求证:1989x+1991y+1993z=1989+1991+1993 例3求证:a2-bc(a+b)(a+c)+b2-ca(b+c)(b+a)=ab-c2(c+a)(c+b)例4已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.例5证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).例6设x,y,z为互不相等的非零实数,且x+1y=y+1z=z+1x 求证:x2y2z2=1.例7已知1x+1y+z=12,1y+1z+x=13,1z+1x+y=14,求2x+3y+4z的值。
例8已知实数abc=-1,a+b+c=4,aa2-3a-1+bb2-3b-1+cc2-3c-1=49,求a2+b2+c2的值。
巩固练习1.已知(c-a)2-4(a-b)(b-c)=0,求证:2b=a+c.2.证明:(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3). 3.求证:b-c(a-b)(a-c)+c-a(b-c)(b-a)+a-b(c-a)(c-b)=2a-b+2b-c+2c-a4.已知a=11-b,b=11-c,c=11-d,求证:a=d5.已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0.6.已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证: (cm-ap)2=(bp-cn)(an-bm).。
1—1代数式恒等变换方法与技巧

1—1 代数式的恒等变换方法与技巧一、代数式恒等的一般概念定义1 在给定的数集中,使一个代数式有意义的字母的值,称为字母的允许值。
字母的所有允许值组成的集合称为这个代数式的定义域。
对于定义域中的数值,按照代数式所包含的运算所得出的值,称为代数式的值,这些值的全体组成的集合,称为代数式的值域。
定义2 如果两个代数式A、B,对于它们定义域的公共部分(或公共部分的子集)内的一切值,它们的值都相等,那么称这两个代数式恒等,记作A=B。
两个代数式恒等的概念是相对的。
同样的两个代数式在它们各自的定义域的某一个子集内是恒等,但x=,在x≥0时成立,但在x<0时不成立。
因此,在研究两个代数式恒等时,一定要首先弄清楚它们在什么范围内恒等。
定义3 把一个代数式变形成另一个与它恒等的代数式,这种变形称为恒等变换。
代数式的变形,可能引起定义域的变化。
如lgx2的定义域是(,0)(0,)-∞+∞,2lgx的定义域是(0,)+∞,因此,只有在两个定义域的公共部分(0,)+∞内,才有恒等式lgx2=2lgx。
由lgx2变形为2lgx时,定义域缩小了;反之,由2lgx变形为lgx2时,定义域扩大了。
这种由恒等变换而引起的代数式定义域的变化,对研究方程和函数等相关问题时也十分重要。
由于方程的变形不全是代数式的恒等变形,但与代数式的恒等变形有类似之处,因此,在本节里,我们把方程的恒等变形与代数式的恒等变形结合起来讨论。
例1:设px=有实根的充要条件,并求出所有实根。
由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。
这样可避免增根和遣根的出现。
解:原方程等价于222(0,0x p xx x⎧-=-⎪⎨-≥⎪⎩222222(4)4448(2)441330440,0pxx p px xx x p x⎧-=⎪⎧=+--⎪⎪⎪⎪⇔≤≤⇔≤⎨⎨⎪⎪≥⎪⎪+-≤≥⎩⎪⎩222(4)8(2)44,043pxppx x⎧-=⎪⎪-⇔⎨-⎪≤≤≥⎪⎩由上式知,原方程有实根,当且仅当p满足条件24(4)4448(2)33p ppp--≤≤⇔≤≤-这说明原方程有实根的充要条件是43p≤≤。
初升高衔接数学讲义

第1章 代数式与恒等变形1.1四个公式 知识衔接在初中,我们学习了实数与代数式,知道代数式中有整式,分式,根式,它们具有类似实数的属性,可以进行运算。
在多项式乘法运算中,我们学习了乘法公式,如:平方差公式22))((b a b a b a -=-+;完全平方公式2222)(b ab a b a +±=±,并且知道乘法公式在整式的乘除,数值计算,代数式的化简求值以及代数等式的证明等方面有着广泛的应用。
而在高中阶段的学习中,将会遇到更复杂的多项式运算为此在本章中我们将拓展乘法公式的内容。
知识延展1 多项式的平方公式:ac bc ab c b a c b a 222)(2222+++++=++2 立方和公式:3322))((b a b ab a b a +=+-+3 立方差公式:3322))((b a b ab a b a -=++-4 完全立方公式:3223333)(b ab b a a b a ±+±=±注意:(1)公式中的字母可以是数,也可以是单项式或多项式;(2)要充分认识公式自身的价值,在多项式乘积中,正确使用乘法公式能提高运算速度,减少运算中的失误;(3)对公式的认识应当从发现,总结出公式的思维过程中学习探索,概括,抽象的科学方法;(4)由于公式的范围在不断扩大,本章及初中所学的仅仅是其中最基本,最常用的几个公式。
一 计算和化简例1 计算:))(()(222b ab a b a b a +++-变式训练:化简 62222))()()((y xy y x xy y x y x y x +-+++-+二 利用乘法公式求值;例2 已知0132=+-x x ,求331x x +的值。
变式训练:已知3=++c b a 且2=++ac bc ab ,求222c b a ++的值。
