(完整word版)高三数学导数知识点归纳总结,推荐文档
数学导数知识点高中总结
数学导数知识点高中总结一、导数的定义及几何意义1. 导数的定义导数的定义是陈述了函数在某一点处的变化率,即函数在该点的切线的斜率。
对于函数f(x),它在 x 点处的导数定义为:f'(x) = lim(h→0) [f(x+h) - f(x)] / h2. 几何意义导数的几何意义即为函数在某一点处的切线斜率。
导数可以用来描述函数在某一点的瞬时变化率,即函数曲线在该点的切线的斜率。
二、导数的求法1. 导数的基本求导公式常见的导数的求法包括多项式函数、指数函数、对数函数、三角函数等的基本求导公式。
例如:- (常数函数)' = 0- (x^n)' = nx^(n-1)- (e^x)' = e^x- (lnx)' = 1/x- (sinx)' = cosx- (cosx)' = -sinx- (tanx)' = sec^2x2. 导数的高阶导数高阶导数即为对函数进行多次求导得到的结果,表示函数的多次变化率。
例如二阶导数表示函数的二阶变化率,表示函数斜率的变化率。
3. 隐函数求导隐函数求导即为对含有变量的方程进行求导,通过对方程两边求导,可以求得所求的变量的导数。
4. 参数方程求导参数方程求导即为对由参数方程表示的函数进行求导,通过对参数方程中的各个方程分别求导,可以得到参数方程对应的函数的导数。
三、导数的应用1. 函数的极值导数可以用来判断函数的极值,即通过求导得到函数的导数,再令导数等于零求得函数的极值点。
2. 函数的凹凸性与拐点通过对函数的二阶导数求解,可以判断函数的凹凸性和拐点,即确定函数的临界点和拐点的位置。
3. 切线与法线通过函数的导数可以求得函数在某一点处的切线斜率,再通过函数的导数的倒数求得法线的斜率。
4. 最优化问题导数可以用来解决最优化问题,即通过求导得到函数的导数,再通过求导等于零的条件求得函数的最大值或最小值。
四、常见的导数公式1. 常数函数的导数常数函数 f(x) = C 的导数为 f'(x) = 0。
(完整版)高中数学导数知识点归纳总结
§14. 导 数 知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x fx x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin xx -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos xx --=II. x x 1)(ln '=e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:xx 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.导数知识点总结复习经典例题剖析 考点一:求导公式。
导数知识点总结大全高中
导数知识点总结大全高中一、导数的基本概念1. 函数的变化率函数在定义域内的某一点上的变化率就是导数。
函数在某一点的导数描述了函数在这一点附近的变化趋势,是函数曲线的切线斜率。
当函数在某一点的导数为正时,表示函数在这一点附近是增加的;当函数在某一点的导数为负时,表示函数在这一点附近是减小的;当函数在某一点的导数为零时,表示函数在这一点附近有极值。
2. 导数的几何意义函数在某一点的导数是该函数曲线在这一点的切线斜率,即切线的倾斜程度。
当导数为正时,表示切线斜率为正,曲线是逐渐上升的;当导数为负时,表示切线斜率为负,曲线是逐渐下降的;当导数为零时,表示切线水平,曲线在该点可能有极值。
3. 导函数如果函数f(x)在x处可导,则在这一点导函数f'(x)给出了函数在这一点的变化率。
导函数是原函数f(x)关于自变量x的导数函数,通常使用f'(x)来表示。
4. 导数的符号函数f(x)在某一点的导数为正时,表示函数在这一点附近是增加的;函数f(x)在某一点的导数为负时,表示函数在这一点附近是减小的;函数f(x)在某一点的导数为零时,表示函数在这一点附近有极值。
二、导数的定义1. 函数可导如果函数f(x)在某一点x处的导数存在,那么称函数f(x)在这一点可导。
函数在某一点可导的条件是函数在这一点存在切线。
2. 函数导数的极限定义函数f(x)在x处的导数被定义为:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,lim表示极限,h→0表示当h趋近于0时的极限,f(x+h) - f(x)表示函数在x+h处和x处的高度差,h为x的增量。
3. 导数的等价形式导数的等价形式有有限增量与自变量增量之比求极限、差商公式等形式。
三、导数的性质1. 可导函数的和、差的导数如果函数f(x)和g(x)在x处可导,则它们的和f(x)+g(x)和差f(x)-g(x)在x处也可导,且导数为f'(x)+g'(x)和f'(x)-g'(x)。
数学导数知识点高三总结
数学导数知识点高三总结一、导数概念及性质导数是函数在某一点处的变化率,表示了函数在该点的切线斜率。
如果函数在某一点可导,则导数存在并且唯一。
导数的重要性质包括导数的可加性、减法法则、导数乘法法则、导数的链式法则等。
二、常见函数的导数公式1. 常数函数的导数为0:若f(x) = c,则f'(x) = 0,其中c为常数。
2. 幂函数的导数:若f(x) = x^n,则f'(x) = nx^(n-1),其中n为实数。
3. 指数函数的导数:若f(x) = a^x,则f'(x) = a^x * ln(a),其中a为常数且a>0。
4. 对数函数的导数:若f(x) = log_a(x),则f'(x) = 1 / (x * ln(a)),其中a为常数且a>0。
5. 三角函数的导数:设f(x) = sin(x),则f'(x) = cos(x);设f(x) = cos(x),则f'(x) = -sin(x);设f(x) = tan(x),则f'(x) = sec^2(x)。
注:sec(x)表示正割函数,即sec(x) = 1 / cos(x)。
6. 反三角函数的导数:设f(x) = arcsin(x),则f'(x) = 1 / sqrt(1-x^2);设f(x) = arccos(x),则f'(x) = -1 / sqrt(1-x^2);设f(x) = arctan(x),则f'(x) = 1 / (1+x^2)。
