【2021中考数学】圆的有关性质含答案
2020-2021中考数学圆的综合(大题培优 易错 难题)含答案
2020-2021中考数学圆的综合(大题培优 易错 难题)含答案一、圆的综合1.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重合),且四边形BDCE 为菱形.(1)求证:AC=CE ;(2)求证:BC 2﹣AC 2=AB•AC ;(3)已知⊙O 的半径为3.①若AB AC =53,求BC 的长; ②当AB AC为何值时,AB•AC 的值最大?【答案】(1)证明见解析;(2)证明见解析;(3)2;②32【解析】 分析:(1)由菱形知∠D=∠BEC ,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC ,据此得证;(2)以点C 为圆心,CE 长为半径作⊙C ,与BC 交于点F ,于BC 延长线交于点G ,则CF=CG=AC=CE=CD ,证△BEF ∽△BGA 得BE BG BF BA =,即BF•BG=BE•AB ,将BF=BC-CF=BC-AC 、BG=BC+CG=BC+AC 代入可得; (3)①设AB=5k 、AC=3k ,由BC 2-AC 2=AB•AC 知6k ,连接ED 交BC 于点M ,Rt △DMC 中由DC=AC=3k 、MC=126k 求得22CD CM -3,可知OM=OD-3,在Rt △COM 中,由OM 2+MC 2=OC 2可得答案.②设OM=d ,则MD=3-d ,MC 2=OC 2-OM 2=9-d 2,继而知BC 2=(2MC )2=36-4d 2、AC 2=DC 2=DM 2+CM 2=(3-d )2+9-d 2,由(2)得AB•AC=BC 2-AC 2,据此得出关于d 的二次函数,利用二次函数的性质可得答案. 详解:(1)∵四边形EBDC 为菱形,∴∠D=∠BEC ,∵四边形ABDC 是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC ,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴BE BGBF BA=,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴6k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=126k,∴223CD CM k-=,∴OM=OD﹣DM=33k,在Rt△COM中,由OM2+MC2=OC2得(33)2+6k)2=32,解得:k=33或k=0(舍),∴62;②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=36﹣4d2,AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,由(2)得AB•AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣34)2+814,∴当d=34,即OM=34时,AB•AC最大,最大值为814,∴DC2=272,∴AC=DC=362,∴AB=964,此时32ABAC=.点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.2.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求»AC的长度.【答案】(1)证明见解析;(2)2π.【解析】试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∴弧AC的长度=606180π⨯=2π.点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.3.图 1 和图 2 中,优弧»AB纸片所在⊙O 的半径为 2,AB=23,点P为优弧»AB上一点(点P 不与A,B 重合),将图形沿BP 折叠,得到点A 的对称点A′.发现:(1)点O 到弦AB 的距离是,当BP 经过点O 时,∠ABA′=;(2)当BA′与⊙O 相切时,如图 2,求折痕的长.拓展:把上图中的优弧纸片沿直径MN 剪裁,得到半圆形纸片,点P(不与点M, N 重合)为半圆上一点,将圆形沿NP 折叠,分别得到点M,O 的对称点A′, O′,设∠MNP=α.(1)当α=15°时,过点A′作A′C∥MN,如图 3,判断A′C 与半圆O 的位置关系,并说明理由;(2)如图 4,当α= °时,NA′与半圆O 相切,当α= °时,点O′落在»NP上.(3)当线段NO′与半圆O 只有一个公共点N 时,直接写出β的取值范围.【答案】发现:(1)1,60°;(2)3;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】【分析】发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=12A'N=12MN=2可判定A′C与半圆相切;(2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在»PB时,连接MO′,则可知NO′=12MN,可求得∠MNO′=60°,可求得α=30°;(3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.【详解】发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,∵⊙O的半径为2,AB=23,∴OH=22OB HB-=222(3)1-=在△BOH中,OH=1,BO=2∴∠ABO=30°∵图形沿BP折叠,得到点A的对称点A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=12OB=1.∴3.∵OG⊥BP,∴3.∴3.∴折痕的长为3拓展:(1)相切.分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,∵A'C∥MN∴四边形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=12A'N=12MN=2∴A'C与半圆(2)当NA′与半圆O相切时,则ON⊥NA′,∴∠ONA′=2α=90°,∴α=45当O′在»PB上时,连接MO′,则可知NO′=12 MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案为:45°;30°.(3)∵点P,M不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B;当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点N,但是点P,N不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.【点睛】本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.4.如图,在直角坐标系中,已知点A(-8,0),B(0,6),点M在线段AB上。
2021年九年级中考专题训练:圆的有关性质(含答案)
2021中考专题训练:圆的有关性质一、选择题1. 如图,AB为☉O的直径,C,D为☉O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°2. 如图,△ABC是☉O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°3. 如图,线段AB经过☉O的圆心,AC,BD分别与☉O相切于点C,D.若AC=BD=4,∠A=45°,则圆弧CD的长度为 ()A.πB.2πC.2πD.4π4. 如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°5. 如图,AB是⊙O的直径,CD为弦,CD⊥AB于点E,则下列结论中不成立...的是()A .∠COE =∠DOEB .CE =DEC .OE =BED.BD ︵=BC ︵6.△ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( ) A. 120° B. 125° C. 135° D. 150°7. 2019·天水 如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°8. 如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径为5.若P 是⊙O上的一点,在△ABP 中,PB =AB ,则PA 的长为( )A .5B.5 32C .5 2D .5 3二、填空题9. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.10.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,若∠BCD =28°,则∠ABD =________°.11. 如图,C ,D两点在以AB 为直径的圆上,AB =2,∠ACD =30°,则AD =________.12. 2019·随州如图,点A ,B ,C 在⊙O 上,点C 在AMB ︵上.若∠OBA =50°,则∠C 的度数为________.13. 如图,在⊙O 中,半径OA 垂直于弦BC ,点D 在圆上,且∠ADC =30°,则∠AOB 的度数为________.14. 如图2,一下水管道横截面为圆形,直径为100 cm ,下雨前水面宽为60 cm ,一场大雨过后,水面宽为80 cm,则水位上升________cm.链接听P39例4归纳总结15. 在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以点C为圆心,5为半径的圆上,连接PA,PB.若PB=4,则PA的长为________.16. 如图,定长弦CD在以AB为直径的⊙O上滑动(点C,D与点A,B不重合),M是CD的中点,过点C作CP⊥AB于点P.若CD=3,AB=8,PM=l,则l的最大值是________.三、解答题17.如图①,在△ABC中,点D在边BC上,∠ABC ∶∠ACB ∶∠ADB=1∶2∶3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图②),求∠CAD的度数.18. 已知:如图5,在⊙O中,M,N分别为弦AB,CD的中点,AB=CD,AB 不平行于CD.求证:∠AMN=∠CNM.19.如图,在△ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =C D ,过点D 作⊙O 的切线交边AC 于点F. (1)求证:DF ⊥AC ;(2)若⊙O 的半径为5,∠CDF =30°,求BD ︵的长.(结果保留π)20. 如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径作半圆O 交AC 于点D ,E 为BC 的中点,连接DE. (1)求证:DE 是半圆O 的切线;(2)若∠BAC =30°,DE =2,求AD 的长.21. (2019•辽阳)如图,BE 是⊙O 的直径,点A 和点D 是⊙O 上的两点,连接AE ,AD ,DE ,过点A 作射线交BE 的延长线于点C ,使EAC EDA ∠=∠. (1)求证:AC 是⊙O 的切线;(2)若23CE AE==,求阴影部分的面积.22. 已知平面直角坐标系中两定点A(-1, 0)、B(4, 0),抛物线y=ax2+bx-2(a ≠0)过点A、B,顶点为C,点P(m, n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>32,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<52)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得顺次首尾连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.2021中考专题训练:圆的有关性质-答案一、选择题1. 【答案】B[解析]如图,连接AD,∵AB为☉O的直径,∴∠ADB=90°.∵∠A和∠BCD都是所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.2. 【答案】A[解析]记线段OP交☉O于点F.连接CO,CF,∵∠A=119°,∴∠BFC=61°,∴∠BOC=122°,∴∠COP=58°.∵CP与圆相切于点C,∴OC⊥CP,∴在Rt△OCP中,∠P=90°-∠COP=32°,故选A.3. 【答案】B[解析]连接CO ,DO ,因为AC ,BD 分别与☉O 相切于C ,D ,所以∠ACO=∠BDO=90°,所以∠AOC=∠A=45°,所以CO=AC=4, 因为AC=BD ,CO=DO ,所以OD=BD ,所以∠DOB=∠B=45°, 所以∠DOC=180°-∠DOB -∠AOC=180°-45°-45°=90°,==2π,故选B .4. 【答案】B5. 【答案】C6.【答案】C【解析】由CD 为腰上的高,I 为△ACD 的内心,则∠IAC +∠ICA =12(∠DAC +∠DCA)=12(180°-∠ADC)=12(180°-90°)=45°,所以∠AIC =180°-(∠IAC +∠ICA)=180°-45°=135°.又可证△AIB ≌△AIC ,得∠AIB =∠AIC =135°.7. 【答案】C8. 【答案】D[解析] 如图,连接OB ,OA ,OP ,设OB 与AP 交于点D.由PB=AB 可知PB ︵=AB ︵,从而可知OB ⊥AP.运用“一条弧所对的圆周角等于它所对的圆心角的一半”及“同圆的半径相等”可知△OAB 为等边三角形,在Rt △OAD 中,运用“在直角三角形中,30°角所对的直角边等于斜边的一半”及勾股定理列方程可求得AD 的长,从而可求出AP 的长为5 3.故选D.二、填空题9. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB , ∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB , ∴∠BAD=20°.10.【答案】62 【解析】根据直径所对的圆周角等于90°及∠BCD =28°,可得∠ACD =∠ACB -∠BCD =90°-28°=62°,再根据同弧所对圆周角相等有∠ABD =∠ACD =62°.11. 【答案】1[解析] ∵AB 为⊙O 的直径,∴∠ADB =90°. ∵∠B =∠ACD =30°, ∴AD =12AB =12×2=1.12. 【答案】40°13. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.14. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm,到长为80 cm的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm或70 cm.15. 【答案】3或73[解析] 如图,连接CP,PB的延长线交⊙C于点P′.∵PC=5,BC=3,PB=4,∴BC2+PB2=PC2,∴△CPB为直角三角形,且∠CBP=90°,即CB⊥PB,∴PB=P′B=4.∵∠ACB=90°,∴PB∥AC.又∵PB=AC=4,∴四边形ACBP为平行四边形.又∵∠ACB=90°,∴▱ACBP为矩形,∴PA=BC=3.在Rt△APP′中,∵PA=3,PP′=8,∴P′A=82+32=73.综上所述,PA的长为3或73.16. 【答案】34[解析] 如图,当CD∥AB时,PM的长最大,连接OM,OC.∵CD∥AB,CP⊥AB,∴CP⊥CD.∵M为CD的中点,OM过点O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC.∵⊙O的直径AB=8,∴半径OC=4,∴PM=4.三、解答题17. 【答案】(1)证明:如解图,连接OA,OD.设∠ABC=x,∵∠ABC∶∠ACB∶∠ADB=1∶2∶3,∴∠ADB=3x,∠ACB=2x,解图∴∠DAC=x,∠AOD=2∠ABC=2x,∴∠OAD=180°-2x2=90°-x,(2分)∴∠OAC=90°-x+x=90°,∴OA⊥AC,又∵OA为⊙O的半径,∴AC是⊙O的切线.(4分)(2)解:∵BD是⊙O的直径,∴∠BAD=90°,∵∠ABC∶∠ACB∶∠ADB=1∶2∶3,∠ABC+∠ADB=90°,∴∠ABC+3∠ABC=90°,(6分)解得∠ABC=22.5°,∴∠ADB=67.5°,∠ACB=45°,∴∠CAD=∠ADB-∠ACB=22.5°.(8分)18. 【答案】证明:连接OM,ON,OA,OC,如图所示.∵M,N分别为AB,CD的中点,∴OM ⊥AB ,ON ⊥CD ,AM =12AB ,CN =12CD.又∵AB =CD ,∴AM =CN.在Rt △AOM 和Rt △CON 中,⎩⎨⎧OA =OC ,AM =CN ,∴Rt △AOM ≌Rt △CON(HL),∴OM =ON ,∴∠OMN =∠ONM ,∴∠AMO +∠OMN =∠CNO +∠ONM ,即∠AMN =∠CNM.19. 【答案】(1)证明:如解图,连接OD ,(1分)∵DF 是⊙O 的切线,D 为切点,解图∴OD ⊥DF ,∴∠ODF =90°,(2分)∵BD =CD ,OA =OB ,∴OD 是△ABC 的中位线,(3分)∴OD ∥AC ,∴∠CFD =∠ODF =90°,∴DF ⊥AC.(4分)(2)解:∵∠CDF =30°,由(1)得∠ODF =90°,∴∠ODB =180°-∠CDF -∠ODF =60°,∵OB =OD ,∴△OBD 是等边三角形,(7分)∴∠BOD =60°,∴lBD ︵=n πR 180=60π×5180=53π.(8分)20. 【答案】解:(1)证明:如图,连接BD ,OD ,OE.∵AB 为半圆O 的直径,∴∠ADB =∠BDC =90°.在Rt △BDC 中,E 为斜边BC 的中点,∴DE =BE.在△OBE 和△ODE 中,⎩⎨⎧OB =OD ,OE =OE ,BE =DE ,∴△OBE ≌△ODE(SSS),∴∠ODE =∠ABC =90°,即OD ⊥DE.又∵OD 是半圆O 的半径,∴DE 是半圆O 的切线.(2)在Rt △ABC 中,∠BAC =30°,∴BC =12AC. ∵BC =2DE =4,∴AC =8.又∵∠C =90°-∠BAC =60°,DE =BE =EC ,∴△DEC 为等边三角形,∴DC =DE =2,∴AD =AC -DC =6.21. 【答案】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒,∵OA OE =, ∴12EOF AOF AOE ∠=∠=∠, ∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠,∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵CE AE ==∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠,∴2AEO EAC ∠=∠,∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠,∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒,∴OAE △是等边三角形,∴OA AE =,60EOA ∠=︒,∴OA =∴260π2π360=AOE S ⋅⨯=扇形,在Rt OAE △中,sin 3OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π33-.22. 【答案】(1)因为抛物线y=ax2+bx-2与x轴交于A(-1, 0)、B(4, 0)两点,所以y=a(x+1)(x-4)=ax2-3ax-4a.所以-4a=-2,b=-3a.所以12a=,32b=-.所以221313252()22228y x x x=--=--。
江苏中考数学历年真题分类 圆的性质及变换
江苏中考数学历年真题分类圆的性质及变换一、单选题1.(2021·常州)如图,BC是⊙O的直径,AB是⊙O的弦.若∠AOC=60°,则∠OAB的度数是()A.20°B.25°C.30°D.35°【答案】C【解析】【解答】解:∵∠AOC=60°,∴∠AOB=180°-60°=120°,∵OA=OB,∴∠OAB=∠OBA=(180°-120°)÷2=30°,故答案为:C.【分析】由圆周角定理可得∠AOB的度数,然后根据等腰三角形的性质以及三角形内角和定理求解即可.2.(2021·镇江)如图,∠BAC=36°,点O在边AB上,∠O与边AC相切于点D,交边AB于点E,F,连接FD,则∠AFD等于()A.27°B.29°C.35°D.37°【答案】A【解析】【解答】解:连接OD,∵∠O与边AC相切于点D,∴∠ADO=90°,∵∠BAC=36°,∴∠AOD=90°﹣36°=54°,∴∠AFD=12∠AOD=12×54°=27,故答案为:A.【分析】连接OD,根据切线的性质得出∠ADO=90°,然后根据直角三角形的性质求出∠AOD,最后利用三角形的外角性质求∠AFD即可.3.(2021·镇江)设圆锥的底面圆半径为r,圆锥的母线长为l,满足2r+l=6,这样的圆锥的侧面积()A.有最大值94πB.有最小值94πC.有最大值92πD.有最小值92π【答案】C【解析】【解答】解:∵2r+l=6,∴l=6﹣2r,∴圆锥的侧面积S侧=πrl=πr(6﹣2r)=﹣2π(r2﹣3r)=﹣2π[(r﹣32)2﹣94]=﹣2π(r﹣32)2+ 92π,∴当r=32时,S侧有最大值92π.故答案为:C.【分析】先把l用含r的代数式表示,代入圆锥的侧面积公式,得出一个关于S侧和r的二次函数关系式,再利用二次函数的性质求圆锥侧面积的最值即可.4.如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于()A.75°B.70°C.65°D.60°【答案】B【解析】【解答】解:∵∠BPC=70°,∴∠APO=70°,∵OC⊥OA,∴∠AOP=90°,∴∠A=20°,又∵OA=OB,∴∠ABO=20°,又∵点C在过点B的切线上,∴∠OBC=90°,∴∠ABC=∠OBC−∠ABO=90°−20°=70°,故答案为:B.【分析】根据题意可求出∠APO、∠A的度数,进一步可得∠ABO度数,从而推出答案. 5.(2020·扬州)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为()A.2√1313B.3√1313C.23D.32【答案】A【解析】【解答】∵∠ADC和∠ABC所对的弧长都是AC⌢,∴根据圆周角定理知,∠ABC=∠ADC,∴在Rt∠ACB中,AB= √AC2+BC2=√22+32=√13根据锐角三角函数的定义知,sin∠ABC=ACAB=2√13=2√1313,∴sin∠ADC= 2√1313,故答案为:A.【分析】首先根据圆周角定理可知,∠ABC=∠ADC,在Rt∠ACB中,根据锐角三角函数的定义求出∠ABC的正弦值.6.(2020·南京)如图,在平面直角坐标系中,点P在第一象限,∠P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D,若∠P的半径为5,点A的坐标是(0,8),则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)【答案】A【解析】【解答】设切点分别为G,E,连接PG,PE,PC,PD,并延长EP交BC与F,则PG=PE=PC=5,四边形OBFE是矩形.∵OA=8,∴CF=8-5=3,∴PF=4,∴OB=EF=5+4=9.∵PF过圆心,∴DF=CF=3,∴BD=8-3-3=2,∴D(9,2).故答案为:A.【分析】在Rt∠CPF中根据勾股定理求出PF的长,再根据垂径定理求出DF的长,进而求出OB,BD的长,从而求出点D的坐标.7.(2020·淮安)如图,点A,B,C在圆O上,∠ACB=54∘,则∠ABO的度数是()A.54∘B.27∘C.36∘D.108∘【答案】C【解析】【解答】解:∵在圆O中,∠ACB=54º,∴∠AOB=2∠ACB=108º,∵OA=OB,∴∠OAB=∠OBA= 180∘−108∘2=36º,故答案为:C.【分析】先由圆周角定理得到∠AOB,再利用等腰三角形的性质求解即可.8.(2020·常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6【答案】A【解析】【解答】解:∵CH⊥AB∴∠BHC=90°∵在Rt∠BHC中,点M是BC的中点∴MH= 12BC∵BC为⊙O的弦∴当BC为直径时,MH最大∵⊙O的半径是3∴MH最大为3.故答案为:A.【分析】根据直角三角形斜边上的中线等于斜边的一半可知MH= 12BC,当BC为直径时长度最大,即可求解.9.(2019·镇江)如图,四边形ABCD是半圆的内接四边形,AB是直径,DC⌢=CB⌢.若∠C= 110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°【答案】A【解析】【解答】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°-∠C=70°,∵DC⌢=CB⌢,∴∠CAB= 12∠DAB=35°,∵AB是直径,∴∠ACB=90°,∴∠ABC=90°-∠CAB=55°。