三 利用乘法公式证明例3 已知0,0333=++=++c b a c b a 求证:0200920092009=++c b a变式训练:已知2222)32()(14c b a c b a ++=++,求证:3:2:1::=c b a习题精练1 化简:322)())((b a b ab a b a +-+-+2 化简 )1)(1)(1)(1)(1)(1(12622+++-+++-a a a a a a a a3 已知10=+y x 且10033=+y x ,求代数式22y x +的值;4 已知21201,19201,20201+=+=+=x c x b x a ,求代数式ac bc ab c b a ---++222的值;5 已知)(3)(2222z y x z y x ++=++,求证:z y x ==6 已知abcd d c b a 44444=+++且d c b a ,,,均为正数,求证:以d c b a ,,,为边的四边形为菱形。
等价变形举例

等价变形举例等价变形是指将一个数学表达式或问题用不同的形式表达出来,但其数值或解决方法保持不变。
下面列举了十个等价变形的例子,每个例子都包含了清晰的描述和详细的计算步骤。
1. 二次方程的解:给定一个二次方程ax^2 + bx + c = 0,可以使用求根公式x = (-b ± √(b^2 - 4ac))/(2a)来求解。
这个公式可以通过配方法得到等价变形:x = (-b ± √(b^2 - 4ac))/(2a) = 2c/(-b ± √(b^2 - 4ac))。
2. 三角函数的恒等变形:三角函数有很多恒等变形,例如sin^2(x) + cos^2(x) = 1,tan(x) = sin(x)/cos(x),cot(x) = cos(x)/sin(x)等等。
这些恒等变形可以通过三角函数的定义和三角恒等式来证明。
3. 梯形面积公式的等价变形:梯形的面积公式可以表示为 A = (a + b)h/2,其中a和b是梯形的上底和下底的长度,h是梯形的高度。
这个公式可以通过将梯形分割成两个三角形来推导得到,即 A = (1/2)bh1 + (1/2)bh2 = (a + b)h/2。
4. 二项式定理的等价变形:二项式定理可以表示为(x + y)^n = C(n,0)x^n + C(n,1)x^(n-1)y + C(n,2)x^(n-2)y^2 + ... + C(n,n)y^n,其中C(n,k)表示组合数。
这个公式可以通过二项式系数的递推关系和数学归纳法来证明。
5. 平行四边形面积公式的等价变形:平行四边形的面积可以表示为A = bh,其中b是平行四边形的底边的长度,h是平行四边形的高度。
这个公式可以通过将平行四边形分割成两个相等的三角形来推导得到,即A = (1/2)bh + (1/2)bh = bh。
6. 对数函数的等价变形:对数函数有很多等价变形,例如ln(ab) = ln(a) + ln(b),ln(a/b) = ln(a) - ln(b),ln(a^b) = bln(a)等等。
代数式解题技巧总结

求代数式的值的方法与技巧归纳:例1、已知x=1+22,则分式15429222----x x x x 的值是多少? 分析:由条件x=1+22变形得x —1=22,再两边平方得x 2-2x=7,将分式15)2(29)2(1542922222----=----x x x x x x x x ,于是将x 2-2x=7整体代入即可求出其值。
(二)变形代入法例2、如果a+b 1=1,b+c 2=1,那么c+a2等于多少? 分析:可由a+b 1=1得出a=b b 1-,再由b+c 2=1得出c=b -12,再代入c+a 2即可。
(三)参数法例3、若4x-3y-6z=0,x+2y-7z=0(xyz ≠0),则代数式222222103225z y x z y x ---+的值。
分析:可将z 看作参数,把4x-3y-6z=0和x+2y-7z=0转化成y=2z ,x=3z 代入所求代数式即可求出其值。
(四)特殊值法例4、若(3x+1)4=ax 4+bx 3+cx 2+dx+e ,则a-b+c-d+e 的值。
分析:此题可采用特殊法解,可令x =-1,即可求出代数式的值。
解:令x =-1,则将其代入(3x+1)4=ax 4+bx 3+cx 2+dx+e ,得(-2)4=a-b+c-d+e所以a-b+c-d+e=16(五)引入新未知数法 已知:3a =4b =5c ≠0,求cb ac b a --+-223的值。
分析:题中含有等比式时可以用“设比例系数(或单位份数)”来换元。
解:设3a =4b =5c =k (k ≠0) 则a=3k ,b=4k ,c=5k 所以原式=k k k k k k 583589--+-=-53(六)配方法若a 2+b 2-10a-6b+34=0,求ba b a 22-+的值。
分析:观察a 2+b 2-10a-6b+34=0将其可配方得:(a-5)2+(b-3)2=0,得a=5,b=3代入原式可求之。
代数证明与恒等变形