注:sqrt(x)表示开平方根函数。
三、导数的应用1. 切线与法线:函数在一点的导数等于该点切线的斜率。
切线的方程为y - y0 = f'(x0) * (x - x0),其中(x0, y0)为切点坐标。
法线的斜率为-1/f'(x0),法线的方程为y - y0 = (-1/f'(x0)) * (x - x0)。
高中导数知识点总结
高中导数知识点总结导数是微积分学中的一个重要概念,它描述了函数在某一点处的变化率。
在高中数学中,导数的概念和计算是高考数学中的一个重要考点。
以下是高中阶段需要掌握的导数知识点的总结:1. 导数的定义:导数表示函数在某一点的瞬时变化率。
如果函数\( f(x) \)在点\( x=a \)的导数存在,那么它可以用极限的形式定义为:\[ f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \]2. 导数的几何意义:导数的几何意义是曲线在某点的切线斜率。
对于函数\( y = f(x) \),其在点\( (a, f(a)) \)的导数\( f'(a) \)就是曲线在该点的切线斜率。
3. 基本初等函数的导数:熟练掌握基本函数的导数公式是解决导数问题的基础。
例如:- \( (x^n)' = nx^{n-1} \)(\( n \)为实数)- \( (\sin x)' = \cos x \)- \( (\cos x)' = -\sin x \)- \( (\tan x)' = \sec^2 x \)- \( (e^x)' = e^x \)- \( (\ln x)' = \frac{1}{x} \)(\( x > 0 \))4. 导数的运算法则:包括和、差、积、商的导数法则,以及复合函数的链式法则。
- \( (f \pm g)' = f' \pm g' \)- \( (fg)' = f'g + fg' \)- \( \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2} \)- \( (f(g(x)))' = f'(g(x)) \cdot g'(x) \)5. 高阶导数:对于函数的一阶导数再次求导,得到的是函数的二阶导数,依此类推。
高中导数知识点总结
高中导数知识点总结在高中数学中,导数是一个非常重要的概念,它不仅在解决函数问题上有着广泛的应用,也是进一步学习高等数学的基础。
下面我们就来详细总结一下高中导数的相关知识点。
一、导数的定义设函数\(y = f(x)\)在点\(x_0\)处及其附近有定义,如果函数的增量\(\Delta y = f(x_0 +\Delta x) f(x_0)\)与自变量的增量\(\Delta x\)的比值\(\frac{\Delta y}{\Delta x}\),当\(\Delta x\)趋近于\(0\)时的极限存在,那么这个极限值就叫做函数\(y = f(x)\)在点\(x_0\)处的导数,记作\(f'(x_0)\)。
即:\(f'(x_0) =\lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} =\lim\limits_{\Delta x \to 0} \frac{f(x_0 +\Delta x) f(x_0)}{\Delta x}\)导数的定义是导数运算和应用的基础,通过这个定义我们可以求出一些常见函数的导数。
二、基本初等函数的导数公式1、\(C' = 0\)(\(C\)为常数)2、\((x^n)'= nx^{n 1}\)(\(n\)为实数)3、\((sin x)'= cos x\)4、\((cos x)'= sin x\)5、\((e^x)'= e^x\)6、\((a^x)'= a^x \ln a\)(\(a > 0\)且\(a \neq 1\))7、\((\ln x)'=\frac{1}{x}\)8、\((log_a x)'=\frac{1}{x \ln a}\)(\(a > 0\)且\(a \neq 1\))这些基本初等函数的导数公式是我们进行导数运算的重要工具,必须牢记。
三、导数的四则运算1、加法法则:\((u + v)'= u' + v'\)2、减法法则:\((u v)'= u' v'\)3、乘法法则:\((uv)'= u'v + uv'\)4、除法法则:\((\frac{u}{v})'=\frac{u'v uv'}{v^2}\)(\(v \neq 0\))四、复合函数的导数设函数\(u =\varphi(x)\)在点\(x\)处可导,\(y =f(u)\)在点\(u =\varphi(x)\)处可导,则复合函数\(y = f(\varphi(x))\)在点\(x\)处可导,且其导数为:\((f(\varphi(x)))'= f'(\varphi(x))\cdot \varphi'(x)\)复合函数求导是导数中的一个难点,需要熟练掌握换元法和链式法则。
最新整理高三数学高三数学下册《导数》知识点.docx
最新整理高三数学高三数学下册《导数》知识点高三数学下册《导数》知识点一、综述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
二、知识整合1.导数概念的理解。
2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
练习题:1.已知某函数的导数为y′=12(x-1),则这个函数可能是( )A.y=ln1-xB.y=ln11-xC.y=ln(1-x) D.y=ln11-x答案:A解析:对选项求导.(ln1-x)′=11-x(1-x)′=11-x 12(1-x)-12 (-1)=12(x-1).故选A.2.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y =2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为( ) A.4B.-14C.2D.-12答案:A解析:f′(x)=g′(x)+2x.∵y=g(x)在点(1,g(1))处的切线方程为y=2x+1,∴g′(1)=2,∴f′(1)=g′(1)+2×1=2+2=4,∴y=f(x)在点(1,f(1))处切线斜率为4.3.曲线y=xx-2在点(1,-1)处的切线方程为( )A.y=x-2 B.y=-3x+2C.y=2x-3 D.y=-2x+1答案:D解析:y′=(xx-2)′=-2(x-2)2,∴k=y′|x=1=-2.l:y+1=-2(x-1),则y=-2x+1.故选D.。
