北京四中八年级下册数学线段的垂直平分线-----知识讲解(提高)
八年级数学下册 1.3 线段的垂直平分线 线段垂直平分线定理知识总结素材 (新版)北师大版
线段垂直平分线定理知识总结一、线段垂直平分线的性质定理文字语言 符号语言 图形语言线段垂直平分线上的点到这条线段两个端点的距离相等 因为点P 在线段AB 的垂直平分线上,所以PA=PBP OBA说明:1、这里的距离指的是点与点之间的距离,也就是两点之间线段的长度。
2、在使用该定理时必须保证两个前提条件:一是垂直于线段,二是平分这条线段。
例题、如下图,在△ABC 中,AC=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,△BCE 的周长等于50,求BC 的长。
分析:题中给出了线段垂直平分线这个条件,所以可以考虑运用其性质定理,从而得出AE=BE ,把BE 与AE 进行等量代换,再根据△BCE 的周长及AC 的长,可求出BC 的长。
解:因为ED 是线段AB 的垂直平分线, 所以BE=AE 。
因为△BCE 的周长等于50, 即BE +EC +BC=50, 所以AE +EC +BC=50。
又因为AE +EC=AC=27, 所以BC=50-27=23。
二、线段垂直平分线定理的逆定理文字语言 符号语言 图形语言到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
因为PA=PB ,所以点P 在线段AB 的垂直平分线上。
P OBA证明某一条直线是另一条线段的垂直平分线有两种方法:第一种:根据线段垂直平分线的定义,也就是经过线段的中点,并且垂直于这条线段的EDCBA直线,叫做这条线段的垂直平分线。
使用这种方法必须满足两个条件:一是垂直二是平分;第二种:可以证明有两个点都在线段的垂直平分线上,根据两点确定一条直线,就可以判断这两点所在的直线就是这条线段的垂直平分线。
例题1、如下图,P 为线段AB 外的一点,并且PA=PB 。
求证:点P 在线段AB 的垂直平分线上。
分析:要想说明某一点在线段的垂直平分线上,可以根据线段的垂直平分线的定义来进行判断。
证明:过点P 作PC ⊥AB ,垂足为点C 。
北师大版八下数学1.3《线段的垂直平分线》知识点精讲
注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明通常来说,垂直平分线会与全等三角形来使用。
垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。
巧记方法:点到线段两端距离相等。
可以通过全等三角形证明。
垂直平分线的尺规作法方法之一:(用圆规作图)1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。
得到两个交点(两交点交与线段的同侧)。
3、连接这两个交点。
原理:等腰三角形的高垂直平分底边。
方法之二:1、连接这两个交点。
原理:两点成一线。
等腰三角形的性质:1、三线合一 ( 等腰三角形底边上的高、底边上的中线、顶角平分线相互重合。
)2、等角对等边(如果一个三角形,有两个内角相等,那么它一定有两条边相等。
)3、等边对等角(在同一三角形中,如果两个角相等,即对应的边也相等。
)垂直平分线的判定①利用定义.②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)例1.如图,已知:在△ABC中,∠C=90°∠A=30°,BD平分∠ABC交AC于D.求证:D在AB的垂直平分线上.分析:根据线段垂直平分线的逆定理,欲证D在AB的垂直平分线上,只需证明BD=DA即可.证明:∵∠C=90,°∠A=30°(已知),∴∠ABC=60°(Rt△的两个锐角互余)又∵BD平分∠ABC(已知)∴∠DBA=1/2∠ABC=30°=∠A∴BD=AD(等角对等边)∴D在AB的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上).例2.如图,已知:在△AB C中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于E,交BC于F。
线段的垂直平分线---知识讲解(提高)
线段的垂直平分线---知识讲解(提高)【学习目标】1.掌握线段的垂直平分线的性质定理及其逆定理,能够利用尺规作已知线段的垂直平分线.2.会证明三角形的三条中垂线必交于一点.掌握三角形的外心性质定理.3.已知底边和底边上的高,求作等腰三角形.4.能运用线段的垂直平分线的性质定理及其逆定理解决简单的几何问题及实际问题. 【要点梳理】要点一、线段的垂直平分线 1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A ,B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C ,D 两点; (2)作直线CD ,CD 即为所求直线. 要点诠释:(1)作弧时的半径必须大于21AB 的长,否则就不能得到两弧的交点了. (2)线段的垂直平分线的实质是一条直线. 要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理 线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合. 要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心. 要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx即为所求”.【典型例题】类型一、线段的垂直平分线定理1.如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、20【思路点拨】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ ABC的周长.【答案】C;【解析】∵在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=17.【总结升华】此题考查了线段垂直平分线的性质与作法.题目难度不大,解题时要注意数形结合思想的应用.举一反三:【变式】阅读“作线段的垂直平分线”的作法,完成填空及证明.已知:线段AB,要作线段AB的垂直平分线.作法:(1)分别以A 、B 为圆心,大于12AB 的同样长为半径作弧,两弧分别交于点C 、D ; (2)作直线CD .直线CD 即为所求作的线段AB 的垂直平分线. 根据上述作法和图形,先填空,再证明.已知:如图,连接AC 、BC 、AD 、BD ,AC=AD=___=___. 求证:CD ⊥AB ,CD 平分AB . 证明:【答案】已知:如图,连接AC 、BC 、AD 、BD ,AC=AD=BC=BD . 求证:CD ⊥AB ,CD 平分AB . 证明:CD 与AB 交于点E . ∵在△ACD 和△BCD 中,,AC BC AD BD CD CD =⎧⎪=⎨⎪=⎩∴△ACD ≌△BCD (SSS ). ∴∠1=∠2. ∵AC=BC ,∴△ACB 是等腰三角形. ∴CE ⊥AB ,AE=BE .即 CD ⊥AB ,CD 平分AB .2.(2015秋•和县期中)如图,在△ABC 中,AB 边的垂直平分线l 1交BC 于点D ,AC 边的垂直平分线l2交BC于点E,l1与l2相交于点O,连结0B,OC,若△ADE的周长为6cm,△OBC 的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.【思路点拨】(1)根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算即可;(2)根据线段垂直平分线的性质和三角形的周长公式计算即可;(3)根据线段垂直平分线的性质和等腰三角形的性质进行计算.【答案与解析】解:(1)∵l1是AB边的垂直平分线,∴DA=DB,∵l2是AC边的垂直平分线,∴EA=EC,BC=BD+DE+EC=DA+DE+EA=6cm;(2)∵l1是AB边的垂直平分线,∴OA=OB,∵l2是AC边的垂直平分线,∴OA=OC,∵OB+OC+BC=16cm,∴OA=0B=OC=5cm;(3)∵∠BAC=120°,∴∠ABC+∠ACB=60°,∵DA=DB,EA=EC,∴∠BAD=∠ABC,∠EAC=∠ACB,∴∠DAE=∠BAC﹣∠BAD﹣∠EAC=60°.【总结升华】本题考查的是线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.举一反三:【变式】如图,在△ABC中,已知BC=7,AC=16,AB的垂直平分线交AB于点D,交AC于点E,求△BEC的周长.【答案】∵DE是AB的垂直平分线,∴BE=AE,∴BE+EC=AE+EC=AC.∴△BEC的周长=BE+EC+BC=AC+BC=23.要点二、线段的垂直平分线的逆定理3.(2016春•鄄城县期中)如图,在△ABC中,AD是高,在线段DC上取一点E,使DE=BD,已知AB+BD=DC.求证:E点在线段AC的垂直平分线上.【思路点拨】根据线段的垂直平分线性质求出BD=DE,推出DE+EC=AE+DE,得出EC=AE,根据线段垂直平分线性质推出即可.【答案与解析】证明:∵AD是高,∴AD⊥BC,又∵BD=DE,∴AD所在的直线是线段BE的垂直平分线,∴AB=AE,∴AB+BD=AE+DE,又∵AB+BD=DC,∴DC=AE+DE,∴DE+EC=AE+DE∴EC=AE,∴点E在线段AC的垂直平分线上.【总结升华】本题考查了线段的垂直平分线的应用,掌握线段垂直平分线的性质和判定定理是解题的关键.类型三、线段的垂直平分线定理与逆定理的综合应用4.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=12AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.【思路点拨】应用:连接PA、PB,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况利用等边三角形的性质求出PD与AB的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB=45°,然后即可求出∠APB的度数;探究:先根据勾股定理求出AC的长度,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB 三种情况,根据三角形的性质计算即可得解.【答案与解析】应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD=33DB=36AB,与已知PD=12AB矛盾,∴PB≠PC,②若PA=PC,连接PA,同理可得PA≠PC,③若PA=PB,由PD=12AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,2222534AC BC AB∴=-=-=①若PB=PC,设PA=x,则x2+32=(4-x)2,∴x=78,即PA=78,②若PA=PC,则PA=2,③若PA=PB,由图知,在Rt△PAB中,不可能.故PA=2或78.【总结升华】考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.举一反三:【变式】在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若∠BAC=110°,则∠EAG=________.【答案】40°;解:∠B=x,∠c=y,则,∠B+∠C=180°-∠BAC,即x+y=70°①,∵DE、GF分别是AB、AC的垂直平分线,∴BE=AE,AG=CG,∴∠BAE=∠B=x,∠CAG=∠C=y,∵∠BAE+∠EAG+∠GAC=∠BAC,∴x+y+∠EAG=110°②,联立①②得,∠EAG=110°-70°=40°.故答案为:40°.要点四、尺规作图5.如图,每个格的单位长度是1,△ABC的外心坐标是 (_____________).【思路点拨】可分别作BC与AB的垂直平分线,两条垂直平分线交于点G,则点G即为△ABC 的外心,继而可求得答案.【答案与解析】分别作BC与AB的垂直平分线,两条垂直平分线交于点G,则点G即为△ABC的外心,∴△ABC的外心坐标是(-2,-1).故答案为:(-2,-1).【总结升华】考察尺规作图的能力和三角形的外心的定义.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(作图不写作法,但要求保留作图痕迹.)【答案】解:如图,点P就是要找的点.。
北师大版八年级下册 1.3 线段的垂直平分线 课件
课堂小结, 畅谈收获:
一、线段垂直平分线的性质定理. 二、线段垂直平分线的判定定理. 三、用尺规作线段的垂直平分线.