代数证明与恒等变形代数证明主要是指证明代数中的一些相等关系或不等关系.在初中阶段,要证的等式一般可分为恒等式的证明和条件等式的证明. 恒等式的证明常用的方法有:(1)由繁到简,从一边推向另一边; (2)从左右两边人手,相向推进;(3)作差或作商证明,即证明:左边一右边=0,)0(1≠=右边右边左边. 条件等式的证明实质是有根据、有目的的代数式恒等变换,证明的关键是寻找条件与结论的联系,既要注意已知条件的变换,使之有利于应用;又要考虑求证的需求情况,使之有利于与已知条件的沟通. 代数证明不同于几何证明,几何证明有直观的图形为依托,而代数证明却取决于代数式化简求值变形技巧、方法和思想的熟练运用.例1:设a 、b 、c 、d 都是整数,且m=a 2+b 2,n=c 2+d 2,mn 也可以表示成两个整数的平方和,其形式是______.解 mn=(a 2+b 2)(c 2+d 2)=a 2c 2+2abcd+b 2d 2+a 2d 2+b 2c 2-2abcd=(ac+bd)2+(ad-bc)2=(ac-bd)2+(ad+bc)2,所以,mn 的形式为(ac+bd)2+(ad-bc)2或(ac-bd )2+(ad+bc)2.例2 : 设x 、y 、z 为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2. 求)1)(1)(1()1)(1)(1(222++++++z y x xy zx yz 的值.解 将条件化简成2x 2+2y 2+2z 2-2xy-2xz-2yz=0∴(x-y)2+(x-z)2+(y-z)2=0 ∴x=y=z,∴原式=1.例3:设a+b+c=3m,求证: (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0. 证明 令p=m-a,q=m-b,r=m-c,则p+q+r=0. P 3+q 3+r 3-3pqr=(p+q+r)(p 2+q 2+r 2-pq-qr-rp)=0 ∴p 3+q 3+r 3-3pqr=0即 (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0 例4:若67890123475678901235,67890123455678901234==B A ,试比较A 、B 的大小.解 设 ,yx A =则,21++=y x B)2(2)2()1()2(21+-=++-+=++-y y yx y y x y y x y x y x . ∵2x >y ∴2x-y >0, 又y >0, 可知21++-y x y x >0 ∴A >B.例5:求最大的正整数n ,使得n 3+100能被n+10整除.分析:此题可以运用整除法或两个整式整除的问题转化为一个分式问题加以解决.解:333100109001010n n n n ++-=++=2(10)(10100)90010n n n n +-+-+ =n 2-10n+100-90010n + 要使n+10整除n 3+100,必须且只需n+10整除900,又因为n 取最大值,•所以n+•10=900,从而符合要求的正整数n 的最大值为890.评注:对于分子的次数高于或等于分母的次数的分式,可化为整式部分与分式部分的和.例6:已知a 、b 、c 为非负实数,且a 2+b 2+c 2=1,3111111-=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b a c a c b c b a ,求a+b+c 的值. 解:由条件知(a+b+c)()111cb a ++=0 ∴a+b+c=0 或cb a 111++=0当c b a 111++=0时,abcac bc ab ++=0 ∴ab+bc+ac=0∵(a+b+c)2=a 2+b 2+c 2+2ab+2bc+2ac=1 ∴a+b+c=±1∴a+b+c=0或1或-1例7:已知.0222=-+-+-c ab c b ac b a bc a 求证:0)()()(222222=-+-+-c ab c b ac b a bc a . 证明 222222222.()()a b c ab bc ac b cbc a ac b ab c ac b ab c -+-+=-=-----.0))()(()()()(.))()(()(.))()(()(.))()(()(222222222222222222222222222222222222222222222222=---+-+-+-+++-+-=-+-+-∴---+-+-=----+-+-=-----++-=-∴c ab b ac a bc b a c b ab c a c a bc ac b a c b ac bc ab c ab c b ac b a bc a c ab b ac a bc ca cb abc a c ab c c ab a bc b ac ca bc ac ab b ac b c ab b ac a bc c b ac bc ab a bc a 同理例8:设a 、b 、c 、d 都是正整数,且a 5=b 4,c 3=d 2,c-a=19,求d-b.解 由质因数分解的唯一性及a 5=b 4,c 3=d 2,可设a=x 4,c=y 2,故19=c-a=(y 2-x 4)=(y-x 2)(y+x 2)⎪⎩⎪⎨⎧=+=-∴.19,122x y x y 解得 x=3. y=10. ∴ d-b=y 3-x 5=757.练习:(1)已知a 2+c 2=2b 2,求证.211ac b a c b +=+++(2)求证:aa z a y a x a az z a ay y a ax x 3111222+-+-+-=-+-+-(3)求证:)1)(1)(1(4)1()1()1(222abab b b a a ab ab b b a a ++++=+++++.例9:已知a 、b 、c 、d 满足a+b=c+d ,a 3+b 3=c 3+d 3, 求证:a 2001+b 2001=c 2001+d 2001.