高中数学导数知识点总结
高中数学导数知识点总结一、导数的定义1. 导数的几何意义在直角坐标系中,函数的导数表示了函数曲线在某一点的切线的斜率。
也就是说,导数描述了函数在某一点处的变化率。
如果函数在某一点的导数为正,那么函数在这一点的曲线是朝上凸的;如果函数在某一点的导数为负,那么函数在这一点的曲线是朝下凸的;如果函数在某一点的导数为零,那么函数在这一点的曲线可能是一个最大值、最小值或者拐点。
2. 导数的代数定义设函数y=f(x),在点x0处可导。
如果当自变量x的增量为Δx时,函数值的增量Δy与自变量的增量Δx的比值在Δx趋于0时的极限存在,那么就称函数y=f(x)在点x0处可导。
这个极限就是函数在点x0处的导数,通常用f'(x0)或者df(x0)/dx来表示。
二、导数的性质1. 可导性与连续性在区间上连续的函数必定在该区间上有定义且连续的导数。
不过反之不成立。
2. 导数的四则运算法则设函数y=f(x)和y=g(x)都在x处可导,则:(1)常数函数的导数\[ (k)' = 0 \](2)乘积的导数\[ (u \cdot v)' = u' \cdot v + u \cdot v' \](3)商的导数\[ \left( \frac{u}{v} \right)' = \frac{u' \cdot v - u \cdot v'}{v^2} \](4)复合函数的导数\[ (f(g(x)))' = f'(g(x)) \cdot g'(x) \]3. 链式法则设函数y=f(u)和u=g(x)都在某点可导,则复合函数y=f(g(x))在该点可导,且有\[ y' = f'(g(x)) \cdot g'(x) \]4. 高阶导数如果函数f的导数也可导,则函数f有二阶导数,记作f'';同理,f(n)表示函数f的n阶导数。
高中是导数知识点总结
高中是导数知识点总结一、导数的概念导数是微积分学中的重要概念,它描述了函数在某一点处的变化率。
在几何上来看,导数是函数曲线在某一点处的切线斜率。
导数也可以理解为一个函数在某一点处的瞬时速度或瞬时增长率。
导数的符号通常用 f'(x) 或 dy/dx 表示,其中 f(x) 是函数,x 是自变量,f'(x) 表示函数 f(x) 在 x 点处的导数。
二、导数的计算1. 导数的定义函数 f(x) 在点 x0 处的导数定义为:f'(x0) = lim (h->0) [f(x0+h)-f(x0)]/h其中 h 是变化量,当 h 趋近于 0 时,表示函数 f(x) 在点 x0 处的斜率,即导数。
这是导数的最基本定义,通过它可以计算任何函数在任何一点处的导数。
2. 基本导数公式导数的计算通常涉及到基本的导数公式,例如:- 常数函数的导数为 0- 幂函数的导数为 nx^(n-1)- 指数函数的导数为 a^xln(a) (a 为常数)- 对数函数的导数为 1/x这些基本导数公式对于导数的计算提供了重要的参考。
3. 导数的运算法则导数的运算法则包括了常用的导数运算法则,例如:- 常数倍法则:f'(ax) = af'(x)- 和差法则:(f+g)' = f'+g'- 乘积法则:(fg)' = f'g + fg'- 商法则:(f/g)' = (f'g - fg')/g^2这些导数的运算法则在求解导数的过程中起到了重要的作用,能够简化导数的计算过程。
4. 高阶导数高阶导数是指导数的次数大于一次的情况,例如 f''(x) 表示函数 f(x) 的二阶导数,即对 f'(x) 再次求导数。
高阶导数的计算通常可以利用导数的定义和运算法则来进行,它描述了函数曲线的更加细致的变化情况。
三、导数的应用1. 函数的极值点导数的一个重要应用是求函数的极值点,即函数的最大值和最小值所对应的点。
高三导数知识点总结
高三导数知识点总结一、导数的概念和计算方法导数是微积分中的重要概念,它描述了函数在某一点上的变化率。
在高三阶段,导数是数学学习的重点之一。
在学习导数之前,我们首先需要了解导数的概念和计算方法。
导数的定义可以通过极限的概念得到:对于函数y=f(x),在点x 处的导数可以表示为f'(x)=lim△x→0[f(x+△x)-f(x)]/△x。
这个定义表示了当△x趋向于0时,函数f(x)在x处的变化率。
导数也可以理解为函数的瞬时变化率。
计算导数的常用方法有:基本函数求导法、常数因子法、和差法、乘积法、商法、函数的复合法等。
在运用这些求导法则时,我们需要熟练掌握各种函数的导函数。
二、基本函数的导函数在高三阶段,我们主要接触到的基本函数有常数函数、幂函数、指数函数和对数函数。
下面我们将介绍这些函数的导函数。
1. 常数函数的导函数:常数函数f(x)=c(其中c为常数)的导函数为0,即f'(x)=0。
2. 幂函数的导函数:幂函数f(x)=x^n(其中n为常数)的导函数为f'(x)=nx^(n-1)。
3. 指数函数的导函数:指数函数f(x)=a^x(其中a>0且a≠1)的导函数为f'(x)=a^xlna。
4. 对数函数的导函数:对数函数f(x)=log_a(x)(其中a>0且a≠1)的导函数为f'(x)=1/(xlna)。
通过掌握基本函数的导函数,我们可以在求解导数时使用这些导函数的性质,简化计算过程。
三、导数的应用导数是高三阶段数学学习中重要的工具,它广泛应用于各个领域。
在这一部分,我们将介绍导数在函数的极值、函数的图像、函数的变化趋势等方面的应用。
1. 导数与函数的极值通过导数,我们可以研究函数在不同点上的极值问题。
函数的极大值和极小值处的导数都等于0或不存在。
因此,我们可以通过求导数,找到函数的极值点,并通过求导数的二阶导数判断函数在极值点处的性质。
2. 导数与函数的图像函数的导数可以揭示函数图像的许多特征。
导数知识点归纳总结高三
导数知识点归纳总结高三一、导数的定义和基本概念导数的定义:设函数f(x)在点x0的某个邻域内有定义,如果极限①若存在,称函数f(x)在点x0处可导,该极限值称为函数f(x)在点x0处的导数,记作f'(x0)。
②若极限不存在,称函数f(x)在点x0不可导。
基本性质:①导数存在的必要条件是函数在该点连续;② f(x)在x0(闭区间内)可导,则f(x)在x0(闭区间内)连续;二、常见函数的导数1. 幂函数幂函数f(x) = xn,其中n为常数,x为自变量。