三角形的证明
线段的垂直平分线(2)
用心想一想,马到功成
习题1.7的第1题:利用尺规作三角形三条边的垂 直平分线,当作完此题时你发现了什么?
发现:三角形三边的垂直平 分线交于一点.这一点到三角形 三个顶点的距离相等.
已知:线段AB,点P是平面内一点且PA=PB.
求证:P点在AB的垂直平分线上.
P
证法二:取AB的中点C,过P,C作直线. A
C
B
∵AP=BP,PC=PC.AC=CB,
∴△APC≌△BPC(SSS).
∴∠PCA=∠PCB(全等三角形的对应角相等).
又∵∠PCA+∠PCB=180°,
∴∠PCA=∠PCB=∠90°,即PC⊥AB
证明:连接AO,BO,CO.
A
∵点P在线段AB的垂直平分线上,
∴OA=OB(线段垂直平分线上的点到线段两
O
个端点的距离相等).
同理OB=OC.∴OA=OC.
B
C
∴O点在AC的垂直平分线上(到线段两个端 点距离相等的点.在这条线段的垂直平分线上).
∴AB、BC、AC的垂直平分线相交于点O
三角形三边的垂直平分线的性质定理
求作:△ABC,使AB=AC,BC=a,高 AD=h
作法:1.作BC=a;
2.作线段BC的垂直平分线MN交BC 于D点;
3.以D为圆心,h长为半径作弧交
MN于A点;
4.连接AB、AC
B
∴△ABC就是所求作的三角形
a h AM
DC N
课内拓展延伸
求作等腰直角三角形,使它的斜边等于已知线段.
八年级数学《线段垂直平分线角平分线》知识点
八年级数学《线段垂直平分线角平分线》知识点1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,∵ CD ⊥AB,且AD =BD∴ AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线的判定定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,∵ AC =BC∴ 点C 在线段AB 的垂直平分线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于线段垂直平分线性质定理的推论(1)关于三角形三边垂直平分线的性质:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点.....的距离相等.性质的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部; 若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部. 反之,也成立。
4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.图1图2定理的数学表示:如图4,∵ OE 是∠AOB 的平分线,F 是OE 上一点,且CF ⊥OA 于点C,DF ⊥OB 于点D, ∴ CF =DF.定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线.5、角平分线性质定理的逆定理:角平分线的判定定理:在角的内部到角的两边距离相等的点在这个角的角平分线上. 定理的数学表示:如图5,∵点P 在∠AOB 的内部,且PC ⊥OA 于C,PD ⊥OB 于D,且PC =PD, ∴点P 在∠AOB 的平分线上.定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线注意角平分线的性质定理与判定定理的区别和联系.6、关于三角形三条角平分线的定理:(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的数学表示:如图6,如果AP 、BQ 、CR 分别是△ABC 的内角∠BAC 、 ∠ABC 、∠ACB 的平分线,那么:① AP 、BQ 、CR 相交于一点I ;② 若ID 、IE 、IF 分别垂直于BC 、CA 、AB 于点D 、E 、F,则DI =EI =FI. 定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题. (2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.这个交点叫做三角形的内心(即内切圆的圆心).7、关于线段的垂直平分线和角平分线的作图:(1)会作已知线段的垂直平分线; (2)会作已知角的角平分线; (3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.图4。
八年级垂直平分线知识点
八年级垂直平分线知识点垂直平分线是初中数学重要的知识点之一,其在几何问题中有着广泛的应用。
本篇文章将为大家详细介绍关于八年级垂直平分线的知识点。
一、垂直平分线的定义垂直平分线是指一条线段将另一条线段垂直平分的直线。
简单来说,就是把一条线段分成两段长度相等且垂直的线段。
二、如何求垂直平分线1、传统方法传统方法是一种利用勾股定理进行求解的方法。
假设线段AB 的两个端点分别为A(x1,y1)和B(x2,y2),垂直平分线上的点为P(x,y)。
则有以下公式:(x - (x1+x2)/2)² + (y - (y1+y2)/2)² = ((x2-x1)/2)² + ((y2-y1)/2)²该公式中等号右边是线段AB长度的一半,等号左边是线段AP 长度的平方与线段PB长度的平方之和。
2、向量法向量法是一种可以简化计算的方法。
如果线段AB的两个端点分别为A(x1,y1)和B(x2,y2),则垂直于AB的向量为(-(y2-y1),x2-x1)。
具体操作如下:首先,将线段AB的中点的坐标求出来,记为C(xc,yc)然后,将AB的两个端点坐标作为一个向量,记为u(x2-x1,y2-y1)接着,求出u的一个垂直向量v,记为v(-(y2-y1),x2-x1)最后,直线的方程为(PC)·v=0,即[(x-xc)(-(y2-y1))+(y-yc)(x2-x1)]=0三、垂直平分线的性质1、垂直平分线上的点到AB两个端点的距离相等。
2、垂直平分线上任意一点与AB两个端点之间的两条线段的长度相等。
3、垂直平分线将线段AB分成的两个线段长度相等。
4、线段垂直平分线的两个部分互为相反数。
四、垂直平分线的应用垂直平分线在几何问题中有着广泛的应用。
举例如下:1、判断点C是否在直线AB的逆时针方向我们可以通过垂直平分线来解决。
如果点C在直线AB的逆时针方向,则垂直AB且平分AB的线段的中点在C的左侧。
北师大版八年级下册数学1.3《4线段的垂直平分线》教案
-在作图过程中,锻炼学生动手操作能力,培养严谨的作图态度;
-鼓励学生探索不同的作图方法,激发创新意识和探索精神。
3.将线段垂直平分线应用于解决实际问题,发展学生模型思想与问题解决能力;
-通过实际案例,培养学生将数学知识应用于解决现实问题的能力;
-激发学生主动探索几何知识在实际生活中的应用,提高学以致用的能力。
3.重点难点解析:在讲授过程中,我会特别强调线段垂直平分线的性质和作图方法这两个重点。对于难点部分,比如作图的精确性,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与线段垂直平分线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的尺规作图操作。这个操作将演示如何作出线段的垂直平分线。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“线段垂直平分线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
课堂的最后,我对学生提出了一个问题:“你们认为线段垂直平分线在几何学习中扮演了什么角色?”这是一个开放式的问题,旨在让学生反思今天的学习内容。从学生的回答中,我了解到他们对于线段垂直平分线在解决几何问题中的重要性有了更深入的理解,但也有些学生对于如何将这一概念与其他几何知识结合使用还感到困惑。
为了帮助学生更好地消化和吸收这些知识点,我打算在下一节课中,通过一些具体的例题,展示线段垂直平分线在其他几何问题中的应用,比如三角形的中位线、圆的性质等。这样不仅能够巩固他们对线段垂直平分线的理解,还能够让他们看到几何知识的连贯性和内在联系。
线段的垂直平分线(第2课时)北师大数学八年级下册PPT课件
做一做: (1)已知三角形的一条边及这条边上的高,你能作 出三角形吗?如果能,能作几个?所作出的三角形都全 等吗?