2021年九年级数学中考复习专题之圆的考察:相交弦定理的运用(含答案)
2021年九年级数学中考复习专题之圆的考察:相交弦定理的运用一.选择题1.如图,⨀O的两条弦AB、CD相交于点E,AC和DB的延长线交于点P,下列结论中成立的是()A.PC•CA=PB•BD B.CE•AE=BE•EDC.CE•CD=BE•BA D.PB•PD=PC•PA2.如图,在⊙O中,弦AC,BD交于点E,连结AB、CD,在图中的“蝴蝶”形中,若AE=,AC=5,BE=3,则BD的长为()A.B.C.5 D.3.如图,⊙O的弦AB、CD相交于点P,若AP=6,BP=8,CP=4,则CD长为()A.16 B.24 C.12 D.不能确定4.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.5.如图,矩形ABCD为⊙O的内接四边形,AB=2,BC=3,点E为BC上一点,且BE=1,延长AE交⊙O于点F,则线段AF的长为()A.B.5 C.+1 D.6.如图,⊙O的弦AB、CD相交于点P,若AP=3,BP=4,CP=2,则CD长为()A.6 B.12 C.8 D.不能确定7.如图,⊙O的直径AB与弦CD交于点E,AE=6,BE=2,CD=2,则∠AED的度数是()A.30°B.60°C.45°D.36°8.如图,点P为弦AB上的一点,连接OP,过点P作PC⊥OP,PC交⊙O于C,且⊙O的半径为3.若AP=4,PB=1,则OP的长是()A.2 B.2C.D.9.在⊙O中,弦AB和CD相交于P,且AB⊥CD,如果AP=4,PB=4,CP=2,那么⊙O的直径为()A.4 B.5 C.8 D.1010.如图,圆中两条弦AC,BD相交于点P.点D是的中点,连结AB,BC,CD,若BP=,AP=1,PC=3.则线段CD的长为()A.B.2 C.D.二.填空题11.如图,⊙O中,弦AB、CD相交于点P,若AP=5,BP=4,CP=3,则DP为.12.如图,已知⊙O的两条弦AB、CD相交于点E,且E分AB所得线段比为1:3,若AB=4,DE﹣CE=2,则CD的长为.13.如图,⊙O的弦AB、CD相交于点E,若AE:DE=3:5,则AC:BD=.14.如图,在⊙O中,弦BC,DE交于点P,延长BD,EC交于点A,BC=10,BP=2CP,若=,则DP的长为.15.如图,⊙O的弦AB、CD相交于点E,若CE:BE=2:3,则AE:DE=.三.解答题16.如图,弦AB与CD相交于⊙O内一点P,PC>PD.(1)试说明:△PAC∽△PDB;(2)设PA=4,PB=3,CD=8,求PC、PD的长.17.如图,在⊙O中,弦AD,BC相交于点E,连接OE,已知AD=BC,AD⊥CB.(1)求证:AB=CD;(2)如果⊙O的直径为10,DE=1,求AE的长.18.九年级学生小刚是一个喜欢看书的好学生,他在学习完第二十四章圆后,在家里突然看到爸爸的初中数学书上居然还有一个相交弦定理(圆内的两条相交弦,被交点分成的两条线段长的积相等),非常好奇,仔细阅读原来就是:PA•PB=PC•PD,小刚很想知道是如何证明的,可已证明部分污损看不清了,只看到辅助线的做法,分别连结AC、BD.聪明的你一定能帮他证出,请在图1中做出辅助线,并写出详细的证明过程.小刚又看到一道课后习题,如图2,AB是⊙O弦,P是AB上一点,AB=10cm,PA=4cm,OP=5cm,求⊙O的半径,愁坏了小刚,乐于助人的你肯定会帮助他,请写出详细的证明过程.19.如图,(1)已知:P为半径为5的⊙O内一点,过P点最短的弦长为8,则OP=(2)在(1)的条件下,若⊙O内有一异于P点的Q点,过Q点的最短弦长为6,且这两条弦平行,求PQ的长.(3)在(1)的条件下,过P点任作弦MN、AB,试比较PM•PN与PA•PB的大小关系,且写出比较过程.你能用一句话归纳你的发现吗?(4)在(1)的条件下,过P点的弦CD=,求PC、PD的长.20.请阅读下列材料:圆内的两条相交弦,被交点分成的两条线段长的积相等.即如图1,若弦AB、CD交于点P,则PA•PB=PC•PD.请你根据以上材料,解决下列问题.已知⊙O的半径为2,P是⊙O内一点,且OP=1,过点P任作﹣弦AC,过A、C两点分别作⊙O的切线m和n,作PQ⊥m于点Q,PR⊥n于点R.(如图2)(1)若AC恰经过圆心O,请你在图3中画出符合题意的图形,并计算:的值;(2)若OP⊥AC,请你在图4中画出符合题意的图形,并计算:的值;(3)若AC是过点P的任一弦(图2),请你结合(1)(2)的结论,猜想:的值,并给出证明.答案一.选择题1.解:∵∠P=∠P,∠A=∠D,∴△PAB∽△PDC,∴=,∴PB•PD=PC•PA,故选:D.2.解:EC=AC﹣AE=,由相交弦定理得,AE•EC=DE•BE,则DE==,∴BD=DE+BE=,故选:B.3.解:∵AP•BP=CP•DP,∴PD=,∵AP=6,BP=8,CP=4,∴PD=12,∴CD=PC+PD=12+4=16.故选:A.4.解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选:D.5.解:∵四边形ABCD是矩形,∴∠B=90°,∴AE===,∵BC=3,BE=1,∴CE=2,由相交弦定理得:AE•EF=BE•CE,∴EF==,∴AF=AE+EF=;故选:A.6.解:∵AP•BP=CP•DP,∴PD=,∵AP=3,BP=4,CP=2,∴PD=6,∴CD=PC+PD=2+6=8.故选:C.7.解:连接OD,过圆心O作OH⊥CD于点H.∴DH=CH=CD(垂径定理);∵CD=2,∴DH=.又∵AE=6,BE=2,∴AB=8,∴OA=OD=4(⊙O的半径);∴OE=2;∴在Rt△ODH中,OH===(勾股定理);在Rt△OEH中,sin∠OEH==,∴∠OEH=45°,即∠AED=45°.故选:C.8.解:延长CP交圆于一点D,连接OC,∵PC⊥OP,∴PC=PD,∴PC2=PA•PB,∵AP=4,PB=1,∴PC2=4×1,∴PC=2,∴OP===.故选:C.9.解:∵AB⊥CD,AP=PB=4,∴CD为⊙O的直径,由相交弦定理得,PA•PB=PC•PD,即2PD=16,解得,PD=8,∴CD=10,故选:D.10.解:连接OD交AC于H,如图,∵点D是的中点,∴OD⊥AC,AH=CH=2,∴PH=1,∵AP•PC=BP•PD,∴PD==,在Rt△PDH中,DH==,在Rt△DCH中,CD==.故选:A.二.填空题(共5小题)11.解:由相交弦定理得,PA•PB=PC•PD,∴5×4=3×DP,解得,DP=,故答案为:.12.解:∵E分AB所得线段比为1:3,AB=4,∴AE=1,EB=3,由相交弦定理得,AE•EB=CE•ED,∴1×3=CE×(CE+2),解得,CE1=1,CE2=﹣3(舍去),则CE=1,DE=2,∴CD=1+3=4,故答案为:4.13.解:∵弦AB、CD相交于点E,∴∴∠C=∠B,∠A=∠D,∴△ACE∽△DBE,∴==,故答案为:3:5.14.解:如图,作CH∥DE交AB于H.设DP=2a.∵PD∥CH,∴===,∴CH=3a,∵BD:AD=2:3,∴BD:AD=BD:BH,∴AD=BH,∴BD=AH,∴AH:AD=2:3,∴CH∥DE,∴==,∴DE=a,∴PE=a﹣2a=a,∵BC=10,BP:PC=2:1,∴PB=,PC=,∵PB•PC=PD•PE,∴5a2=,∴a=(负根已经舍弃),∴PD=2a=.故答案为.15.解:∵⊙O的弦AB、CD相交于点E,∴AE•BE=CE•DE,∴AE:DE=CE:BE=2:3,故答案为:2:3.三.解答题(共5小题)16.(1)证明:由圆周角定理得,∠A=∠D,∠C=∠B,∴△PAC∽△PDB;(2)解:由相交弦定理得到,PA•PB=PC•PD,即3×4=PC×(8﹣PC),解得,PC=2或6,则PD=6或2,∵PC>PD,∴PC=6,PD=2.17.(1)证明:如图,∵AD=BC,∴=,∴﹣=﹣,即=,∴AB=CD;(2)如图,过O作OF⊥AD于点F,作OG⊥BC于点G,连接OA、OC.则AF=FD,BG=CG.∵AD=BC,∴AF=CG.在Rt△AOF与Rt△COG中,,∴Rt△AOF≌Rt△COG(HL),∴OF=OG,∴四边形OFEG是正方形,∴OF=EF.设OF=EF=x,则AF=FD=x+1,在直角△OAF中.由勾股定理得到:x2+(x+1)2=52,解得x=5.则AF=3+1=4,即AE=AF+3=7.18.解:(1)圆的两条弦相交,这两条弦被交点分成的两条线段的积相等.已知,如图1,⊙O的两弦AB、CD相交于E,求证:AP•BP=CP•DP.证明如下:连结AC,BD,如图1,∵∠C=∠B,∠A=∠D,∴△APC∽△DPB,∴AP:DP=CP:BP,∴AP•BP=CP•DP;所以两条弦相交,被交点分成的两条线段的积相等.(2)过P作直径CD,如图2,∵AB=10,PA=4,OP=5,∴PB=10﹣4=6,PC=OC+OP=R+5,PD=OD﹣OP=R﹣5,由(1)中结论得,PA•PB=PC•PD,∴4×6=(R+5)×(R﹣5),解得R=7(R=﹣7舍去).所以⊙O的半径R=7cm.19.解:(1)连接OP,过点P作CD⊥OP于点P,连接OD.根据题意,得CD=8,OD=5.根据垂径定理,得PD=4,根据勾股定理,得OP=3;(2)根据平行线的性质和垂线的性质,知O、P、Q三点共线.根据(1)的求解方法,得OQ=4,则PQ=1或7;(3)连接AM、BN.∵∠A=∠N,∠M=∠B,∴△APM∽△NPB,∴,即PM•PN=PA•PB;(4)作直径AB,根据相交弦定理,得PC•PD=PA•PB=(5﹣3)(5+3)=16,又CD=,设PC=x,则PD=﹣x,则有x(﹣x)=16,解得x=3或x=.即PC=3或,PD=或3.20.解:(1)AC过圆心O,且m,n分别切⊙O于点A,C,∴AC⊥m于点A,AC⊥n于点C.∵PQ⊥m于点Q,PR⊥n于点R,∴Q与A重合,R与C重合.∵OP=1,AC=4,∴PQ=1,PR=3,∴+=1+=.(2)连接OA,∵OP⊥AC于点P,且OP=1,OA=2,∴∠OAP=30°.∴AP=.∵OA⊥直线m,PQ⊥直线m,∴OA∥PQ,∠PQA=90°.∴∠APQ=∠OAP=30°.在Rt△AQP中,PQ=,同理,PR=,∴.(3)猜想.证明:过点A作直径交⊙O于点E,连接EC,∴∠ECA=90°.∵AE⊥直线m,PQ⊥直线m,∴AE∥PQ且∠PQA=90°.∴∠EAC=∠APQ.∴△AEC∽△PAQ.∴①同理可得:②①+②,得:+=+∴=()=•=.过P作直径交⊙O于M,N,根据阅读材料可知:AP•PC=PM•PN=3,∴=.。
2020-2021中考数学圆的综合-经典压轴题含答案
2020-2021中考数学圆的综合-经典压轴题含答案一、圆的综合1.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.【答案】(1)4;(2)35;(3)点E的坐标为(1,2)、(53,103)、(4,2).【解析】分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH=BHHA=1,∴BH=HA=4,∴OC=BH=4.故答案为4.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).由(1)得:OH =2,BH =4.∵OC 与⊙M 相切于N ,∴MN ⊥OC .设圆的半径为r ,则MN =MB =MD =r .∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA .∵BM =DM ,∴CN =ON ,∴MN =12(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2.解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD .∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG .∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =12BD =2,∴OF =4,∴OG同理可得:OB AB ,∴BG =12AB .设OR =x ,则RG x .∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,∴(2﹣x 2=()2﹣(x )2.解得:x =5,∴BR 2=OB 2﹣OR 2=(2﹣(5)2=365,∴BR =5.在Rt △ORB 中,sin ∠BOR =BR OB35. 故答案为35. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2.解得:t =1.则OP =CD =DB =1.∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =12,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2).②当∠BED =90°时,如图3.∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,∴BEBC =2DB BE OB ∴,∴BE =5t . ∵PE ∥OC ,∴∠OEP =∠BOC .∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO ,∴OEOB =25OPBC∴,=2t,∴OE=5t.∵OE+BE=OB=255,∴t+5t=25.解得:t=53,∴OP=53,OE=55,∴PE=22OE OP-=103,∴点E的坐标为(51033,).③当∠DBE=90°时,如图4.此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.则有OD=PE,EA=22PE PA+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED=BEDE=2,∴DE=2BE,∴t=22(t﹣22)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、(51033,)、(4,2).点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.2.如图,在直角坐标系中,已知点A(-8,0),B(0,6),点M在线段AB上。
【2021中考数学分类训练】圆含答案
2021年中考真题汇编—圆一.选择题(共32小题)1.(2020•日照)如图,AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,若CD=6,AE=9,则阴影部分的面积为()A.6π﹣B.12π﹣9C.3π﹣D.9 2.(2020•阜新)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OA i B i∁i D i E i,则正六边形OA i B i∁i D i E i(i=2020)的顶点∁i的坐标是()A.(1,﹣)B.(1,)C.(1,﹣2)D.(2,1)3.(2020•永州)如图,已知P A,PB是⊙O的两条切线,A,B为切点,线段OP交⊙O于点M.给出下列四种说法:①P A=PB;②OP⊥AB;③四边形OAPB有外接圆;④M是△AOP外接圆的圆心.其中正确说法的个数是()A.1B.2C.3D.4 4.(2020•吉林)如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°5.(2020•海南)如图,已知AB是⊙O的直径,CD是弦,若∠BCD=36°,则∠ABD等于()A.54°B.56°C.64°D.66°6.(2020•十堰)如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC=30°,AE=1,则BC=()A.2B.4C.D.2 7.(2020•广州)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm 8.(2020•青岛)如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°9.(2020•牡丹江)如图,四边形ABCD内接于⊙O,连接BD.若,∠BDC=50°,则∠ADC的度数是()A.125°B.130°C.135°D.140°10.(2020•随州)设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h、r、R,则下列结论不正确的是()A.h=R+r B.R=2r C.r=a D.R=a 11.(2020•徐州)如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于()A.75°B.70°C.65°D.60°12.(2020•武汉)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4 13.(2020•泰州)如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE为36°,则图中阴影部分的面积为()A.10πB.9πC.8πD.6π14.(2020•凉山州)如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=()A.2:B.:C.:D.:2 15.(2020•河北)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值16.(2020•滨州)在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE 的长为()A.6B.9C.12D.15 17.(2020•达州)如图,在半径为5的⊙O中,将劣弧AB沿弦AB翻折,使折叠后的恰好与OA、OB相切,则劣弧AB的长为()A.πB.πC.πD.π18.(2020•哈尔滨)如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O 上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°19.(2020•黔东南州)如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为()A.π﹣1B.π﹣2C.π﹣3D.4﹣π20.(2020•杭州)如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°21.(2020•黔东南州)如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2 22.(2020•嘉兴)如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是()A.2B.C.D.23.(2020•湖州)如图,已知四边形ABCD内接于⊙O,∠ABC=70°,则∠ADC的度数是()A.70°B.110°C.130°D.140°24.(2020•鸡西)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB 的度数是()A.22.5°B.30°C.45°D.60°25.(2020•山西)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是()A.80πcm2B.40πcm2C.24πcm2D.2πcm2 26.(2020•湘西州)如图,P A、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是()A.△BP A为等腰三角形B.AB与PD相互垂直平分C.点A、B都在以PO为直径的圆上D.PC为△BP A的边AB上的中线27.(2020•荆门)如图,⊙O中,OC⊥AB,∠APC=28°,则∠BOC的度数为()A.14°B.28°C.42°D.56°28.(2020•攀枝花)如图,直径AB=6的半圆,绕B点顺时针旋转30°,此时点A到了点A',则图中阴影部分的面积是()A.B.C.πD.3π29.(2020•金昌)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平分,则DC的长为()A.2B.C.2D.30.(2020•南京)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)二.解答题(共3小题)31.(2020•贵港)如图,在△ABC中,AB=AC,点D在BC边上,且AD=BD,⊙O是△ACD的外接圆,AE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若AB=2,AD=3,求直径AE的长.32.(2020•东营)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.33.(2020•潍坊)如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.参考答案与试题解析一.选择题(共32小题)1.(2020•日照)如图,AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,若CD=6,AE=9,则阴影部分的面积为()A.6π﹣B.12π﹣9C.3π﹣D.9【分析】根据垂径定理得出CE=DE=,再利用勾股定理求得半径,根据锐角三角函数关系得出∠EOD=60°,进而结合扇形面积求出答案.【解答】解:∵AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,∴CE=DE=.设⊙O的半径为r,在直角△OED中,OD2=OE2+DE2,即,解得,r=6,∴OE=3,∴cos∠BOD===,∴∠EOD=60°,∴,,∴,【点评】此题主要考查了垂径定理,勾股定理以及锐角三角函数和扇形面积求法等知识,正确得出∠EOD=60°是解题关键.2.(2020•阜新)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OA i B i∁i D i E i,则正六边形OA i B i∁i D i E i(i=2020)的顶点∁i的坐标是()A.(1,﹣)B.(1,)C.(1,﹣2)D.(2,1)【分析】由题意旋转8次应该循环,因为2020÷8=252…4,所以∁i的坐标与C4的坐标相同.【解答】解:由题意旋转8次应该循环,∵2020÷8=252…4,∴∁i的坐标与C4的坐标相同,∵C(﹣1,),点C与C4关于原点对称,∴C4(1,﹣),∴顶点∁i的坐标是(1,﹣),故选:A.【点评】本题考查正多边形与圆,坐标与图形变化﹣性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.3.(2020•永州)如图,已知P A,PB是⊙O的两条切线,A,B为切点,线段OP交⊙O于点M.给出下列四种说法:①P A=PB;③四边形OAPB有外接圆;④M是△AOP外接圆的圆心.其中正确说法的个数是()A.1B.2C.3D.4【分析】利用切线长定理对①进行判断;利用线段的垂直平分线定理的逆定理对②进行判断;利用切线的性质和圆周角定理可对③进行判断;由于只有当∠APO=30°时,OP =2OA,此时PM=OM,则可对④进行判断.【解答】解:∵P A,PB是⊙O的两条切线,A,B为切点,∴P A=PB,所以①正确;∵OA=OB,P A=PB,∴OP垂直平分AB,所以②正确;∵P A,PB是⊙O的两条切线,A,B为切点,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,∴点A、B在以OP为直径的圆上,∴四边形OAPB有外接圆,所以③正确;∵只有当∠APO=30°时,OP=2OA,此时PM=OM,∴M不一定为△AOP外接圆的圆心,所以④错误.故选:C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了切线长定理.4.(2020•吉林)如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°【分析】运用圆内接四边形对角互补计算即可.【解答】解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°﹣∠B=180°﹣108°=72°,故选:C.【点评】本题主要考查了圆内接四边形的性质,熟练掌握圆内接四边形对角互补是解答此题的关键.5.