高中数学必修第章解三角形全章教案

合集下载

高中数学新教材解三角形教案

高中数学新教材解三角形教案

高中数学新教材解三角形教案高中数学新教材解三角形教案1一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用.本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.2、了解构造法在解题中的运用.三、教学重点及难点重点:平面对量知识在各个领域中应用.难点:向量的构造.四、教学流程设计五、教学过程设计一、复习与回顾1、提问:下列哪些量是向量?(1)力(2)功(3)位移(4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?[说明]复习数量积的有关知识.二、学习新课例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看例2(书中例3)证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.证法(二)向量法[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.二、巩固练习1、如图,某人在静水中游泳,速度为km/h.(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8 km/h.(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的应用.2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.四、作业布置1、书面作业:课本P73, 练习8.4 4高中数学新教材解三角形教案2教学目标:1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.2.会求一些简单函数的反函数.3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.4.进一步完善学生思维的深刻性,培育学生的逆向思维能力,用辩证的观点分析问题,培育抽象、概括的能力.教学重点:求反函数的方法.教学难点:反函数的概念.教学过程:教学活动设计意图一、创设情境,引入新课1.复习提问①函数的概念②y=f(x)中各变量的意义2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt 的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.3.板书课题由实际问题引入新课,激发了学生学习爱好,展示了教学目标.这样既可以拨去反函数这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.二、实例分析,组织探究1.问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2.问题组二:(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(3)函数()的定义域与函数()的值域有什么关系?3.渗透反函数的概念.(老师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培育学生抽象、概括的能力.通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在最近进展区设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.三、师生互动,归纳定义1.(根据上述实例,老师与学生共同归纳出反函数的定义)函数y=f(x)(x∈A) 中,设它的值域为C.我们根据这个函数中x,y 的关系,用y 把x 表示出来,得到x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量y 的函数.这样的函数x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到用x表示自变量, y表示函数的习惯,将中的x与y对调写成.2.引导分析:1)反函数也是函数;2)对应法则为互逆运算;3)定义中的如果意味着对于一个任意的函数y=f(x)来说不一定有4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;5)函数y=f(x)与x=f(y)互为反函数;6)要理解好符号f;7)交换变量x、y的原因.3.两次转换x、y的对应关系(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)4.函数与其反函数的关系函数y=f(x)函数定义域AC值域CA四、应用解题,总结步骤1.(投影例题)【例1】求下列函数的反函数(1)y=3x-1 (2)y=x 1【例2】求函数的反函数.(老师板书例题过程后,由学生总结求反函数步骤.)2.总结求函数反函数的步骤:1° 由y=f(x)反解出x=f(y).2° 把x=f(y)中x与y互换得.3° 写出反函数的定义域.(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?(2)的反函数是________.(3)(x0)的反函数是__________.在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.通过动画演示,表格对比,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培育学生分析、思考的习惯,以及归纳总结的能力.题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.五、巩固强化,评价反馈1.已知函数y=f(x)存在反函数,求它的反函数y =f( x)(1)y=-2x 3(xR) (2)y=-(xR,且x)( 3 ) y=(xR,且x)2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.五、反思小结,再度设疑本节课主要讨论了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节讨论.(让学生谈一下本节课的学习体会,老师适时点拨)进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可实行同学板演、分组竞赛等多种形式调动学生的乐观性.问题是数学的心脏学生带着问题走进课堂又带着新的问题走出课堂.六、作业习题2.4第1题,第2题进一步巩固所学的知识.教学设计说明问题是数学的心脏.一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采纳了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,讨论性质,进而得出概念,这正是数学讨论的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对比、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培育学生的逆向思维.使学生自然成为学习的主人。