导数有如下规律:① f'(x) = nx^(n-1);2. 指数函数和对数函数指数函数f(x) = a^x (a>0,a≠1),对数函数f(x)=loga(x) (a>0,a≠1,x>0)。
导数有如下规律:① (a^x)' = a^x * ln(a);② (loga(x))' = 1 / (x * ln(a));3. 三角函数和反三角函数三角函数包括sin(x),cos(x),tan(x),cot(x),sec(x),csc(x),反三角函数包括arcsin(x),arccos(x),arctan(x),arccot(x),arcsec(x),arccsc(x)。
导数有如下规律:三角函数的导数:① (sin(x))' = cos(x);② (cos(x))' = -sin(x);③ (tan(x))' = sec^2(x);④ (cot(x))' = -csc^2(x);⑤ (sec(x))' = sec(x) * tan(x);⑥ (csc(x))' = -csc(x) * cot(x);反三角函数的导数:⑦ (arcsin(x))' = 1 / sqrt(1-x^2);⑧ (arccos(x))' = -1 / sqrt(1-x^2);⑨ (arctan(x))' = 1 / (1+x^2);⑩ (arccot(x))' = -1 / (1+x^2);⑪ (arcsec(x))' = 1 / (x * sqrt(x^2-1));⑫ (arccsc(x))' = -1 / (x * sqrt(x^2-1));4. 反函数的导数若y = f(x)是函数f(x)在区间I上的可逆函数,导数可表示为:①若f'(x0)≠0,则(g(f(x)))' = g'(y0) * f'(x0);②若f'(x0)=0且g'(y0)≠0,则(g(f(x)))'在x=x0时取不到导数;③若f'(x0)=0且g'(y0)=0,要结合极限来研究(g(f(x)))'的存在性。
高中数学导数知识点总结
高中数学导数知识点总结一、导数的基础1. 导数的定义- 导数表示函数在某一点的切线斜率。
- 符号表示:$f'(x)$ 或 $\frac{df}{dx}$。
2. 极限表达- 导数可以用极限表达:$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$。
3. 几何意义- 导数的几何意义是曲线在某一点的切线斜率。
二、导数的计算1. 基本导数公式- 常数函数:$(C)' = 0$。
- 幂函数:$(x^n)' = nx^{n-1}$(其中n为实数)。
- 指数函数:$(a^x)' = a^x \ln(a)$(其中a > 0且a ≠ 1)。
- 对数函数:$(\ln(x))' = \frac{1}{x}$。
- 三角函数:- $(\sin(x))' = \cos(x)$- $(\cos(x))' = -\sin(x)$- $(\tan(x))' = \sec^2(x)$2. 导数的运算法则- 和/差的导数:$(u \pm v)' = u' + v'$。
- 乘积的导数:$(uv)' = u'v + uv'$。
- 商的导数:$(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$。
3. 链式法则- 如果有一个复合函数$g(f(x))$,则其导数为:$(g(f(x)))' = g'(f(x)) \cdot f'(x)$。
三、高阶导数1. 高阶导数的定义- 第二导数:函数的导数的导数,表示为$f''(x)$。
- 更高阶导数:同理,可以计算第三导数、第四导数等。
2. 高阶导数的计算- 通过重复应用导数的基本运算法则来计算。
四、导数的应用1. 切线问题- 利用导数求曲线在某一点的切线方程。
高三导数知识点总结归纳
高三导数知识点总结归纳在高中数学中,导数是一个重要的概念。
它不仅在数学中有广泛的应用,还在其他科学领域中发挥着重要的作用。
导数的概念和应用非常广泛,因此在高三阶段,对导数的学习和掌握尤为重要。
本文将对高三阶段的导数知识点进行总结和归纳,以帮助同学们更好地理解和应用导数。
一、导数的定义和基本性质导数的定义是函数在某一点处的变化率,可以用极限形式表示:$$f'(x)=\lim_{Δx→0}\frac{f(x+Δx)-f(x)}{Δx}$$其中$f'(x)$表示函数$f(x)$的导数。
导数有以下基本性质:1. 导数存在的条件:函数在某一点处可导,意味着该点处的左、右导数存在且相等;2. 函数可导的充分条件:函数在该点处连续且可导;3. 导数的几何意义:导数表示函数曲线在该点处的切线斜率;4. 导数的物理意义:导数可以表示物理量的变化率,如位移、速度和加速度等。
二、常见函数的导数公式1. 幂函数:$y=x^n$,其中$n$为常数。
其导数为:$y'=nx^{n-1}$;2. 指数函数:$y=a^x$,其中$a$为常数。
其导数为:$y'=a^xlna$;3. 对数函数:$y=log_ax$,其中$a$为常数,$a>0$且$a≠1$。
其导数为:$y'=\frac{1}{xlna}$;4. 正弦函数:$y=sinx$。
其导数为:$y'=cosx$;5. 余弦函数:$y=cosx$。
其导数为:$y'=-sinx$;6. 正切函数:$y=tanx$。
其导数为:$y'=\sec^2x$;7. 余切函数:$y=cotx$。
其导数为:$y'=-\csc^2x$。
三、导数的基本运算法则1. 和差法则:$[u(x)±v(x)]'=u'(x)±v'(x)$;2. 常数倍法则:$[k·u(x)]'=k·u'(x)$,其中$k$为常数;3. 乘法法则:$[u(x)·v(x)]'=u'(x)·v(x)+u(x)·v'(x)$;4. 商法法则:$\left[\frac{u(x)}{v(x)}\right]'=\frac{u'(x)·v(x)-u(x)·v'(x)}{[v(x)]^2}$,其中$v(x)≠0$。
高中数学导数知识点总结
高中数学导数知识点总结高中数学导数知识点总结一、导数的概念导数就是函数某一点处的斜率,通俗地说,就是函数曲线在某一点处的切线斜率。