(2020•海南)如图,已知AB是⊙O的直径,CD是弦,若∠BCD=36°,则∠ABD等于()A.54°B.56°C.64°D.66°【分析】根据AB是⊙O的直径,可得∠ADB=90°,根据同弧所对圆周角相等可得∠DAB=∠BCD=36°,进而可得∠ABD的度数.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠DAB=∠BCD=36°,∴∠ABD=∠ADB﹣∠DAB,即∠ABD=90°﹣∠DAB=90°﹣36°=54°.故选:A.【点评】本题考查了圆周角定理,解决本题的关键是掌握圆周角定理.在同圆或等圆中,圆周角是所对圆心角的一半.6.(2020•十堰)如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC=30°,AE=1,则BC=()A.2B.4C.D.2【分析】连接OC,根据圆周角定理求得∠AOC=60°,在Rt△COE中可得OE=OC =OC﹣1得到OC=2,从而得到CE=,然后根据垂径定理得到BC的长.【解答】解:连接OC,如图,∵∠ADC=30°,∴∠AOC=60°,∵OA⊥BC,∴CE=BE,在Rt△COE中,OE=OC,CE=OE,∵OE=OA﹣AE=OC﹣1,∴OC﹣1=OC,∴OC=2,∴OE=1,∴CE=,∴BC=2CE=2.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.7.(2020•广州)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【分析】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48cm,∴BD=AB=×48=24(cm),∵⊙O的直径为52cm,∴OB=OC=26cm,在Rt△OBD中,OD===10(cm),∴CD=OC﹣OD=26﹣10=16(cm),故选:C.【点评】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.(2020•青岛)如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°【分析】根据圆周角定理得到∠BAD=90°,∠DAC=∠COD=63°,再由=得到∠B=∠D=45°,然后根据三角形外角性质计算∠AGB的度数.【解答】解:∵BD是⊙O的直径,∴∠BAD=90°,∵=,∴∠B=∠D=45°,∵∠DAC=∠COD=×126°=63°,∴∠AGB=∠DAC+∠D=63°+45°=108°.故选:B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.9.(2020•牡丹江)如图,四边形ABCD内接于⊙O,连接BD.若,∠BDC=50°,则∠ADC的度数是()A.125°B.130°C.135°D.140°【分析】连接OA,OB,OC,根据圆周角定理得出∠BOC=100°,再根据得到∠AOC,从而得到∠ABC,最后利用圆内接四边形的性质得到结果.【解答】解:连接OA,OB,OC,∵∠BDC=50°,∴∠BOC=2∠BDC=100°,∵,∴∠BOC=∠AOC=100°,∴∠ABC=∠AOC=50°,∴∠ADC=180°﹣∠ABC=130°.故选:B.【点评】本题考查了圆周角定理,弧、弦、圆心角的关系,圆内接四边形的性质,关键在于画出半径,构造圆心角.10.(2020•随州)设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h、r、R,则下列结论不正确的是()A.h=R+r B.R=2r C.r=a D.R=a【分析】根据等边三角形的内切圆和外接圆是同心圆,设圆心为O,根据30°角所对的直角边是斜边的一半得:R=2r;等边三角形的高是R与r的和,根据勾股定理即可得到结论.【解答】解:如图,∵△ABC是等边三角形,∴△ABC的内切圆和外接圆是同心圆,圆心为O,设OE=r,AO=R,AD=h,∴h=R+r,故A正确;∵AD⊥BC,∴∠DAC=∠BAC=×60°=30°,在Rt△AOE中,∴R=2r,故B正确;∵OD=OE=r,∵AB=AC=BC=a,∴AE=AC=a,∴(a)2+r2=(2r)2,(a)2+(R)2=R2,∴r=,R=a,故C错误,D正确;故选:C.【点评】本题考查了等边三角形及它的内切圆和外接圆的关系,等边三角形的内心与外心重合,是三条角平分线的交点;由等腰三角形三线合一的特殊性得出30°角和60°,利用直角三角形30°的性质或三角函数得出R、r、h的关系.11.(2020•徐州)如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于()A.75°B.70°C.65°D.60°【分析】先利用对顶角相等和互余得到∠A=20°,再利用等腰三角形的性质得到∠OBA =∠A=20°,然后根据切线的性质得到OB⊥BC,从而利用互余计算出∠ABC的度数.【解答】解:∵OC⊥OA,∴∠AOC=90°,∵∠APO=∠BPC=70°,∴∠A=90°﹣70°=20°,∵OA=OB,∴∠OBA=∠A=20°,∵BC为⊙O的切线,∴OB⊥BC,∴∠OBC=90°,∴∠ABC=90°﹣20°=70°.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质.12.(2020•武汉)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC 与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4【分析】连接OD,交AC于F,根据垂径定理得出OD⊥AC,AF=CF,进而证得DF=BC,根据三角形中位线定理求得OF=BC=DF,从而求得BC=DF=2,利用勾股定理即可求得AC.【解答】解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.【点评】本题考查了垂径定理,三角形全等的判定和性质,三角形中位线定理,熟练掌握性质定理是解题的关键.13.(2020•泰州)如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE为36°,则图中阴影部分的面积为()A.10πB.9πC.8πD.6π【分析】连接OC,易证得四边形CDOE是矩形,则△DOE≌△CEO,得到∠COB=∠DEO=∠CDE=36°,图中阴影部分的面积=扇形OBC的面积,利用扇形的面积公式即可求得.【解答】解:连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴CD∥OE,∴∠DEO=∠CDE=36°,由矩形CDOE易得到△DOE≌△CEO,∴∠COB=∠DEO=36°∴图中阴影部分的面积=扇形OBC的面积,∵S扇形OBC==10π∴图中阴影部分的面积=10π,故选:A.【点评】本题考查了扇形面积的计算,矩形的判定与性质,利用扇形OBC的面积等于阴影的面积是解题的关键.14.(2020•凉山州)如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=()A.2:B.:C.:D.:2【分析】连接OA、OB、OD,过O作OH⊥AB于H,由垂径定理得出AH=BH=AB,证出△AOD是等腰直角三角形,∠AOH=∠BOH=60°,AH=BH=AB,得出AD=OA,AH=OA,则AB=2AH=OA,进而得出答案.【解答】解:连接OA、OB、OD,过O作OH⊥AB于H,如图所示:则AH=BH=AB,∵等边三角形ABC和正方形ADEF,都内接于⊙O,∴∠AOB=120°,∠AOD=90°,∵OA=OD=OB,∴△AOD是等腰直角三角形,∠AOH=∠BOH=×120°=60°,∴AD=OA,AH=OA•sin60°=OA,∴AB=2AH=2×OA=OA,∴==,故选:B.【点评】本题考查了正多边形和圆、垂径定理、等边三角形的性质、正方形的性质、等腰直角三角形的判定与性质等知识;熟练掌握垂径定理、等边三角形和正方形的性质是解题的关键.15.(2020•河北)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值【分析】直接利用圆内接四边形的性质结合圆周角定理得出答案.【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A.【点评】此题主要考查了三角形的外接圆,正确分类讨论是解题关键.16.(2020•滨州)在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE 的长为()A.6B.9C.12D.15【分析】直接根据题意画出图形,再利用垂径定理以及勾股定理得出答案.【解答】解:如图所示:连接OD,∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC==6,∴DE=2DC=12.故选:C.【点评】此题主要考查了垂径定理和勾股定理,正确得出CO的长是解题关键.17.(2020•达州)如图,在半径为5的⊙O中,将劣弧AB沿弦AB翻折,使折叠后的恰好与OA、OB相切,则劣弧AB的长为()A.πB.πC.πD.π【分析】作O点关于AB的对称点O′,连接O′A、O′B,如图,利用对称的性质得到OA=OB=O′A=O′B,则可判断四边形OAO′B为菱形,再根据切线的性质得到O′A⊥OA,O′B⊥OB,则可判断四边形OAO′B为正方形,然后根据弧长公式求解.【解答】解:如图,作O点关于AB的对称点O′,连接O′A、O′B,∵OA=OB=O′A=O′B,∴四边形OAO′B为菱形,∵折叠后的与OA、OB相切,∴O′A⊥OA,O′B⊥OB,∴四边形OAO′B为正方形,∴∠AOB=90°,∴劣弧AB的长==π.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了对称的性质和弧长公式.18.(2020•哈尔滨)如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O 上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°【分析】根据切线的性质和圆周角定理即可得到结论.【解答】解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°﹣70°=20°.故选:B.【点评】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.19.(2020•黔东南州)如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为()A.π﹣1B.π﹣2C.π﹣3D.4﹣π【分析】根据题意和图形,可知阴影部分的面积是以2为半径的四分之一个圆的面积减去以1为半径的半圆的面积,再减去2个以边长为1的正方形的面积,加上以1半径的四分之一个圆的面积,本题得以解决.【解答】解:由题意可得,阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,故选:B.【点评】本题考查扇形的面积的计算,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(2020•杭州)如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°【分析】根据直角三角形两锐角互余性质,用α表示∠CBD,进而由圆心角与圆周角关系,用α表示∠COD,最后由角的和差关系得结果.【解答】解:∵OA⊥BC,∴∠AOB=∠AOC=90°,∴∠DBC=90°﹣∠BEO=90°﹣∠AED=90°﹣α,∴∠COD=2∠DBC=180°﹣2α,∵∠AOD+∠COD=90°,∴β+180°﹣2α=90°,∴2α﹣β=90°,故选:D.【点评】本题主要考查了圆的基本性质,直角三角形的性质,关键是用α表示∠COD.21.(2020•黔东南州)如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2【分析】连接OA,先根据⊙O的直径CD=20,OM:OC=3:5求出OD及OM的长,再根据勾股定理可求出AM的长,进而得出结论.【解答】解:连接OA,∵⊙O的直径CD=20,OM:OC=3:5,∴OC=10,OM=6,∵AB⊥CD,∴AM===8,∴AB=2AM=16.故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.22.(2020•嘉兴)如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是()A.2B.C.D.【分析】根据重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形,据此即可求解.【解答】解:作AM⊥BC于M,如图:重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形.∵△ABC是等边三角形,AM⊥BC,∴AB=BC=3,BM=CM=BC=,∠BAM=30°,∴AM=BM=,∴△ABC的面积=BC×AM=×3×=,∴重叠部分的面积=△ABC的面积=×=;故选:C.【点评】本题考查了三角形的外心、等边三角形的性质以及旋转的性质,理解连接O和正六边形的各个顶点,所得的三角形都为全等的等边三角形是关键.23.(2020•湖州)如图,已知四边形ABCD内接于⊙O,∠ABC=70°,则∠ADC的度数是()A.70°B.110°C.130°D.140°【分析】根据圆内接四边形的性质即可得到结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=70°,∴∠ADC=180°﹣∠ABC=180°﹣70°=110°,故选:B.【点评】本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解题的关键.24.(2020•鸡西)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB 的度数是()A.22.5°B.30°C.45°D.60°【分析】设圆心为O,连接OA、OB,如图,先证∠AOB=90°,然后根据圆周角定理确定∠ASB的度数.【解答】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.25.(2020•山西)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是()A.80πcm2B.40πcm2C.24πcm2D.2πcm2【分析】首先证明△OCD是等边三角形,求出OC=OD=CD=4cm,再根据S阴=S扇形OAB﹣S扇形OCD,求解即可.【解答】解:如图,连接CD.∵OC=OD,∠O=60°,∴△COD是等边三角形,∴OC=OD=CD=4cm,∴S阴=S扇形OAB﹣S扇形OCD=﹣=40π(cm2),故选:B.【点评】本题考查扇形的面积,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(2020•湘西州)如图,P A、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是()A.△BP A为等腰三角形B.AB与PD相互垂直平分C.点A、B都在以PO为直径的圆上D.PC为△BP A的边AB上的中线【分析】根据切线的性质即可求出答案.【解答】解:(A)∵P A、PB为圆O的切线,∴P A=PB,∴△BP A是等腰三角形,故A选项不符合题意.(B)由圆的对称性可知:PD垂直平分AB,但AB不一定平分PD,故B选项符合题意.(C)连接OB、OA,∵P A、PB为圆O的切线,∴∠OBP=∠OAP=90°,∴点A、B、P在以OP为直径的圆上,故C选项不符合题意.(D)∵△BP A是等腰三角形,PD⊥AB,∴PC为△BP A的边AB上的中线,故D选项不符合题意.故选:B.【点评】本题考查切线的性质,解题的关键是熟练运用切线的性质,本题属于中等题型.27.(2020•荆门)如图,⊙O中,OC⊥AB,∠APC=28°,则∠BOC的度数为()A.14°B.28°C.42°D.56°【分析】根据垂径定理,可得=,∠APC=28°,根据圆周角定理,可得∠BOC.【解答】解:∵在⊙O中,OC⊥AB,∴=,∵∠APC=28°,∴∠BOC=2∠APC=56°,故选:D.【点评】本题考查了圆周角定理,利用垂径定理得出=是解题关键.28.(2020•攀枝花)如图,直径AB=6的半圆,绕B点顺时针旋转30°,此时点A到了点A',则图中阴影部分的面积是()A.B.C.πD.3π【分析】由半圆A′B面积+扇形ABA′的面积﹣空白处半圆AB的面积即可得出阴影部分的面积.【解答】解:∵半圆AB,绕B点顺时针旋转30°,∴S阴影=S半圆A′B+S扇形ABA′﹣S半圆AB=S扇形ABA′==3π,故选:D.【点评】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式和旋转前后不变的边是解题的关键.29.(2020•金昌)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平分,则DC的长为()A.2B.C.2D.【分析】先根据圆周角得:∠BAC=∠D=90°,根据勾股定理即可得结论.【解答】解:∵BC是⊙O的直径,∴∠BAC=∠D=90°,∵AC=2,AB=4,∴BC===2,∵点D在⊙O上,且平分,∴DC=BD.Rt△BDC中,DC2+BD2=BC2,∴2DC2=20,∴DC=,故选:D.【点评】本题考查圆周角定理,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用勾股定理求线段的长,属于中考常考题型.30.(2020•南京)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)【分析】设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD交于点G,证明四边形PEOF为正方形,求得CG,再根据垂径定理求得CD,进而得PG、DB,便可得D点坐标.【解答】解:设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP 与CD交于点G,则PE⊥y轴,PF⊥x轴,∵∠EOF=90°,∴四边形PEOF是矩形,∵PE=PF,PE∥OF,∴四边形PEOF为正方形,∴OE=PF=PE=OF=5,∵A(0,8),∴OA=8,∴AE=8﹣5=3,∵四边形OACB为矩形,∴BC=OA=8,BC∥OA,AC∥OB,∴EG∥AC,∴四边形AEGC为平行四边形,四边形OEGB为平行四边形,∴CG=AE=3,EG=OB,∵PE⊥AO,AO∥CB,∴PG⊥CD,∴CD=2CG=6,∴DB=BC﹣CD=8﹣6=2,∵PD=5,DG=CG=3,∴PG=4,∴OB=EG=5+4=9,∴D(9,2).故选:A.【点评】本题主要考查了正方形的性质,矩形的性质与判定,圆的切线的性质,垂径定理,勾股定理,关键是求出CG的长度.二.解答题(共3小题)31.(2020•贵港)如图,在△ABC中,AB=AC,点D在BC边上,且AD=BD,⊙O是△ACD的外接圆,AE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若AB=2,AD=3,求直径AE的长.【分析】(1)连接DE,根据等腰三角形的性质得到∠B=∠BAD,∠B=∠C,等量代换得到∠E=∠BAD,根据圆周角定理得到∠ADE=90°,得到∠BAE=90°,于是得到结论;(2)作AH⊥BC,垂足为点H,证明△ABC∽△DBA,由相似三角形的性质得出,求出BC的长,证明△AED∽△ABH,得出,则可求出答案.【解答】(1)证明:连接DE,如图1,∵AB=AC,AD=BD,∴∠B=∠BAD,∠B=∠C,∴∠C=∠E,∴∠E=∠BAD,∵AE是⊙O的直径,∴∠ADE=90°,∴∠E+∠DAE=90°,∴∠BAD+∠DAE=90°,即∠BAE=90°,∴AE⊥AB,∴直线AB是⊙O的切线;(2)解:如图2,作AH⊥BC,垂足为点H,∵AB=AC,∴BH=CH,∵∠B=∠C=∠BAD,∴△ABC∽△DBA,∴,即AB2=BD•BC,又AB=2,BD=AD=3,∴BC=8,在Rt△ABH中,BH=CH=4,∴AH===2,∵∠E=∠B,∠ADE=∠AHB,∴△AED∽△ABH,∴,∴=3.【点评】本题考查了切线的判定和性质,相似三角形的判定和性质,勾股定理,圆周角定理,正确的作出辅助线是解题的关键.32.(2020•东营)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.【分析】(1)根据勾股定理的逆定理得到∠AEM=90°,由于MN∥BC,根据平行线的性质得∠ABC=90°,然后根据切线的判定定理即可得到BC是⊙O的切线;(2)连接OM,设⊙O的半径是r,在Rt△OEM中,根据勾股定理得到r2=32+(4﹣r)2,解方程即可得到⊙O的半径,即可得出答案.【解答】(1)证明:∵在△AME中,ME=3,AE=4,AM=5,∴AM2=ME2+AE2,∴△AME是直角三角形,∴∠AEM=90°,又∵MN∥BC,∴∠ABC=∠AEM=90°,∴AB⊥BC,∵AB为直径,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4﹣r)2,解得:r=,∴AB=2r=.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了勾股定理和勾股定理的逆定理.33.(2020•潍坊)如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.【分析】(1)连接BF,证明BF∥CE,连接OC,证明OC⊥CE即可得到结论;(2)连接OF,求出扇形FOC的面积即可得到阴影部分的面积.【解答】解:(1)连接BF,OC,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF∥CE,连接OC,∵点C为劣弧的中点,∴OC⊥BF,∵BF∥CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,CF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C为劣弧的中点,∴,∴∠FOC=∠BOC=60°,∵OF=OC,∴∠OCF=∠COB,∴CF∥AB,∴S△ACF=S△COF,∴阴影部分的面积=S扇形COF,∵AB=4,∴FO=OC=OB=2,∴S扇形FOC=,即阴影部分的面积为:.【点评】本题主要考查了切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.。
2021年中考数学 一轮专题训练:圆的有关性质(含答案)