下学期高一数学第一章解三角形全章教案 必修5

下学期高一数学第一章解三角形全章教案 必修5

下学期高一数学第一章解三角形全章教案1.1第1课时 正弦定理(1)教学目标(1)要求学生掌握正弦定理及其证明;(2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点正弦定理的推导及其证明过程. 教学过程 一.问题情境在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢?探索1 我们前面学习过直角三角形中的边角关系,在Rt ABC ∆中,设90C =︒,则sin a A c =, sin b B c =, sin 1C =, 即:sin a c A =, sin b c B =, sin c c C =, sin sin sin a b cA B C==. 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法1 若C 为锐角(图(1)),过点A 作AD BC ⊥于D ,此时有sin AD B c =,sin ADC b=,所以sin sin c B b C =,即sin sin b c B C =.同理可得sin sin a cA C=, 所以sin sin sin a b cA B C ==. 若C 为钝角(图(2)),过点A 作AD BC ⊥,交BC 的延长线于D ,此时也有sin AD B c =,且sin sin(180)AD C C b =︒-=.同样可得sin sin sin a b cA B C==.综上可知,结论成立.证法 2 利用三角形的面积转换,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111sin sin sin 222ABC S ab C ac B bc A ∆===,每项同除以12abc 即得:sin sin sin a b cA B C==.探索4 充分挖掘三角形中的等量关系,可以探索出不同的证明方法.我们知道向量也是解决问题的重要工具,因此能否从向量的角度来证明这个结论呢?在ABC ∆中,有BC BA AC =+.设C 为最大角,过点A 作AD BC ⊥于D (图(3)),于是BC AD BA AD AC AD ⋅=⋅+⋅.设AC 与AD 的夹角为α,则0||||cos(90)||||cos BA AD B AC AD α=⋅⋅︒++⋅,其中 ,当C ∠为锐角或直角时,90C α=︒-; 当C ∠为钝角时,90C α=-︒. 故可得sin sin 0c B b C -=,即sin sin b cB C=. 同理可得sin sin a cA C =. 因此sin sin sin a b c A B C==. 四.数学运用 1.例题:例1.在ABC ∆中,30A =︒,105C =︒,10a =,求b ,c .解:因为30A =︒,105C =︒,所以45B =︒.因为sin sin sin a b cA B C==, 所以sin 10sin 45102sin sin 30a B b A ︒===︒,sin 10sin1055256sin sin 30a C c A ︒===+︒.因此, b ,c 的长分别为102和5256+.例2.根据下列条件解三角形: (1)3,60,1b B c ==︒=; (2)6,45,2c A a ==︒=.解:(1)sin sin b cB C =,∴sin 1sin 601sin 23c B C b ⨯︒===, ,60b c B >=,∴C B <,∴C 为锐角, ∴30,90C A ==,∴222a b c =+=.(2)sin sin a cA C=,∴sin 6sin 453sin 22c A C a ⨯===,∴60120C =或, ∴当sin 6sin 756075,31sin sin 60c B C B b C =====+时,; ∴当sin 6sin1512015,31sin sin 60c B C B b C =====-时,; 所以,31,75,60b B C =+==或31,15,120b B C =-==.说明:正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题. 练习:在ABC ∆中,30a =,26b =,30A =︒,求c 和,B C .说明:正弦定理可以用于解决已知两角和一边求另两边和一角的问题. 2.练习: (1)在ABC ∆中,已知8b c +=,30B ∠=︒,45C ∠=︒,则b = ,c = . (2)在ABC ∆中,如果30A ∠=︒,120B ∠=︒,12b =,那么a = ,ABC ∆的面积是 .(3)在ABC ∆中,30bc =,1532ABC S ∆=,则A ∠= . (4)课本第9页练习第1题. 五.回顾小结:1.用两种方法证明了正弦定理:(1)转化为直角三角形中的边角关系;(2)利用向量的数量积.2.初步应用正弦定理解斜三角形. 六.课外作业:课本第9页练习第2题;课本第11页习题1.1第1、6题§1.1.1第2课时 正弦定理(2)教学目标(1)掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形; (2)熟记正弦定理2sin sin sin a b cR A B C===(R 为ABC ∆的外接圆的半径)及其变形形式.教学重点,难点利用三角函数的定义和外接圆法证明正弦定理. 教学过程 一.问题情境上节课我们已经运用两种方法证明了正弦定理,还有没有其他方法可以证明正弦定理呢? 二.学生活动学生根据第5页的途径(2),(3)去思考. 三.建构数学证法1 建立如图(1)所示的平面直角坐标系,则有(cos ,sin )A c B c B ,(,0)C a ,所以ABC ∆的面积为1sin 2ABC S ac B ∆=.同理ABC ∆的面积还可以表示为1sin 2ABC S ab C ∆=及1sin 2ABC S bc A ∆=,所以111sin sin sin 222ab C ac B bc A ==. 所以sin sin sin a b c A B C==. 证法2 如下图,设O 是ABC ∆的外接圆,直径2BD R =.(1)如图(2),当A 为锐角时,连CD ,则90BCD ∠=︒,2sin a R D =.又D A ∠=∠,所以2sin a R A =.(2)如图(3),当A 为钝角时,连CD ,则90BCD ∠=︒,2sin a R D =.又180A D ∠+∠=︒,可得sin sin(180)sin D A A =︒-=,所以2sin a R A =.(3)当A 为直角时,2a R =,显然有2sin a R A =.所以不论A 是锐角、钝角、直角,总有2sin a R A =.同理可证2sin b R B =,2sin c R C =.所以2sin sin sin a b cR A B C===. 由此可知,三角形的各边与其所对角的正弦之比是一个定值,这个定值就是三角形外接圆的直径. 由此可得到正弦定理的变形形式:(1)2sin ,2sin ,2sin a R A b R B c R C ===; (2)sin ,sin ,sin 222a b cA B C R R R===;(3)sin sin sin ::::A B C a b c =. 四.数学运用1.例题:例1.根据下列条件,判断ABC ∆有没有解?若有解,判断解的个数. (1)5a =,4b =,120A =︒,求B ; (2)5a =,4b =,90A =︒,求B ;(3)106a =,203b =45A =︒,求B ; (4)202a =203b =45A =︒,求B ;(5)4a =,33b =,60A =︒,求B . 解:(1)∵120A =︒,∴B 只能是锐角,因此仅有一解. (2)∵90A =︒,∴B 只能是锐角,因此仅有一解.(3)由于A 为锐角,而210632=,即A b a sin =,因此仅有一解90B =︒.(4)由于A 为锐角,而22032022031062>>=,即sin b a b A >>,因此有两解,易解得60120B =︒︒或.(5)由于A 为锐角,又1034sin 605<︒=,即sin a b A <,∴B 无解. 例2.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.解:令sin ak A=,由正弦定理,得sin a k A =,sin b k B =,sin c k C =.代入已知条件,得sin sin sin cos cos cos A B C A B C==,即tan tan tan A B C ==.又A ,B ,C (0,)π∈,所以A B C ==,从而ABC ∆为正三角形.说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角? (2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断.例3.某登山队在山脚A 处测得山顶B 的仰角为35︒,沿倾斜角为20︒的斜坡前进1000米后到达D 处,又测得山顶的仰角为65︒,求山的高度(精确到1米). 分析:要求BC ,只要求AB ,为此考虑解ABD ∆. 解:过点D 作//DE AC 交BC 于E ,因为20DAC ∠=︒, 所以160ADE ∠=︒,于是36016065135ADB ∠=︒-︒-︒=︒. 又352015BAD ∠=︒-︒=︒,所以30ABD ∠=︒. 在ABD ∆中,由正弦定理,得sin 1000sin13510002()sin sin 30AD ADB AB m ABD ∠︒===∠︒.在Rt ABC ∆中,sin 35235811()BC AB m =︒=︒≈. 答:山的高度约为811m .例4.如图所示,在等边三角形中,,AB a =O 为三角形的中心,过O 的直线交AB 于M ,交AC 于N ,求2211OM ON +的最大值和最小值. 解:由于O 为正三角形ABC 的中心,∴3AO =, 6MAO NAO π∠=∠=,设MOA α∠=,则233ππα≤≤,αβπβ-αACBD在AOM ∆中,由正弦定理得:sin sin[()]6OM OAMAO ππα=∠-+, ∴6sin()6OM πα=+,在AON ∆中,由正弦定理得:6sin()6ON πα=-,∴2211OM ON +22212[sin ()sin ()]66a ππαα=++-22121(sin )2a α=+, ∵233ππα≤≤,∴3sin 14α≤≤,故当2πα=时2211OM ON +取得最大值218a, 所以,当α=2,33or ππ时23sin 4α=,此时2211OM ON +取得最小值215a . 例5.在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:AB BDAC DC=. 证明:设BAD α∠=,BDA β∠=,则CAD α∠=,180CDA β∠=︒-.在ABD ∆和ACD ∆中分别运用正弦定理,得sin sin AB BD βα=,sin(180)sin AC DC βα︒-=, 又sin(180)sin ββ︒-=,所以AB AC BD DC =,即AB BDAC DC=. 2.练习:(1)在ABC ∆中,::4:1:1A B C =,则::a b c = ( D )A .4:1:1 B .2:1:1 CD(2)在ABC ∆中,若sin :sin :sin 4:5:6A B C =,且15a b c ++=,则a = , b = ,c = . 五.回顾小结:1.了解用三角函数的定义和外接圆证明正弦定理的方法; 2.理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. 六.课外作业:课本第9页练习第3题;课本第11页习题1.1第2、8题.§1.1.2 第3课时 余弦定理(1)教学目标(1)掌握余弦定理及其证明;(2)使学生能初步运用余弦定理解斜三角形. 教学重点,难点(1)余弦定理的证明及其运用;(2)能灵活运用余弦定理解斜三角形. 教学过程 一.问题情境 1.情境:复习正弦定理及正弦定理能够解决的两类问题. 2.问题:在上节中,我们通过等式BC BA AC =+的两边与AD (AD 为ABC ∆中BC 边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理,还有其他途径将向量等式BC BA AC =+数量化吗?二.学生活动如图,在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵BC AB AC +=∴()()AC AC AB BC AB BC ⋅=+⋅+22cos 2a B ac c +-=, 即B ac a c b cos 2222-+=;同理可证:A bc c b a cos 2222-+=, C ab b a c cos 2222-+=. 三.建构数学 1. 余弦定理上述等式表明,三角形任何一边的平方等于其他两边平方的和,减去这两边与它们夹角的余弦的积的两倍.这样,我们得到余弦定理. 2.思考:回顾正弦定理的证明,尝试用其他方法证明余弦定理.方法1:如图1建立直角坐标系,则(0,0),(cos ,sin ),(,0)A B c A c A C b .所以2222222222(cos )(sin )cos sin 2cos 2cos a c A b c A c A c A bc A b b c bc A=-+=+-+=+-同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=注:此法的优点在于不必对A 是锐角、直角、钝角进行分类讨论.