探究新知
已知:三角形的一条边a和这边上的高h. 求作:△ABC,使BC=a,BC边上的高为h.
A
A
A
h
Ba
C
D
B
h a C (D) B
a
h D
C
A1
A1
A1
能作出无数个这样的三角形,它们并不全等.
A l
n
P
B
m
C
PA=PC
点P在AC的垂
直平分线上
试试看,你会写出证明过程吗?
探究新知
求证:三角形三条边的垂直平分线相交于一点,
并且这一点到三个顶点的距离相等.
已知:如图,在△ABC中,AB,BC的垂直平
A
分线相交于点P.
l
n
求证:点P也在AC的垂直平分线上, P
且PA=PB=PC.
B
m
C
探究新知
C.3个
D.4个
课堂检测
基础巩固题
3.如图,在△ABC中,点D是边AB,BC的垂直平分线交点, 连接AD并延长交BC于点E,若∠AEC=3∠BAE=3α,则 ∠CAE=_____9_0_°__-_2_α_(用含α的式子表示).
课堂检测
能力提升题
1.如图,在△ABC中,点D为BC上一点,连接AD,点E在线段AD上, 并且∠1=∠2,∠3=∠4,求证:AD垂直平分BC.
课堂检测
拓广探索题
如图,在△ABC中,AC边的垂直平分线DM交AC于点D,BC边 的垂直平分线EN交BC于点E,DM与EN相交于点F . (1)若△CMN的周长为20 cm,求AB的长.
北师大版数学八年级下册.1线段的垂直平分线课件
拓展与延伸
在△ABC中,AB=AC,AB的垂直平分线与AC所 在的直线相交所得到的锐角为50°,则∠B= __7_0_°__或__2_0_°.
分析:分情况讨论:如果△ABC是锐角三角形, 如图①所示,可得∠A=40°,所以∠B=∠C =70°;如果△ABC是钝角三角形,如图②所 示,可得∠EAB=40°,所以∠B=∠C=20°. 故∠B=70°或20°.
分析:在△ABC中,∵∠B=90°, ∠A=40°, ∴∠ACB=50°. ∵MN是线段AC的垂直平分线, ∴DC=DA. ∴∠DCE=∠A=40°. ∴∠BCD=∠ACB-∠DCA=50°-40°=10°.
新课讲授
练一练
1.已知:如图,AB是线段CD的垂直平分线,E,F是 AB上的两点. 求证∠ECF=∠EDF.
直平分线上. 5.作用:
①作线段的垂直平分线的根据; ②可用来证线段垂直、相等.
新课讲授
典例分析
例 已知:如图,在△ABC中,AB=AC是△ABC内一点,且 OB=OC. 求证:直线AO垂直平分线段BC.
新课讲授
证明:∵ AB=AC, ∴点A在线段BC的垂直平分线上(到一条线段 两个端点距离相等的点,在这条线段的垂直 平分线上). 同理,点O在线段BC的垂直平分线上. ∴直线AO是线段BC的垂直平分线(两点确定 一条直线).
新课讲授
练一练
如图,AC=AD,BC=BD,则有( A ) A.AB垂直平分CD B.CD垂直平分AB C.AB与CD互相垂直平分 D.以上都不正确
课堂小结
线段:在线段垂直平分线上的点到线段两个端点 距离都相等. 判定:与线段两个端点距离相等的点都在线段的 垂直平分线上. 线段垂直平分线的集合定义: 线段垂直平分线可以看作是与线段两个端点距离 相等的所有点的集合.
最新北师大版八年级数学下册《线段的垂直平分线》精品教学课件
课堂小结
小结与思考
通过本节课的学习你有什么收获?
你还有什么疑惑?
请与同伴交流!
课堂总结
你有什么收获?
课后作业
1.从课后习题中选取;
2.完成练习册本课时的习题。
总结 反思
同学们,我们今天的探索很成功,
但探索远还没有结束,让我们在今后
根据课本第25页例3的已知条件,自己先做一个等腰三角形,再
认真阅读例题的作图步骤,通过该例题掌握线段的垂直平分线
的做法.
教学过程——新知探究
第一章 三角形的证明
学以致用
做一做
1.如图,直线CP是线段AB的垂直平分线,其中
∠ACP=60°.甲、乙两人想在AB上取两点D、E,使得
AD=DC=DE=CE=EB,其作法如下:
∴ = + .− ,
∴=
.
D
E
B
.
即AE的长为 .
C
教学过程——随堂练习
做一做
课本第26页“随堂练习”.
第一章 三角形的证明
教学过程——课堂小结
第一章 三角形的证明
记一记
本节课学习了三角形三边的垂直平分线的性质.
三角形三边的垂直平分线相交于一点,且这一点到三角形三个顶
学以致用
做一做
2.如图,DE是△ABC的AB边的垂直平分线,为垂足,
交于AC点E,AC=10,BC=5,若点E恰好是AC重点,
则∠A的度数是( A )
A.30°
B.35°
C.45°
D.40°
教学过程——典例精析
第一章 三角形的证明
听一听
例1 如图,在四边形ABCD中,∠B=∠D=90°.在BC,CD上
北京四中八年级下册数学线段的垂直平分线-----知识讲解(提高)
线段的垂直平分线---知识讲解(提高)【学习目标】1.掌握线段的垂直平分线的性质定理及其逆定理,能够利用尺规作已知线段的垂直平分线.2.会证明三角形的三条中垂线必交于一点.掌握三角形的外心性质定理.3.已知底边和底边上的高,求作等腰三角形.4.能运用线段的垂直平分线的性质定理及其逆定理解决简单的几何问题及实际问题.【要点梳理】要点一、线段的垂直平分线1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A ,B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C ,D 两点; (2)作直线CD ,CD 即为所求直线.要点诠释:(1)作弧时的半径必须大于21AB 的长,否则就不能得到两弧的交点了. (2)线段的垂直平分线的实质是一条直线.要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合.要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx即为所求”.【典型例题】类型一、线段的垂直平分线定理1.如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、20【思路点拨】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ ABC的周长.【答案】C ;【解析】∵在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=17.【总结升华】此题考查了线段垂直平分线的性质与作法.题目难度不大,解题时要注意数形结合思想的应用.举一反三:【变式】阅读“作线段的垂直平分线”的作法,完成填空及证明.已知:线段AB,要作线段AB的垂直平分线.作法:(1)分别以A 、B 为圆心,大于 12AB 的同样长为半径作弧,两弧分别交于点C 、D ; (2)作直线CD .直线CD 即为所求作的线段AB 的垂直平分线.根据上述作法和图形,先填空,再证明.已知:如图,连接AC 、BC 、AD 、BD ,AC=AD=___=___.求证:CD ⊥AB ,CD 平分AB .证明:【答案】已知:如图,连接AC 、BC 、AD 、BD ,AC=AD=BC=BD . 求证:CD ⊥AB ,CD 平分AB . 证明:设CD 与AB 交于点E .∵在△ACD 和△BCD 中,,AC BC AD BD CD CD =⎧⎪=⎨⎪=⎩∴△ACD ≌△BCD (SSS ).∴∠1=∠2.∵AC=BC ,∴△ACB 是等腰三角形.∴CE ⊥AB ,AE=BE .即 CD ⊥AB ,CD 平分AB .2. 如图,已知线段AB ,分别以A 、B 为圆心,大于AB 长为半径画弧,两弧相交于点C 、Q ,连接CQ 与AB 相交于点D ,连接AC ,BC .那么:(1)∠ADC= _________ 度; (2)当线段AB=4,∠ACB=60°时,∠ACD=30度,△ABC 的面积等于 ___ (面积单位).【思路点拨】利用线段垂直平分的性质,等腰三角形的性质和解直角三角形等知识点计算.【答案】(1)90°; (2)43.根据等腰三角形性质,我们可知:AD 是等腰△ACQ 底边的高、中线和顶角的平分线.