2021中考数学 一轮专题训练:圆的有关性质一、选择题(本大题共10道小题)1. 如图,在⊙O 中,AB ︵=CD ︵,∠1=45°,则∠2等于( )A .60°B .30°C .45°D .40°2. 如图所示,AB是⊙O 的直径,C ,D 是⊙O 上的两点,CD ⊥AB.若∠DAB =65°,则∠BOC 等于( )A .25°B .50°C .130°D .155°3.如图,四边形ABCD 内接于⊙O ,F 是CD︵上一点,且DF︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC ,若∠ABC =105°,∠BA C =25°,则∠E 的度数为( ) A . 45° B . 50° C . 55° D . 60°4. 2019·赤峰如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A.30°B.40°C.50°D.60°5. 如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB 相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OPC.OB⊥AC D.AC平分OB6.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=22,BD=3,则AB的长为( )A. 2B. 3C. 4D. 57. 如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x 的图象被⊙P截得的弦AB的长为2 3,则a的值是()A.2 B.2+ 2C.2 3 D.2+ 38. 2020·武汉模拟小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a为160 mm,直角顶点A到轮胎与地面接触点B的距离AB为320 mm,请帮小名同学计算轮胎的直径为()A.350 mm B.700 mmC.800 mm D.400 mm9. 如图,在半径为13的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2 6 B.2 10 C.2 11 D.4 310. 如图,AB是⊙O的直径,点C,D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°二、填空题(本大题共10道小题)11. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE,若∠ABC=64°,则∠BAE的度数为.12. 2018·孝感已知⊙O的半径为10 cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16 cm,CD=12 cm,则弦AB和CD之间的距离是________cm.13. 2018·毕节如图,AB是⊙O的直径,C,D为半圆的三等分点,CE⊥AB于点E,则∠ACE的度数为________.14. 当宽为3 cm的刻度尺的一边与⊙O相切于点A时,另一边与⊙O的两个交点B,C处的读数如图所示(单位:cm),那么该圆的半径为________cm.15. 如图0,A,B是⊙O上的两点,AB=10,P是⊙O上的动点(点P与A,B 两点不重合),连接AP,PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=________.16. 如图,四边形ABCD内接于⊙O,AB为⊙O的直径,C为弧BD的中点.若∠DAB=40°,则∠ABC=________°.17. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为________.18. 如图,在⊙O中,弦AB =1,点C 在AB 上移动,连接OC ,过点C 作CD⊥OC 交⊙O 于点D ,则CD 的最大值为________.19. 如图2,一下水管道横截面为圆形,直径为100 cm ,下雨前水面宽为60 cm ,一场大雨过后,水面宽为80 cm ,则水位上升________cm. 链接听P39例4归纳总结20. 如图,AB ,CD是半径为5的⊙O 的两条弦,AB =8,CD =6,MN 是⊙O 的直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA +PC 的最小值为________.三、解答题(本大题共6道小题)21. 2018·牡丹江 如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC 于点D .求证:AB =2AD .22.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠A =2∠BCD ,点E 在AB 的延长线上,∠AED =∠ABC. (1)求证:DE 与⊙O 相切;(2)若BF =2,DF =10,求⊙O 的半径.23. 2018·天津 如图,已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BAC =38°.(1)如图①,若D 为AB ︵的中点,求∠ABC 和∠ABD 的大小;(2)如图②,过点D 作⊙O 的切线,与AB 的延长线交于点P ,若DP ∥AC ,求∠OC D 的大小.24.如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F . (1)求∠DAF 的度数; (2)求证:AE 2=EF ·ED ; (3)求证:AD 是⊙O 的切线.25. 如图,AB是☉O的直径,点C为的中点,CF为☉O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.26. 已知OA=5,sin∠O=35,点D为线段OA上的动点,以A为圆心、AD为半径作⊙A.(1)如图1,若⊙A交∠O于B、C两点,设OD=x,BC=y,求y关于x的函数解析式,并写出函数的定义域;(2)将⊙A沿直线OB翻折后得到⊙A′.①若⊙A′与直线OA相切,求x的值;②若⊙A′与以D为圆心、DO为半径的⊙D相切,求x的值.2021中考数学一轮专题训练:圆的有关性质-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】C3. 【答案】B 【解析】∵四边形ABCD是圆内接四边形,∠ABC=105°,∴∠ADC=75°,∵=,∴∠BAC=∠DCF=25°,∴∠E=∠ADC-∠DCF=50°.4. 【答案】D5. 【答案】A[解析] ∵AD是⊙O的直径,∴∠ACD=90°.∵四边形OBCD是平行四边形,∴CD∥OB,CD=OB,∴∠CPO=90°,即OB⊥AC,∴选项C正确;∴CP=AP.又∵OA=OD,∴OP是△ACD的中位线,∴CD=2OP,∴选项B正确;∴CD=OB=2OP,即P是OB的中点,∴AC平分OB,∴选项D正确.6. 【答案】B 【解析】由垂径定理可得DH=2,所以BH=BD2-DH2=1,又可得△DHB∽△ADB,所以有BD2=BH·BA,(3)2=1×BA,AB=3.7. 【答案】B[解析] 如图,连接PB,过点P作PC⊥AB于点C,过点P作横轴的垂线,垂足为E,交AB于点D,则PB=2,BC= 3.在Rt△PBC中,由勾股定理得PC=1.∵直线y=x平分第一象限的夹角,∴△PCD和△DEO都是等腰直角三角形,∴PD=2,DE=OE=2,∴a=PE=2+ 2.故选B.8. 【答案】C9. 【答案】C[解析] 过点O作OF⊥CD于点F,OG⊥AB于点G,连接OB,OD,OE,如图所示.则DF=CF,AG=BG=12AB=3,∴EG=AG-AE=2.在Rt△BOG中,OG=OB2-BG2=13-9=2,∴EG=OG,∴△EOG是等腰直角三角形,∴∠OEG=45°,OE=2OG=2 2.∵∠DEB=75°,∴∠OEF=30°,∴OF=12OE= 2.在Rt△ODF中,DF=OD2-OF2=13-2=11,∴CD=2DF=2 11.故选C.10. 【答案】D[解析] ∵∠BOC=110°,∴∠AOC=70°.∵AD∥OC,∴∠A=∠AOC=70°.∵OA=OD,∴∠D=∠A=70°.在△OAD中,∠AOD=180°-(∠A+∠D)=40°.二、填空题(本大题共10道小题) 11. 【答案】52° [解析]∵圆内接四边形对角互补, ∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°.∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.12. 【答案】2或14 [解析] ①当弦AB 和CD 在圆心同侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点F ,交AB 于点E ,如图①, ∵AB =16 cm ,CD =12 cm , ∴AE =8 cm ,CF =6 cm. ∵OA =OC =10 cm , ∴EO =6 cm ,OF =8 cm , ∴EF =OF -OE =2 cm ;②当弦AB 和CD 在圆心异侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点E 并反向延长交AB 于点F ,如图②,∵AB =16 cm ,CD =12 cm , ∴AF =8 cm ,CE =6 cm. ∵OA =OC =10 cm , ∴OF =6 cm ,OE =8 cm , ∴EF =OF +OE =14 cm.∴AB 与CD 之间的距离为2 cm 或14 cm.13. 【答案】30°[解析] 如图,连接OC .∵AB 是⊙O 的直径,AC ︵=CD ︵=BD ︵,∴∠AOC =∠COD =∠DOB =60°. ∵OA =OC ,∴△AOC 是等边三角形, ∴∠A =60°.∵CE ⊥OA ,∴∠AEC =90°,∴∠ACE =90°-60°=30°.14. 【答案】25615. 【答案】5 [解析] ∵OE 过圆心且与PA 垂直,∴PE =EA.同理PF =FB ,∴EF 是△PAB 的中位线,∴EF =12AB =5.16. 【答案】70 [解析] 如图,连接AC.∵AB 为⊙O 的直径,∴∠ACB =90°.∵C 为弧BD 的中点,∴∠CAB =12∠DAB =20°, ∴∠ABC =70°.17. 【答案】52° [解析] ∵四边形ABCD 是圆内接四边形,∴∠B +∠D =180°. ∵∠B =64°,∴∠D =116°.又∵点D 关于AC 的对称点是点E ,∴∠AEC =∠D =116°.又∵∠AEC =∠B +∠BAE ,∴∠BAE =52°.18. 【答案】12 [解析] 连接OD.因为CD ⊥OC ,所以CD =OD2-OC2,根据题意可知圆的半径一定,故当OC 最小时CD 最大,故当OC ⊥AB 时CD 最大,此时CD =12AB =12.19. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm ,到长为80 cm 的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm 或70 cm.20. 【答案】7 2 [解析] 如图,连接OB ,OC ,BC ,则BC 的长即为P A +PC 的最小值.过点C 作CH ⊥AB 于点H ,则四边形EFCH 为矩形,∴CH =EF ,EH =CF .根据垂径定理,得BE =12AB =4,CF =12CD =3,∴OE =OB 2-BE 2=52-42=3,OF =OC 2-CF 2=52-32=4, ∴CH =EF =OE +OF =3+4=7,BH =BE +EH =BE +CF =4+3=7. 在Rt △BCH 中,由勾股定理,得BC =7 2,则P A +PC 的最小值为72.三、解答题(本大题共6道小题)21. 【答案】证明:如图,延长AD 交⊙O 于点E ,∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD .∵AB ︵=2AC ︵,∴AE ︵=AB ︵,∴AB =AE ,∴AB =2AD .22. 【答案】(1)证明:如解图,连接DO ,∴∠BOD =2∠BCD =∠A ,(2分)解图又∵∠DEA =∠CBA ,∴∠DEA +∠DOE =∠CAB +∠CBA ,又∵∠ACB =90°,∴∠ODE =∠ACB =90°,(5分)∴OD ⊥DE ,又∵OD 是⊙O 的半径,∴DE 与⊙O 相切.(7分)(2)解:如解图,连接BD ,可得△FBD ∽△DBO ,∴BD BO =DF OD =BF BD ,(8分)∴BD =DF =10,∴OB =5,(10分)即⊙O 的半径为5.23. 【答案】解:(1)如图①,连接OD .∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ABC =90°-∠BAC =90°-38°=52°.∵D 为AB ︵的中点,∠AOB =180°,∴∠AOD =90°,∴∠ABD =12∠AOD =45°.(2)如图②,连接OD .∵DP 切⊙O 于点D ,∴OD ⊥DP ,即∠ODP =90°.∵DP ∥AC ,∠BAC =38°,∴∠P =∠BAC =38°.∵∠AOD 是△ODP 的一个外角,∴∠AOD =∠P +∠ODP =128°,∴∠ACD =64°.∵OC =OA ,∠BAC =38°,∴∠OCA =∠BAC =38°,∴∠OCD=∠ACD-∠OCA=64°-38°=26°.24. 【答案】(1)解:∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=12(180°-36°)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠DBC=36°,∵AD∥BC,∴∠D=∠DBC=36°,∴∠DAF=∠AFB-∠D=72°-36°=36°;(2)证明:∵∠EAF=∠FBC=∠D,∠AEF=∠AED,∴△EAF∽△EDA,∴AEDE=EF EA,∴AE2=EF·ED;(3)证明:如解图,过点A作BC的垂线,G为垂足,∵AB=AC,∴AG垂直平分BC,∴AG过圆心O,∵AD∥BC,∴AD⊥AG,∴AD是⊙O的切线.解图25. 【答案】解:(1)证明:∵C是的中点,∴=.∵AB是☉O的直径,且CF⊥AB,∴=,∴=,∴CD=BF.在△BFG和△CDG中,∵∴△BFG≌△CDG(AAS).(2)如图,过C作CH⊥AD,交AD延长线于H,连接AC,BC,∵=,∴∠HAC=∠BAC.∵CE⊥AB,∴CH=CE.∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH.∵=,∴CD=BC.又∵CH=CE,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=AD+DH=2+2=4,∴AB=4+2=6.∵AB是☉O的直径,∴∠ACB=90°,∴∠ACB=∠BEC,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴=,∴BC2=AB·BE=6×2=12,∴BF=BC=2.26. 【答案】(1)如图2,作AE ⊥BC ,垂足为E ,那么E 是BC 的中点.在Rt △OAE 中,OA =5,sin ∠O =35,所以AE =3. 在Rt △BAE 中,AB =AD =5-x ,AE =3,BE =1122BC y =, 由勾股定理,得2221(5)3()2x y -=+. 整理,得221016y x x =-+.定义域是0≤x <2.图2 图3(2)①如图3,将⊙A 沿直线OB 翻折后得到⊙A ′,AA ′=2AE =6.作A ′H ⊥OA ,垂足为H .在Rt △A ′AH 中,AA ′=6,sin ∠A ′=35,所以AH =185,A ′H =245. 若⊙A ′与直线OA 相切,那么半径等于A ′H .解方程2455x -=,得15x =. ②如图4,在Rt △A ′DH 中,222241814'()(5)25555A D x x x =+--=-+. 对于⊙A ′,R =5-x ;对于⊙D ,r =DO =x ;圆心距d =A ′D .如果两圆外切,由d =R +r ,得2142555x x x x -+=-+.解得145x =(如图4). 如果两圆内切,由d =|R -r |,得21425|5|5x x x x -+=--. 解得86515x =>.所以两圆不可能内切.图4 图5考点伸展当D为OA的中点时,⊙A′与以D为圆心、DA为半径的⊙D是什么位置关系?⊙A′和⊙D等圆,R=52,两圆不可能内切.当D为OA的中点时,DH=AH-AD=18511 5210-=.此时'5A D==<.因此两圆的半径和大于圆心距,此时两圆是相交的(如图5).。
备考2021年中考数学复习专题:图形的性质_圆_圆心角、弧、弦的关系,单选题专训及答案
A. B. C. D. 28、 (2020长春.中考真卷) 如图,
是⊙O的直径,点C、D在⊙O上,
,则
的大小为( )
A. B.
C.
D.
29、
(2020茂名.中考模拟) 如图,在⊙O中,AB是⊙O的直径,AB=10,
,点E是点D关于AB的对称点,M
是AB上的一动点,下列结论:①∠BOE=60°;②∠CED= ∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结
A . 40° B . 60° C . 80° D . 100° 18、 (2014贵港.中考真卷) 如图,AB是⊙O的直径, = = ,∠COD=34°,则∠AEO的度数是( )
A . 51° B . 56° C . 68° D . 78° 19、 (2017资中.中考模拟) 如图,四边形ABCD内接于⊙O,F是 上一点,且 = ,连接CF并延长交AD的延长线 于点E,连接AC.若∠ABC=110°,∠BAC=20°,则∠E的度数为( )
A . 8 B . 10 C . 11 D . 12 11、 (2018青岛.中考真卷) 如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是
的中点,则∠D的度数是( )
A . 70° B . 55° C . 35.5° D . 35° 12、
(2018咸宁.中考真卷) 如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD 互补,弦CD=6,则弦AB的长为( )
1.答 案 : A 2.答 案 : D 3.答 案 : B 4.答 案 : B 5.答 案 : C 6.答 案 : A 7.答 案 : C 8.答 案 : D 9.答 案 : A 10.答 案 : A 11.答 案 : D 12.答 案 : B 13.答 案 : D 14.答 案 : A 15.答 案 : C 16.答 案 : D 17.答 案 : A 18.答 案 : A 19.答 案 : C 20.答 案 : A 21.答 案 : C 22.答案:
2021年 中考数学 专题训练:与圆有关的性质(含答案)
2021 中考数学专题训练:与圆有关的性质一、选择题1. 如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°2. 已知⊙O的半径为5 cm,P是⊙O内一点,则OP的长可能是()A.4 cm B.5 cm C.6 cm D.7 cm3. 下列语句中不正确的有()①过圆上一点可以作圆中最长的弦无数条;②长度相等的弧是等弧;③圆上的点到圆心的距离都相等;④在同圆或等圆中,优弧一定比劣弧长.A.1个B.2个C.3个D.4个4. 如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°5. 2019·赤峰如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A .30°B .40°C .50°D .60°6. (2019•广元)如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .5B .4C .13D .4.87. 下列说法:①矩形的四个顶点在同一个圆上;②菱形的四个顶点在同一个圆上;③平行四边形的四个顶点在同一个圆上.其中正确的有( )链接听P37例3归纳总结 A .0个 B .1个 C .2个 D .3个8. 如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB︵上一点,∠AOP =55°,则∠POB 的度数为( )A .30°B .45°C .55°D .60°9. (2019•镇江)如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若110C ∠=︒,则ABC ∠的度数等于A .55︒B .60︒C .65︒D .70︒10. 2019·天水如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°二、填空题11.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.12. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE,若∠ABC=64°,则∠BAE的度数为.︵13. 如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC 上一点,则∠D=________.14. 如图,AB为⊙O的直径,CD⊥AB.若AB=10,CD=8,则圆心O到弦CD 的距离为________.15. 如图所示,OB ,OC 是⊙O 的半径,A 是⊙O 上一点.若∠B =20°,∠C =30°,则∠A =________°.16. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.17. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题19.如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,求证:MO∥B C.20.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=10,求⊙O的半径.21. (2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,∠=∠.AD,DE,过点A作射线交BE的延长线于点C,使EAC EDA(1)求证:AC是⊙O的切线;(2)若23==,求阴影部分的面积.CE AE2021 中考数学专题训练:与圆有关的性质-答案一、选择题1. 【答案】A2. 【答案】A3. 【答案】B[解析] ①②不正确.4. 【答案】A[解析]连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°-∠C=70°.∵=,∴∠CAB=∠DAB=35°.∵AB 是直径,∴∠ACB=90°, ∴∠ABC=90°-∠CAB=55°,故选A .5. 【答案】D6. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =-=-=,∵OD AC ⊥,∴142CD AD AC ===, 在Rt CBD △中,2246213BD =+=.故选C .7. 【答案】B[解析] 矩形的两条对角线的交点到矩形的四个顶点的距离相等,故它的四个顶点在以对角线的交点为圆心、对角线长的一半为半径的圆上.8. 【答案】B9. 【答案】A【解析】如图,连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∠DAB=180°–∠C=70°, ∵DC CB =,∴∠CAB=12∠DAB=35°, ∵AB 是直径,∴∠ACB=90°,∴∠ABC=90°–∠CAB=55°,故选A .10. 【答案】C二、填空题11.【答案】50°【解析】∵AT 是⊙O 的切线,AB 是⊙O 的直径,∴∠BAT =90°,在Rt △BAT 中,∵∠ABT =40°,∴∠ATB =50°.12. 【答案】52°[解析]∵圆内接四边形对角互补,∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°. ∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.13. 【答案】40°【解析】AC 是⊙O 的直径⇒∠ABC =90°⇒⎭⎪⎬⎪⎫ ∠A =90°-50°=40°∠A 和∠D 都是BC ︵所对的圆周角 ⇒∠D =∠A =40°. 14. 【答案】315. 【答案】50 [解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.16. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.17. 【答案】65[解析] ∵∠C =25°,∴∠A =∠C =25°.∵⊙O 的直径AB 过弦CD 的中点E , ∴AB ⊥CD ,∴∠AED =90°, ∴∠D =90°-25°=65°.18. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A作直径AD,连接BD,则∠ABD=90°,∴∠C=∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题19. 【答案】证明:∵AB是⊙O的直径,∴∠ACB=90°,∵MP为⊙O的切线,∴∠PMO=90°,∵MP∥AC,∴∠P=∠CAB,∴∠MOP=∠B,故MO∥BC.20. 【答案】(1)证明:如解图,连接DO,∴∠BOD=2∠BCD=∠A,(2分)解图又∵∠DEA=∠CBA,∴∠DEA+∠DOE=∠CAB+∠CBA,又∵∠ACB=90°,∴∠ODE=∠ACB=90°,(5分)∴OD⊥DE,又∵OD是⊙O的半径,∴DE与⊙O相切.(7分)(2)解:如解图,连接BD,可得△FBD ∽△DBO , ∴BD BO =DF OD =BF BD ,(8分)∴BD =DF =10,∴OB =5,(10分)即⊙O 的半径为5.21. 【答案】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒, ∵OA OE =,∴12EOF AOF AOE ∠=∠=∠, ∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠, ∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵CE AE == ∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠, ∴2AEO EAC ∠=∠, ∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠, ∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒, ∴OAE △是等边三角形, ∴OA AE =,60EOA ∠=︒,∴OA =∴260π2π360=AOE S ⋅⨯=扇形,在Rt OAE △中,sin 32OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π。