方法2:若A 是锐角,如图2,由B 作BD AC ⊥,垂足为D ,则cos AD c A =,所以即A bc c b a cos 2222-+=,类似地,可以证明当A 是钝角时,结论也成立,而当A 是直角时,结论显 然成立.同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=.图1 图2 3.余弦定理也可以写成如下形式:bc a c b A 2cos 222-+= , ac b c a B 2cos 222-+=, acc b a C 2cos 222-+=.4.余弦定理的应用范围:利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在ABC ∆中,(1) 已知3b =,1c =,060A =,求a ;A BCcab(2) 已知4a =,5b =,6=c ,求A (精确到00.1).解:(1)由余弦定理,得2222202cos 31231cos607a b c bc A =+-=+-⨯⨯⨯=,所以 a =(2)由余弦定理,得222222564cos 0.752256b c a A bc +-+-===⨯⨯, 所以,041.4A ≈.例2. ,A B 两地之间隔着一个水塘,现选择另一点C ,测得182,CA m =126,CB m =063ACB ∠=,求,A B 两地之间的距离(精确到1m ). 解:由余弦定理,得所以,168()AB m ≈答:,A B 两地之间的距离约为168m .例3.用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<.证:当C 为锐角时,cos 0C >,由余弦定理,得222222cos c a b ab C a b =+-<+,即 222a b c +>.同理可证,当C 为钝角时,222a b c +<.2.练习:书第15页 练习1,2,3,4 五.回顾小结:1.余弦定理及其应用2.正弦定理和余弦定理是解三角形的两个有力工具,要区别两个定理的不同作用,在解题时正确选用;六.课外作业:书第16页1,2,3,4,6,7题§1.1.2 第4课时 余弦定理(2)教学目标(1)能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题. 教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题,牢固掌握两个定理,应用自如. 教学过程 一.问题情境1.正弦定理及其解决的三角形问题(1)已知两角和任一边,求其它两边和一角;(2)已知两边和其中一边的对角,求另一边的对角,从而进一步其它的边和角. 2.余弦定理及其解决的三角形问题 (1)已知三边,求三个角;(2)已知两边和他们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在长江某渡口处,江水以5/km h 的速度向东流,一渡船在江南岸的A 码头出发,预定要在0.1h 后到达江北岸B 码头,设AN 为正北方向,已知B 码头在A 码头的北偏东015,并与A 码头相距1.2km .该渡船应按什么方向航行?速度是多少(角度精确到00.1,速度精确到0.1/km h )?解:如图,船按AD 方向开出,AC 方向为水流方向,以AC 为一边、AB 为对角线作平行四边形ABCD ,其中 1.2(),50.10.5()AB km AC km ==⨯=.在ABC ∆中,由余弦定理,得2221.20.52 1.20.5cos(9015) 1.38BC =+-⨯⨯-≈, 所以 1.17()AD BC km =≈. 因此,船的航行速度为1.170.111.7(/)km h ÷=.在ABC ∆中,由正弦定理,得 0sin 0.5sin 75sin 0.41281.17AC BAC ABC BC ∠∠==≈, 所以 024.4ABC ∠≈所以 00159.4DAN DAB NAB ABC ∠=∠-∠=∠-≈.答:渡船应按北偏西09.4的方向,并以11.7/km h 的速度航行.例2. 在ABC ∆中,已知sin 2sin cos A B C =,试判断该三角形的形状.解:由正弦定理及余弦定理,得222sin ,cos sin 2A a a b c C B b ab+-==, 所以 22222a a b c b ab+-=,整理得 22b c =因为0,0b c >>,所以b c =.因此,ABC ∆为等腰三角形.例3.如图,AM 是ABC ∆中BC 边上的中线,求证:22212()2AM AB AC BC =+-.证:设AMB α∠=,则0180AMC α∠=-.在ABM ∆中,由余弦定理,得2222cos AB AM BM AM BM α=+-.在ACM ∆中,由余弦定理,得22202cos(180)AC AM MC AM MC α=+--.因为01cos(180)cos ,2BM MC BC αα-=-==, 所以2222122AB AC AM BC +=+,因此, 22212()2AM AB AC BC =+-. 例4.在ABC ∆中,BC a =,AC b =,,a b 是方程02322=+-x x 的两个根,且2cos()1A B +=,求:①角C 的度数; ②AB 的长度; ③ABC S ∆.解:①1cos cos(())cos()2C A B A B π=-+=-+=- ∴120C =;②由题设:232a b ab ⎧+=⎪⎨=⎪⎩,∴2222cos AB AC BC AC BC C =+-⋅⋅120cos 222ab b a -+=ab b a ++=22102)32()(22=-=-+=ab b a , 即10AB =;③ABC S ∆11133sin sin120222222ab C ab ===⋅⋅=.2.练习:(1)书第16页 练习1,2,3,4DCBA(2)如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =, 60BDA ∠=, 135BCD ∠=, 求BC 的长.(3)在ABC ∆中,已知()()()456::::b c c a a b +++=,求ABC ∆的最大内角;(4)已知ABC ∆的两边,b c 是方程2400x kx -+=的两个根,的面积是2cm ,周长是20cm ,试求A 及k 的值; 五.回顾小结:1.正弦、余弦定理是解三角形的有力工具,要区别两个定理的不同作用,在解题时正确选用;2.应用正弦、余弦定理可以实现将“边、角相混合”的等式转化为“边和角的单一”形式; 3.应用余弦定理不仅可以进行三角形中边、角间的计算,还可以判断三角形的形状. 六.课外作业:书第17页5,8,9,10,11题§1.3正弦定理、余弦定理的应用(1)教学目标(1)综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;(2)体会数学建摸的基本思想,掌握求解实际问题的一般步骤;(3)能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力. 教学重点,难点(1)综合运用正弦定理、余弦定理等知识和方法解决一些实际问题; (2)掌握求解实际问题的一般步骤. 教学过程 一.问题情境 1.复习引入复习:正弦定理、余弦定理及其变形形式, (1)正弦定理、三角形面积公式:R CcB b A a 2sin sin sin ===; B acC ab A bc S ABC sin 21sin 21sin 21===∆.(2)正弦定理的变形:①C R c B R b A R a sin 2,sin 2,sin 2===;②RcC R b B R a A 2sin ,2sin ,2sin ===; ③sin sin sin ::::A B C a b c =.(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=.二.学生活动引导学生复习回顾上两节所学内容,然后思考生活中有那些问题会用到这两个定理,举例说明.三.建构数学正弦定理、余弦定理体现了三角形中边角之间的相互关系,在测量学、运动学、力学、电学等许多领域有着广泛的应用.1.下面给出测量问题中的一些术语的解释:(1)朝上看时,视线与水平面夹角为仰角;朝下看时,视线与水平面夹角为俯角. (2)从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角.(3)坡度是指路线纵断面上同一坡段两点间的高度差与其水平距离的比值的百分率.道路坡度100%所表示的可以这样理解:坡面与水平面的夹角为45度.45度几乎跟墙壁一样的感觉了. (4)科学家为了精确地表明各地在地球上的位置,给地球表面假设了一个坐标系,这就是经纬度线.2.应用解三角形知识解决实际问题的解题步骤:①根据题意作出示意图;②确定所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案. 四.数学运用 1.例题:例1.如图1-3-1,为了测量河对岸两点,A B 之间的距离,在河岸这边取点,C D ,测得85ADC ∠=,60BDC ∠=,47ACD ∠=,72BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离(精确到1m ).解:在ADC ∆中,85ADC ∠=,47ACD ∠=,则48DAC ∠=.又100DC =,由正弦定理,得()sin 100sin 85134.05sin sin 48DC ADC AC m DAC ∠==≈∠.在BDC ∆中,60BDC ∠=,72BCD ∠=, 则48DBC ∠=.又100DC =, 由正弦定理,得()sin 100sin 60116.54sin sin 48DC BDC BC m DBC ∠==≈∠.在ABC ∆中, 由余弦定理,得3233.95≈, 所以 ()57AB m ≈答,A B 两点之间的距离约为57m .本例中AB 看成ABC ∆或ABD ∆的一边,为此需求出AC ,BC 或AD ,BD ,所以可考察ADC ∆和BDC ∆,根据已知条件和正弦定理来求AC ,BC ,再由余弦定理求AB .引申:如果A ,B 两点在河的两岸(不可到达),试设计一种测量A ,B 两点间距离的方法.可见习题1.3 探究拓展 第8题.例2.如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测出该渔轮在方位角为45,距离为10n mile 的C 处,并测得渔轮正沿方位角为105的方向,以9/n mile h 的速度向小岛靠拢,我海军舰艇立即以21/n mile h 的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到0.1,时间精确到1min ). 解:设舰艇收到信号后x h 在B 处靠拢渔轮,则21AB x =,9BC x =,又10AC =,()45180105120ACB ∠=+-=.由余弦定理,得2222cos AB AC BC AC BC ACB =+-⋅∠,即()()222211092109cos 120x x x =+-⨯⨯∠.化简,得2369100x x --=,解得()()240min 3x h ==(负值舍去).由正弦定理,得图1-3-1图1-3-2sin 9sin12033sin 2114BC ACB x BAC AB x ∠∠===, 所以21.8BAC ∠≈,方位角为4521.866.8+=.答 舰艇应沿着方向角66.8的方向航行,经过40min 就可靠近渔轮.本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A 到B 与渔轮从C 到B 的时间相同,所以根据余弦定理可求出该时间,从而求出AB 和BC ;再根据正弦定理求出BAC ∠. 例3.如图,某海岛上一观察哨A 在上午11时测得一轮船在海岛北偏东3π的C 处,12时20分测得轮船在海岛北偏西3π的B 处,12时40分轮船到达海岛正西方5km 的E 港口.如果轮船始终匀速前进,求船速. 解:设ABE θ∠=,船的速度为/km h υ,则43BC υ=,13BE υ=. 在ABE ∆中,153sin sin 30υθ=,15sin 2θυ∴=. 在ABC ∆中,()43sin120sin 180AC υθ=-, 4415sin 2033233322AC υθυυ⋅⋅∴===. 在ACE ∆中,22520202525cos150333υ⎛⎫⎛⎫⎛⎫=+-⨯⨯⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 22540077525100933υ=++=,293υ∴=, ∴船的速度93/km h υ=. 2.练习:书上P20 练习1,3,4题.五.回顾小结:1.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.2.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.六.课外作业: 书上P21页习题1.3 第2,3,4题.§1.3 正弦定理、余弦定理的应用(2)教学目标(1)能熟练应用正弦定理、余弦定理解决三角形等一些几何中的问题和物理问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦、余弦定理及相关的三角公式解决这些问题;(3)通过复习、小结,使学生牢固掌握两个定理,应用自如.教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题。