设函数$f(x)$在$x_0$处的导数为$f'(x_0)$,则$f'(x_0) = \lim_{x\rightarrow x_0} \frac{f(x)-f(x_0)}{x-x_0}$二、导数的求法1.一元函数的导数:(1)基本求导公式(2)函数的四则运算法则(3)复合函数的求导法则(4)反函数的求导法则(5)参数方程的求导法则2.向量值函数的导数:向量值函数$\textbf{r}(t)=[x(t),y(t),z(t)]$在$t=t_0$处的导数为$\textbf{r}'(t_0)=[x'(t_0),y'(t_0),z'(t_0)]$,即每个分量的导数。
三、导数的应用1. 切线及法线2. 极值及最值(1)函数极值的判定(2)函数最值的判定3. 曲线的凹凸性(1)函数凹凸性的判定(2)拐点的判定4. 应用问题(1)速度与加速度(2)辅助平面问题(3)优化问题四、函数的增减性、单调性和导数符号的变化•增减性是指函数单调性的基本概念,一个区间内的函数增加或减少的程度。
•单调性是指函数在定义域内的变化趋势,可以是单调递增或单调递减(函数单调递增就是指函数在定义域内每个数的y值都大于前一个数对应的y值。
)•导数符号的变化,则是判断函数增减和单调性的重要依据。
五、高阶导数•高阶导数就是导数的导数,也称高阶导数或导函数的导函数,计算时可以使用Leibniz符号表示:$f^{(n)}(x)$ 或 $\frac{\mathrm{d}^n y}{\mathrm{d} x^n}$•高阶导数可以帮助我们更好地理解函数的性质,例如:可判断函数的极值、拐点和极限等。
六、导数的图像•通过函数图像可以研究导数的性质,例如导数的单调性、最值问题、调和函数和高斯函数等。
高三导数知识点总结
高三导数知识点总结一、导数的定义1. 导数的定义导数的定义是函数在某一点的变化率,用数学上的极限来表达。
设函数y=f(x),在点x0处的导数记为f'(x0),其定义为:f'(x0) = lim(h->0) [f(x0+h) - f(x0)] / h当这个极限存在时,称函数在点x0处可导。
导数的存在意味着函数在该点处有切线,导数值即为该点处切线的斜率。
2. 几何意义导数在几何上的意义是函数在某一点的切线的斜率。
切线的斜率表示了函数在该点处的变化率,也就是导数的定义中所说的变化率。
导数的绝对值表示了函数曲线在该点处的陡峭程度,导数为正表示函数在该点处增加,导数为负表示函数在该点处减小。
3. 导数和函数上的应用导数在几何上的意义提供了函数曲线的局部信息,通过导数可以求得函数在某一点的切线方程,从而计算曲线在该点的切线的斜率等信息。
这在物理、经济学等领域有广泛的应用。
二、导数的性质1. 导数的性质导数具有一系列重要的性质,如导数的四则运算、导数与原函数的关系等。
导数的四则运算表示了导数在加减乘除等运算中的性质,其具体表达如下:(1) 同一函数的和、差的导数等于函数的导数的和、差(2) 常数与函数的乘积的导数等于常数与函数的导数的乘积(3) 函数的积的导数等于函数的导数的积加上函数与导数的乘积(4) 函数的商的导数等于函数的导数的商减去函数与导数的商的导数导数与原函数的关系是指函数的导数与原函数的关系,其具体表达如下:(1) 如果函数在x点可导,则函数在x点连续(2) 如果函数在区间[a,b]上连续且可导,则函数在区间上一定有最大值和最小值,且这些极值点一定在区间内2.常见函数导数1) 基本函数的导数常见函数的导数可以通过定义和四则运算的性质来求得。
如常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等的导数。
2) 复合函数的导数复合函数的导数求解可以通过链式法则来进行。
三、导数的计算方法1. 函数导数的计算方法函数导数的计算方法是求得函数在某一点处的导数值。
(完整版)高中导数经典知识点及例题讲解
§ 1.1 变化率与导数 1.1.1 变化率问题自学引导1.通过实例分析,了解平均变化率的实际意义.2.会求给定函数在某个区间上的平均变化率. 课前热身1.函数f (x )在区间[x 1,x 2]上的平均变化率为ΔyΔx=________. 2.平均变化率另一种表示形式:设Δx =x -x 0,则ΔyΔx=________,表示函数y =f (x )从x 0到x 的平均变化率.1.f (x 2)-f (x 1)x 2-x 1答 案2.f (x 0+Δx )-f (x 0)Δx名师讲解1.如何理解Δx ,Δy 的含义Δx 表示自变量x 的改变量,即Δx =x 2-x 1;Δy 表示函数值的改变量,即Δy =f (x 2)-f (x 1).2.求平均变化率的步骤求函数y =f (x )在[x 1,x 2]内的平均变化率. (1)先计算函数的增量Δy =f (x 2)-f (x 1). (2)计算自变量的增量Δx =x 2-x 1.(3)得平均变化率Δy Δx =f x 2-f x 1x 2-x 1.对平均变化率的认识函数的平均变化率可以表现出函数在某段区间上的变化趋势,且区间长度越小,表现得越精确.如函数y =sin x 在区间[0,π]上的平均变化率为0,而在[0,π2]上的平均变化率为sin π2-sin0π2-0=2π.在平均变化率的意义中,f (x 2)-f (x 1)的值可正、可负,也可以为零.但Δx =x 2-x 1≠0.典例剖析题型一求函数的平均变化率例1 一物体做直线运动,其路程与时间t的关系是S=3t-t2.(1)求此物体的初速度;(2)求t=0到t=1的平均速度.分析t=0时的速度即为初速度,求平均速度先求路程的改变量ΔS=S(1)-S(0),再求时间改变量Δt=1-0=1.求商ΔSΔt就可以得到平均速度.解(1)由于v=St=3t-t2t=3-t.∴当t=0时,v0=3,即为初速度.(2)ΔS=S(1)-S(0)=3×1-12-0=2 Δt=1-0=1∴v=ΔSΔt=21=2.∴从t=0到t=1的平均速度为2.误区警示本题1不要认为t=0时,S=0.所以初速度是零.变式训练1 已知函数f(x)=-x2+x的图像上一点(-1,-2)及邻近一点(-1+Δx,-2+Δy),则ΔyΔx=( )A.3 B.3Δx-(Δx)2 C.3-(Δx)2D.3-Δx 解析Δy=f(-1+Δx)-f(-1)=-(-1+Δx)2+(-1+Δx)-(-2)=-(Δx)2+3Δx.∴ΔyΔx=-Δx2+3ΔxΔx=-Δx+3答案D题型二平均变化率的快慢比较例2 求正弦函数y=sin x在0到π6之间及π3到π2之间的平均变化率.并比较大小.