∴∠ADC=90°.(2)AC=AB ,∠ACB=60°,∴△ABC 是等边三角形.CD⊥AB,∴∠CAD=∠BCD=30°.CD= 221()164232BC BC -=-=.【总结升华】本题运用了线段垂直平分的性质,等腰三角形的性质和勾股定理等知识点,虽然知识点比较多,但只要找准所求与已知的关系,本题并不难解.举一反三:【变式】如图,在△ABC 中,已知BC=7,AC=16,AB 的垂直平分线交AB 于点D ,交AC 于点E ,求△BEC 的周长.【答案】∵DE 是AB 的垂直平分线,∴BE=AE,∴BE+EC=AE+EC=AC.∴△BEC 的周长=BE+EC+BC=AC+BC=23.要点二、线段的垂直平分线的逆定理3.已知,如图,在△ABC 中,BD ⊥AC 于点D ,点M 、N 分别是AB 、BC 边的中点.求证:直线MN是线段BD的垂直平分线.【思路点拨】先连接DM、DN,由于BD⊥AC,那么∠ADB=90°,于是在Rt△ADB中,M是AB的中点,可得DM=12AB=BM,可证M在线段BD垂直平分线上,同理可证N线段BD垂直平分线上,从而可知MN是BD垂直平分线.【答案与解析】证明:如图所示,连接DM、DN,∵BD⊥AC,∴∠ADB=90°,在Rt△ADB中,M是AB的中点,∴DM=12AB=BM,又在Rt△BDE中,N是BC的中点,∴DN=12BC=BN,∴MN是线段BD的垂直平分线.【总结升华】本题考查了线段垂直平分线的性质、直角三角形斜边上的中线的性质.解题的关键是连接DM、DN.4.(2012•绍兴)联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=12AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.【思路点拨】应用:连接PA、PB,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况利用等边三角形的性质求出PD与AB的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB=45°,然后即可求出∠APB的度数;探究:先根据勾股定理求出AC的长度,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB 三种情况,根据三角形的性质计算即可得解.【答案与解析】应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD=33DB=36AB,与已知PD=12AB矛盾,∴PB≠PC,②若PA=PC,连接PA,同理可得PA≠PC,③若PA=PB,由PD=12AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,2222534AC BC AB∴=-=-=①若PB=PC,设PA=x,则x2+32=(4-x)2,∴x=78,即PA=78,②若PA=PC,则PA=2,③若PA=PB,由图知,在Rt△PAB中,不可能.故PA=2或78.【总结升华】考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.举一反三:【变式】在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若∠BAC=110°,则∠EAG=________.【答案】40°;解:∠B=x,∠c=y,则,∠B+∠C=180°-∠BAC,即x+y=70°①,∵DE、GF分别是AB、AC的垂直平分线,∴BE=AE,AG=CG,∴∠BAE=∠B=x,∠CAG=∠C=y,∵∠BAE+∠CAG+∠EAC=∠BAC,∴x+y+∠EAC=110°②,联立①②得,∠EAC=110°-70°=40°.故答案为:40°.要点四、尺规作图5.如图,每个格的单位长度是1,△ABC的外心坐标是 (_____________).【思路点拨】可分别作BC与AB的垂直平分线,两条垂直平分线交于点G,则点G即为△ABC 的外心,继而可求得答案.【答案与解析】分别作BC与AB的垂直平分线,两条垂直平分线交于点G,则点G即为△ABC的外心,∴△ABC的外心坐标是(-2,-1).故答案为:(-2,-1).【总结升华】考察尺规作图的能力和三角形的外心的定义.此题难度适中,注意掌握数形结合思想的应用.。
线段的垂直平分线课件数学北师大版八年级下册
EF, PQ 相交于一点 O,且 OA=OB=OC.
拓展 几种三角形三条边的垂直平分线交点
的情况如图 1-3-6 所示 .
知3-讲
感悟新知
知3-练
例3 如图 1-3-7, OE, OF 所在 直线分 别是 △ ABC 中
AB, AC 边的垂直平分线,∠ OBC,∠ OCB 的平分
线相交于点 I,试判断 OI 与 BC 的位置关系,并给予
感悟新知
知2-练
(2)∠ ABE= ∠ ADE.
证明:易知四边形ABCD是以直线AC为对称轴的
轴对称图形,∴∠ABE=∠ADE.
感悟新知
知3-讲
知识点 3 三角形三条边的垂直平分线的性质定理
性质定理
三角形三条边的垂直平分线相交于一点,并且这
一点到三个顶点的距离相等 .
感悟新知
知3-讲
特别解读
因为三角形任意两条边的垂直平分线一定交
第一章
三角形的证明
1.3
线段的垂直平分线
学习目标
1 课时讲授
线段垂直平分线的性质定理
线段垂直平分线的判定定理
三角形三条边的垂直平分线的性质
2 课时流程
逐点
导讲练
定理
用尺规作已知直线(或线段)的垂线
课堂
小结
作业
提升
感悟新知
知识点 1 线段垂直平分线的性质定理
1. 性质定理
知1-讲
线段垂直平分线上的点到这条线段两个端点
线上,思路有两种:
一是作垂直,证平分;二是取中点,证垂直 .
2. 用判定定理证明线段的垂直平分线,必须证
明两个点在线段的垂直平分线上 .
感悟新知
例2
最新北师大版数学八年级下册《线段的垂直平分线》精品教学课件
解:逆命题:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.是真命题.
已知:如图,线段AB,PA=PB.
求证:点P在线段AB的垂直平分线上.
P
证明:取线段AB的中点O,作直线PO.
∴AO=BO.
在△PAO和△PBO中,PA=PB,AC=BO,PO=PO,
∴△PAO≌△PBO(SSS).
∴∠POA=∠POB=90°,即PO⊥AB. 又C是线段AB的中点,
证明:∵AB=AC, ∴点A在线段BC的垂直平分线上(到一条线段两个端点距离相等的点,在这 条线段的垂直平分线上), 同理,点O在线段BC的垂直平分线上, ∴直线AO是线段BC的垂直平分线 (两点确定一条直线)
例2. 如图,在△ABC中,∠ACB=90 °,D是BC延长线上一点,E是BD垂直平分线与AB 的交点,DE交AC于点F.求证:点E在AF的垂直平分线上.
1.3 线段的垂直平分线
第1课时
八年级下册
学习目标
1
会证明线段的垂直平分线的性质定理及判定定理;
能运用线段的垂直平分线的性质定理及判定定理进行相关的证 2 明与计算.
预习反馈
1.CD是线段AB的垂直平分线,E为垂足,点P是直线CD上的任意一点,则 AE= BE PA= PB , CD⊥ AB ,∠ AEC =∠ BEC . 2.线段垂直平分线上的点到 线段两端的距离相等 ; 到一条线段的两个端点 距离 相等的点,在这条线段的 垂直平分线上 上. 3.已知,如图,EF是线段AB的垂直平分线,M是EF上的一点,若MA=6,则MB= 06 , 若∠AMF=20º,则∠BMF= 300° . 4.如图,在△ABC中,∠A=40º, ∠C=66º,DE是线段AB的垂直平分线,垂足是D,DE 交AC于E,则∠EBC的度数是 304° .
北师大版八年级下册数学3.2 线段的垂直平分线课件(共17张PPT)
(1)此三角形是什么三角形?并说明理由。
(2)若AO=2,求BO,CO的长。 (3)若CAB 62 ,则OCB 的度数是多少?