高中数学教案】人教A版必修5第一章1.2《解三角形应用举例》教案

高中数学教案】人教A版必修5第一章1.2《解三角形应用举例》教案

《解三角形应用举例》教案一、教学目标1.知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题.2.过程与方法(1)通过解决“底部不可到达的物体高度测量”的问题,初步掌握将实际问题转化为解斜三角形的问题的方法.(2)进一步提高利用正弦定理、余弦定理解斜三角形的能力,提高运用数学知识解决实际问题的能力.3.情感、态度与价值观进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力二、教学重点和难点教学重点:结合实际测量工具,解决生活中的测量高度问题.教学难点:能观察较复杂的图形,从中找到解决问题的关键条件.教学关键:将实际问题中的高度问题转化为数学问题.教学突破方法:通过分析实践、自主探究、合作交流等一系列的寻求问题解决方法的活动,讨论解决方法,步步改进方法,探求最佳方法.三、教法与学法导航教学方法:本节课是解三角形应用举例的延伸.采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架.通过3道例题的安排和练习的训练来巩固深化解三角形实际问题的一般方法.教学形式要坚持“引导——讨论——归纳”,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯.作业设计思考题,提供学生更广阔的思考空间.学习方法:学生通过数学建模,自主探究、合作交流,在实践中体验过程,在过程中感受应用,在交流中升华.四、教学过程1.创设情境,导入新课提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题.2.主题探究,合作交流例1 如图1,AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.图1分析:求AB 长的关键是先求AE ,在△ACE 中,如能求出点C 到建筑物顶部A 的距离CA ,再测出由点C 观察A 的仰角,就可以计算出AE 的长.解:选择一条水平基线HG ,使H 、G 、B 三点在同一条直线上.在H 、G 两点用测角仪器测得A 的仰角分别是α、β,CD =a ,测角仪器的高是h ,那么,在△ACD 中,根据正弦定理可得: )sin(sin βαβ-=a AC , h a h AC h AE AB +-=+=+=)sin(sin sin sin βαβαα. 例 2 如图2,在山顶铁塔上B 处测得地面上一点A 的俯角0454'︒=α,在塔底C 处测得A 处的俯角150'︒=β.已知铁塔BC 部分的高为27.3 m ,求出山高CD (精确到1m ).图2教师:根据已知条件,大家能设计出解题方案吗(给时间给学生讨论思考)?若在△ABD 中求CD ,则关键需要求出哪条边呢?学生:需求出BD 边.教师:那如何求BD 边呢?学生:可首先求出AB 边,再根据∠BAD=α求得.解:在△ABC 中,∠BCA =90°+β,∠ABC =90°-α,∠BAC =αβ-,∠BAD =α.根据正弦定理, )sin(βα-BC =)90sin(β+︒AB.所以 AB =)sin()90sin(βαβ-+︒BC =)sin(cos βαβ-BC .在Rt △ABD 中,得:BD =AB sin ∠BAD =)sin(sin cos βααβ-BC .将测量数据代入上式,得:BD =)1500454sin(0454sin 150cos 3.27'-'''︒︒︒︒ =934sin 0454sin 150cos 3.27'''︒︒︒≈177.4(m ).CD =BD -BC ≈177-27.3=150(m ).学生:山的高度约为150 m.教师:有没有别的解法呢?学生:若在.△ACD 中求CD ,可先求出AC .教师:分析得很好,请大家接着思考如何求出AC ?学生:同理,在△ABC 中,根据正弦定理求得.(解题过程略)例3 如图3,一辆汽车在一条水平的公路上向正东行驶,到A 处时测得公路南侧远处一山顶D 在东偏南15°的方向上,行驶5km 后到达B 处,测得此山顶在东偏南25°的方向上,仰角为8°,求此山的高度CD (精确到1m ).图3教师:欲求出CD ,大家思考在哪个三角形中研究比较适合呢?学生:在△BCD 中教师:在△BCD 中,已知BD 或BC 都可求出CD ,根据条件,易计算出哪条边的长? 学生:BC 边解:在△ABC 中, ∠A =15°,∠C = 25°-15°=10°,根据正弦定理,A BC sin =CAB sin , BC =C A AB sin sin =︒︒10sin 15sin 5≈7.452 4(km ). tan tan81047(m)CD BC DBC BC =⨯∠≈⨯︒≈答:山的高度约为1047m.教材第15页练习第1、2、3题.3.小结利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.4.课外作业(1)教材第19、20页习题1.2 A 组第6,7,8题(2)为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30︒,测得塔基B 的俯角为45°,则塔AB 的高度为多少m ?答案:20+3320m。

三角形全章教案

三角形全章教案

2.1三角形【教学目标】1、知识与技能、理解三角形的表示法,分类法以及三边存在的关系,发展空间观念。

2、过程与方法:⑴经历探索三角形中三边关系的过程,认识三角形这个最简单,最基本的几何图形,提高推理能力。

⑵培养学生数学分类讨论的思想。

3、情感态度与价值观:⑴培养学生的推理能力,运用几何语言有条理的表达能力,体会三角形知识的应用价值。

⑵通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。

【重点】掌握三角形三边关系【难点】三角形三边关系的应用【课型】新授课【学习方法】自学与小组合作学习相结合的方法【学习过程】一、目标导入课件展示图片,学生欣赏并从中抽象出三角形。

问题:你能举出日常生活中三角形的实际例子吗?二、自主学习(1):1.自学内容:教材第42页.2.自学要求:学生理解边、角、顶点的意义而不是背其定义;让学生感受数学语言的逻辑性,严密性。

三、交流展示(1):1:三角形定义:____________________________________________________ 2:怎样用几何符号表示你所画的三角形?什么是三角形的顶点、边、角?3、现实生活中,你看到一些形状不同的三角形,你能画出吗?四、自主学习(2):1.自学内容:课本43页2.自学要求:学生会对三角形分类;学生明白对于同一事物可采用几种不同的分类标准.五、交流展示(2)1. 三角形可采用几种不同的分类标准?如何分类?2.如何给你所画的这些形状各异的?六、自主学习(3):1.自学内容:课本43页动脑筋到例题1;2.自学要求:学生理解三角形三边之间的关系,能进行简单说理.七、交流展示(3)1、三角形三边之间的关系定理:_________________________________,理论依据是__________________________.2、记住:三角形三边之间的关系定理的推论:三角形的两边之差大于第三边;3、下列长度的三条线段能否围成三角形?为什么?⑴ 2,4,7 ⑵ 6,12,6 ⑶ 7,8,134、现有两根木棒,它们的长分别为40cm和50cm,若要钉成一个三角形木架(•不计接头),则在下列四根木棒中应选取()A.10cm长的木棒 B.40cm长的木棒 C.90cm长的木棒 D.100cm 长的木棒5.已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围是____.•若x是奇数,则x的值是______;这样的三角形有______个;•若x•是偶数,•则x•的值是______;这样的三角形又有________个.八、自主学习(4):1.自学内容:课本43页例题;2.自学要求:让学生体会数学的严密性。

高中数学必修五第一章解三角形家教教案(最新整理)

高中数学必修五第一章解三角形家教教案(最新整理)

正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.余弦定理:)形式一:,,2___________________a =2_________________b =2_________________c =,,,(角到边的转换)bc 2a c b A cos 222-+=ac 2b c a B cos 222-+=ab2c b a C cos 222-+=absinC=bcsinA=acsinB,S △=))()((c S b S a S S ---=Sr 1212c +,r 为内切圆半径)=R abc 4(R 为外接圆半径).在三角形中大边对大角,反之亦然.射影定理:a=bcosC+ccosB,b=acosC+ccosA,c=acosB+bcosA.三角形内角的诱导公式(1)sin(A+B)=sinC,cos(A+B)=-cosC,tanC=-tan(A+B),cos=sin , sin =cos 2C 2A B +2C 2A B+ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC;、C 成等差数列的充要条件是B=60°;;;)。

7.如图3,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,求cos θ的值.图38.如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得AB B C D ,并在点测得塔顶的仰角为,求塔高.BCD BDC CD s αβ∠=∠==,,C A θAB本章思维总结1.解斜三角形的常规思维方法是:(1)已知两角和一边(如A 、B 、C ),由A +B +C = π求C ,由正弦定理求a 、b ;(2)已知两边和夹角(如a 、b 、c ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A +B +C = π,求另一角;(3)已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由A +B +C = π求C ,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况;(4)已知三边a 、b 、c ,应余弦定理求A 、B ,再由A +B +C = π,求角C 。