解:由a 3+b 3=c 3+d 3得:(a+b) (a 2-ab+b 2)=(c+d) (c 2-cd+d 2)∵a+b =c+d ,则有(1) 若a+b =c+d=0,则a= -b ,c= -d ,从而a 2001+b 2001=c 2001+d 2001=0(2) 若a+b =c+d ≠0,则a 2-ab+b 2=c 2-cd+d 2,∴(a+b)2-3 ab=(c+d)2-3 cd ,从而ab=cd∴(a+b)2-4ab=(c+d)2-4 cd ,∴(a-b)2=(c-d)2,∴a-b=±(c-d) 可得a=b=c=d ,从而a 2001+b 2001=c 2001+d 2001例10: 有18支足球队进行单循环赛,每个参赛队同其他各队进行一场比赛,假设比赛的结果没有平局,如果用i a 和i b ,分别表示第i(i=1,2,3…18)支球队在整个赛程中胜与负的局数. 求证:21822212182221b b b a a a +++=+++ .解:由于每支球队都要进行18-1=17场比赛,则对于第i 支球队有a i +b i =17,i=1,2,3,……18;由于比赛无平局,故所有参赛队的胜与负的总局数相等,即a 1+a 2+…+a 18=b 1+b 2+…+b 18由(a 12+a 22+…+a 182)-(b 12+b 22+…+b 182)=(a 12-b 12)+ (a 22-b 22)+…+(a 182-b 182) =17×[(a 1+a 2+…+a 18)-(b 1+b 2+…+b 18)]=0得21822212182221b b b a a a +++=+++例11:已知333cz by ax ==,且1111=++zy x . 求证:3333222c b a cz by ax ++=++.思路点拨 条件中有一个连等式,恰当引入参数,把待证式两边都变形为与参数相同的同一个代数式.解:设333cz by ax ===t 3,则a=33x t ,b=33yt ,c=33z t因333c b a ++=t t zy x =++)111(又33333222111z cz y by x ax cz by ax ⋅+⋅+⋅=++=33)111(zy x t ++=t ,从而得证.例12: 已知0≠abc ,证明:四个数abc c b a 3)(++、abc a c b 3)(--、abc b a c 3)(--、abcc b a 3)(--中至少有一个不小于6.思路点拨 整体考虑,只需证明它们的和大于等于24即可. 解:因为abc c b a 3)(+++abc a c b 3)(--+abc b a c 3)(--+abc c b a 3)(--=abcc b a b a c a c b c b a ])()[(])()[(3333--+--+--+++=abcabcabc ac c b a b ac c b a b 24)633(2)633(2222222=-++-+++=24 若abcc b a 3)(++<6,abc a c b 3)(--<6,abc b a c 3)(--<6,abc c b a 3)(--<6,则他们的和必小于24,这与上式矛盾,故四个加数中至少有一个不小于6。
代数变形常用技巧

代数变形中常用的技巧代数变形是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活应用。
代数变形技巧是学习掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。
本文就初等代数变形中的解题技巧,作一些论述。
两个代数式A、B,如果对于其中所含字母的一切允许值它们对应的值都相等,则称这两个代数式恒等,记作A≡B或A=B,把一个代数式换成另一个和它恒等的代数式,叫做代数式的恒等变形。
恒等变形是代数的最基本知识,是学好中学数学的基础,恒等变形的理论依据是运算律和运算法则,所以,恒等变形必须遵循各运算法则,并按各运算法则在其定义域内进行变形。
代数恒等变形技巧是学习与掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。
代数恒等变形实质上是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活与综合应用。
中学生在平时的学习中不善于积累和总结变形经验,在稍复杂的问题面前常因变形方向不清,而导致常规的化归、转化工作难以实施,甚至失败,其后果直接影响着应试的能力及效率。
代数的恒等变形包括的内容较多,本文着重阐述代数运算和解题中常见的变形技巧及应用。
一、整式变形整式变形包括整式的加减、乘除、因式分解等知识。
这些知识都是代数中的最基础的知识。
有关整式的运算与化简求值,常用到整式的变形。
例1:化简(y+z-2x)2+(z+x-2y)2+(x+y-2z)2-3(y-z)2-3(z-x)2-3(x-y)2分析:此题若按常规方法先去括号,再合并类项来进行恒等变形的话,计算会繁杂。
而通过观察发现此题是一个轮换对称多项式,就其特点而言,若用换元法会使变形简单,从而也说明了换元法是变形的一种重要方法。
第一讲:代数式与恒等变形

第 1 章代数式与恒等变形四个公式知识连接在初中,我们学习了实数与代数式,知道代数式中有整式,分式,根式,它们拥有近似实数的属性,能够进行运算。
在多项式乘法运算中,我们学习了乘法公式,如:平方差公式( a b)(a b) a2b2;完整平方公式(a b)2 a 22ab b2,而且知道乘法公式在整式的乘除,数值计算,代数式的化简求值以及代数等式的证明等方面有着宽泛的应用。
而在高中阶段的学习中,将会碰到更复杂的多项式运算为此在本章中我们将拓展乘法公式的内容。