A
O
C
B
选 做 题 2 探究三角形三边中垂线性质
有特大城市A及两个小城市B、C,这三个城市准备共建 一个污水处理厂M,使该厂到B,C两城市距离相等,且使 A市到该厂的管线最短,试用尺规作图确定污水处理厂M 的位置
检 查 预 习 1 探究三角形三边中垂线性质 1、 三人一组,其中两人分别剪一个直角三角
形、锐角三角形的纸片。
2、第三个人在稿纸上画一个钝角三角形,再剪 一个三角形纸片。
发现新知 1 探究三角形三边中垂线性质
➢ 有纸片同学通过折叠描出每条边的垂直 平分线,观察这三条垂直平分线,你发 现了什么?
➢ 利用尺规作出钝角三角形三条边的垂直 平分线.观察这三条垂直平分线,你发现 了什么?
课外作业
小练P8 大练P15能力提升T2,T3,T4,T5,T6 选做T7
祝你成功!
结束寄语
严格性之于数学家,犹如道德之于人. 证明的规范性在于:条理清晰,因果相 应,言必有据.这是初学证明者谨记和遵 循的原则.
读书当将破万卷;求知不叫一疑存。读书之法,在循序而渐进,熟读而精思,喜欢读书,就等于把生活中寂寞的辰光换成巨大享受的时刻 善名。有时间读书,有时间又有书读,这是幸福;没有时间读书,有时间又没书读,这是苦恼。不读书的人,思想就会停止。读书时要深 就可能人云亦云,沦为书本的奴隶;或者走马看花,所获甚微。为乐趣而读书。立身以立学为先,立学以读书为本读书而不能运用,则所 可以培养一个完人,谈话可以训练一个敏捷的人,而写作则可造就一个准确的人。读书是在别人思想的帮助下,建立起自己的思想。养心 书。身边永远要着铅笔和笔记本,读书和谈话时碰到的一切美妙的地方和话语都把它记下来。凿壁偷光,聚萤作囊;在读书上,数量并不 的品质与所引起的思索的程度。劳于读书,逸于作文。、没有比读书更廉价的娱乐,更持久的满足了。从来没有人为了读书而读书,只有 发现自己,或检查自己。不怕读得少,只怕记不牢。莫等闲,白了少年头,空悲切!书籍是培育我们的良师,无需鞭答和根打,不用言语 不拘形式,对图书倾注的爱,就是对才智的爱。熟读唐诗三百首,不会作诗也会吟。书到精绝潜心读;文穷情理放声吟读万卷书,行万里 可以医愚。如果把生活比喻为创作的意境,那么阅读就像阳光。书籍是少年的食物,它使老年人快乐,也是繁荣的装饰和危难的避难所, 快乐的种子,在外也不致成为障碍物,但在旅行之际,却是夜间的伴侣。读书是在别人思想的帮助下,建立起自己的思想。饭可以一日不 书不可以一日不读。、读过一本好书,像交了一个益友。读书有三到,谓心到,眼到,口到立身以立学为先,立学以读书为本。读书而不 化。为中华之崛起而读书。来书籍是在时代的波涛中航行的思想之船,它小心翼翼地把珍贵的货物运送给一代又一代。书籍是最好的朋友 难的时候,你都可以向它求助,它永远不会背弃你。1、抱最大的希望,为最大的努力,做最坏的打算。有些事情本身我们无法控制,只 像大树一样,被砍了,还能再长;也要像杂草一样,虽让人践踏,但还能勇敢地活下去。人的活动如果没有理想的鼓舞,就会变得空虚而 应该更大胆、更积极地向不幸挑战!一个人炫耀什么,说明内心缺少什么。志在山顶的人,不会贪念山腰的风景。当一个人先从自己的内 有价值的人。旁观者的姓名永远爬不到比赛的计分板上。强者向人们揭示的是确认人生的价值,弱者向人们揭示的却是对人生的怀疑。不 这一切看成是在你成大事之前,必须经受的准备工作。成功源于不懈的努力。积极思考造成积极人生,消极思考造成消极人生。对的,坚 的路总是为有信心的人预备着。这社会你改变不了就得适应,适应不了就得被淘汰!这叫适者生存!宁愿跑起来被拌倒无数次,也不愿规 跌倒也要豪迈的笑。没有伞的孩子必须努力奔跑。你不勇敢,没人替你坚强。态度决定一切,实力捍卫尊严!人要经得起诱惑耐得住寂寞 宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥有一切宇宙智慧 弃者绝不会成功。人生不售来回票,一旦动身,绝不能复返。自己要先看得起自己,别人才会看得起你。即使爬到最高的山上,一次也只 人生的光荣,不在于永不言败,而在于能够屡扑屡起。——拿破仑游手好闲的人最没有空闲不经风雨,长不成大树;不受百炼,难以成钢 于你自己。人的一生,是很短的,短暂的岁月要求我好好领会生活的进程……攀登顶峰,这种奋斗的本身就足以充实人的心。人们必须相 老骥伏枥,志在千里;烈士暮年,壮心不已。大鹏一日同风起,扶摇直上九万里。不会宽容人的人,是不配受到别人的宽容的。不经过本 到自己的目的,任何外来的帮助也不能代替本身的努力。子女中那种得不到遗产继承权的幼子,常常会通过自身奋斗获得好的发展。而坐 大业。明日复明日,明日何其多!日日待明日,万事成蹉跎。世人皆被明日累,明日无穷老将至。晨昏滚滚水东流。今古悠悠日西坠。百 我《明日歌》我希望你照自己的意思去理解自己,不要小看自己,被别人的意见引入歧途。百金买骏马,千金买美人;万金买高爵,何处 量的工作要做,否则他不可能从懒散空闲中得到乐趣。如果我们以为只有野心和爱情这类强烈的激情才能抑制其他情感,那就错了。懒惰 把我们征服:它渗透进生活中一切目标和行为,时钟随着指针的移动滴答在响:“秒”是雄赳赳气昂昂列队行进的兵士,“分”是士官,“小时 的军官。,所以当你百无聊赖,胡思乱想的时候,请记住你掌上有千军万马;你是他们的统帅。检阅他们时,你不妨问问自己——他们是 的作用。沧海可填山可移,男儿志气当如斯。从来便没有什么救世主,也不靠神仙皇帝,要创造人类的幸福,全靠我们自己。任何人都应 性,不然就是奴才。但自尊不是轻人,自信不是自满,独立不是弧立。三更灯火五更鸡,正是男儿发愤时。黑发不知勤学早,白首方悔读 笑凌骇浪济川舟。富贵不淫贫贱乐,男儿到此是豪雄。滴自己的汗,吃自己的饭。自己的事情自己干,靠人靠天靠祖上,不算是好汉。你 不可为一些芝麻小事在那儿大惊小怪。你知道,弱者在这世界上是不好过日子的。真正的敏捷是一件很有价值的事。因为时间是衡量事业 货物的标准时间是一位可爱的恋人,对你是多么的爱慕倾心,每分每秒都在叮嘱;劳动创造别虚度了一生。与善人居,如入兰芷之室,久 如入鲍鱼之肆,久而不闻其。光勤劳是不够的,蚂蚁也非常勤劳。你在勤劳些什么呢?有两种过错是基本的,其他一切过错都由此而生: 破青春的华丽精致,会把平行线刻上美人的额角,会吃掉稀世珍宝,天生丽质,什么都逃不过他横扫的镰刀。人,只要有一种信念,有所 受,什么环境也都能适应。我年轻时注意到,我每做十件事有九件不成功,于是我就十倍地去努力干下去。滴自己的汗,吃自己的饭。自 靠天靠祖上,不算是好汉。”天行健,君子以自强不息;地势坤,君子以厚德载物。古今中外,凡成就事业,对人类有所作为的人,无一不 结
第3讲 线段的垂直平分线八年级数学下册同步讲义(北师大版)
第3讲 线段的垂直平分线 1.掌握线段的垂直平分线的性质定理及其逆定理,会画已知线段的垂直平分线.2.能运用线段的垂直平分线的性质理及其逆定理解决简单的几何问题及实际问题. 知识点01 线段的垂直平分线定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线. 线段垂直平分线的尺规作图求做线段AB 的垂直平分线作法:(1)分别以点A ,B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C ,D 两点; (2)作直线CD ,CD 即为所求直线.要点诠释:作弧时的半径必须大于21AB 的长,否则就不能得到交点了. 线段的垂直平分线定理线段垂直平分线上的任意一点到这条线段两个端点的距离相等.要点诠释: 线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.【知识拓展1】已知A 和B 两点在线段EF 的中垂线上,且∠EBF =100°,∠EAF =70°,则∠AEB 等于( )A .95°B .15°C .95°或15°D .170°或30°知识精讲目标导航【即学即练1】如图,在△ABC中,直线l为边BC的垂直平分线,l交AC于点Q,∠ABC的角平分线与l 相交于点P.若∠BAC=60°,∠ACP=24°,则∠PQC是()A.34°B.36°C.44°D.46°【即学即练2】如图,在△ABC中,∠BAC>90°,AB的垂直平分线交BC于点E,AC的垂直平分线交BC 于点F,连接AE、AF,若△AEF的周长为2,则BC的长是()A.2B.3C.4D.