高中数学 第一章 解三角形全套教案 新人教A版必修5

高中数学 第一章 解三角形全套教案 新人教A版必修5

高中数学:新人教A 版必修5全套教案第一章 解三角形课题: 1.1.1正弦定理●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c==, A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin a b A B=sin cC=A cB (图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

第六部分:三角函数(4)——解三角形(教案)

第六部分:三角函数(4)——解三角形(教案)

①当064≈B 时, 00000180()180(4064)76=-+≈-+=C A B ,00sin 20sin7630().sin sin40==≈a C c cm A ②当0116≈B 时,00000180()180(40116)24=-+≈-+=C A B ,sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。

解法一:先解三角方程,求出角A 的值。

.21)45cos(,22)45cos(2cos sin =-∴=-=+ A A A A又0180<<A , 4560,105.A A ∴-==13tan tan(4560)2313A +∴=+==--- , .46260sin 45cos 60cos 45sin )6045sin(105sin sin +=+=+== A S AC AB A ABC ∆=⨯=⨯⨯⨯+=+1212232643426sin ()。

解法二:由sin cos A A +计算它的对偶关系式sin cos A A +的值。

sin cos A A +=22①在△ABC 中,由正弦定理得sin B =aA b sin ,∵b 2=ac , ∠A =60°,∴ac b c B b ︒=60sin sin 2=sin60°=23。

解法二:在△ABC 中, 由面积公式得21bc sin A =21ac sin B 。

∵b 2=ac ,∠A =60°,∴bc sin A =b 2sin B 。

∴cBb sin =sin A =23。

评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理。

人教A版高中数学必修5第一章 解三角形1.1 正弦定理和余弦定理教案

人教A版高中数学必修5第一章 解三角形1.1 正弦定理和余弦定理教案

专题22正弦定理和余弦定理1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理内容a sin A =b sin B =csin C=2R a 2=b 2+c 22bc cos__A ;b 2=c 2+a 22ca cos__B ; c 2=a 2+b 2-2ab cos__C常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin_C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .高频考点一 利用正弦定理、余弦定理解三角形例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个D .无法确定(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6×22=3,∴b sin A <a <b .解得b =1.【感悟提升】(1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2D .2<x <2 3(2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1解析 (1)若三角形有两解,则必有a >b ,∴x >2,又由sin A =a b sin B =x 2×22<1,可得x <22,∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB cos A ,化简得x 2-2x +1=0, ∴x =1,即AB =1.高频考点二 利用正弦、余弦定理判定三角形的形状例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a2=12c 2. (1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2=12c 2及正弦定理得(2)由tan C =2,C ∈(0,π)得 sin C =255,cos C =55,因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C ,所以sin B =31010,由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3. 【感悟提升】(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 【变式探究】四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积.解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,BD =7,因为C 为三角形内角,故C =60°. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2sin60° =2 3.高频考点三 正弦、余弦定理的简单应用例3、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案 B【感悟提升】(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.【变式探究】(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin∠BAC =223,AB =32,AD =3,则BD 的长为______.答案 (1)D (2) 3∴△ABC 为等腰或直角三角形.(2)sin∠BAC =sin(π2+∠BAD )=cos∠BAD ,∴cos∠BAD =223.BD 2=AB 2+AD 2-2AB ·AD cos∠BAD=(32)2+32-2×32×3×223,即BD 2=3,BD = 3.高频考点三 和三角形面积有关的问题【例3】 (2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sinC ,故2sin C cos C =sin C . 由C ∈(0,π)知sin C ≠0, 可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13, 从而(a +b )2=25.所以△ABC 的周长为5+7. 【方法规律】三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2a -b )cos C -c cos B =0.(1)求角C 的值;(2)若三边a ,b ,c 满足a +b =13,c =7,求△ABC 的面积.1.【2016高考新课标3理数】在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( ) (A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD=.由余弦定理,知22222210cos 210225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C . 2.【2016高考新课标2理数】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【答案】21133.【2016高考天津理数】在△ABC 中,若AB ,120C ∠=o ,则AC = ( ) (A )1(B )2(C )3(D )4【答案】A【解析】由余弦定理得213931AC AC AC =++⇒=,选A.4.【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 ▲ . 【答案】8. 【解析】sin sin()2sin sin tan tan 2tan tan A B+C B C B C B C==⇒+=,又tan tan tan tan tan 1B+CA=B C -,因tan tan tan tan tan tan tan 2tan tan tan tan tan 8,A B C A B C A B C A B C =++=+≥≥即最小值为8.5.(2016·山东卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sinA ),则A =( )A.3π4 B.π3 C.π4 D.π6解析 在△ABC 中,由b =c ,得cos A =b 2+c 2-a 22bc =2b 2-a 22b 2,又a 2=2b 2(1-sin A ),所以cos A =sin A ,即tan A =1,又知A ∈(0,π),所以A =π4,故选C.答案 C【2015高考天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 . 【答案】【解析】因为0A π<<,所以sin 4A ==,又1sin 242ABC S bc A bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc +-==⋅2425361616256⨯+-=⋅=⨯⨯【2015高考新课标1,理16】在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】(62-,6+2)AB 的取值范围为(62-,6+2).【2015江苏高考,15】(本小题满分14分) 在ABC ∆中,已知ο60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值 【答案】(17(243【2015高考湖南,理17】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,,tan a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围. 【答案】(1)详见解析;(2)29,]28. 【解析】(1)由tan a b A =及正弦定理,得sin sin cos sin A a AA bB ==,∴sin cos B A =,即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈,故2B A π=+,即2B A π-=; (2)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈,于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+,∵04A π<<,∴20sin A <<221992(sin )488A <--+≤,由此可知sin sin A C +的取值范围是29]28.(2014·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?即sin ⎝⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.(2014·江西卷)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R,θ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.【解析】(1)f (x )=sin ⎝ ⎛⎭⎪⎫x +π4+2cos ⎝⎛⎭⎪⎫x +π2=22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝ ⎛⎭⎪⎫π4-x .因为x ∈[0,π],所以π4-x ∈⎣⎢⎡⎦⎥⎤-3π4,π4,故f (x )在区间[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1. 又θ∈⎝ ⎛⎭⎪⎫-π2,π2,知cos θ≠0, 所以⎩⎪⎨⎪⎧1-2a sin θ=0,(2a sin θ-1)sin θ-a =1,解得⎩⎪⎨⎪⎧a =-1,θ=-π6.(2014·四川卷)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.当sin α+cos α=0时,由α是第二象限角,得α=3π4+2k π,k ∈Z,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. (2013·北京卷)在△ABC 中,a =3,b =2 6,∠B=2∠A. (1)求cos A 的值; (2)求c 的值.【解析】(1)因为a =3,b =2 6,∠B=2∠A, 所以在△ABC 中,由正弦定理得3sin A =2 6sin 2A .所以2sin Acos A sin A =2 63.故cos A =63. (2)由(1)知cos A =63,所以sin A =1-cos 2A =33. 又因为∠B=2∠A,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =2 23.在△ABC 中,sin C =sin(A +B) =sin AcosB +cos Asin B =5 39. 所以c =a sin Csin A=5.(2013·全国卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c)(a -b +c)=ac. (1)求B ; (2)若sin Asin C =3-14,求C.=32, 故A -C =30°或A -C =-30°,因此C =15°或C =45°. (2013·浙江卷)已知α∈R,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34 D .-43 【答案】C【解析】由(sin α+2cos α)2=1022'得sin 2α+4sin αcos α+4cos 2α=104=52,4sin αcos α+1+3cos 2α=52,2sin 2α+1+3×1+cos 2α2=52,故2sin 2α=-3cos 2α2,所以tan2α=-34,选择C.(2013·重庆卷)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .2 2-1 【答案】C1.在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C =( ) A.30° B.45°C.60°D.75°解析 法一 ∵S △ABC =12·AB ·AC ·sin A =32,即12×3×1×sin A =32,∴sin A =1, 由A ∈(0°,180°),∴A =90°,∴C =60°.故选C. 法二 由正弦定理,得sin B AC =sin C AB ,即12=sin C 3,sin C =32,又C ∈(0°,180°),∴C =60°或C =120°. 当C =120°时,A =30°,S △ABC =34≠32(舍去).而当C =60°时,A =90°, S △ABC =32,符合条件,故C =60°.故选C. 答案 C2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( )A.π3B.5π6C.π6或5π6D.π6解析∵A=2π3,a=2,b=233,∴由正弦定理asin A=bsin B可得,sin B=basin A=2332×32=12.∵A=2π3,∴B=π6.答案 D3.在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为( ) A.等边三角形 B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形答案 B4.△ABC的内角A,B,C的对边分别为a,b,c,则“a>b”是“cos 2A<cos 2B”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析因为在△ABC中,a>b⇔sin A>sin B⇔sin2A>sin2B⇔2sin2A>2sin2B⇔1-2sin2A<1-2sin2B⇔cos 2A<cos 2B.所以“a>b”是“cos 2A<cos 2B”的充分必要条件.答案 C5.已知△ABC的内角A,B,C的对边分别为a,b,c,且c-bc-a=sin Asin C+sin B,则B等于( ) A.π6B.π4C.π3D.3π4答案 C解析 根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________. 答案π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac=cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,∴B =π3或2π3. 7.在△ABC 中,若b =5,B =π4,tan A =2,则a =______.答案 2108.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________. 答案3解析 由正弦定理,可得(2+b )(a -b )=(c -b )·c . ∵a =2,∴a 2-b 2=c 2-bc ,即b 2+c 2-a 2=bc .由余弦定理,得cos A =b 2+c 2-a 22bc =12.∴sin A =32. 由b 2+c 2-bc =4,得b 2+c 2=4+bc . ∵b 2+c 2≥2bc ,即4+bc ≥2bc ,∴bc ≤4. ∴S △ABC =12bc ·sin A ≤3,即(S △ABC )max = 3.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B . (1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C=4+3310, 所以,△ABC 的面积为S =12ac sin B =83+1825.10.如图,在△ABC 中,B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC =17.(1)求sin∠BAD ; (2)求BD 、AC 的长.在△ABD 中,由正弦定理得 BD =AB ·sin∠BADsin∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+(2+3)2-2×8×5×12=49.所以AC =7.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc ,∴cos A =b 2+c 2-a 22bc =32,(2)由(1)知,a =b ,由余弦定理得AM 2=b 2+(a2)2-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b=2,故S △ABC =12ab sin C =12×2×2×32= 3.12.设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;精品文档. (2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝ ⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z, 可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π2+2k π≤2x ≤3π2+2k π,k ∈Z, 可得π4+k π≤x ≤3π4+k π,k ∈Z . 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z ); 单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ). (2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12, 由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.。