分析用平均变化率的定义求出两个区间上的平均变化率,再比较大小.解设y=sin x在0到π6之间的变化率为k1,则k 1=sinπ6-sin0π6-0=3π.y =sin x 在π3到π2之间的平均变化率为k 2,则k 2=sin π2-sin π3π2-π3=1-32π6=32-3π.∵k 1-k 2=3π-32-3π=33-1π>0,∴k 1>k 2.答:函数y =sin x 在0到π6之间的平均变化率为3π,在π3到π2之间的平均变化率为32-3π,且3π>32-3π.变式训练2 试比较余弦函数y =cos x 在0到π3之间和π3到π2之间的平均变化率的大小.解 设函数y =cos x 在0到π3之间的平均变化率是k 1,则k 1=cos π3-cos0π3-0=-32π.函数y =cos x 在π3到π2之间的平均变化率是k 2,则k 2=cosπ2-cos π3π2-π3=-3π.∵k 1-k 2=-32π-(-3π)=32π>0,∴k 1>k 2.∴函数y =cos x 在0到π3之间的平均变化率大于在π3到π2之间的平均变化率.题型三 平均变化率的应用例3 已知一物体的运动方程为s (t )=t 2+2t +3,求物体在t =1到t =1+Δt 这段时间内的平均速度.分析 由物体运动方程―→写出位移变化量Δs ―→ΔsΔt解 物体在t =1到t =1+Δt 这段时间内的位移增量 Δs =s (1+Δt )-s (1)=[(1+Δt )2+2(1+Δt )+3]-(12+2×1+3) =(Δt )2+4Δt .物体在t =1到t =1+Δt 这段时间内的平均速度为Δs Δt =(Δt )2+4ΔtΔt=4+Δt .变式训练3 一质点作匀速直线运动,其位移s 与时间t 的关系为s (t )=t 2+1,该质点在[2,2+Δt ](Δt >0)上的平均速度不大于5,求Δt 的取值范围.解 质点在[2,2+Δt ]上的平均速度为v -=s 2+Δt -s 2Δt=[2+Δt 2+1]-22+1Δt=4Δt +Δt2Δt=4+Δt .又v -≤5,∴4+Δt ≤5. ∴Δt ≤1,又Δt >0,∴Δt 的取值范围为(0,1]. § 1.1 函数的单调性与极值 1.1.2 导数的概念自学引导1.经历由平均变化率过渡到瞬时变化率的过程,了解导数概念建立的一些实际背景.2.了解瞬时变化率的含义,知道瞬时变化率就是导数.3.掌握函数f (x )在某一点x 0处的导数定义,并且会用导数的定义求一些简单函数在某一点x 0处的导数.课前热身1.瞬时速度.设物体的运动方程为S =S (t ),如果一个物体在时刻t 0时位于S (t 0),在时刻t 0+Δt 这段时间内,物体的位置增量是ΔS =S (t 0+Δt )-S (t 0).那么位置增量ΔS 与时间增量Δt 的比,就是这段时间内物体的________,即v =S t 0+Δt -S t 0Δt.当这段时间很短,即Δt 很小时,这个平均速度就接近时刻t 0的速度.Δt 越小,v 就越接近于时刻t 0的速度,当Δt →0时,这个平均速度的极限v =lim Δt →0ΔS Δt =lim Δt →0S t 0+Δt -S t 0Δt就是物体在时刻t 0的速度即为________. 2.导数的概念.设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),当Δx 无限趋近0时,比值Δy Δx =f x 0+Δx -f x 0Δx无限趋近于一个常数A ,这个常数A 就是函数f (x )在点x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0.用符号语言表达为f ′(x 0)=lim Δx →0Δy Δx=________1.平均速度 瞬时速度 答 案2.lim Δx →0f (x 0+Δx )-f (x 0)Δx名师讲解1.求瞬时速度的步骤(1)求位移增量ΔS =S (t +Δt )-S (t );(2)求平均速度v =ΔS Δt;(3)求极限limΔt→0ΔSΔt=limΔt→0S t +Δt-S tΔt;(4)若极限存在,则瞬时速度v=limΔt→0ΔS Δt.2.导数还可以如下定义一般地,函数y=f(x)在x=x0处的瞬时变化率是limΔx→0f x+Δx-f x0Δx=limΔx→0ΔyΔx.我们称它为函数y=f(x)在x=x0处的导数.记作f′(x0)或y′|x=x,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f x+Δx-f x0Δx.3.对导数概念的理解(1)“导数”是从现实生活中大量类似问题里,撇开一些量的具体意义,单纯地抓住它们数量上的共性而提取出来的一个概念,所以我们应很自然的理解这个概念的提出与其实际意义.(2)某点导数即为函数在这点的变化率.某点导数概念包含着两层含义:①limΔx→0ΔyΔx存在,则称f(x)在x=x0处可导并且导数即为极限值;②limΔx→0ΔyΔx不存在,则称f(x)在x=x0处不可导.(3)Δx称为自变量x的增量,Δx可取正值也可取负值,但不可以为0.(4)令x=x0+Δx,得Δx=x-x0,于是f′(x)=limx→x0f x-f xx-x与定义中的f′(x0)=limΔx→0f x+Δx-f x0Δx意义相同.4.求函数y=f(x)在点x0处的导数的步骤(1)求函数的增量:Δy=f(x0+Δx)-f(x0);(2)求平均变化率:ΔyΔx=f x+Δx-f x0Δx;(3)取极限,得导数:f′(x0)=limΔx→0Δy Δx.典例剖析题型一物体运动的瞬时速度例1 以初速度v0(v0>0)竖直上抛的物体,t秒时高度为s(t)=v0t-12gt2,求物体在时刻t0处的瞬时速度.分析先求出Δs,再用定义求ΔsΔt,当Δt→0时的极限值.解∵Δs=v0(t0+Δt)-12g(t+Δt)2-(v0t0-12gt2)=(v0-gt0)Δt-12g(Δt)2,∴ΔsΔt=v0-gt0-12g·Δt.∴当Δt→0时,ΔsΔt→v0-gt0.故物体在时刻t0处的瞬时速度为v0-gt0.规律技巧瞬时速度v是平均速度v在Δt→0时的极限.因此,v=limΔt→0v=limΔt→0ΔsΔt.变式训练1 一作直线运动的物体,其位移s与时间t的关系是s=5t-t2,求此物体在t=2时的瞬时速度。