2020-2021中考数学压轴题之圆的综合(中考题型整理,突破提升)含答案
2020-2021中考数学压轴题之圆的综合(中考题型整理,突破提升)含答案一、圆的综合1.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若tan A=12,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求圆O的半径.【答案】(1)答案见解析;(2)AB=3BE;(3)3.【解析】试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=32x,进而得出OE=1+2x,最后用勾股定理即可得出结论.试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=3BE.证明如下:∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴DE BE BDAE DE AD==.∵Rt△ABD中,tan A=BDAD=12,∴DE BEAE DE==12,∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=3BE;(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=32x.∵OF=1,∴OE=1+2x.在Rt△ODE中,由勾股定理可得:(32x)2+(2x)2=(1+2x)2,∴x=﹣29(舍)或x=2,∴圆O的半径为3.点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.2.如图,A、B两点的坐标分别为(0,6),(0,3),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;(2)当⊙M与x轴相切时,求点Q的坐标;(3)当点P从点(2,0)运动到点(3,0)时,请直接写出线段QM扫过图形的面积.【答案】(1)见解析;(2) Q的坐标为(32,9);(3)63 8.【解析】(1)解:连接AM、BM,∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点∴AM=BM=PM=QM= 12 PQ,∴A、B、P、Q四点在以M为圆心的同一个圆上。
2020-2021中考数学圆的综合(大题培优 易错 难题)
2020-2021中考数学圆的综合(大题培优 易错 难题)一、圆的综合1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线;(2)若BC=4,CD=6,求平行四边形OABC 的面积.【答案】(1)证明见解析(2)24 【解析】试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A ,∵四边形OABC 是平行四边形, ∴OC ∥AB ,∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中,OE OD EOC DOC OC OC =⎧⎪∠=∠⎨⎪=⎩∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线;(2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形,∵S △CDO =12CD•OD , 又∵OA=BC=OD=4,∴S△CDO=12×6×4=12,∴平行四边形OABC的面积S=2S△CDO=24.2.如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.【答案】(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3).【解析】【分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=12OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣3劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣3劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,3优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,3);优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.3.如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O交BC于点D,交CA的延长线于点E.过点D作DF⊥AC,垂足为F.(1)求证:DF为⊙O的切线;(2)若AB=4,∠C=30°,求劣弧»BE的长.【答案】(1)证明见解析(2)4 3【解析】分析:(1)连接AD、OD,根据直径所对的圆周角为直角,可得∠ADB=90°,然后根据等腰三角形的性质求出BD=CD,再根据中位线的性质求出OD⊥DF,进而根据切线的判定证明即可;(2)连接OE,根据三角形的外角求出∠BAE的度数,然后根据圆周角定理求出∠BOE的度数,根据弧长公式求解即可.详解:(1)连接AD、OD.∵AB是直径,∴∠ADB=90°.∵AB=AC,∴BD=CD,又∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF即∠ODF=90°.∴DF为⊙O的切线;(2)连接OE.∵AB=AC,∴∠B=∠C=30°,∴∠BAE=60°,∵∠BOE=2∠BAE,∴∠BOE=120°,∴=·4π=π.点睛:本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、圆周角定理,灵活添加辅助线是解题关键.4.如图,在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长.【答案】(1)证明见解析(2)23【解析】试题分析:(1)根据圆周角定理得出∠ACD=90°以及利用∠PAC=∠PBA得出∠CAD+∠PAC=90°进而得出答案;(2)首先得出△CAG∽△BAC,进而得出AC2=AG·AB,求出AC即可.试题解析:(1)连接CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD+∠D=90°,∵∠PAC=∠PBA,∠D=∠PBA,∴∠CAD+∠PAC=90°,即∠PAD=90°,∴PA⊥AD,∴PA是⊙O的切线;(2)∵CF⊥AD,∴∠ACF+∠CAF=90°,∠CAD+∠D=90°,∴∠ACF=∠D,∴∠ACF=∠B,而∠CAG=∠BAC,∴△ACG∽△ABC,∴AC:AB=AG:AC,∴AC2=AG•AB=12,∴AC35.如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为»AB,P是半径OB上一动点,Q是»AB上的一动点,连接PQ.发现:∠POQ=________时,PQ有最大值,最大值为________;思考:(1)如图2,若P是OB中点,且QP⊥OB于点P,求»BQ的长;(2)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积;探究:如图4,将扇形OAB沿PQ折叠,使折叠后的弧QB′恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.【答案】发现: 90°,102;思考:(1)103π=;(2)25π−1002+100;(3)点O到折痕PQ的距离为30.【解析】分析:发现:先判断出当PQ取最大时,点Q与点A重合,点P与点B重合,即可得出结论;思考:(1)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;(2)先在Rt△B'OP中,OP2+(102−10)2=(10-OP)2,解得OP=102−10,最后用面积的和差即可得出结论.探究:先找点O关于PQ的对称点O′,连接OO′、O′B、O′C、O′P,证明四边形OCO′B是矩形,由勾股定理求O′B,从而求出OO′的长,则OM=12OO′=30.详解:发现:∵P是半径OB上一动点,Q是»AB上的一动点,∴当PQ取最大时,点Q与点A重合,点P与点B重合,此时,∠POQ=90°,PQ=22OA OB+=102;思考:(1)如图,连接OQ,∵点P是OB的中点,∴OP=12OB=12OQ.∵QP⊥OB,∴∠OPQ=90°在Rt △OPQ 中,cos ∠QOP=12OP OQ =, ∴∠QOP=60°, ∴l BQ =6010101803ππ⨯=; (2)由折叠的性质可得,BP =B ′P ,AB ′=AB =102, 在Rt △B'OP 中,OP 2+(102−10)2=(10-OP )2 解得OP=102−10,S 阴影=S 扇形AOB -2S △AOP =290101210(10210)3602π⨯-⨯⨯⨯-=25π−1002+100;探究:如图2,找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,则OM=O′M ,OO′⊥PQ ,O′P=OP=3,点O′是¼B Q '所在圆的圆心,∴O′C=OB=10,∵折叠后的弧QB′恰好与半径OA 相切于C 点, ∴O′C ⊥AO , ∴O′C ∥OB ,∴四边形OCO′B 是矩形,在Rt △O′BP 中,226425-= 在Rt △OBO′K ,2210(25)=230-, ∴OM=12OO′=12×23030 即O 到折痕PQ 30点睛:本题考查了折叠问题和圆的切线的性质、矩形的性质和判定,熟练掌握弧长公式l=180n Rπ(n 为圆心角度数,R 为圆半径),明确过圆的切线垂直于过切点的半径,这是常考的性质;对称点的连线被对称轴垂直平分.6.如图,在直角坐标系中,已知点A (-8,0),B (0,6),点M 在线段AB 上。
2021年九年级数学中考一轮复习知识点中考真题演练:圆的有关性质(附答案)
2021年九年级数学中考一轮复习中考真题演练:圆的有关性质(附答案)1.如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2B.﹣2C.﹣8D.﹣72.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径D,测得两根圆钢棒与地的两个接触点之间的距离为400mm,则工件直径D(mm)用科学记数法可表示为()mm.A.4×104B.0.4×105C.20000D.4×1023.如图所示,一种花边是由如图弧ACB组成的,弧ACB所在圆的半径为5,弦AB=8,则弧形的高CD为()A.2B.C.3D.4.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.cm B.cm C.cm D.4cm5.在⊙O中,C是的中点,D是上的任一点(与点A、C不重合),则()A.AC+CB=AD+DB B.AC+CB<AD+DBC.AC+CB>AD+DB D.AC+CB与AD+DB的大小关系不确定6.如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为上任意一点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°7.如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.27°C.36°D.108°8.如图,四边形ABCD内接于⊙O,连接BD.若,∠BDC=50°,则∠ADC的度数是()A.125°B.130°C.135°D.140°9.如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°10.如图,A是硬币圆周上一点,硬币与数轴相切于原点O(A与O点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是.11.如图,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积为.12.AB是⊙O的弦,OM⊥AB,垂足为M,连接OA.若△AOM中有一个角是30°,OM =2,则弦AB的长为.13.如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O 于点D,则CD的最大值为.14.如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB =120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)15.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm.16.如图,⊙O的半径为1cm,弦AB、CD的长度分别为cm,1cm,则弦AC、BD所夹的锐角α=度.17.如图,在⊙O中,,∠A=40°,则∠B=度.18.如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=°.19.如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB 相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.20.已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD.求证:△OAC≌△OBD.21.如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.22.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.23.如图,在⊙O中,=,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.24.如图,在⊙O中,点P为的中点,弦AD、PC互相垂直,垂足为M,BC分别与AD、PD相交于点E、N,连接BD、MN.(1)求证:N为BE的中点.(2)若⊙O的半径为8,的度数为90°,求线段MN的长.25.如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.26.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.27.如图,在▱ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.(1)求证:A、E、C、F四点共圆;(2)设线段BD与(1)中的圆交于M、N.求证:BM=ND.参考答案1.解:连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,在Rt△AOC中,AO==2,∵a<0,∴a=﹣2,故选:A.2.解:根据图形可知,两圆相切,过点O作OP垂直O1O2于P,则:PO1=PO2=200 PO=R﹣50根据勾股定理可得:2002+(R﹣50)2=(R+50)2解得:R=200∴D=2R=400=4×102.故选:D.3.解:如图所示,AB⊥CD,根据垂径定理,BD=AB=×8=4.由于圆的半径为5,根据勾股定理,OD===3,CD=5﹣3=2.故选:A.4.解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).故选:A.5.解:如图;以C为圆心,AC为半径作圆,交BD的延长线于E,连接AE、CE;∵CB=CE,∴∠CBE=∠CEB;∵∠DAC=∠CBE,∴∠DAC=∠CEB;∵AC=CE,∴∠CAE=∠CEA,∴∠CAE﹣∠DAC=∠CEA﹣∠CED,即∠DAE=∠DEA;∴AD=DE;∵EC+BC>BE,EC=AC,BE=BD+DE=AD+BD,∴AC+BC>BD+AD;故选:C.6.解:连接OD、OE,∵OC=OA,∴△OAC是等腰三角形,∵点D为弦AC的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°,∵OC=OE,∠COE=100°﹣x,∴∠OEC=∠OCE=40°+x,∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,∴∠OED<20°+x,∴∠CED=∠OEC﹣∠OED>(40°+x)﹣(20°+x)=20°,∵∠CED<∠ABC=40°,∴20°<∠CED<40°故选:C.7.解:∵∠ACB=54°,∴圆心角∠AOB=2∠ACB=108°,∵OB=OA,∴∠ABO=∠BAO=(180°﹣∠AOB)=36°,故选:C.8.解:连接OA,OB,OC,∵∠BDC=50°,∴∠BOC=2∠BDC=100°,∵,∴∠BOC=∠AOC=100°,∴∠ABC=∠AOC=50°,∴∠ADC=180°﹣∠ABC=130°.故选:B.9.解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.10.解:将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A'重合,则转过的距离是圆的周长是π,因而点A'对应的实数是π.故答案为:π.11.解:S阴=πab.故答案为:πab.12.解:∵OM⊥AB,∴AM=BM,若∠OAM=30°,则tan∠OAM=,∴AM=6,∴AB=2AM=12;若∠AOM=30°,则tan∠AOM=,∴AM=2,∴AB=2AM=4.故答案为:12或4.13.解:连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=×1=,即CD的最大值为,故答案为:.14.解:作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=(180°﹣∠AOB)=(180°﹣120°)=30°,在Rt△AOC中,OC=OA=10,AC=OC=10,∴AB=2AC=20≈69(步);而的长=≈84(步),的长与AB的长多15步.所以这些市民其实仅仅少走了15步.故答案为15.15.解:如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.16.解:连接OA、OB、OC、OD,∵OA=OB=OC=OD=1,AB=,CD=1,∴OA2+OB2=AB2,∴△AOB是等腰直角三角形,△COD是等边三角形,∴∠OAB=∠OBA=45°,∠ODC=∠OCD=60°,∵∠CDB=∠CAB,∠ODB=∠OBD,∴α=180°﹣∠CAB﹣∠OBA﹣∠OBD=180°﹣∠OBA﹣(∠CDB+∠ODB)=180°﹣45°﹣60°=75°.17.解:∵,∴AB=AC,∵∠A=40°,∴∠B=∠C=(180°﹣∠A)÷2=70°.18.解:如图,连接AD.∵AB是直径,∴∠ADB=90°,∵∠1=∠ADE,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.19.解:连接OD,如图:∵OC⊥AB,∴∠COE=90°,∵∠AEC=65°,∴∠OCE=90°﹣65°=25°,∵OC=OD,∴∠ODC=∠OCE=25°,∴∠DOC=180°﹣25°﹣25°=130°,∴∠BOD=∠DOC﹣∠COE=40°,∴∠BAD=∠BOD=20°,故答案为:20.20.证明:∵OA=OB,∴∠A=∠B,∵在△OAC和△OBD中:,∴△OAC≌△OBD(SAS).21.(1)证明:∵AD是⊙O的直径,∴∠ABD=∠ACD=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;(2)四边形BFCD是菱形.证明:∵AD是直径,AB=AC,∴AD⊥BC,BE=CE,∵CF∥BD,∴∠FCE=∠DBE,在△BED和△CEF中,,∴△BED≌△CEF(ASA),∴CF=BD,∴四边形BFCD是平行四边形,∵∠BAD=∠CAD,∴BD=CD,∴四边形BFCD是菱形;(3)解:∵AD是直径,AD⊥BC,BE=CE,∵∠AEC=∠CED,∠CAE=∠ECD,∴△AEC∽△CED,∴=,设DE=x,∵BC=8,AD=10,∴42=x(10﹣x),解得:x=2或x=8(舍去)在Rt△CED中,CD===2.22.解:∵小刚身高1.6米,测得其影长为2.4米,∴8米高旗杆DE的影子为:12m,∵测得EG的长为3米,HF的长为1米,∴GH=12﹣3﹣1=8(m),∴GM=MH=4m.如图,设小桥的圆心为O,连接OM、OG.设小桥所在圆的半径为r,∵MN=2m,∴OM=(r﹣2)m.在Rt△OGM中,由勾股定理得:∴r2=(r﹣2)2+16,解得:r=5,答:小桥所在圆的半径为5m.23.证明:连接OC,∵=,∴∠AOC=∠BOC.∵CD⊥OA于D,CE⊥OB于E,∴∠CDO=∠CEO=90°在△COD与△COE中,∵,∴△COD≌△COE(AAS),∴OD=OE,∵AO=BO,∴AD=BE.24.(1)证明:∵AD⊥PC,∴∠EMC=90°,∵点P为的中点,∴,∴∠ADP=∠BCP,∵∠CEM=∠DEN,∴∠DNE=∠EMC=90°=∠DNB,∵,∴∠BDP=∠ADP,∴∠DEN=∠DBN,∴DE=DB,∴EN=BN,∴N为BE的中点;(2)解:连接OA,OB,AB,AC,∵的度数为90°,∴∠AOB=90°,∵OA=OB=8,∴AB=8,由(1)同理得:AM=EM,∵EN=BN,∴MN是△AEB的中位线,∴MN=AB=4.25.(1)证明:∵四边形ABCD内接于圆.∴∠ABC+∠ADC=180°,∵∠ABC=60°,∴∠ADC=120°,∵DB平分∠ADC,∴∠ADB=∠CDB=60°,∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°,∴∠ABC=∠BCA=∠BAC,∴△ABC是等边三角形.(2)过点A作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.∴∠AMD=90°,∵∠ADC=120°,∴∠ADM=60°,∴∠DAM=30°,∴DM=AD=1,AM===,∵CD=3,∴CM=CD+DM=1+3=4,∴S△ACD=CD•AM=×=,Rt△AMC中,∠AMD=90°,∴AC===,∵△ABC是等边三角形,∴AB=BC=AC=,∴BN=BC=,∴S△ABC=×=,∴四边形ABCD的面积=+=,∵BE∥CD,∴∠E+∠ADC=180°,∵∠ADC=120°,∴∠E=60°,∴∠E=∠BDC,∵四边形ABCD内接于⊙O,∴∠EAB=∠BCD,在△EAB和△DCB中,,∴△EAB≌△DCB(AAS),∴△BDE的面积=四边形ABCD的面积=.26.解:设OA交⊙O于C,连结B′C,如图2,∵OA′•OA=42,而r=4,OA=8,∴OA′=2,∵OB′•OB=42,∴OB′=4,即点B和B′重合,∵∠BOA=60°,OB=OC,∴△OBC为等边三角形,而点A′为OC的中点,∴B′A′⊥OC,在Rt△OA′B′中,sin∠A′OB′=,∴A′B′=4sin60°=2.27.证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEC=∠AFC=90°.∴∠AEC+∠AFC=180°.∴A、E、C、F四点共圆;(2)由(1)可知,∠AEC=90°,则AC是直径,设AC、BD相交于点O;∵ABCD是平行四边形,∴O为圆心,OB=OD,∴OM=ON,∴OB﹣OM=OD﹣ON,∴BM=DN.。
第26讲圆的相关概念及性质(课件)-2025年中考数学一轮复习讲练测(全国通用)
B.40°
C.50°
D.60°
)
考点一 圆的相关概念
题型04 圆中线段长度的计算
【例4】(2023·云南临沧·统考一模)已知 = 12,C、D是以为直径的⊙ 上的任意两点,连接,且 ⊥ ,
垂足为M,∠ = 30°,则线段的长为
【详解】解:如图,
∵ ⊥ ,∠ = 30°,
2025年中考数学一轮复习讲练测
第26讲 圆的相关概念及性质
目录
C
O
N
T
E
N
T
S
01
02
考情分析
知识建构
03
考点精讲
第一部分
考情分析
考点要求
新课标要求
命题预测
➢ ①理解圆、弧、弦、圆心角、圆周角的
圆的相关概念
在中考数学中,圆的基本性质在小题中通常
概念.
➢ 了解等圆、等弧的概念.
考察圆的基本概念、垂径定理、圆周角定理、
垂足为, = 8, = 2,则⊙ 的半径为(
A.6
B.5
C.4 2
)
D.4 3
【详解】解:如图,连接CO,延长CO交于点 T,设⊙ 的半径为,
Ⴃ =
Ⴃ ,∴ ⊥ ,∴ = = 1 = 4,
∵
2
∠ = ∠ = 90°
在△ 和△ 中,
1
1
∴ = = 2 = 2 × 16 = 8,
∴在Rt △ 中,可有 = 2 + 2 = 62 + 82 = 10,
∴⊙ 半径是10.
故选:D.