知识延展1多项式的平方公式:(a b c)2 a 2b2c22ab2bc 2ac2立方和公式: ( a b)(a 2ab b2 )a3b33立方差公式: ( a b)(a2ab b2 )a3b34完整立方公式: (a b)3a33a2b3ab2b3注意:( 1)公式中的字母能够是数,也能够是单项式或多项式;(2)要充足认识公式自己的价值,在多项式乘积中,正确使用乘法公式能提升运算速度,减少运算中的失误;(3)对公式的认识应该从发现,总结出公式的思想过程中学习探究,归纳,抽象的科学方法;(4)因为公式的范围在不停扩大,本章及初中所学的只是是此中最基本,最常用的几个公式。
一计算和化简例 1 计算:(a b) 2 ( a b)(a 2ab b2 )变式训练:化简( x y)( x y)( x2y2xy)( x2y2xy) y6二利用乘法公式求值;例 2 已知x23x 10 ,求x31的值。
x3变式训练:已知 a b c 3 且 ab bc ac 2 ,求 a2b2 c 2的值。
三利用乘法公式证明例 3 已知a b c 0, a3b3c30 求证:a2009b2009c20090变式训练:已知14(a2b2c2 ) (a 2b 3c)2,求证: a : b : c1: 2 : 3习题精练1 化简:(a b)(a2ab b2 ) (a b)32 化简( a 1)( a2 a 1)(a 1)( a2 a 1)(a61)( a12 1)3 已知x y 10 且 x3y3100 ,求代数式x2y2的值;4 已知a1x 20,b1x 19,c1x 21 ,求代数式 a2b2c2ab bc ac 的202020值;5 已知( x y z)23(x2y2z2 ) ,求证: x y z6 已知a4b4c4 d 44abcd 且 a, b, c, d 均为正数,求证:以 a, b, c, d 为边的四边形为菱形。
代数恒等式变形里的有序逻辑推理

’
Y. r
, b:
j c , ,如 的 个 式 两 分 = 对 上 3等 的 边
另力 上 1 便 得 口+1= _ 0Ⅱ , . ±
T ‘
本 题见 文 [ ] 1 的第 5 2页 , 作 者 是用 三 原
不 出现 的 .
例 4 设 口bC , , 为非零实数 , 口 + 且 +b : 口c 求 证 : b,
+
+ =C - 0 : 一/ 6+ 一 - 、 1 一, ( 口丢 ) 0 ( 、 D (—) 一 +(一 ( 。= 6÷ c ÷ c ) 1 ( ) ) 一
【— ) 一 )c 0 6( c — ) 6 (
-0 以 厮
+
+
证明 2 先对所 证等式的左端做点恒等 :
变形 , 得 二 二 + 二 二
点评 : 对条件关系式 至 + 。 。
+
=0实施 平 方 技 巧 是 容 易想 到 的 “ 头 ” 而 念 , 此时分 子里 的字母 却 多 了平方 , 是 目标 里 这
点 评 : 题 分 析 , 要 望 看 目标 , 行 有 解 需 进
目的地 变形 .
悉的, 把复杂的情形变形为简单的情形 . 变形 应当具备一定的目的性 、 方向性和针对性 , 望
着 目标进行 有 目的地 变 形 , 利 于形 成 有效 有
例 2 已知 口 Y+彳 = , ( ) ( ) b z+ = Y,( +Y = , c ) 求证 :b+6 +c a c 口+2 b ac=
+Y+ =x z 得 +Y x z一 , y, y 即 +Y
兰± 一 + , + ’ c+ l 一 ,
数学方法01_恒等变形法

第一篇 恒等变形法
恒等变形法:在代数式的变形过程中,往往要求形变值不变,而变化后新得到的形式,恰是有利于结论的推导的。
此法包括因式分解法、配方法、降幂法等
例1 解方程:22(1997)(1996)1x x -+-=
例2 在满足23,0,0x y x y +≤≥≥的条件下,求2x y +能达到的最大值
例3 如果20a b +=,求
12a a b b
-+-的值
例4 证明:没有一个自然数n ,能使6543235154123n n n n n n +--+++的值是某个自然数的平方
例5 证明:任一偶数是表达式2221112456x xy y x y +++++的值,其中变量x 和y 取任一整数值
例6 已知1,1a b ab +==-,求77a b +的值
例7 求方程32103x x x ---
=的实数解
例8 设122006,,x x x 都是+1或-1,证明12320062320060x x x x ++++≠
回家作业
(1)若分数()104()33
-⨯ +中,括号( )内是一个三位自然数,为了使该分数成为一个可约分数,( )内最小、最大的三位数是_________
(2)使22231
x x A x x --=-+为整数的一切整数x 为________________
(3)证明:n 为任何整数,形如2912n n ++的数,不能被121整除。
代数恒等变形

代数恒等变形代数恒等变形是数学中重要的一部分,一般来讲,代数恒等变形是将一个复杂的代数式子转化为较为简单或者更容易计算的形式的过程。
在初中、高中甚至大学的数学学习中,我们都会学习到代数恒等变形的相关知识。
在这篇文章中,我将详细介绍代数恒等变形的相关知识,包括代数恒等的定义、代数恒等变形的基本原则、代数恒等变形的应用等。
一、代数恒等的定义代数恒等是指在代数式中,等号两边始终相等的情况,常写作A=B。
这里的A和B可以是任意的含有变量的代数式。
代数恒等一般采用已知的代数恒等或者基本公式变化来推导到简便的等式。
代数恒等在代数运算中起到重要的作用,因为它们为计算提供了便利,可以用更简单的表达形式来表示原来复杂的运算过程。
例如,三角形的勾股定理可以写成a^{2}=b^{2}+c^{2},这就是代数恒等的一种形式。
在证明这个恒等时,我们可以使用代数运算规律和几何定理,从而将勾股定理转化为更加简单的代数式。
二、代数恒等变形的基本原则在代数恒等变形中,我们需要遵守一些基本原则,这些原则是代数恒等变形的基础。