无法确定【知识拓展2】如图,在△ABC中,AB=5,△ABD的周长是12,直线DE垂直平分BC,垂足为E,交AC 于点D,则AC=.【即学即练1】如图所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB 于E,量得△BDC的周长为17m,请你替测量人员计算BC的长是.【即学即练2】如图,在△ABC中,BC边的垂直平分线交BC于D,交AB于E.若CE平分∠ACB,∠B =42°,则∠A=.【知识拓展3】如图,△ABC中,∠C=90°,∠A=30°,AB边上的垂直平分线DE,交AC于点D,交AB于点E,连接BD,求证:BD平分∠CBA.【即学即练1】如图,在ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E.(1)若∠CAE=∠B+30°,求∠B的大小;(2)若∠CAE=∠B,AD=3,求AC的长.【即学即练2】如图,在△ABC中,∠BAC=62°,∠B=78°,AC的垂直平分线交BC于点D.(1)求∠BAD的度数;(2)若AB=8,BC=11,求△ABD的周长.C B AD CBA D E【即学即练3】如图,在△ABC 中,AB 、AC 边的垂直平分线相交于点O ,分别交BC 边于点M 、N ,连接AM ,AN .(1)若△AMN 的周长为6,求BC 的长;(2)若∠MON =30°,求∠MAN 的度数;(3)若∠MON =45°,BM =3,BC =12,求MN 的长度.知识点02 线段的垂直平分线逆定理线段的垂直平分线逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线,也就是线段的垂直平分线可以看做是和这条线段两个端点的距离相等的点的集合.三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.【知识拓展1】如图,已知AB=AC,∠ABD=∠ACD,求证AD 是线段BC 的垂直平分线.【即学即练1】如图,P 是∠MON 的平分线上的一点,PA⊥OM,PB⊥ON,垂足分别为A 、B .求证:PO 垂直平分AB .知识点03 线段的垂直平分线定理与逆定理综合应用【知识拓展1】已知:如图,AB=AC ,DB=DC ,E 是AD 上一点. 求证:BE=CE .【知识拓展2】如图Rt△ABC中,∠ABC=90°,D是AB边上的点,AD的垂直平分线EF交AC于E,垂足为F,ED的延长线与CB的延长交于点G.求证:点E在GC的垂直平分线上.知识点04实际应用问题【知识拓展1】某旅游景区内有一块三角形绿地ABC,如图所示,现要在道路AB的边缘上建一个休息点M,使它到A,C两个点的距离相等.在图中确定休息点M的位置.能力拓展一.解答题(共4小题)1.如图,在△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为17cm,求△ABC的周长.2.已知:E是∠AFB的平分线上一点,EC⊥F A,ED⊥FB,垂足分别为C、D.求证:FE是CD的垂直平分线.3.如图,在△ABC中,边AC的垂直平分线DE交AC于E,交BC于点D,∠C=60°.(1)△ACD是什么特殊三角形?请说明理由;(2)若AE=5cm,△ABD的周长为16cm,求△ABC的周长.4.已知直线l及其两侧两点A、B,如图.(1)在直线l上求一点P,使P A=PB;(2)在直线l上求一点Q,使l平分∠AQB.(以上两小题保留作图痕迹,标出必要的字母,不要求写作法)分层提分题组A 基础过关练一.选择题(共8小题)1.(2020秋•平房区期末)到△ABC的三个顶点距离相等的点是()A.三条中线的交点B.三条角平分线的交点C.三条高线的交点D.三条边的垂直平分线的交点2.(2021春•龙岗区期末)如图,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为16cm,则△ABC的周长为()A.26cm B.21cm C.28cm D.31cm3.(2021春•惠来县期末)《中共中央国务院关于促进农民增加收入若干政策的意见》中提出“进一步精简乡镇机构和财政供养人员,积极稳妥地调整乡镇建制,有条件的可实行并村”.《中共中央国务院关于积极发展现代农业扎实推进社会主义新农村建设的若干意见》中明确提出“治理农村人居环境,搞好村庄治理规划和试点,节约农村建设用地”.以上两个政策出台后,山东陆陆续续开展了村庄合并某地兴建的幸福小区的三个出口A、B、C的位置如图所示,物业公司计划在不妨碍小区规划的建设下,想在小区内修建一个电动车充电桩,以方便业主,要求到三个出口的距离都相等,则充电桩应该在()A.三条边的垂直平分线的交点处B.三个角的平分线的交点处C.三角形三条高线的交点处D.三角形三条中线的交点处4.(2021春•罗湖区校级期末)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12B.10C.8D.65.(2021秋•中山市期中)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC、AC于D、E两点,△ABC的周长为18,AE=3,则△ABD的周长()A.12B.15C.18D.216.(2020秋•天宁区期中)如图,在△ABC中,AB边的垂直平分线DE,分别与AB边和AC边交于点D和点E,BC边的垂直平分线FG,分别与BC边和AC边交于点F和点G,又△BEG的周长为16,且GE =1,则AC的长为()A.16B.15C.14D.137.(2021秋•抚顺县期末)如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.13cm C.19cm D.10cm8.(2021秋•兴城市期中)如图,在△ABC中,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若AC=6,AB =8,BC=4,则△BEC的周长()A.10B.12C.8D.14二.填空题(共7小题)9.(2021•遂宁)如图,在△ABC中,AB=5,AC=7,直线DE垂直平分BC,垂足为E,交AC于点D,则△ABD的周长是.10.(2021春•揭东区期末)如图,在△ABC中,AC垂直平分线DE分别与BC、AC交于D、E,△ABD的周长是13,AE=5,△ABC的周长是.11.(2021春•罗湖区校级期末)如图,△ABC中,∠ACB=90°,D、E是边AB上两点,且CD垂直平分BE,CE平分∠ACD,若BC=2,则AC的长为.12.(2021秋•大连期中)如图,在△ABC中,DE是AC的垂直平分线,AE=4,AD=5,则△ACD的周长为.13.(2021秋•铁岭县期末)如图,∠A=80°,O是AB,AC垂直平分线的交点,则∠BOC的度数是°.14.(2021秋•广州月考)如图,在△ABC中,DE是AB的垂直平分线,且分别交AB,AC于点D,E,若∠A=45°,∠C=65°,则∠EBC的度数为.15.(2021秋•越秀区校级期中)如图,在△ABC中,∠BAC=126°,MP和NQ分别是AB和AC的垂直平分线,则∠P AQ的度数.三.解答题(共7小题)16.(2021秋•阳东区期中)如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=20°,求∠C的度数.17.(2019春•龙岗区期末)如图,C,D是AB的垂直平分线上两点,延长AC,DB交于点E,AF∥BC交DE于点F.求证:(1)AB是∠CAF的角平分线;(2)∠F AD=∠E.18.(2021秋•玉屏县期中)如图所示,已知AB=AC=20cm,DE垂直平分AB,垂足为E,DE交AC于点D,若△EBC的周长为35cm,求BC的长.19.(2021春•昌图县期末)如图,在△ABC中,∠BAC=90°,∠C=65°,AD⊥BC,EF是边AB的垂直平分线,交BC于点E,交AB于点F,求∠DAE的度数.20.(2020秋•番禺区期末)如图,△ABC中,AB的垂直平分线分别交AB,BC于点D,E,AC的垂直平分线分别交AC,BC于点F,G,连接AE,AG.