(完整版)高中数学导数知识点归纳总结
§14.导数知识要点1.导数(导函数的简称)的定义:设X 。
是函数y f(x)定义域的一点,如果自变量X 在X 。
处 有增量 x ,则函数值y 也引起相应的增量 y f (x 0 x) f(x 0);比值 丄 止__x) f(xo)称为函数y 仁刈在点%。
到X 。
x 之间的平均变化率;如果极限 x X lim - lim f(X0 -------------- X)_f (Xo)存在,则称函数y f (x)在点x 。
处可导,并把这个极限叫做x 0 x x 0 x y f (x)在 x 0处的导数,记作 f (x 0)或 y |xX Q,即 f (x 。
)= lim y limf -(X° --- X)_.X 。
x x 。
x注:① X 是增量,我们也称为改变量”,因为X 可正,可负,但不为零.②以知函数y f(x)定义域为A , y f '(x)的定义域为B ,则A 与B 关系为A B.注:①可导的奇函数函数其导函数为偶函数 ②可导的偶函数函数其导函数为奇函数2.函数y⑴函数y 可以证明,如果 事实上,令x f (X)在点X o 处连续与点X o 处可导的关系:X o 处连续是y f (x)在点X o 处可导的必要不充分条件 y f (x)点x 0处连续. o.f (x)在点 y xof(x)在点X o 处可导,那么 X ,则XX o 相当于 是 lim f (x)X X 。
lim X 。
f(x 。
x) lim [ f(xX 。
X 。
) f(x 。
) f(x 。
)] 叫⑵如果y f (X 。
X ) f(x 。
) X f(x)点X o 处连续,f(x 。
)] 那么y例: f(x) |x|在点X o 。
处连续,f(X oX) f(X o ) lim lim f(X o )xx o x of(x)在点X o 处可导,是不成立的.y ,当X X0。
f (X 。
)o f(x 。
高中数学导数知识点总结(最新)
高中数学导数知识点总结一、求导数的方法(1)基本求导公式(2)导数的四则运算(3)复合函数的导数设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即二、关于极限1、数列的极限:粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。
记作:=A。
如:2、函数的极限:当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作三、导数的概念1、在处的导数。
2、在的导数。
3。
函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,即k=,相应的切线方程是注:函数的导函数在时的函数值,就是在处的导数。
例、若=2,则=()A—1B—2C1D四、导数的综合运用(一)曲线的切线函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。
由此,可以利用导数求曲线的切线方程。
具体求法分两步:(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。
★高中数学导数知识点一、早期导数概念————特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。
在作切线时他构造了差分f(A+E)—f(A),发现的因子E就是我们所说的导数f(A)。
二、17世纪————广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。
牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。
牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。
完整版)高中数学导数知识点归纳总结
完整版)高中数学导数知识点归纳总结导数的定义:对于函数y=f(x),在点x处的导数f'(x)定义为:f'(x)=\lim_{\Delta x\to 0}\frac{\Delta y}{\Deltax}=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}其中,$\Delta x$表示自变量的增量,$\Delta y$表示函数值的增量。
函数的连续性和可导性的关系:如果函数y=f(x)在点x处可导,则它在该点处必然连续。
但是,反过来并不成立,即函数在某点处连续并不一定可导。
导数的几何意义:函数y=f(x)在点x处的导数f'(x)表示曲线在该点处的切线的斜率。
因此,切线方程为:y-y_0=f'(x_0)(x-x_0)其中,$y_0=f(x_0)$表示曲线在点$(x_0,y_0)$处的纵坐标。
导数的四则运算法则:对于任意可导函数f(x)和g(x),有以下四则运算法则:1.$(f+g)'(x)=f'(x)+g'(x)$2.$(f-g)'(x)=f'(x)-g'(x)$3.$(fg)'(x)=f'(x)g(x)+f(x)g'(x)$4.$\left(\frac{f}{g}\right)'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$其中,除法的分母$g(x)$不能为0.导数的应用:导数可以用来求函数的单调性、极值和最值。
函数单调递增的条件是导数大于0,函数单调递减的条件是导数小于0.函数在极值点处的导数为0,但反之不一定成立。
函数的最值可以通过求导数来确定。
注①:若点x是可导函数f(x)的极值点,则f'(x)=0.但反过来不一定成立。
对于可导函数,其一点x是极值点的必要条件是若函数在该点可导,则导数值为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数知识点总结
考试内容:
导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.
考试要求:
(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.
知识要点:
1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量