考点二 圆的性质
题型03 根据垂径定理与全等三角形综合求解
【例3】(2022·湖北襄阳·模拟预测)如图,为⊙ 的直径,为⊙ 的弦,为优弧的中点, ⊥ ,
圆的有关性质(优选真题60道):三年(2021-2023)中考数学真题分项汇编(全国通用)(解析版)
三年(2021-2023)中考数学真题分项汇编(全国通用)圆的有关性质(优选真题60道)一.选择题(共23小题)1.(2023•吉林)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A.70°B.105°C.125°D.155°【分析】利用圆周角定理求得∠BOC的度数,然后利用三角形外角性质及等边对等角求得∠BPC的范围,继而得出答案.【解答】解:如图,连接BC,∵∠BAC=70°,∴∠BOC=2∠BAC=140°,∵OB=OC,=20°,∴∠OBC=∠OCB=180°−140°2∵点P为OB上任意一点(点P不与点B重合),∴0°<∠OCP<20°,∵∠BPC=∠BOC+∠OCP=140°+∠OCP,∴140°<∠BPC<160°,故选:D.【点评】本题考查圆与三角形外角性质的综合应用,结合已知条件求得∠BPC的范围是解题的关键.2.(2023•赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC=2∠COD.则∠CBD的度数是()A.25°B.30°C.35°D.40°【分析】利用圆内接四边形的性质及圆周角定理求得∠BOD的度数,再结合已知条件求得∠COD的度数,然后利用圆周角定理求得∠CBD的度数.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠BCD=105°,∴∠A=75°,∴∠BOD=2∠A=150°,∵∠BOC=2∠COD,∴∠BOD=3∠COD=150°,∴∠COD=50°,∠COD=25°,∴∠CBD=12故选:A.【点评】本题考查圆内接四边形性质及圆周角定理,结合已知条件求得∠BOD的度数是解题的关键.3.如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为()A.95°B.100°C.105°D.110°【分析】根据同弧所对的圆周角是圆心角的一半即可得到答案.【解答】解:∵∠AOB =2∠C ,∠C =55°,∴∠AOB =110°,故选:D .【点评】本题考查圆周角定理的应用,解题的关键是掌握同弧所对的圆周角是圆心角的一半.4.(2023•广东)如图,AB 是⊙O 的直径,∠BAC =50°,则∠D =( )A .20°B .40°C .50°D .80°【分析】由AB 是⊙O 的直径,得∠ACB =90°,而∠BAC =50°,即得∠ABC =40°,故∠D =∠ABC =40°,【解答】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC+∠ABC =90°,∵∠BAC =50°,∴∠ABC =40°,∵AĈ=AC ̂, ∴∠D =∠ABC =40°,故选:B .【点评】本题考查圆周角定理的应用,解题的关键是掌握直径所对的圆周角是直角和同弧所对的圆周角相等.5.(2023•广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A .20mB .28mC .35mD .40m【分析】设主桥拱半径R ,根据垂径定理得到AD =372,再利用勾股定理列方程求解,即可得到答案. 【解答】解:由题意可知,AB =37m ,CD =7m ,设主桥拱半径为Rm ,∴OD =OC ﹣CD =(R ﹣7)m ,∵OC 是半径,OC ⊥AB ,∴AD =BD =12AB =372m ,在RtADO 中,AD2+OD2=OA2,∴(372)2+(R ﹣7)2=R2, 解得R =156556≈28.故选:B .【点评】本题主要考查垂径定理的应用,涉及勾股定理,解题的关键是用勾股定理列出关于R 的方程解决问题.6.(2023•广元)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,连接CD ,OD ,AC ,若∠BOD =124°,则∠ACD 的度数是( )A .56°B .33°C .28°D .23°【分析】先由平角定义求得∠AOD =56°,再利用圆周角定理可求∠ACD .【解答】解:∵∠BOD =124°,∴∠AOD =180°﹣124°=56°,∴∠ACD =12∠AOD =28°,【点评】本题主要考查的是圆周角定理的应用,利用平角定义求得∠AOD =56°是解决本题的关键.7.(2023•温州)如图,四边形ABCD 内接于⊙O ,BC ∥AD ,AC ⊥BD .若∠AOD =120°,AD =√3,则∠CAO 的度数与BC 的长分别为( )A .10°,1B .10°,√2C .15°,1D .15°,√2【分析】由平行线的性质,圆周角定理,垂直的定义,推出∠AOB =∠COD =90°,∠CAD =∠BDA =45°,求出∠BOC =60°,得到△BOC 是等边三角形,得到BC =OB ,由等腰三角形的性质求出圆的半径长,求出∠OAD 的度数,即可得到BC 的长,∠CAO 的度数.【解答】解:∵BC ∥AD ,∴∠DBC =∠ADB ,∴AB̂=CD ̂, ∴∠AOB =∠COD ,∠CAD =∠∵DB ⊥AC ,∴∠AED =90°,∴∠CAD =∠BDA =45°,∴∠AOB =2∠ADB =90°,∠COD =2∠CAD =90°,∵∠AOD =120°,∴∠BOC =360°﹣90°﹣90°﹣120°=60°,∵OB =OC ,∴△OBC 是等边三角形,∴BC =OB ,∵OA =OD ,∠AOD =120°,∴∠OAD =∠ODA =30°,∴AD =√3OA =√3,∴BC=1,∴∠CAO=∠CAD﹣∠OAD=45°﹣30°=15°.故选:C.【点评】本题考查圆周角定理,平行线的性质,等边三角形的判定和性质,等腰三角形的性质,关键是由圆周角定理推出∠AOB=∠COD=90°,∠CAD=∠BDA=45°,证明△OBC是等边三角形.8.(2023•山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC=40°,则∠DBC的度数为()A.40°B.50°C.60°D.70°【分析】由圆周角定理可得∠BCD=90°,∠BDC=∠BAC=40°,再利用直角三角形的性质可求解.【解答】解:∵BD经过圆心O,∴∠BCD=90°,∵∠BDC=∠BAC=40°,∴∠DBC=90°﹣∠BDC=50°,故选:B.【点评】本题主要考查圆周角定理,直角三角形的性质,掌握圆周角定理是解题的关键.9.(2023•宜昌)如图,OA,OB,OC都是⊙O的半径,AC,OB交于点D.若AD=CD=8,OD=6,则BD的长为()A .5B .4C .3D .2【分析】根据垂径定理得OB ⊥AC ,在根据勾股定理得OA =√AD 2+OD 2=√82+62=10,即可求出答案.【解答】解:∵AD =CD =8,∴OB ⊥AC ,在Rt △AOD 中,OA =√AD 2+OD 2=√82+62=10,∴OB =10,∴BD =10﹣6=4.故选:B .【点评】本题考查了垂径定理和勾股定理,由垂径定理得OB ⊥AC 是解题的关键.10.(2023•枣庄)如图,在⊙O 中,弦AB ,CD 相交于点P .若∠A =48°,∠APD =80°,则∠B 的度数为( )A .32°B .42°C .48°D .52°【分析】根据外角∠APD ,求出∠C ,由同弧所对圆周角相等即可求出∠B .【解答】解:∵∠A =48°,∠APD =80°,∴∠C =80°﹣48°=32°,∵AD̂=AD ̂, ∴∠B =∠C =32°.故选:A .【点评】本题考查了圆周角的性质的应用,三角形外角的性质应用是解题关键.11.(2023•杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC =()A.23°B.24°C.25°D.26°【分析】连接OC,根据圆周角定理可求解∠AOC的度数,结合垂直的定义可求解∠BOC 的度数,再利用圆周角定理可求解.【解答】解:连接OC,∵∠ABC=19°,∴∠AOC=2∠ABC=38°,∵半径OA,OB互相垂直,∴∠AOB=90°,∴∠BOC=90°﹣38°=52°,∴∠BAC=1∠BOC=26°,2故选:D.【点评】本题主要考查圆周角定理,掌握圆周角定理是解题的关键.12.(2023•湖北)如图,在⊙O中,直径AB与弦CD相交于点P,连接AC,AD,BD,若∠C=20°,∠BPC =70°,则∠ADC=()A.70°B.60°C.50°D.40°【分析】先根据外角性质得∠BAC=∠BPC﹣∠C=50°=∠BDC,,再由AB是⊙O的直径得∠ADB=90°即可求得∠ADC.【解答】解:∵∠C=20°,∠BPC=70°,∴∠BAC=∠BPC﹣∠C=50°=∠BDC,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=∠ADB﹣∠BDC=40°,故选:D.【点评】本题主要考查了三角形的外角性质以及直径所对的圆周角是直角,熟练掌握各知识点是解决本题的关键.13.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为()A.2√3B.3√2C.2√5D.√5【分析】根据圆周角定理及推论解答即可.【解答】解:方法一:连接CO并延长CO交⊙O于点E,连接AE,∵OA=OC,∴∠OAC=∠OCA,∵∠ACD=∠CAB,∴∠ACD=∠ACO,∴AE=AD=2,∵CE是直径,∴∠EAC=90°,在Rt△EAC中,AE=2,AC=4,∴EC=√22+42=2√5,∴⊙O 的半径为√5.方法二:连接BC ,∵AB 是直径,∴∠ACB =90°,∵∠ACD =∠CAB ,∴AD̂=BC ̂, ∴AD =BC =2,在Rt △ABC 中,AB =√AC 2+BC 2=2√5,∴圆O 的半径为√5.故选:D .【点评】本题主要考查了圆周角定理及推论,熟练掌握这些性质定理是解决本题的关键.14.(2022•贵阳)如图,已知∠ABC =60°,点D 为BA 边上一点,BD =10,点O 为线段BD 的中点,以点O 为圆心,线段OB 长为半径作弧,交BC 于点E ,连接DE ,则BE 的长是( )A .5B .5√2C .5√3D .5√5【分析】解法一:根据题意和等边三角形的判定,可以得到BE 的长.解法二:先根据直径所对的圆周角是90°,然后根据直角三角形的性质和直角三角形中30°角所对的直角边是斜边的一半,可以求得BE的长.【解答】解:解法一:连接OE,BD=5,由已知可得,OE=OB=12∵∠ABC=60°,∴△BOE是等边三角形,∴BE=OB=5,故选:A.解法二:由题意可得,BD为⊙O的直径,∴∠BED=90°,∵∠ABC=60°,∴∠EDB=30°,∵BD=10,∴BE=5,故选:A.【点评】本题考查等边三角形的判定与性质、与圆相关的知识,解答本题的关键是明确题意,求出△OBE 的形状.15.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为()A.95°B.100°C.105°D.130°【分析】根据四边形的内角和等于360°计算可得∠BAC=50°,再根据圆周角定理得到∠BOC=2∠BAC,进而可以得到答案.【解答】解:∵OD⊥AB,OE⊥AC,∴∠ADO=90°,∠AEO=90°,∵∠DOE=130°,∴∠BAC=360°﹣90°﹣90°﹣130°=50°,∴∠BOC=2∠BAC=100°,故选:B.【点评】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.(2022•贵港)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=40°,则∠BPC的度数是()A.40°B.45°C.50°D.55°【分析】根据直径所对的圆周角是直角得到∠ABC=90°,进而求出∠CAB,根据圆周角定理解答即可.【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∴∠ACB+∠CAB=90°,∵∠ACB=40°,∴∠CAB=90°﹣40°=50°,由圆周角定理得:∠BPC=∠CAB=50°,故选:C.【点评】本题考查的是圆周角定理,掌握直径所对的圆周角是直角是解题的关键.17.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F ̂上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为()是劣弧DEA.115°B.118°C.120°D.125°【分析】根据圆的内接四边形对角互补及等边△ABC的每一个内角是60°,求出∠EFD=120°.【解答】解:四边形EFDA是⊙O内接四边形,∴∠EFD+∠A=180°,∵等边△ABC的顶点A在⊙O上,∴∠A=60°,∴∠EFD=120°,故选:C.【点评】本题考查了圆内接四边形的性质、等边三角形的性质,掌握两个性质定理的应用是解题关键.18.(2022•荆门)如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD 的面积为()A.36√3B.24√3C.18√3D.72√3【分析】根据AB=12,BE=3,求出OE=3,OC=6,并利用勾股定理求出EC,根据垂径定理求出CD,即可求出四边形的面积.【解答】解:如图,连接OC,∵AB=12,BE=3,∴OB=OC=6,OE=3,∵AB⊥CD,在Rt△COE中,EC=√OC2−OE2=√36−9=3√3,∴CD=2CE=6√3,∴四边形ACBD的面积=12AB⋅CD=12×12×6√3=36√3.故选:A.【点评】本题考查了垂径定理,解题的关键是熟练运用定理.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.19.(2021•青海)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为()A.1.0厘米/分B.0.8/分C.1.2厘米/分D.1.4厘米/分【分析】连接OA,过点O作OD⊥AB于D,由垂径定理求出AD的长,再由勾股定理求出OD的长,然后计算出太阳在海平线以下部分的高度,即可求解.【解答】解:设“图上”圆的圆心为O,连接OA,过点O作OD⊥AB于D,如图所示:∵AB=16厘米,∴AD=12AB=8(厘米),∵OA=10厘米,∴OD=√OA2−AD2=√102−82=6(厘米),∴海平线以下部分的高度=OA+OD=10+6=16(厘米),∵太阳从所处位置到完全跳出海平面的时间为16分钟,∴“图上”太阳升起的速度=16÷16=1.0(厘米/分),故选:A.【点评】本题考查的是垂径定理的运用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(2021•攀枝花)如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为()A.2B.52C.3D.√10【分析】当A,M,C三点共线时,线段CM的长度最小,求出此时CM的长度即可.【解答】解:连接AM,∵点B和M关于AP对称,∴AB=AM=3,∴M在以A为圆心,3为半径的圆上,∴当A,M,C三点共线时,CM最短,∵AC=√32+42=5,AM=AB=3,∴CM=5﹣3=2,故选:A.【点评】本题主要考查圆的性质,关键是要考虑到点M在以A为圆心,3为半径的圆上.21.(2021•吉林)如图,四边形ABCD内接于⊙O,点P为边AD上任意一点(点P不与点A,D重合)连接CP.若∠B=120°,则∠APC的度数可能为()A.30°B.45°C.50°D.65°【分析】由圆内接四边形的性质得∠D度数为60°,再由∠APC为△PCD的外角求解.【解答】解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵∠B=120°,∴∠D=180°﹣∠B=60°,∵∠APC为△PCD的外角,∴∠APC>∠D,只有D满足题意.故选:D.22.(2021•雅安)如图,四边形ABCD为⊙O的内接四边形,若四边形OBCD为菱形,则∠BAD的度数为()A.45°B.60°C.72°D.36°【分析】根据圆内接四边形的性质得到∠BAD+∠BCD=180°,根据圆周角定理得到∠BOD=2∠BAD,根据菱形的性质得到∠BOD=∠BCD,计算即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠BAD+∠BCD =180°,由圆周角定理得:∠BOD =2∠BAD ,∵四边形OBCD 为菱形,∴∠BOD =∠BCD ,∴∠BAD+2∠BAD =180°,解得:∠BAD =60°,故选:B .【点评】本题考查的是圆内接四边形的性质、圆周角定理、菱形的性质,掌握圆内接四边形的对角互补是解题的关键.23.(2021•眉山)如图,在以AB 为直径的⊙O 中,点C 为圆上的一点,BĈ=3AC ̂,弦CD ⊥AB 于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则∠CBF 的度数为( )A .18°B .21°C .22.5°D .30°【分析】由圆周角定理可求∠ACB =90°,由弧的关系得出角的关系,进而可求∠ABC =22.5°,∠CAB =67.5CAH =∠ACE =22.5°,即可求解.【解答】解:∵AB 是直径,∴∠ACB =90°,∴∠ABC+∠CAB =90°,∵BĈ=3AC ̂, ∴∠CAB =3∠ABC ,∴∠ABC =22.5°,∠CAB =67.5°,∵CD ⊥AB ,∴∠ACE =22.5°,∵点H 是AG 的中点,∠ACB =90°,∴AH =CH =HG ,∴∠CAH =∠ACE =22.5°,∵∠CAF =∠CBF ,∴∠CBF =22.5°,故选:C .【点评】本题考查了圆周角定理,圆心角、弧、弦的关系,直角三角形的性质,求出∠CAB 的度数是本题的关键.二.填空题(共25小题)24.(2023•长沙)如图,点A ,B ,C 在半径为2的⊙O 上,∠ACB =60°,OD ⊥AB ,垂足为E ,交⊙O 于点D ,连接OA ,则OE 的长度为 .【分析】连接OB ,利用圆周角定理及垂径定理易得∠AOD =60°,则∠OAE =30°,结合已知条件,利用直角三角形中30°角对的直角边等于斜边的一半即可求得答案.【解答】解:如图,连接OB ,∵∠ACB =60°,∴∠AOB =2∠ACB =120°,∵OD ⊥AB ,∴AD̂=BD ̂,∠OEA =90°, ∴∠AOD =∠BOD =12∠AOB =60°,∴∠OAE =90°﹣60°=30°,∴OE =12OA =12×2=1,故答案为:1.【点评】本题考查圆与直角三角形性质的综合应用,结合已知条件求得∠AOD =60°是解题的关键.25.(2023•深圳)如图,在⊙O中,AB为直径,C为圆上一点,∠BAC的角平分线与⊙O交于点D,若∠ADC=20°,则∠BAD=°.【分析】先根据直径所对的圆周角是直角可得∠ACB=90°,再利用圆周角定理可得∠ADC=∠ABC=20°,然后利用直角三角形的两个锐角互余可得∠BAC=70°,从而利用角平分线的定义进行计算,即可解答.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠ADC=20°,∴∠ADC=∠ABC=20°,∴∠BAC=90°﹣∠ABC=70°,∵AD平分∠BAC,∠BAC=35°,∴∠BAD=12故答案为:35.【点评】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.26.(2023•东营)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问:径几何?”转化为现在的数学语言表达就是:如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,则直径CD的长度为寸.【分析】连接OA ,设⊙O 的半径是r 寸,由垂径定理得到AE =12AB =5寸,由勾股定理得到r2=(r ﹣1)2+52,求出r ,即可得到圆的直径长.【解答】解:连接OA ,设⊙O 的半径是r 寸,∵直径CD ⊥AB ,∴AE =12AB =12×10=5寸,∵CE =1寸,∴OE =(r ﹣1)寸,∵OA2=OE2+AE2,∴r2=(r ﹣1)2+52,∴r =13,∴直径CD 的长度为2r =26寸.故答案为:26.【点评】本题考查垂径定理的应用,勾股定理的应用,关键是连接OA 构造直角三角形,应用垂径定理,勾股定理列出关于圆半径的方程.27.(2023•郴州)如图,某博览会上有一圆形展示区,在其圆形边缘的点P 处安装了一台监视器,它的监控角度是55°,为了监控整个展区,最少需要在圆形边缘上共安装这样的监视器 台.【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半,得该圆周角所对的弧所对的圆心角是110°,则共需安装360°÷110°=3311≈4台.【解答】解:∵∠P=55°,∴∠P所对弧所对的圆心角是110°,,∵360°÷110°=3311∴最少需要在圆形边缘上共安装这样的监视器4台.故答案为:4.【点评】此题考查了要圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意把实际问题转化为数学问题,能够把数学和生活联系起来.28.(2023•绍兴)如图,四边形ABCD内接于圆O,若∠D=100°,则∠B的度数是.【分析】由圆内接四边形的性质:圆内接四边形的对角互补,即可得到答案.【解答】解:∵四边形ABCD内接于圆O,∴∠B+∠D=180°,∵∠D=100°,∴∠B=80°.故答案为:80°.【点评】本题考查圆内接四边形的性质,关键是掌握圆内接四边形的性质.29.(2023•南充)如图,AB是⊙O的直径,点D,M分别是弦AC,弧AC的中点,AC=12,BC=5,则MD的长是.