新人教A版必修5高中数学第1章《解三角形》函数的周期性问题教案

新人教A版必修5高中数学第1章《解三角形》函数的周期性问题教案

高中数学 第1章《解三角形》函数的周期性问题教案新人教A 版必修5一、教学目标:理解周期函数的概念并能运用函数的周期性知识解题。

1.周期函数定义:设函数()f x 的定义域为D ,T 为非零常数,若对任意x D ∈,都有()()f x T f x +=成立,则()f x 是周期函数,T 是()f x 的一个周期。

若在所有的正周期中存在最小值,则称此值为最小正周期。

2.从定义表述中可发现,周期函数不一定存在最小正周期。

二、问题举例 例1.设函数()f x 是定义在R 上的函数选题目的:引导学生理解并掌握周期函数的不同表现形式,感受抽象函数递推式与周期函数的联系; 思路分析:以第(3)小题为例,因为()()12f x f x +=-中的x 是任意的,可2x +替代x ,就可得到()()()()11412f x f x f x f x +=-=-=+-,从而()f x 的一个周期为4;其它几个问题也同样可求得结果。

例2.设函数()f x 是定义在R 上的函数,求解下列问题(1)直线x a =和x b =是函数()y f x =图象的两条对称轴,问()f x 是否为周期函数,若是,其周期为多少?(2)直线x a =是函数()y f x =图象的对称轴,点(),0b 是函数()y f x =图象的对称中心,问问()f x 是否为周期函数,若是,其周期为多少?选题目的:两条对称轴就如人的前后各放置了一面镜子,会在镜子里出现无数多个像,正如周而复始的现象;指导学生研究函数图象对称性与周期性的内在联系,从而能更好地运用对称性和周期性解决相关数学问题。

思路分析:以第(1)题为例,因为x a =和x b =都是函数()y f x =图象的对称轴,所以必有:()()2,f a x f x -=()()2,f b x f x -=则有()()22,f a x f b x -=-用2b x -替代x 可得到()()22,f a b x f x -+=由周期函数的定义可知,()f x 的一个正周期为2a b -。

新课标人教A版必修5第一章《解三角形》全章教案

新课标人教A版必修5第一章《解三角形》全章教案

(图 1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图 1.1-3,当 ABC 是锐角三角形时,设边 AB 上的高是 CD,根据任意角三角函数的定义,有 CD= a sin B b sin A ,则 同理可得 从而
高中数学新课标必修 5 第一章
高中数学新课标必修 5 第一章
数学 5
(一)课标要求
第一章 解三角形
章节总体设计
如何看这两个定理之间的关系?” ,并进而指出, “从余弦定理以及余弦函数的性质可知,如果一个三角形 两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对 的角是钝角; 如果大于第三边的平方, 那么第三边所对的角是锐角.从上可知, 余弦定理是勾股定理的推广.” 3.重视加强意识和数学实践能力 学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力 较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数 学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的 问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学 思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用 于实际问题。 (三)教学内容及课时安排建议 1.1 正弦定理和余弦定理(约 3 课时) 1.2 应用举例(约 4 课时) 1.3 实习作业(约 1 课时) (四)评价建议 1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余 弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自 己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得 到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有 多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对 于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。 2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题 的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学 实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的 错误,解决测量中出现的一些问题。

高中数学解三角形教案

高中数学解三角形教案

高中数学解三角形教案
一、教学目标:
1. 了解三角形的定义和性质;
2. 掌握解三角形的方法;
3. 能够运用解三角形的知识解决实际问题。

二、教学重点:
1. 三角形的定义和性质;
2. 解三角形的方法。

三、教学内容:
1. 三角形的定义和性质
2. 解三角形的方法
3. 实例分析
四、教学步骤:
1. 师生互动导入:通过实际例子引入三角形的定义和性质,例如让学生观察周围的物体,
找到其中的三角形并进行分类,引导学生讨论三角形的定义和性质。

2. 教学讲解:讲解三角形的定义和性质,包括三角形的内角和为180度、三边之和大于第三边等性质,引导学生理解三角形的基本概念。

3. 解三角形的方法:介绍解三角形的方法,包括余角、角平分线、作图等方法,讲解每种
方法的应用场景和步骤。

4. 实例分析:通过实际例子进行分析和讨论,引导学生运用解三角形的方法解决实际问题,加深对知识的理解和应用能力。

五、教学评价:
教师可通过课堂练习、作业和小测验等方式进行教学评价,检验学生对三角形的理解和解
题能力。

六、拓展延伸:
师生可通过课外探究、实验等方式拓展三角形的相关知识,激发学生的学习兴趣,提高学
生的综合能力。

七、教学反思:
教师应及时总结本节课的教学效果,结合学生的表现和反馈,不断优化教学方法,提高教学质量。

苏教版高中高三数学必修5《解三角形》教案及教学反思

苏教版高中高三数学必修5《解三角形》教案及教学反思

苏教版高中高三数学必修5《解三角形》教案及教学反思一、教学背景《解三角形》是高中数学必修5中的重要章节,这一章的重点是如何通过已知角度或边求解三角形的其他未知角度和边长。

在这一章中,学生需要掌握三角函数的基本概念和运用,特别是正弦、余弦和正切,同时还需要掌握三角函数的运算法则和三角三边的关系。

本节课程旨在帮助学生深刻理解三角函数的概念和应用,掌握几何意义和图形意义,同时加强学生的数学思维和推理能力。

二、教学目标1.理解三角函数的基本概念,特别是正弦、余弦和正切。

2.掌握三角函数的运算法则和三角三边的关系。

3.能够运用所学的知识,解决实际问题。

4.提高学生的数学思维和推理能力。

三、教学内容1. 三角函数的基本概念正弦、余弦和正切•正弦函数:$\\sin A = \\frac{a}{c}$•余弦函数:$\\cos A = \\frac{b}{c}$•正切函数:$\\tan A = \\frac{a}{b}$其中,a、b、c分别表示三角形的三条边,A表示对应的内角。