下面是代数恒等变形的三条基本原则:1.等式两边加上相同的数或者代数式,等式仍然成立。
2.等式两边同时减去相同的数或者代数式,等式仍然成立。
3.等式两边同时乘以相同的数或者代数式,等式仍然成立。
除了这三条基本原则之外,还有一些其他的原则也需要遵守。
比如,等式两边同时开n次方时,需要保证等式两边都是非负数,等式两边同时取对数时,需要保证等式两边都是正数。
这些原则在代数恒等变形中非常重要,需要我们加以注意。
三、代数恒等变形的应用代数恒等变形在数学中有着广泛的应用,下面列举了一些常见的代数恒等变形应用:1.利用代数恒等变形来简化复杂的代数式,从而达到便于计算的目的。
2.在解经典问题时,通过使用已知的代数恒等或者基本公式,将问题转换为容易求解的一个或者多个代数式。
3.在证明定理和公式时,通过使用代数恒等变形来推导出想要的证明结果。
代数式恒等变形的方法与技巧

代数式恒等变形的方法与技巧
白鹏恩
【期刊名称】《山西成人教育》
【年(卷),期】1995(000)009
【摘要】运算能力是数学试题测试的四大能力之首,而代数式恒等变形能力是运算能力的核心内容。
因此历届高考数学试题对学生恒等变形能力的考察都有很高的要求,并成为高考数学试题难易程度的控制点。
学生对代数式恒等变形的方法和技巧掌握得如何,运用得如何,将直
【总页数】1页(P26-26)
【作者】白鹏恩
【作者单位】
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.例谈初中数学有关代数式求值问题的解题技巧与方法 [J], 李晓霞
2.三角恒等变形中常见解题方法与技巧 [J], 赵晶;郭伟
3.列代数式的方法与技巧 [J], 杨燕
4.列代数式的方法与技巧 [J], 王保华
5.列代数式的方法与技巧 [J], 无
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数证明与恒等变形代数证明主要是指证明代数中的一些相等关系或不等关系.在初中阶段,要证的等式一般可分为恒等式的证明和条件等式的证明. 恒等式的证明常用的方法有:(1)由繁到简,从一边推向另一边; (2)从左右两边人手,相向推进;(3)作差或作商证明,即证明:左边一右边=0,)0(1≠=右边右边左边. 条件等式的证明实质是有根据、有目的的代数式恒等变换,证明的关键是寻找条件与结论的联系,既要注意已知条件的变换,使之有利于应用;又要考虑求证的需求情况,使之有利于与已知条件的沟通. 代数证明不同于几何证明,几何证明有直观的图形为依托,而代数证明却取决于代数式化简求值变形技巧、方法和思想的熟练运用.例1:设a 、b 、c 、d 都是整数,且m=a 2+b 2,n=c 2+d 2,mn 也可以表示成两个整数的平方和,其形式是______.解 mn=(a 2+b 2)(c 2+d 2)=a 2c 2+2abcd+b 2d 2+a 2d 2+b 2c 2-2abcd=(ac+bd)2+(ad-bc)2=(ac-bd)2+(ad+bc)2,所以,mn 的形式为(ac+bd)2+(ad-bc)2或(ac-bd )2+(ad+bc)2.例2 : 设x 、y 、z 为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2. 求)1)(1)(1()1)(1)(1(222++++++z y x xy zx yz 的值.解 将条件化简成2x 2+2y 2+2z 2-2xy-2xz-2yz=0∴(x-y)2+(x-z)2+(y-z)2=0 ∴x=y=z,∴原式=1.例3:设a+b+c=3m,求证: (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0. 证明 令p=m-a,q=m-b,r=m-c,则p+q+r=0. P 3+q 3+r 3-3pqr=(p+q+r)(p 2+q 2+r 2-pq-qr-rp)=0 ∴p 3+q 3+r 3-3pqr=0即 (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0 例4:若67890123475678901235,67890123455678901234==B A ,试比较A 、B 的大小.解 设 ,yx A =则,21++=y x B)2(2)2()1()2(21+-=++-+=++-y y yx y y x y y x y x y x . ∵2x >y ∴2x-y >0, 又y >0, 可知21++-y x y x >0 ∴A >B.例5:求最大的正整数n ,使得n 3+100能被n+10整除.分析:此题可以运用整除法或两个整式整除的问题转化为一个分式问题加以解决.解:333100109001010n n n n ++-=++=2(10)(10100)90010n n n n +-+-+=n 2-10n+100-90010n + 要使n+10整除n 3+100,必须且只需n+10整除900,又因为n 取最大值,•所以n+•10=900,从而符合要求的正整数n 的最大值为890.评注:对于分子的次数高于或等于分母的次数的分式,可化为整式部分与分式部分的和.例6:已知a 、b 、c 为非负实数,且a 2+b 2+c 2=1,3111111-=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b a c a c b c b a ,求a+b+c 的值. 