(1)若△AEG的周长为10,求线段BC的长;(2)若∠BAC=104°,求∠EAG的度数.21.(2021春•罗湖区校级期末)如图,在四边形ABCD中,M,N分别是CD,BC的中点,且AM⊥CD,AN⊥BC.(1)求证:∠BAD=2∠MAN;(2)连接BD,若∠MAN=70°,∠DBC=40°,求∠ADC.22.(2021春•高州市期末)如图,在四边形ABCD中,BD所在的直线垂直平分线段AC,过点A作BC的平行线AF交CD于F,延长AB、DC交于点E.求证:(1)AC平分∠EAF;(2)∠F AD=∠E.题组B 能力提升练一.选择题(共3小题)1.(2020秋•南沙区期末)如图,已知直线PC是线段AB的垂直平分线,∠APC=50°,则∠B=()A.40°B.50°C.55°D.60°2.(2021•越秀区模拟)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点D,交AB 于点E,连接AD,AD将∠CAB分成两个角,且∠CAD:∠BAD=2:5,则∠ADC的度数是()A.70°B.75°C.80°D.85°3.(2021春•乾县期末)如图,在△ABC中,AB边的中垂线DE,分别与AB、AC边交于点D、E两点,BC 边的中垂线FG,分别与BC、AC边交于点F、G两点,连接BE、BG.若△BEG的周长为16,GE=1.则AC的长为()A.13B.14C.15D.16二.填空题(共4小题)4.(2019秋•无锡期末)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为cm.5.(2021春•商河县校级期末)如图,在△ABC中,DE和DF分别是边AB和AC的垂直平分线,且D点在BC边上,连接AD,则∠BAC=°.6.(2020秋•连山区期末)如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠F AC=65°,则∠B的度数为.7.(2021秋•千山区期中)如图,在△ABC中,BC=8,AB的中垂线交BC于点D,AC的中垂线交BC于点E,则△ADE的周长等于.题组C 培优拔尖练1.(2021春•叶县期末)如图,在△ABC中,∠B=30°,∠C=40°.(1)尺规作图:①作边AB的垂直平分线交BC于点D;②连接AD,作∠CAD的平分线交BC于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠DAE的度数.2.(2021春•市南区期末)如图所示,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于点F、E.求证:DF∥AC.证明:∵AD平分∠BAC∴∠=∠(角平分线的定义)∵EF垂直平分AD∴=(线段垂直平分线上的点到线段两个端点距离相等)∴∠BAD=∠ADF()∴∠DAC=∠ADF(等量代换)∴DF∥AC()3.(2020秋•遵化市期末)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.4.(2021秋•东平县期中)如图,AD平分∠BAC,EF垂直平分AD交BC的延长线于F,连接AF.求证:∠B=∠CAF.5.(2020秋•雁塔区校级期末)如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M交BE 于点G,AD平分∠MAC,交BC于点D,交BE于点F.求证:线段BF垂直平分线段AD.。
北师大版八年级下册数学1.3线段的垂直平分线的应用课件 (共18张PPT)
归纳总结
锐角三角形三边的垂直平分线交点在三角形内; 直角三角形三边的垂直平分线交点在斜边中点上; 钝角三角形三边的垂直平分线交点在三角形外.
交点到三个顶点的距离相等
应用一
例2 求证:三角形三条边的垂直平分线相交于一点,并
且这一点到三个顶点的距离相等.
思路:两条直线的交点在第三条直线上.
已知:如图,在△ABC中,AB,BC的垂直平分线相交于点P.
求作一点P,使它和 △ABC的三个顶点距 离相等.
B
数学化
A
P
C
PA=PB=PC
议一议
(1)已知三角形的一条边及这条边上的高,你能作出三 角形吗?如果能,能作几个?所作出的三角形都全等吗?
已知:三角形的一条边a和这边上的高h 求作:△ABC,使BC=a,BC边上的高为h
A
h Ba
D
CB
A
h a C(D) B
线段的垂直平分线
的应用
回顾 思考 线段的垂直平分线的性质
1.文字语言
定理 线段垂直平分线上的点到这条线段两个端点距 离相等.
2.数学语言 ∵ MN是AB的垂直平分线,
M P
∴ PA=PB
作用:证明两条线段相等. A
C
B
N
回顾 思考 线段的垂直平分线的性质 定理的逆定理
1.文字语言:
逆定理 到一条线段两个端点距离相等的点,在这条
迹往往是执著者造成的。许多人惊奇地发现,他们之所以达不到自己孜孜以求的目标,是因为他们的主要目标太小、而且太模糊不清,使自己失去动力。如果你的主要 实现就会遥遥无期。因此,真正能激励你奋发向上的是确立一个既宏伟又具体的远大目标。实现目标的道路绝不是坦途。它总是呈现出一条波浪线,有起也有落,但你 你的时间表,框出你放松、调整、恢复元气的时间。即使你现在感觉不错,也要做好调整计划。这才是明智之举。在自己的事业波峰时,要给自己安排休整点。安排出 是离开自己挚爱的工作也要如此。只有这样,在你重新投入工作时才能更富激情。困难对于脑力运动者来说,不过是一场场艰辛的比赛。真正的运动者总是盼望比赛。 很难在生活中找到动力,如果学会了把握困难带来的机遇,你自然会动力陡生。所以,困难不可怕,可怕的是回避困难。大多数人通过别人对自己的印象和看法来看自 尤其正面反馈。但是,仅凭别人的一面之辞,把自己的个人形象建立在别人身上,就会面临严重束缚自己的。因此,只把这些溢美之词当作自己生活中的点缀。人生的 上找寻自己,应该经常自省。有时候我们不做一件事,是因为我们没有把握做好。我们感到自己“状态不佳”或精力不足时,往往会把必须做的事放在一边,或静等灵 些事你知道需要做却又提不起劲,尽管去做,不要怕犯错。给自己一点自嘲式幽默。抱一种打趣的心情来对待自己做不好的事情,一旦做起来了尽管乐在其中。所以, 要尽量放松。在脑电波开始平和你的中枢神经系统时,你可感受到自己的内在动力在不断增加。你很快会知道自己有何收获。自己能做的事,放松可以产生迎接挑战的 社会,面对工作,一切的未来都需要自己去把握。人一定要靠自己。命运如何眷顾,都不会去怜惜一个不努力的人,更不会去同情一个懒惰的人,一切都需要自己去努 一时的享受也只不过是过眼云烟,成功需要自己去努力。当今社会的快速发展,各行各业的疲软,再加上每年几百万毕业生涌向社会,社会生存压力太大,以至于所有 高自己。看着身边一个个同龄人那么优秀,看着朋友圈的老同学个个事业有成、买房买车,我们心急如梵,害怕被这个社会抛弃。所以努力、焦躁、急迫这些名词缠绕 变自己,太想早一日成为自己梦想中的那个自己。收藏各种技能学习资料,塞满了电脑各大硬盘;报名流行的各种付费社群,忙的人仰马翻;于是科比看四点钟的洛杉 早起打卡行动。其实……其实我们不觉得太心急了吗?这是有一次自己疲于奔命,病倒了,在医院打点滴时想到的。我时常恐慌,害怕自己浪费时间,就连在医院打点 浪费。想快点结束,所以乘着护士不在,自己偷偷的拨快了点滴速度。刚开始自己还能勉强受得了,过了差不多十分钟,真心忍不住了,只好叫护士帮我调到合适的速 就在想,平时做事和打点滴何尝不是一样,都是有一个度,你太急躁了、太想赶超,身体是受不了的。身体是革命的本钱,我们还年轻,还有大把的时间够我们改变, 前面的那个若是1都不存在了,后面再多的0又有什么用?我是一个急性子,做事风风火火的,所以对于想改变自己,是比任何人都要心急。这次病倒了,个人感觉完全 乎才导致的,病倒换来的努力根本是一钱不值。生病的那几天,我跟自己的大学老师打了一个电话,想让老师帮我解惑一下,自己到底是怎么了。别人也很努力啊,而 为啥他们反到身体倍棒而一无所获的自己却病倒了?老师开着电脑,给我分享了两个小故事讲的第一个故事是“保龄球效应”,保龄球投掷对象是10个瓶子,你如果每 而你如果每次能砸倒10个瓶子,最终得分是240
2021年北师大版八年级数学下册第一章《 线段的垂直平分线》公开课课件
程哦!