2. 三角函数的运算法则和三角三边的关系三角函数的运算法则•$\\sin (A \\pm B) = \\sin A \\cos B \\pm \\cos A \\sin B$•$\\cos (A \\pm B) = \\cos A \\cos B \\mp \\sin A \\sin B$•$\\tan (A \\pm B) = \\frac{\\tan A \\pm \\tan B}{1 \\mp \\tan A \\tan B}$三角三边的关系•正弦定理:$\\frac{a}{\\sin A} =\\frac{b}{\\sin B} = \\frac{c}{\\sin C} = 2R$•余弦定理:$a^2 = b^2 + c^2 - 2bc \\cos A$•正切定理:$\\tan \\frac{A}{2} = \\frac{r}{s - a}$其中,R表示三角形外接圆半径,r表示三角形内切圆半径,s表示三角形半周长。

2021年人教A版高中数学必修5第一章《解三角形》综合教案

2021年人教A版高中数学必修5第一章《解三角形》综合教案

高中数学课题:解三角形综合授课时间:授课班级:授课教师:教材分析本课内容是人教A版普通高中课程标准实验教科书《数学》(必修5)第一章《解三角形》。

数学教学的核心价值是“学生自主讨论,循序渐进教学,强化问题探究,营造思维过程”。

本节课采用了问题探究、互助讨论、练习强化等教学方式,就是让学生观察、操作、比较、练习有关的学习内容,增强学生的知识探索及公式计算能力。

激发学生探究数学,应用数学的潜能,发展数学建模的核心素养。

正余弦定理在高中数学中的地位与作用:三角形是最基本的几何图形,三角形中边与角的关系是三角形最基本的关系。

初中我们学过简单的有关解直角三角形的知识,本章节通过正弦定理和余弦定理进一步求解任意三角形的边与角的关系,在实际测量中,如测量距离、高度、角度等问题的一系列应用均可由正弦定理和余弦定理解决。

任务分析1.进一步熟练掌握正弦、余弦定理在解各类三角形中的应用;2.提高对正弦、余弦定理应用范围的认识;3.初步应用正弦、余弦定理解决一些和三角函数、向量有关的综合问题.教学目标与核心素养1. 掌握正、余弦定理的几种表示形式及并能灵活会运用正、余弦定理解决解三角形问题;2. 在具体的问题情境中,能合理选择两个定理解解三角形;3.培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、正余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。

教学重难点重点:正弦定理与余弦定理的灵活运用;难点:正弦定理与余弦定理的综合运用。

教学过程1.在△ABC中,sin A∶sin B∶sin C=3∶2∶3,则cos C的值为( )A.13B.-23C.14D.-142.已知△ABC的面积S=a2-(b2+c2),则cos A等于( )A.-4B.1717C.±1717D.-17173.在△ABC中,内角A,B,C所对应的边分别是a,b,c,若c2=(a-b)2+6,C=π3,则△ABC的面积是________.4.△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b=6,c=3,则A=________.类型一利用正弦、余弦定理证明边角恒等式【例1】在△ABC中,A,B,C的对边分别为a,b,c,求证:a2-b2c2=sin(A-B)sin C.证明在△ABC中,由余弦定理得a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,∴a2-b2=b2-a2-2bc cos A+2ac cos B,∴2(a2-b2)=2ac cos B-2bc cos A,即a2-b2=ac cos B-bc cos A,∴a2-b2c2=a cos B-b cos Ac.由正弦定理得ac=sin Asin C,bc=sin Bsin C,∴a2-b2c2=sin A cos B-cos A sin Bsin C=sin(A-B)sin C,故等式成立.规律方法(1)证明三角恒等式,关键是消除等号两端三角函数式的差异.形式上一般有:左⇒右;右⇒左或左⇒中⇐右三种.(2)利用正弦、余弦定理证明三角形中的恒等式的途径有两种:一是把角的关系通过正弦、余弦定理转化为边的关系;二是把边的关系转化为角的关系,一般是通过正弦定理转化.【训练1】 在△ABC 中,若a cos 2C2+c cos 2A 2=3b2,求证:a +c =2b .证明 由题a (1+cos C )+c (1+cos A )=3b ,即a +a ·a 2+b 2-c 22ab +c +c ·b 2+c 2-a 22bc =3b ,∴2ab +a 2+b 2-c 2+2bc +b 2+c 2-a 2=6b 2, 整理得ab +bc =2b 2,同除b 得a +c =2b , 故等式成立.类型二 利用正弦、余弦定理解三角形【例2】 在△ABC 中,若c ·cos B =b ·cos C ,且cos A =23,求sin B 的值.解 由c ·cos B =b ·cos C ,结合正弦定理得, sin C cos B =sin B cos C ,故sin(B -C )=0,∵0<B <π,0<C <π, ∴-π<B -C <π,∴B -C =0,B =C ,故b =c . ∵cos A =23,∴由余弦定理得3a 2=2b 2,再由余弦定理得cos B =66,又0°<B <180°, 故sin B =306.规律方法 (1)余弦定理和正弦定理一样,都是围绕着三角形进行边角互换的.在有关三角形的题目中注意选择是应用正弦定理,还是余弦定理,必要时也可列方程(组)求解.同时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能利用某个定理的信息. (2)解题时,还应注意,当把条件转化为角之间的关系时,还应注意三角恒等变换公式的应用.【训练2】 在锐角△ABC 中,b 2-a 2-c 2ac =cos (A +C )sin A cos A .(1)求角A ;(2)若a =2,求bc 的取值范围.解 (1)由余弦定理可得:a 2+c 2-b 2=2ac cos B , ⇒-2ac cos Bac=cos (π-B )sin A cos A, ∴sin 2A =1且0°<A <90°⇒A =45°,(2)⎩⎨⎧B +C =135°,0°<B <90°,0°<C <90°⇒45°<C <90°,又b sin B =c sin C =asin A=2, ∴b =2sin B ,c =2sin C ,bc =2sin(135°-C )·2sin C =2sin(2C -45°)+2,45°<2C -45°<135°⇒22<sin(2C -45°)≤1,∴bc ∈(22,2+2].方向1 与三角恒等变换的综合【例3-1】 设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a ,3sin A =5sinB ,则C =( ) A.π3 B.2π3 C.3π4D.5π6解析 根据正弦定理可将3sin A =5sin B 化为3a =5b , 所以a =53b ,代入b +c =2a 可得c =73b ,结合余弦定理可得cos C =a 2+b 2-c 22ab =-12,因为0<C <π,所以C =2π3. 答案 B方向2 在复杂图形中的应用【例3-2】 如图所示,在四边形ABCD 中,AD ⊥CD ,AD =10,AB =14,∠BDA =60°,∠BCD =135°,求BC 的长.解 在△ABD 中,AD =10,AB =14,∠BDA =60°,设BD =x , 由余弦定理,得AB 2=AD 2+BD 2-2AD ·BD cos ∠BDA ,∴142=102+x 2-2×10x cos 60°,即x 2-10x -96=0, 解得x 1=16,x 2=-6(舍去), ∴BD =16.∵AD ⊥CD ,∠BDA =60°,∴∠CDB =30°. 在△BCD 中,由正弦定理得BC sin ∠CDB=BD sin ∠BCD,∴BC =16sin 30°sin 135°=8 2.方向3 与向量的综合应用【例3-3】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos(A -B )cos B -sin(A -B )sin(A +C )=-35.(1)求sin A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影. 解 (1)由cos(A -B )cos B -sin(A -B )sin(A +C )=-35,得cos(A -B )cos B -sin(A -B )sin B =-35,则cos(A -B +B )=-35,即cos A =-35.又0<A <π,则sin A =45.(2)由正弦定理,有a sin A =bsin B,所以sin B =b sin A a =22.由题知a >b ,则A >B ,故B =π4.根据余弦定理,有(42)2=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1或c =-7(负值舍去).故向量BA→在BC→方向上的投影为|BA→|cos B=2 2.规律方法: 求解正、余弦定理综合应用问题的注意点:(1)正弦定理、余弦定理是解决三角形问题的主要工具,正确选择适合试题特点的公式极为重要,当使用一个定理无法解决问题时,要及时考虑另外一个定理.(2)三角函数中的公式在解决三角形问题时是不可或缺的,应该养成应用三角函数公式列式化简的习惯.1.在有关三角形的题目中注意选择是应用正弦定理,还是余弦定理,必要时也可列方程(组)求解,同时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能利用某个定理的信息.2.解决正弦定理与余弦定理的综合应用问题,应注意根据具体情况引入未知数,运用方程思想来解决问题;平面向量与解三角形的交汇问题,应注意准确运用向量知识转化为解三角形问题,再利用正弦、余弦定理求解.反思提升这篇案例设计,思路清晰,突出现实.首先通过恰当的问题情景阐述三角形边角关系产生的背景,使学生体会到了数学在解决实际问题中的作用.然后通过探究、推导活动,使学生体会到了数学知识的发现和发展的历程.例题与练习的配备由浅入深,注重了教学与自然界的关系.拓展延伸有深度,为提高学生的思维能力和创造力提供了良好平台.总之,从现实出发建立正、余弦定理的模型,又在现实应用中升华有关正、余弦定理的理解,是这篇案例的突出特点.教学后记:板书设计:基础过关1.在△ABC 中,若a =7,b =8,cos C =1314,则最大角的余弦值是( )A.-15B.-16C.-17D.-182.某人要制作一个三角形,要求它的三条高的长度分别为113,111,15,则此人能( )A.不能作出这样的三角形B.作出一个锐角三角形C.作出一个直角三角形D.作出一个钝角三角形3.已知△ABC 的三边长分别为AB =7,BC =5,AC =6.则AB →·BC →的值为( ) A.19 B.14 C.-18D.-194.在△ABC 中,B =60°,a =1,S △ABC =32,则c sin C =________.5.在△ABC 中,若a cos A=b cos B=c cos C,则△ABC 是________三角形.6.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A -π4.7.在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a sin B =3b . (1)求角A 的大小; (2)若a =6,b +c =8,求△ABC 的面积.能力提升8.△ABC的两边长分别为2,3,其夹角的余弦值为13,则其外接圆半径为( )A.922B.924C.928D.2299.已知△ABC中,三边与面积的关系为S△ABC=a2+b2-c243,则cos C的值为( )A.12B.22C.32D.010.在△ABC中,若a2-b2=3bc,sin C=23sin B,则A=________.11.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知b-c=12a,2sin B=3sin C,则cos A的值为________.12.在△ABC中,内角A,B,C的对边分别为a,b,c,已知b2=ac,且cos B=3 4 .(1)求1tan A+1tan C的值;(2)设BA→·BC→=32,求a+c的值.13.(选做题)已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C+3a sin C-b-c =0.(1)求角A;(2)若a=2,△ABC的面积为3,求b,c.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修第章解三角形全章教案Document number【980KGB-6898YT-769T8CB-246UT-18GG08】课题: §1.1.1正弦定理如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