解:由条件知(a+b+c)()111cb a ++=0 ∴a+b+c=0 或cb a 111++=0当c b a 111++=0时,abcac bc ab ++=0 ∴ab+bc+ac=0∵(a+b+c)2=a 2+b 2+c 2+2ab+2bc+2ac=1 ∴a+b+c=±1∴a+b+c=0或1或-1例7:已知.0222=-+-+-c ab c b ac b a bc a 求证:0)()()(222222=-+-+-c ab c b ac b a bc a . 证明 222222222.()()a b c ab bc ac b cbc a ac b ab c ac b ab c -+-+=-=-----.0))()(()()()(.))()(()(.))()(()(.))()(()(222222222222222222222222222222222222222222222222=---+-+-+-+++-+-=-+-+-∴---+-+-=----+-+-=-----++-=-∴c ab b ac a bc b a c b ab c a c a bc ac b a c b ac bc ab c ab c b ac b a bc a c ab b ac a bc ca cb abc a c ab c c ab a bc b ac ca bc ac ab b ac b c ab b ac a bc c b ac bc ab a bc a 同理例8:设a 、b 、c 、d 都是正整数,且a 5=b 4,c 3=d 2,c-a=19,求d-b.解 由质因数分解的唯一性及a 5=b 4,c 3=d 2,可设a=x 4,c=y 2,故19=c-a=(y 2-x 4)=(y-x 2)(y+x 2)⎪⎩⎪⎨⎧=+=-∴.19,122x y x y 解得 x=3. y=10. ∴ d-b=y 3-x 5=757.练习:(1)已知a 2+c 2=2b 2,求证.211ac b a c b +=+++(2)求证:aa z a y a x a az z a ay y a ax x 3111222+-+-+-=-+-+-(3)求证:)1)(1)(1(4)1()1()1(222abab b b a a ab ab b b a a ++++=+++++.例9:已知a 、b 、c 、d 满足a+b=c+d ,a 3+b 3=c 3+d 3, 求证:a 2001+b 2001=c 2001+d 2001.解:由a 3+b 3=c 3+d 3得:(a+b) (a 2-ab+b 2)=(c+d) (c 2-cd+d 2)∵a+b =c+d ,则有(1) 若a+b =c+d=0,则a= -b ,c= -d ,从而a 2001+b 2001=c 2001+d 2001=0(2) 若a+b =c+d ≠0,则a 2-ab+b 2=c 2-cd+d 2,∴(a+b)2-3 ab=(c+d)2-3 cd ,从而ab=cd∴(a+b)2-4ab=(c+d)2-4 cd ,∴(a-b)2=(c-d)2,∴a-b=±(c-d) 可得a=b=c=d ,从而a 2001+b 2001=c 2001+d 2001例10: 有18支足球队进行单循环赛,每个参赛队同其他各队进行一场比赛,假设比赛的结果没有平局,如果用i a 和i b ,分别表示第i(i=1,2,3…18)支球队在整个赛程中胜与负的局数. 求证:21822212182221b b b a a a +++=+++ .解:由于每支球队都要进行18-1=17场比赛,则对于第i 支球队有a i +b i =17,i=1,2,3,……18;由于比赛无平局,故所有参赛队的胜与负的总局数相等,即a 1+a 2+…+a 18=b 1+b 2+…+b 18由(a 12+a 22+…+a 182)-(b 12+b 22+…+b 182)=(a 12-b 12)+ (a 22-b 22)+…+(a 182-b 182) =17×[(a 1+a 2+…+a 18)-(b 1+b 2+…+b 18)]=0得21822212182221b b b a a a +++=+++例11:已知333cz by ax ==,且1111=++zy x .求证:3333222c b a cz by ax ++=++.思路点拨 条件中有一个连等式,恰当引入参数,把待证式两边都变形为与参数相同的同一个代数式.解:设333cz by ax ===t 3,则a=33x t ,b=33yt,c=33z t因333c b a ++=t t zy x =++)111(又33333222111z cz y by x ax cz by ax ⋅+⋅+⋅=++=33)111(zy x t ++=t ,从而得证.例12: 已知0≠abc ,证明:四个数abc c b a 3)(++、abc a c b 3)(--、abc b a c 3)(--、abcc b a 3)(--中至少有一个不小于6.思路点拨 整体考虑,只需证明它们的和大于等于24即可. 解:因为abc c b a 3)(+++abc a c b 3)(--+abc b a c 3)(--+abc c b a 3)(--=abcc b a b a c a c b c b a ])()[(])()[(3333--+--+--+++=abcabcabc ac c b a b ac c b a b 24)633(2)633(2222222=-++-+++=24 若abcc b a 3)(++<6,abc a c b 3)(--<6,abc b a c 3)(--<6,abc c b a 3)(--<6,则他们的和必小于24,这与上式矛盾,故四个加数中至少有一个不小于6。