C D
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/2/52021/2/5Friday, February 05, 2021
• 10、人的志向通常和他们的能力成正比例。2021/2/52021/2/52021/2/52/5/2021 3:00:55 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/2/52021/2/52021/2/5Feb-215-Feb-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/2/52021/2/52021/2/5Friday, February 05, 2021 • 13、志不立,天下无可成之事。2021/2/52021/2/52021/2/52021/2/52/5/2021
3 线段的垂直平分线
等腰三角形顶角平分线有哪些性质?
垂直底边,并且平分底边.
垂直且平分一条线 段的直线是这条线 段的垂直平分线.
AD所在的直线即线段AB的垂 直平分线 .
如图,A、B表示两个仓库,要在A、B一侧的河 岸边建造一个码头,使它到两个仓库的距离相 等,码头应建在什么位置?
A
C
B
线段垂直平分线上的点到这条线段两个端点距离相等.
已知:如图,C=BC,MN⊥AB,P是MN上任意一点.
求证:PA=PB. 证明:∵MN⊥AB,
M P
∴∠PCA=∠PCB=90°
∵AC=BC,PC=PC,
A
∴△PCA≌△PCB(SAS);
∴PA=PB(全等三角形的对应边相
C
B
N
性质定理:线段垂直平分线上的 点到这条线段 的两端点的距离 相等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线段的垂直平分线---知识讲解(提高)【学习目标】1.掌握线段的垂直平分线的性质定理及其逆定理,能够利用尺规作已知线段的垂直平分线.2.会证明三角形的三条中垂线必交于一点.掌握三角形的外心性质定理.3.已知底边和底边上的高,求作等腰三角形.4.能运用线段的垂直平分线的性质定理及其逆定理解决简单的几何问题及实际问题.【要点梳理】要点一、线段的垂直平分线1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A ,B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C ,D 两点; (2)作直线CD ,CD 即为所求直线.要点诠释:(1)作弧时的半径必须大于21AB 的长,否则就不能得到两弧的交点了. (2)线段的垂直平分线的实质是一条直线.要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合.要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx即为所求”.【典型例题】类型一、线段的垂直平分线定理1.如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、20【思路点拨】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ ABC的周长.【答案】C ;【解析】∵在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=17.【总结升华】此题考查了线段垂直平分线的性质与作法.题目难度不大,解题时要注意数形结合思想的应用.举一反三:【变式】阅读“作线段的垂直平分线”的作法,完成填空及证明.已知:线段AB,要作线段AB的垂直平分线.作法:(1)分别以A 、B 为圆心,大于 12AB 的同样长为半径作弧,两弧分别交于点C 、D ; (2)作直线CD .直线CD 即为所求作的线段AB 的垂直平分线.根据上述作法和图形,先填空,再证明.已知:如图,连接AC 、BC 、AD 、BD ,AC=AD=___=___.求证:CD ⊥AB ,CD 平分AB .证明:【答案】已知:如图,连接AC 、BC 、AD 、BD ,AC=AD=BC=BD . 求证:CD ⊥AB ,CD 平分AB . 证明:设CD 与AB 交于点E .∵在△ACD 和△BCD 中,,AC BC AD BD CD CD =⎧⎪=⎨⎪=⎩∴△ACD ≌△BCD (SSS ).∴∠1=∠2.∵AC=BC ,∴△ACB 是等腰三角形.∴CE ⊥AB ,AE=BE .即 CD ⊥AB ,CD 平分AB .2. 如图,已知线段AB ,分别以A 、B 为圆心,大于AB 长为半径画弧,两弧相交于点C 、Q ,连接CQ 与AB 相交于点D ,连接AC ,BC .那么:(1)∠ADC= _________ 度; (2)当线段AB=4,∠ACB=60°时,∠ACD=30度,△ABC 的面积等于 ___ (面积单位).【思路点拨】利用线段垂直平分的性质,等腰三角形的性质和解直角三角形等知识点计算.【答案】(1)90°; (2)43.根据等腰三角形性质,我们可知:AD 是等腰△ACQ 底边的高、中线和顶角的平分线.∴∠ADC=90°.(2)AC=AB ,∠ACB=60°,∴△ABC 是等边三角形.CD⊥AB,∴∠CAD=∠BCD=30°.CD= 221()164232BC BC -=-=.【总结升华】本题运用了线段垂直平分的性质,等腰三角形的性质和勾股定理等知识点,虽然知识点比较多,但只要找准所求与已知的关系,本题并不难解.举一反三:【变式】如图,在△ABC 中,已知BC=7,AC=16,AB 的垂直平分线交AB 于点D ,交AC 于点E ,求△BEC 的周长.【答案】∵DE 是AB 的垂直平分线,∴BE=AE,∴BE+EC=AE+EC=AC.∴△BEC 的周长=BE+EC+BC=AC+BC=23.要点二、线段的垂直平分线的逆定理3.已知,如图,在△ABC 中,BD ⊥AC 于点D ,点M 、N 分别是AB 、BC 边的中点.求证:直线MN是线段BD的垂直平分线.【思路点拨】先连接DM、DN,由于BD⊥AC,那么∠ADB=90°,于是在Rt△ADB中,M是AB的中点,可得DM=12AB=BM,可证M在线段BD垂直平分线上,同理可证N线段BD垂直平分线上,从而可知MN是BD垂直平分线.【答案与解析】证明:如图所示,连接DM、DN,∵BD⊥AC,∴∠ADB=90°,在Rt△ADB中,M是AB的中点,∴DM=12AB=BM,又在Rt△BDE中,N是BC的中点,∴DN=12BC=BN,∴MN是线段BD的垂直平分线.【总结升华】本题考查了线段垂直平分线的性质、直角三角形斜边上的中线的性质.解题的关键是连接DM、DN.4.(2012•绍兴)联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=12AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.【思路点拨】应用:连接PA、PB,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况利用等边三角形的性质求出PD与AB的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB=45°,然后即可求出∠APB的度数;探究:先根据勾股定理求出AC的长度,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB 三种情况,根据三角形的性质计算即可得解.【答案与解析】应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD=33DB=36AB,与已知PD=12AB矛盾,∴PB≠PC,②若PA=PC,连接PA,同理可得PA≠PC,③若PA=PB,由PD=12AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,2222534AC BC AB∴=-=-=①若PB=PC,设PA=x,则x2+32=(4-x)2,∴x=78,即PA=78,②若PA=PC,则PA=2,③若PA=PB,由图知,在Rt△PAB中,不可能.故PA=2或78.【总结升华】考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.举一反三:【变式】在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若∠BAC=110°,则∠EAG=________.【答案】40°;解:∠B=x,∠c=y,则,∠B+∠C=180°-∠BAC,即x+y=70°①,∵DE、GF分别是AB、AC的垂直平分线,∴BE=AE,AG=CG,∴∠BAE=∠B=x,∠CAG=∠C=y,∵∠BAE+∠CAG+∠EAC=∠BAC,∴x+y+∠EAC=110°②,联立①②得,∠EAC=110°-70°=40°.故答案为:40°.要点四、尺规作图5.如图,每个格的单位长度是1,△ABC的外心坐标是 (_____________).【思路点拨】可分别作BC与AB的垂直平分线,两条垂直平分线交于点G,则点G即为△ABC 的外心,继而可求得答案.【答案与解析】分别作BC与AB的垂直平分线,两条垂直平分线交于点G,则点G即为△ABC的外心,∴△ABC的外心坐标是(-2,-1).故答案为:(-2,-1).【总结升华】考察尺规作图的能力和三角形的外心的定义.此题难度适中,注意掌握数形结合思想的应用.。