从而在直角三角形ABC 中,sin sin sin abcA B C ==思考:那么对于任意的三角形,以上关系式是否仍然成立可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B =, C 同理可得sin sin c b C B =, b a 从而sin sin a b A B=sin c C= A c B从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin abA B =sin cC =[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =;(2)sin sin ab A B =sinc C =等价于sin sin a b AB =,sin sin c bC B =,sin a A =sin c C从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

例1.在∆ABC 中,已知045A =,075B =,40a =cm ,解三角形。

例2.在∆ABC 中,已知20=a cm ,202b =cm ,045A =,解三角形。

练习:已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c练习:1.在∆ABC 中,已知045A =,030C =,10c =cm ,解三角形。

2.在∆ABC 中,已知060A =,045B =,20c =cm ,解三角形。

3.在∆ABC 中,已知20=a cm ,102b =,030B =,解三角形。

4.在∆ABC 中,已知102c =cm ,20b =cm ,045B =,解三角形。

补充:请试着推理出三角形面积公式(利用正弦)课题: §余弦定理如图1.1-4,在∆ABC 中,设BC=a,AC=b,AB=c,已知a,b 和∠C ,求边c联系已经学过的知识和方法,可用什么途径来解决这个问题用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。

由于涉及边长问题,从而可以考虑用向量来研究这个问题。

A如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 b c()()222 2 2c c c a b a ba ab b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅ C a B从而 2222cos c a b ab C =+- (图1.1-5)同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

即 2222cos a b c bc A =+-2222cos b a c ac B =+-2222cos c a b ab C =+-思考:这个式子中有几个量从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角 从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc222cos +-=a c b B222cos 2+-=b a c C ba[理解定理]从而知余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角。

思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系若∆ABC 中,C=090,则cos 0=C ,这时222=+c a b由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。

例1.在∆ABC 中,已知=a c 045B =,求b 及A练习:在∆ABC 中,若222a b c bc =++,求角A 。

例1.在∆ABC 中,已知,,a b A ,讨论三角形解的情况 分析:先由sin sin b A B a =可进一步求出B ; 则0180()C A B =-+ 从而sin a C c A= 1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解。

2.当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论:(1)若sin a b A >,则有两解;(2)若sin a b A =,则只有一解;(3)若sin a b A <,则无解。

(以上解答过程详见课本第910页)评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且sin b A a b <<时,有两解;其它情况时则只有一解或无解。

练习:(1)在∆ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。

(2)在∆ABC 中,若1a =,12c =,040C ∠=,则符合题意的b 的值有_____个。

(3)在∆ABC 中,a xcm =,2b cm =,045B ∠=,如果利用正弦定理解三角形有两解,求x 的取值范围。

例2.在∆ABC 中,已知7a =,5b =,3c =,判断∆ABC 的类型。

练习:(1)在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,判断∆ABC 的类型。

(2)已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型。

例3.在∆ABC 中,060A =,1b =3sin sin sin a b c A B C ++++的值练习:(1)在∆ABC 中,若55a =,16b =,且此三角形的面积2203S =C(2)在∆ABC 中,其三边分别为a 、b 、c ,且三角形的面积2224a b c S +-=,求角C作业 (1)在∆ABC 中,已知4b =,10c =,030B =,试判断此三角形的解的情况。

(2)设x 、x+1、x+2是钝角三角形的三边长,求实数x 的取值范围。

(3)在∆ABC 中,060A =,1a =,2b c +=,判断∆ABC 的形状。

(4)三角形的两边分别为3cm ,5cm,它们所夹的角的余弦为方程25760x x --=的根,求这个三角形的面积。

§解三角形应用举例(2)例1、如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=︒51,∠ACB=︒75。

求A 、B 两点的距离(精确到变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30︒,灯塔B 在观察站C 南偏东60︒,则A 、B 之间的距离为多少例3、AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法。

例4、如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5404'︒,在塔底C 处测得A 处的俯角β=501'︒。

已知铁塔BC 部分的高为 m,求出山高CD(精确到1 m)例3、在∆ABC 中,求证:(1);sin sin sin 222222CB A c b a +=+ (2)2a +2b +2c =2(bccosA+cacosB+abcosC )变式练习1:已知在∆ABC 中,∠B=30︒,b=6,c=63,求a 及∆ABC 的面积S变式练习2:判断满足下列条件的三角形形状,(1) acosA = bcosB(2) sinC =BA B A cos cos sin sin ++附加例题:例1.在ABC ∆中,已知45B ︒=,60C ︒=,1c =。

试求最长边的长度。

例2.在ABC ∆中,已知::2a b c =,试判断此角形的形状并求出最大角与最小角的和。

解三角形归纳提高一、 知识点梳理:1、正弦定理:在△ABC 中,R Cc B b A a 2sin sin sin === 注:①R 表示△ABC 外接圆的半径 ②正弦定理可以变形成各种形式来使用2、余弦定理:在△ABC 中,A bc c b a cos 2222-+=B ac c a b cos 2222-+=C ab b a c cos 2222-+= 也可以写成第二种形式:bc a c b A 2cos 222-+=,ac b c a B 2cos 222-+=,abc b a C 2cos 222-+= 3、△ABC 的面积公式,B ac A bc C ab S sin 21sin 21sin 21===二、题组训练:1、在△ABC 中, a=12,A=060,要使三角形有两解,则对应b 的取值范围为2、判定下列三角形的形状在△ABC 中,已知38,4,3===c b a ,请判断△ABC 的形状。

在△ABC 中,已知C B A 222sin sin sin <+,请判断△ABC 的形状。

在△ABC 中,已知bc a A ==2,21cos ,请判断△ABC 的形状。

在△ABC 中,已知C B bc B c C b cos cos 2sin sin 2222=+,请判断△ABC 的形状。

在△ABC 中,,sin sin 3)sin sin )(sin sin sin (sin C B A C B C B A =-+++请判断△ABC 的形状。

3、在△ABC 中,已知030,4,5===A b a ,求△ABC 的面积。

4、在△ABC 中,若△ABC 的面积为S ,且22)(2c b a S -+=,求tanC 的值。

5、在△ABC 中,已知87cos ,6,0222===--A a c bc b ,求△ABC 的面积。

6、在△ABC 中,已知,sin sin ,360C B ab ==△ABC 的面积为315,求边b 的长。

相关文档
最新文档