)
()(00x f x x f y -∆+=∆;比值x
x f x x f x y ∆-∆+=
∆∆)
()(00称为函数)(x f y =在点0x 到
x x ∆+0之间的平均变化率;如果极限x
x f x x f x y
x x ∆-∆+=∆∆→∆→∆)()(lim
lim
0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0
|'x x y =,即)(0'x f =
x x f x x f x y
x x ∆-∆+=∆∆→∆→∆)()(lim
lim
0000. 注:
①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =
的定义域为B ,则A 与B 关系为
B A ⊇.
2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:
⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件.
可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x . 于是)]()()([lim )(lim )(lim
0000
00
x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→
).
()(0)()(lim lim )
()(lim )]()()([
lim 000'0000000000
x f x f x f x f x
x f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x
x x
y ∆∆=∆∆||,
当x ∆>0时,1=∆∆x
y ;当x ∆<0时,1-=∆∆x y ,故
x y
x ∆∆→∆0lim
不存在.
注:①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数.
3. 导数的几何意义:
函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则:
''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒
''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数)
)0(2'''
≠-=
⎪⎭
⎫
⎝⎛v v u v vu v u 注:
①v u ,必须是可导函数.
②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.
例如:设x
x x f 2sin 2)(+=,x
x x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,
但它们和=+)()(x g x f
x x cos sin +在0=x 处均可导.
5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅=
复合函数的求导法则可推广到多个中间变量的情形. 6. 函数单调性:
⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果
)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.
⑵常数的判定方法;
如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.
注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在
),(+∞-∞上并不是都有0)(φx f ,有一个点例外即
x =0时f (x ) = 0,同
样0)(πx f 是f (x )递减的充分非必要条件.
②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.
7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时,
①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是
)('x f =0
①
. 此外,函数不可导的点也可能是函数的极值点②. 当然,极
值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).
注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==
,0=x 使)('x f =0,但0=x 不是极值点.
②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.
8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较. 注:函数的极值点一定有意义. 9. 几种常见的函数导数: I.
'=C (
C
为常数) x x cos )(sin '=
2
'11)(arcsin x
x -=
1')(-=n n nx x (R n ∈) x x sin )(cos '-=
2
'11)(arccos x
x --
=
II.
x
x 1)(ln '=
e x
x a a log 1
)(log '=
1
1)(arctan 2'+=
x x
x x e e =')( a a a x x ln )('=
1
1)cot (2'+-
=x x arc
III. 求导的常见方法: ①常用结论:x
x 1|)|(ln '=.
②形如))...()((21n a x a x a x y ---=或)
)...()(())...()((2121n n b x b x b x a x a x a x y ------=
两边同取自然对
数,可转化求代数和形式.
③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为
x x y ln ln =,
对两边求导可得x x x x x y y x y y x
x x y y +=⇒+=⇒⋅+=ln ln 1
ln '''.。