【分析】根据垂径定理得OM⊥AC,根据圆周角定理得∠C=90°,根据勾股定理得AB=√122+52=13,BC=2.5,OD∥BC,所以OD⊥AC,MD=OM﹣OD=6.5﹣2.5=4.根据三角形中位线定理得OD=12【解答】解:∵点M是弧AC的中点,∴OM⊥AC,∵AB是⊙O的直径,∴∠C=90°,∵AC=12,BC=5,∴AB=√122+52=13,∴OM=6.5,∵点D是弦AC的中点,∴OD=1BC=2.5,OD∥BC,2∴OD⊥AC,∴O、D、M三点共线,∴MD=OM﹣OD=6.5﹣2.5=4.故答案为:4.【点评】本题考查了垂径定理,圆周角定理,勾股定理,三角形中位线定理,熟练掌握和运用这些定理是解题的关键.30.(2022•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC 的度数为.【分析】利用圆内接四边形的性质和∠ADC的度数求得∠B的度数,利用直径所对的圆周角是直角得到∠ACB =90°,然后利用直角三角形的两个锐角互余计算即可.【解答】解:∵四边形ABCD内接于⊙O,∠ADC=130°,∴∠B=180°﹣∠ADC=180°﹣130°=50°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=90°﹣50°=40°,故答案为:40°.【点评】本题考查了圆内接四边形的性质及圆周角定理的知识,解题的关键是了解圆内接四边形的对角互补.31.(2022•上海)如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13,则这个花坛的面积为 .(结果保留π)【分析】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解答】解:如图,连接OB ,过点O 作OD ⊥AB 于D ,∵OD ⊥AB ,OD 过圆心,AB 是弦,∴AD =BD =12AB =12(AC+BC )=12×(11+21)=16, ∴CD =BC ﹣BD =21﹣16=5,在Rt △COD 中,OD2=OC2﹣CD2=132﹣52=144,在Rt △BOD 中,OB2=OD2+BD2=144+256=400,∴S ⊙O =π×OB2=400π,故答案为:400π.【点评】本题考查垂径定理、勾股定理以及圆面积的计算,掌握垂径定理、勾股定理以及圆面积的计算公式是正确解答的前提.32.(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB =12cm ,BC =5cm ,则圆形镜面的半径为 .【分析】连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.【解答】解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC=√AB2+BC2=√122+52=13(cm),所以圆形镜面的半径为13cm,2cm.故答案为:132【点评】本题考查了圆周角定理和勾股定理等知识点,能根据圆周角定理得出AC是圆形镜面的直径是解此题的关键.33.(2022•阿坝州)如图,点A,B C在⊙O上,若∠ACB=30°,则∠AOB的大小为.【分析】根据圆周角定理即可得出答案.∠AOB,∠ACB=30°,【解答】解:∵∠ACB=12∴∠AOB=2∠ACB=2×30°=60°.故答案为:60°.【点评】本题主要考查了圆周角定理,熟练掌握圆周角定理是解题的关键.34.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O ̂所对的圆周角,则∠APD的度数是.于点D.若∠APD是AD【分析】由垂径定理得出AD̂=BD ̂,由圆心角、弧、弦的关系定理得出∠AOD =∠BOD ,进而得出∠AOD =60°,由圆周角定理得出∠APD =12∠AOD =30°,得出答案.【解答】解:∵OC ⊥AB ,∴AD̂=BD ̂, ∴∠AOD =∠BOD ,∵∠AOB =120°,∴∠AOD =∠BOD =12∠AOB =60°,∴∠APD =12∠AOD =12×60°=30°,故答案为:30°.【点评】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系,熟练掌握圆周角定理,垂径定理,35.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB 长20厘米,弓形高CD 为2厘米,则镜面半径为 厘米.【分析】根据题意,弦AB 长20厘米,弓形高CD 为2厘米,根据勾股定理和垂径定理可以求得圆的半径.【解答】解:如图,点O 是圆形玻璃镜面的圆心,连接OC ,则点C ,点D ,点O 三点共线,由题意可得:OC ⊥AB ,AC =12AB =10(厘米),设镜面半径为x 厘米,由题意可得:x2=102+(x ﹣2)2,∴x =26,∴镜面半径为26厘米,故答案为:26.【点评】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,由勾股定理可求解.36.(2022•黄石)如图,圆中扇子对应的圆心角α(α<180°)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则β﹣α的度数是 .【分析】根据已知,列出关于α,β的方程组,可解得α,β的度数,即可求出答案.【解答】解:根据题意得:{αβ=0.6α+=360°,解得{α=135°β=225°, ∴β﹣α=225°﹣135°=90°,故答案为:90°.【点评】本题考查圆心角,解题的关键是根据周角为360°和已知,列出方程组.37.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB =20cm ,底面直径BC =12cm ,球的最高点到瓶底面的距离为32cm ,则球的半径为 cm (玻璃瓶厚度忽略不计).【分析】设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由垂径定理得AM=DM=1AD2=6(cm)然后在Rt△OAM中,由勾股定理得出方程,解方程即可.【解答】解:如图,设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由题意得:AD=12cm,OM=32﹣20﹣r=(12﹣r)(cm),AD=6(cm),由垂径定理得:AM=DM=12在Rt△OAM中,由勾股定理得:AM2+OM2=OA2,即62+(12﹣r)2=r2,解得:r=7.5,即球的半径为7.5cm,故答案为:7.5.【点评】本题考查了垂径定理的应用以及勾股定理的应用等知识,熟练掌握垂径定理,由勾股定理得出方程是解题的关键.38.(2021•盘锦)如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是.【分析】先利用圆内接四边形的性质得到∠ABO=60°,再根据圆周角定理得到AB为⊙D的直径,则D点为AB的中点,接着利用含30度的直角三角形三边的关系得到OB=2,OA=2√3,所以A(﹣2√3,0),B (0,2),然后利用线段的中点坐标公式得到D点坐标.【解答】解:∵四边形ABOC为圆的内接四边形,∴∠ABO+∠ACO=180°,∴∠ABO=180°﹣120°=60°,∵∠AOB=90°,∴AB为⊙D的直径,∴D点为AB的中点,在Rt△ABO中,∵∠ABO=60°,AB=2,∴OB=12∴OA=√3OB=2√3,∴A(﹣2√3,0),B(0,2),∴D点坐标为(−√3,1).故答案为(−√3,1).【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的90°的圆周角所对的弦是直径.也考查了坐标与图形性质.39.(2021•黑龙江)如图,在⊙O中,AB是直径,弦AC的长为5cm,点D在圆上且∠ADC=30°,则⊙O 的半径为cm.【分析】连接OC,证明△AOC是等边三角形,可得结论.【解答】解:如图,连接OC.∵∠AOC=2∠ADC,∠ADC=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=AC=5(cm),∴⊙O的半径为5cm.故答案为:5.【点评】本题考查圆周角定理,等边三角形的判定和性质等知识,解题的关键是证明△AOC是等边三角形.40.(2021•天津)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B 在网格线上.(Ⅰ)线段AC的长等于;(Ⅱ)以AB O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P,并简要说明点P的位置是如何找到的(不要求证明).【分析】(Ⅰ)利用勾股定理求解即可.(Ⅱ)取BC与网格线的交点D,连接OD延长OD交⊙O于点E,连接AE交BC于点G,连接BE,延长AC 交BE的延长线于F,连接FG延长FG交AB于点P,点P即为所求.【解答】解:(Ⅰ)AC=√22+12=√5.故答案为:√5.(Ⅱ)如图,点P即为所求.故答案为:如图,取BC与网格线的交点D,则点D为BC中点,连接OD并延长OD交⊙O于点E,连接AE 交BC于点G,连接BE,延长AC交BE的延长线于F,则OE为△BFA的中位线,则AB=AF,连接FG延长FG交AB于点P,则BG=FG,∠AFG=∠ABG,即△FAP≌△BAC,则点P即为所求.【点评】本题考查圆周角定理,勾股定理,等腰三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.41.(2021•黑龙江)如图,在Rt△AOB中,∠AOB=90°,OA=4,OB=6,以点O为圆心,3为半径的⊙O,与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点,则PC+PD的最小值为.【分析】延长CO交⊙O于点E,连接ED,交AO于点P,则PC+PD的值最小.【解答】解:延长CO交⊙O于点E,连接ED,交AO于点P,则PC+PD的值最小,最小值为线段DE的长.∵CD⊥OB,∴∠DCB=90°,∵∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO,∴CDAO =BCBO,∴CD4=36,∴CD=2,在Rt△CDE中,DE=√CD2+CE2=√22+62=2√10,∴PC+PD的最小值为2√10.故答案为:2√10.【点评】本题考查圆周角定理,垂径定理,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.42.(2021•宿迁)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别交⊙O于D、E两点,点B是CD̂的中点,则∠ABE=.【分析】由∠ABC=90°,可得CD是⊙O的直径,由点B是CD̂的中点以及三角形的内角和,可得∠BDC=∠BCD=45°,利用三角形的内角和求出∠ACB,再根据角的和差关系求出∠DCE,由圆周角定理可得∠ABE =∠DCE得出答案.【解答】解:如图,连接DC,∵∠DBC=90°,∴DC是⊙O的直径,∵点B是CD̂的中点,∴∠BCD=∠BDC=45°,在Rt△ABC中,∠ABC=90°,∠A=32°,∴∠ACB=90°﹣32°=58°,∴∠ACD=∠ACB﹣∠BCD=58°﹣45°=13°=∠ABE,故答案为:13°.【点评】本题考查圆周角定理,弦、弧、圆心角之间的关系以及三角形内角和定理,掌握圆周角定理和推论是正确计算的前提.43.(2021•成都)如图,在平面直角坐标系xOy 中,直线y =√33x +2√33与⊙O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为 .【分析】设直线AB 交y 轴于C ,过O 作OD ⊥AB 于D ,先求出A 、C 坐标,得到OA 、OC 长度,可得∠CAO =30°,Rt △AOD 中求出AD 长度,从而根据垂径定理可得答案.【解答】解:设直线AB 交y 轴于C ,过O 作OD ⊥AB 于D ,如图:在y =√33x +2√33中,令x =0得y =2√33, ∴C(0,2√33),OC =2√33, 在y =√33x +2√33中令y =0得√33x +2√33=0,解得x =﹣2,∴A(﹣2,0),OA =2,Rt △AOC 中,tan ∠CAO =OC OA =2√332=√33,∴∠CAO=30°,Rt△AOD中,AD=OA•cos30°=2×√3=√3,2∵OD⊥AB,∴AD=BD=√3,∴AB=2√3,故答案为:2√3.得到【点评】本题考查一次函数、锐角三角函数及垂径定理等综合知识,解题的关键是利用tan∠CAO=OCOA∠CAO=30°.44.(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D =°.【分析】如图,连接BC,证明∠ACB=90°,求出∠ABC,可得结论.【解答】解:如图,连接BC.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=62°,∴∠D=∠ABC=62°,故答案为:62.【点评】本题考查圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型.45.(2022•牡丹江)⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AC 的长为.【分析】连接OA,由AB⊥CD,设OC=5x,OM=3x,根据CD=10可得OC=5,OM=3,根据垂径定理得到AM=4,然后分类讨论:当如图1时,CM=8;当如图2时,CM=2,再利用勾股定理分别计算即可.【解答】解:连接OA,∵OM:OC=3:5,设OC=5x,OM=3x,则OD=OC=5x,∵CD=10,∴OM=3,OA=OC=5,∵AB⊥CD,AB,∴AM=BM=12在Rt△OAM中,OA=5,AM=√OA2−OM2=√52−32=4,当如图1时,CM=OC+OM=5+3=8,在Rt△ACM中,AC=√AM2+CM2=√42+82=4√5;当如图2时,CM=OC﹣OM=5﹣3=2,在Rt△ACM中,AC=√AM2+MC2=√42+22=2√5.综上所述,AC的长为4√5或2√5.故答案为:4√5或2√5.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.46.(2021•黔东南州)小明很喜欢钻研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量得弧AB的中心C到AB的距离CD=1.6cm,AB =6.4cm,很快求得圆形瓦片所在圆的半径为cm.【分析】先根据垂径定理的推论得到CD 过圆心,AD =BD =3.2cm ,设圆心为O ,连接OA ,如图,设⊙O 的半径为Rcm ,则OD =(R ﹣1.6)cm ,利用勾股定理得到(R ﹣1.6)2+3.22=R2,然后解方程即可.【解答】解:∵C 点是AB̂的中点,CD ⊥AB , ∴CD 过圆心,AD =BD =12AB =12×6.4=3.2(cm ),设圆心为O ,连接OA ,如图,设⊙O 的半径为Rcm ,则OD =(R ﹣1.6)cm ,在Rt △OAD 中,(R ﹣1.6)2+3.22=R2,解得R =4(cm ),所以圆形瓦片所在圆的半径为4cm .故答案为4.【点评】本题考查了垂径定理的应用:利用垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.47.(2021•德阳)在锐角三角形ABC 中,∠A =30°,BC =2,设BC 边上的高为h ,则h 的取值范围是 .【分析】如图,BC 为⊙O 的弦,OB =OC =2,证明△OBC 为等边三角形得到∠BOC =60°,则根据圆周角定理得到∠BAC =30°,作直径BD 、CE ,连接BE 、CD ,则∠DCB =∠EBC =90°,当点A 在DÊ上(不含D 、E 点)时,△ABC 为锐角三角形,易得CD =√3BC =2√3,当A 点为DÊ的中点时,A 点到BC 的距离最大,即h 最大,延长AO 交BC 于H ,如图,根据垂径定理得到AH ⊥BC ,所以BH =CH =1,OH =√3,则AH =2+√3,然后写出h 的范围.【解答】解:如图,BC 为⊙O 的弦,OB =OC =2,∵BC =2,∴OB =OC =BC ,∴△OBC 为等边三角形,∴∠BOC =60°,∴∠BAC =12∠BOC =30°,作直径BD 、CE ,连接BE 、CD ,则∠DCB =∠EBC =90°,∴当点A 在DÊ上(不含D 、E 点)时,△ABC 为锐角三角形, 在Rt △BCD 中,∵∠D =∠BAC =30°,∴CD =√3BC =2√3,当A 点为DÊ的中点时,A 点到BC 的距离最大,即h 最大, 延长AO 交BC 于H ,如图,∵A 点为DÊ的中点, ∴AB̂=AC ̂, ∴AH ⊥BC ,∴BH =CH =1,∴OH =√3BH =√3,∴AH =OA+OH =2+√3,∴h 的范围为2√3<h ≤2+√3.故答案为2√3<h ≤2+√3.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理和勾股定理.48.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A 到B 有一笔直的栏杆,圆心O 到栏杆AB 的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳 名观众同时观看演出.(π取3.14,√3取1.73)。
2021年九年级数学中考复习专题之圆:切线的判定与性质(一)
2021年九年级数学中考复习专题之圆:切线的判定与性质(一)一.选择题1.下列说法中,正确的是()A.圆的切线垂直于经过切点的半径B.垂直于切线的直线必经过切点C.垂直于切线的直线必经过圆心D.垂直于半径的直线是圆的切线2.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,m的值为()A.4或﹣4 B.4﹣或4+C.﹣4+或4+ D.4﹣或4+ 3.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是()A.B.l1和l2的距离为2C.若∠MON=90°,则MN与⊙O相切D.若MN与⊙O相切,则4.如图,∠ACB=60°,半径为3的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.3 B.3C.6πD.5.如图,AB是⊙O的直径,=,过点C作BD的垂线交BD的延长线于点E,交BA 的延长线于点F,已知AB=2,∠F=30°,则四边形ABEC的面积是()A.2B.C.D.6.如图,⊙O的半径为3,四边形ABCD是⊙O的内接四边形,∠A=60°,∠D=110°,的度数是70°,直线l与⊙O相切于点A.在没有滑动的情况下,将⊙O沿l向右滚动,使O点向右移动70π,则此时⊙O与直线l相切的切点所在的劣弧是()A.B.C.D.7.已知抛物线y=a(x﹣3)2+(a≠0)过点C(0,4),顶点为M,与x轴交于A,B两点.如图所示以AB为直径作圆,记作⊙D,下列结论:①抛物线的对称轴是直线x =3;②点C在⊙D外;③直线CM与⊙D相切.其中正确的有()A.0个B.1个C.2个D.3个8.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E,F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线D.若BE=EC,则AC是⊙O的切线9.如图,在矩形ABCD中,BC=8,以AB为直径作⊙O,将矩形ABCD绕点B旋转,使所得矩形A'BC'D'的边C'D'与⊙O相切,切点为E,边A'B与⊙O相交于点F.若BF=8,则CD长为()A.9 B.10 C.8D.1210.如图,在矩形ABCD中,AD=80cm,AB=40cm,半径为8cm的⊙O在矩形内且与AB、AD均相切.现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切,此时⊙O移动了()cm.A.56 B.72 C.56或72 D.不存在二.填空题11.直线l经过点A(4,0),B(0,2),若⊙M的半径为1,圆心M在x轴上,当⊙M 与直线l相切时,则点M的坐标.12.如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,以点P为圆心,PC长为半径作⊙P.当⊙P与矩形ABCD的边相切时,CP的长为.13.如图,Rt△ABC中,∠C=90°,AC=8,BC=16,点D在边BC上,点E在边AB 上,沿DE将△ABC折叠,使点B与点A重合,连接AD,点P是线段AD上一动点,当半径为5的⊙P与△ABC的一边相切时,AP的长为.14.如图,以△ABC的边AB为直径的⊙O恰好过BC的中点D,过点D作DE⊥AC于E,连结OD,则下列结论中:①OD∥AC;②∠B=∠C;③2OA=AC;④DE是⊙O的切线;⑤∠EDA=∠B,正确的序号是.15.如图,直线y=x﹣3交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P 为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是.三.解答题16.如图,三角形ABC中,AC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,D为AB的中点,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.17.如图,圆O的直径AB=12cm,C为AB延长线上一点,点P为中点,过点B作弦BD∥CP,连接PD.(1)求证:CP与圆O相切;(2)若∠C=∠D,求四边形BCPD的面积.18.