例13:已知x 、y 、z 满足条件⎪⎩⎪⎨⎧=++=++=++45293333222z y x z y x z y x ,求xyz 及x 4+y 4+z 4的值. 解:由(x+y+z)2-(x 2+y 2+z 2)=2xy+2yz+2xz 得 xy+yz+xz= -10又由x 3+y 3+z 3-3xyz=(x+y+z) (x 2+y 2+z 2- xy-yz-xz) 得 45-3xyz=3⨯(29+10),∴xyz= -24 ∵(xy+yz+xz)2=100,∴x 2y 2+y 2z 2+x 2z 2+2xyz(x+y+z)=100 得 x 2y 2+y 2z 2+x 2z 2=244。
又因 x 4+y 4+z 4 =(x 2+y 2+z 2)2-2 (x 2y 2+y 2z 2+x 2z 2) ∴x 4+y 4+z 4 =741-2⨯244=253。
例14:已知2222)32()(14c b a c b a ++=++,求证:a :b :c=1:2:3.解:∵(a+2b+3c)2=a 2+4ab+4b 2+6ac+12bc+9c 2 ∴14(a 2+b 2+c 2)= a 2+4ab+4b 2+6ac+12bc+9c 2 ∴13a 2-4ab+10b 2-6ac-12bc+5c 2=0从而 (4a 2-4ab+b 2)+( 9b 2-12ac+4c 2)+( c 2-6ac+9a 2)=0 即 (2a-b)2+(3a-c)2+(3b-2c)2=0于是 2a-b=3a-c=3b-2c=0,即b=2a ,c=3a ∴ a ∶b ∶c=1∶2∶3练习: 1.若z y x ty x t z x t z y t z y x ++=++=++=++,记zy x t y x t z x t z y t z y x A +++++++++++=,证明:A 是一个整数.2.已知11111=++=++zy x z y x ,求证:x 、y 、z 中至少有一个为1.3.已知0=-+-+-b a ca cbc b a ,求证:0)()()(222=-+-+-b a c a c b c b a .4.完成同一件工作,甲单独做所需时间为乙、丙两人合做所需时间的p 倍,乙单独做所需时间为甲、丙两人合做所需时间的q 倍;丙单独做所需时间为甲、乙两人合做所需时间的x 倍,求证:12-++=pq q p x .5. 已知b a y x +=+,且2222b a y x +=+.求证:2001200120012001b a y x +=+例15:化简22a b c a ab ac bc ----++2222b c a c a bb ab bc ac c ac bc ab----+--+--+. 解:原式=()()()()()()()()()()()()a b a c b c b a c a c b a b a c b c b a c a c b -+--+--+-++------=111111a c ab b a bc c b c a+++++------=0.评注:此题采用的是“拆项相消”法.利用的是11A B AB A B+=+的模式,其中分解因式的作用是显而易见的.例16:证明恒等式()()()()()()11322321121132322121a a a a a a a a a a a a a a a a a a a a a a a a n n n n ++++++=++++++ 证明:例17:已知xyz=1,x+y+z=2,x 2+y 2+z 2=3,求111111xy z yz x zx y +++-+-+-的值解:∵x+y+z=2,∴xy+z-1=xy+(2-x-y )-1=(x-1)(y-1),同理可得:yz+x-1=(y-1)(z-1).zx+y-1=(z-1)(x-1), 又因为xyz=1,x 2+y 2+z 2=3,则xy+yz+zx=12(x+y+z )2-12(x 2+y 2+z 2)=12. 故原式=1132(1)(1)(1)()()13z x y x y z x y z xyz xy yz zx x y z -+-+++-==-----+++++-.例18: 已知x y za b c++=1,a b c x y z ++=0,求222222x y z a b c ++的值.()()()()()()11322321121322211113232121132322121111111111111a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n ++++++=⎪⎪⎭⎫ ⎝⎛+-++⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛+-=⎪⎪⎭⎫⎝⎛+-++⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛+-=++++++ -1解:设,,x y z k s t a b c ===,由已知有k+s+t=1,故(k+s+t )2=1,再由第二个条件有111k s t++=0,即st kt ks kst++=0,所以st+kt+ks=0.又(k+s+t )2=k 2+s 2+t 2+2ks+2kt+2st=1.∴k 2+s 2+t 2=1.即222222x y z a b c++=1.评注:换元的目的无非是为了达到简单、明了的效果,使较复杂的题目变得简洁、清晰,便于解答.例19: 已知x=by+cz ,y=cz+ax ,z=ax+by ,且x+y+z ≠0.证明:1111=+++++cc b b a a 分析:所证明的式子中不含x 、y 、z ,因而可以将已知条件中的三个等式中的x 、y 、z 看成常数,把三个式子联合起来组成一个关于a 、b 、c 的方程,然后求出a 、b 、c 。