如图,在△ABC中,以AC为直径的⊙O交BC于点D,过点D作DE⊥AB于点E,延长DE交CA的延长线于点F,延长BA交⊙O于G,且∠BAF=2∠C.(1)求证:DE为⊙O的切线;(2)若tan∠EFC=,求的值.19.如图,点B为⊙O外一点,点A为⊙O上一点,点P为OB上一点且BP=BA,连接AP并延长交⊙O于点C,连接OC,OC⊥OB.(1)求证:AB是⊙O的切线;(2)若OB=10,⊙O的半径为8.求AP的长.20.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE、DE、BD,BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC,求证:四边形OEDB是菱形.参考答案一.选择题1.解:A、圆的切线垂直于经过切点的半径;故本选项正确;B、经过圆心且垂直于切线的直线必经过切点;故本选项错误;C、经过切点且垂直于切线的直线必经过圆心;故本选项错误;D、经过半径的外端且垂直于这条半径的直线是圆的切线;故本选项错误;故选:A.2.解:在y=﹣x+1中,令x=0,则y=1,令y=0,则x=,∴A(0,1),B(,0),∴AB=2;如图,设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,∵∠MCB=∠AOB=90°,∠ABO=∠CBM,∴△BMC~△BAO,∴=,即=,∴BM=4,∴OM=4﹣,或OM=4+.∴m=﹣4,m=4+.故选:C.3.解:如图1,过点N作NC⊥AM于点C,∵直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,⊙O的半径为1,∴CN=AB=2,∵∠1=60°,∴MN==,故A与B正确;如图3,若∠MON=90°,连接NO并延长交MA于点C,则△AOC≌△BON,故CO=NO,△MON≌△MOM′,故MN上的高为1,即O到MN的距离等于半径.故C正确;如图2,∵MN是切线,⊙O与l1和l2分别相切于点A和点B,∴∠AMO=∠1=30°,∴AM=;∵∠AM′O=60°,∴AM′=,∴若MN与⊙O相切,则AM=或;故D错误.故选:D.4.解:设⊙O与CA相切于点P,此时和CB相切于点D,连接OC,OD、OP.∵⊙O与CA相切,⊙O与CB相切,∴∠OCD=∠ACB=30°,∵OP=OD=3,∴CD=3.故选:B.5.解:连接OD、OC、BC,如图:∵AB是⊙O的直径,AB=2,∴∠ACB=90°,OA=OB=AB=1,∵BE⊥FE,∠F=30°,∴∠ABC=90°﹣∠F=60°,∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∵=,∴∠AOC=∠COD=60°,∵OA=OC,∴△AOC是边长为1的等边三角形,∴AC=OA=1,∠OAC=60°,∴∠ABC=90°﹣60°=30°,∴BC=AC=,∠CBE=60°﹣30°=30°,∴CE=BC=,BE=CE=,∴四边形ABEC的面积=△ABC的面积+△BCE的面积=×1×+××=;故选:B.6.解:连结OC、OD、OA,如图,∵∠D=110°,∴∠B=180°﹣∠D=70°,∴∠AOC=2∠B=140°,∵∠A=60°,∴∠BOD=120°,∵的度数是70°,∴∠COD=70°,∴∠AOD=70°,∠BOC=50°,∴AD弧的长度==π,∴BC弧的长度==π,∵70π=6π•12﹣2π,而2π>π,∴向右移动了70π,此时与直线l相切的弧为.故选:C.7.解:由抛物线y=a(x﹣3)2+可知:抛物线的对称轴x=3,故①正确;∵抛物线y=a(x﹣3)2+过点C(0,4),∴4=9a+,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+,令y=0,则﹣(x﹣3)2+=0,解得:x=8或x=﹣2,∴A(﹣2,0),B(8,0);∴AB=10,∴AD=5,∴OD=3∵C(0,4),∴CD==5,∴CD=AD,∴点C在圆上,故②错误;由抛物线y=a(x﹣3)2+可知:M(3,),∵C(0,4),∴直线CM为y=x+4,直线CD为:y=﹣x+4,∴CM⊥CD,∵CD=AD=5,∴直线CM与⊙D相切,故③正确;故选:C.8.解:A、如图,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确;C、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=AO≠OB,∴C选项错误;D、如图,∵BE=EC,∴CE=BE,∵AB=BC,BO=BE,∴AO=CE=OB,∴OH=AO=OB,∴AC是⊙O的切线,∴D选项正确.故选:C.9.解:连接OE,延长EO交BF于点M,∵C'D'与⊙O相切,∴∠OEC′=90°,又矩形A'BC'D'中,A'B∥C'D',∴∠EMB=90°,∴BM=FM,∵矩形ABCD绕点B旋转所得矩形为A′BC′D′,∴∠C′=∠C=90°,AB=CD,BC=B′C=8,∴四边形EMBC'为矩形,∴ME=8,设OB=OE=x,则OM=8﹣x,∵OM2+BM2=OB2,∴(8﹣x)2+42=x2,解得x=5,∴AB=CD=10.故选:B.10.解:存在这种情况,设点P移动速度为v1cm/s,⊙O2移动的速度为v2cm/s,由题意,得==,如图②:设直线OO1与AB交于E点,与CD交于F点,⊙O1与AD相切于G点,若PD与⊙O1相切,切点为H,则O1G=O1H.易得△DO1G≌△DO1H,∴∠ADB=∠BDP.∵BC∥AD,∴∠ADB=∠CBD∴∠BDP=∠CBD,∴BP=DP.设BP=xcm,则DP=xcm,PC=(80﹣x)cm,在Rt△PCD中,由勾股定理,得PC2+CD2=PD2,即(80﹣x)2+402=x2,解得x=50,此时点P移动的距离为40+50=90(cm),∵EF∥AD,∴△BEO1∽△BAD,∴=,即=,EO1=64cm,OO1=56cm.①当⊙O首次到达⊙O1的位置时,⊙O移动的距离为40cm,此时点P与⊙O移动的速度比为==,∵≠,∴此时PD与⊙O1不能相切;②当⊙O在返回途中到达⊙O1位置时,⊙O移动的距离为2(80﹣16)﹣56=72(cm),∴此时点P与⊙O移动的速度比为==,此时PD与⊙O1恰好相切.此时⊙O移动了72cm,故选:B.二.填空题(共5小题)11.解:∵直线l经过点A(4,0),B(0,2),∴AB==2,设M坐标为(m,0)(m>0),即OM=m,若M′在A点左侧时,AM′=4﹣m,当AB是⊙O的切线,∴∠M′C′A=90°,∵∠M′AC′=∠BAO,∠M′C′A=∠BOA=90°,∴△M′AC′∽△BAO,∴=,即=,解得:m=4﹣,此时M′(4﹣,0);若M在A点右侧时,AM=m﹣4,同理△AMN∽△BAO,则有=,即=,解得:m=4+.此时M(4+,0),综上所述,M(4﹣,0)或(4+,0),故答案为:M(4﹣,0)或(4+,0),12.解:作PE⊥AD于E,PF⊥AB于F,在Rt△ABC中,AC==5,由题意可知,⊙P只能与矩形ABCD的边AD、AB相切,当⊙P与AD相切时,PE=PC,∵PE⊥AD,CD⊥AD,∴PE∥CD,∴△APE∽△ACD,∴=,即=,解得,CP=,当⊙P与AB相切时,PF=PC,∵PF⊥AB,CB⊥AB,∴PF∥BC,∴△APE∽△ACD,∴=,即=,解得,CP=,综上所述,当⊙P与矩形ABCD的边相切时,CP的长或,故答案为:或.13.解:设BD=x,由折叠知AD=BD=x,CD=16﹣x,在Rt△ACD中,由勾股定理得,x2=82+(16﹣x)2,解得,x=10,∴BD=10,∵AB=,∴AE=BE=AB=4,∴DE=,∴点P是线段AD上运动时,⊙P不可能与AB相切,分两种情况:①当⊙P与AC相切时,过点P作PF⊥AC于点F,如图1,∴PF=5,PF∥CD,∴△APF∽△ADC,∴,即,∴;②⊙P与BC相切时,过点P作PG⊥BC于点G,如图2,∴PG=5,PG∥AC,∴△DPG∽△DAC,∴,即,∴DP=,∴AP=10﹣,综上,AP的长为或.14.解:连接AD,∵D为BC中点,点O为AB的中点,∴OD为△ABC的中位线,∴OD∥AC,①正确;∵AB是⊙O的直径,∴∠ADB=90°=∠ADC,即AD⊥BC,又BD=CD,∴△ABC为等腰三角形,∴∠B=∠C,②正确;∵DE⊥AC,且DO∥AC,∴OD⊥DE,∵OD是半径,∴DE是⊙O的切线,∴④正确;∴∠ODA+∠EDA=90°,∵∠ADB=∠ADO+∠ODB=90°,∴∠EDA=∠ODB,∵OD=OB,∴∠B=∠ODB,∴∠EDA=∠B,∴⑤正确;∵D为BC中点,AD⊥BC,∴AC=AB,∵OA=OB=AB,∴OA=AC,∴③正确,故答案为:①②③④⑤.15.解:∵直线y=x﹣3交x轴于点A,交y轴于点B,∴令x=0,得y=﹣3,令y=0,得x=3,∴A(3,0),B(0.﹣3),∴OA=3,OB=3,∴AB=6,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,∵∠ADP=∠AOB=90°,∠PAD=∠BAO,∴△APD∽△ABO,∴=,∴=,∴AP=2,∴OP=3﹣2或OP=3+2,∴P(3﹣2,0)或P(3+2,0),故答案为(3﹣2,0)或P(3+2,0).三.解答题(共5小题)16.证明:(1)连接OD、CD,∵BC是直径,∴CD⊥AB,∵AC=BC,∴D是AB的中点,∵O为CB的中点,∴OD∥AC,∵DF⊥AC,∴OD⊥EF,∴直线EF是⊙O的切线;(2)连BG,∵BC是直径,∴∠BDC=90°,∴CD===8,∵AB•CD=2S△ABC=AC•BG,∴BG==,∴CG===,∵BG⊥AC,DF⊥AC,∴BG∥EF.∴∠E=∠CBG,∴sin∠E=sin∠CBG===.17.(1)证明:连接OP,交BD于点E,∵点P为的中点.∴BD⊥OP,∵BD∥CP,∴∠OEB=∠OPC=90°∴PC⊥OP,∴CP与⊙O相切于点P;(2)解:∵∠C=∠D,∵∠POB=2∠D,∴∠POB=2∠C,∵∠CPO=90°,∴∠C=30°,∵BD∥CP,∴∠C=∠DBA,∴∠D=∠DBA,∴BC∥PD,∴四边形BCPD是平行四边形,∵PO=AB=6,∴PC=6,∵∠ABD=∠C=30°,∴OE=OB=3,∴PE=3,∴四边形BCPD的面积=PC•PE=6×3=18.18.解:(1)连接OD,∵OC=OD,∴∠C=∠ODC,∵∠BAF=2∠C,∠BAF=∠B+∠C,∴∠B=∠C,∴∠B=∠ODC,∴AB∥OD,∵DE⊥AB,∴OD⊥DF,∴DE为⊙O的切线;(2)过O作OH⊥AG于点H,则AH=GH,EF∥OH,∴∠AOH=∠EFA,∵tan∠EFC=,∴tan∠AOH==,∴设AH=3x,则AG=2AH=6x,OH=4x,∴,∴AC=2AO=10x,OD=OA=5x,∵tan∠EFC==,设AE=3y,则EF=4y,∴AF=,∵AE∥OD,∴△AEF∽△ODF,∴,即,∴,∴AE=3y=2x,∴BE=AB﹣AE=10x﹣2x=8x,∴=.19.(1)证明:∵BP=BA,OA=OC,∴∠BAP=∠BPA,∠PAO=∠C,∵OC⊥OB,∴∠COP=90°,∴∠OPC+∠C=90°,∵∠OPC=∠BPA,∴∠BAP=∠OPC,∴∠BAP+∠OAP=90°,即∠BAO=90°,∴AB⊥OA,又∵OA为⊙O的半径,∴AB是⊙O的切线;(2)解:如图,作BD⊥AP于点D,∵⊙O的半径为8,∴CO=OA=8,由(1)得:∠BAO=90°,∴AB===6,∴BP=BA=6,∴OP=OB﹣BP=4,在Rt△CPO中,OP=4,CO=8,∴CP===4,∵BA=BP,BD⊥AP,∴AD=PD,∠BDP=90°=∠COP,∵∠BPD=∠CPO,∴△BPD∽△CPO,∴=,即=,解得:PD=,∴AP=2PD=.20.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∵∠DBC+∠ABD=90°,∴BC是⊙O的切线;(2)∵OE∥BD,∴∠OEB=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OBE=∠DBE,∵BF=BC,∠ADB=90°,∴∠CBD=∠EBD,∵∠DEB=∠DBC,∴∠EBD=∠DBE,∴∠DEB=∠OBE,∴ED∥OB,∵ED∥OB,OE∥BD,OE=OB,∴四边形OEDB是菱形.。
2021年中考数学真题分类汇编:专题24圆的有关性质(解析版)
2021年中考数学真题分类汇编:专题24圆的有关性质一、单选题1.(2021·甘肃武威市·中考真题)如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=( )A .48︒B .24︒C .22︒D .21︒ 【答案】D【分析】先证明,AB CD =再利用等弧的性质及圆周角定理可得答案.【详解】 解: 点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,,AB CD ∴=114221,22CED AOB ∴∠=∠=⨯︒=︒ 故选:.D【点睛】本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键.2.(2021·广西玉林市·中考真题)学习圆的性质后,小铭与小熹就讨论起来,小铭说:“被直径平分的弦也与直径垂直”,小熹说:“用反例就能说明这是假命题” .下列判断正确的是( )A .两人说的都对B .小铭说的对,小燕说的反例不存在C .两人说的都不对D .小铭说的不对,小熹说的反例存在【答案】D【分析】根据垂径定理可直接进行排除选项.【详解】解:由垂径定理的推论“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧”可知:小铭忽略了垂径定理中的“弦不能是直径”这一条件,因为一个圆中的任意两条直径都互相平分,但不垂直,所以小铭说法错误,小熹所说的反例即为两条直径的情况下;故选D.【点睛】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.3.(2021·青海中考真题)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交AB 厘米.若从目前太阳所处位置到太阳完全跳出于A,B两点,他测得“图上”圆的半径为10厘米,16海平面的时间为16分钟,则“图上”太阳升起的速度为().A.1.0厘米/分B.0.8厘米分C.12厘米/分D.1.4厘米/分【答案】A【分析】首先过⊙O的圆心O作CD⊙AB于C,交⊙O于D,连接OA,由垂径定理,即可求得OC的长,继而求得CD的长,又由从目前太阳所处位置到太阳完全跳出海面的时间为10分钟,即可求得“图上”太阳升起的速度.【详解】解:过⊙O的圆心O作CD⊙AB于C,交⊙O于D,连接OA,⊙AC=12AB=12×16=8(厘米),在Rt⊙AOC中,6OC===(厘米),⊙CD=OC+OD=16(厘米),⊙从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,⊙16÷16=1(厘米/分).⊙“图上”太阳升起的速度为1.0厘米/分.故选:A.【点睛】此题考查了垂径定理的应用.解题的关键是结合图形构造直角三角形,利用勾股定理求解.4.(2021·山东聊城市·中考真题)如图,A,B,C是半径为1的⊙O上的三个点,若AB⊙CAB=30°,则⊙ABC的度数为()A.95°B.100°C.105°D.110°【答案】C【分析】连接OB,OC,根据勾股定理逆定理可得⊙AOB=90°,⊙ABO=⊙BAO=45°,根据圆周角定理可得⊙COB=2⊙CAB=60°,⊙OBC=⊙OCB=60°,由此可求得答案.【详解】解:如图,连接OB,OC,⊙OA =OB =1,AB⊙OA 2+OB 2=AB 2,⊙⊙AOB =90°,又⊙OA =OB ,⊙⊙ABO =⊙BAO =45°,⊙⊙CAB =30°,⊙⊙COB =2⊙CAB =60°,又⊙OC =OB ,⊙⊙OBC =⊙OCB =60°,⊙⊙ABC =⊙ABO +⊙OBC =105°,故选:C .【点睛】本题考查了勾股定理的逆定理,等腰三角形的性质,圆周角定理,熟练掌握圆周角定理是解决本题的关键. 5.(2021·湖北鄂州市·中考真题)已知锐角40AOB ∠=︒,如图,按下列步骤作图:⊙在OA 边取一点D ,以O 为圆心,OD 长为半径画MN ,交OB 于点C ,连接CD .⊙以D 为圆心,DO 长为半径画GH ,交OB 于点E ,连接DE .则CDE ∠的度数为( )A .20︒B .30C .40︒D .50︒【答案】B【分析】 根据画图过程,得到OD =OC ,由等边对等角与三角形内角和定理得到⊙ODC =⊙OCD =70︒,同理得到⊙DOE =⊙DEO =40⊙,由⊙OCD 为⊙DCE 的外角,得到结果.【详解】解:⊙以O 为圆心,OD 长为半径画MN ,交OB 于点C ,⊙OD =OC ,⊙⊙ODC =⊙OCD ,⊙⊙AOB =40⊙,⊙⊙ODC =⊙OCD =118040702⨯︒-︒=︒, ⊙以D 为圆心,DO 长为半径画GH ,交OB 于点E ,⊙DO =DE ,⊙⊙DOE =⊙DEO =40⊙,⊙⊙OCD 为⊙DCE 的外角,⊙⊙OCD =⊙DEC +⊙CDE ,⊙70⊙=40⊙+⊙CDE ,⊙⊙CDE =30⊙,故选:B .【点睛】本题考查了等腰三角形的判定与性质、以及三角形外角的性质,关键在于等边对等角与三角形的外角等于与它不相邻的两个内角之和两个知识点的熟练运用.6.(2021·海南中考真题)如图,四边形ABCD 是O 的内接四边形,BE 是O 的直径,连接AE .若2BCD BAD ∠=∠,则DAE ∠的度数是( )A .30B .35︒C .45︒D .60︒【答案】A【分析】 先根据圆内接四边形的性质可得60BAD ∠=︒,再根据圆周角定理可得90BAE ∠=︒,然后根据角的和差即可得.【详解】 解:四边形ABCD 是O 的内接四边形,180BCD BAD ∴∠+∠=︒,2BCD BAD ∠=∠,1180603BAD =⨯︒∴∠=︒, BE 是O 的直径,90BAE ∴∠=︒,906030DAE BAE BAD ∴∠=∠-∠=︒-︒=︒,故选:A .【点睛】本题考查了圆内接四边形的性质、圆周角定理,熟练掌握圆内接四边形的性质是解题关键.7.(2021·四川眉山市·中考真题)如图,在以AB 为直径的O 中,点C 为圆上的一点,3BC AC =,弦CD AB ⊥于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则CBF ∠的度数为( )A .18°B .21°C .22.5°D .30°【答案】C【分析】根据直径所对的圆周角是90︒,可知90ACB AFB ∠=∠=︒,根据3BC AC =,可知ABC ∠、BAC ∠的度数,根据直角三角形斜边上的中线等于斜边的一半可知,AHC 为等腰三角形,再根据CAE BFG BCA ∽∽可求得CBF ∠的度数.【详解】解:⊙AB 为O 的直径,⊙90ACB AFB ∠=∠=︒,⊙3BC AC =,⊙=22.5ABC ∠︒,=67.5BAC ∠︒,⊙点H 是AG 的中点,⊙CE AH =,⊙CAH ACH ∠=∠,⊙CD AB ⊥,⊙AEC GCA ∽,又⊙,CAF CBF CGA FGB ∠=∠∠=∠,⊙AEC GCA GFB ∽∽,⊙90ACE ECB ABC ECB ∠+∠=∠+∠=︒,⊙ABE ABC ∠=∠,⊙AEC GCA GFB ACB ∽∽∽,⊙22.5ABC ACE GAC GBF ∠=∠=∠=∠=︒,⊙=22.5CBF ∠︒,故选:C .【点睛】本题主要考查圆周角定理,垂径定理,相似三角形,直角三角形斜边上中线等知识点,找出图形中几个相似三角形是解题关键.8.(2021·四川南充市·中考真题)如图,AB 是O 的直径,弦CD AB ⊥于点E ,2CD OE =,则BCD ∠的度数为( )A .15︒B .22.5︒C .30D .45︒【答案】B【分析】连接OD ,根据垂径定理得CD =2DE ,从而得ODE 是等腰直角三角形,根据圆周角定理即可求解.【详解】解:连接OD ,⊙AB 是O 的直径,弦CD AB ⊥于点E ,⊙CD =2DE ,⊙2CD OE =,⊙DE =OE ,⊙ODE 是等腰直角三角形,即⊙BOD =45°,⊙BCD ∠=12⊙BOD =22.5°, 故选B .【点睛】本题主要考查圆的基本性质,熟练掌握垂径定理和圆周角定理,是解题的关键.9.(2021·四川广安市·中考真题)如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A 、B 是圆上的点,O 为圆心,120AOB ∠=︒,小强从A 走到B ,走便民路比走观赏路少走( )米.A .6π-B .6π-C .12π-D .12π-【答案】D【分析】 作OC ⊙AB 于C ,如图,根据垂径定理得到AC =BC ,再利用等腰三角形的性质和三角形内角和计算出⊙A ,从而得到OC 和AC ,可得AB ,然后利用弧长公式计算出AB 的长,最后求它们的差即可.【详解】解:作OC ⊙AB 于C ,如图,则AC =BC ,⊙OA =OB ,⊙⊙A =⊙B =12(180°-⊙AOB )=30°, 在Rt ⊙AOC 中,OC =12OA =9,AC =⊙AB =2AC =又⊙12018180AB π⨯⨯==12π,⊙走便民路比走观赏路少走12π-故选D .【点睛】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.10.(2021·重庆中考真题)如图,AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,若20A ∠=︒,则B 的度数为( )A .70°B .90°C .40°D .60°【答案】A【分析】直接根据直径所对的圆周角为直角进行求解即可.【详解】⊙AB 是⊙O 的直径,⊙⊙ACB =90°,⊙在Rt ⊙ABC 中,⊙B =90°-⊙A =70°,故选:A .【点睛】本题考查直径所对的圆周角为直角,理解基本定理是解题关键.11.(2021·浙江丽水市·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin COD S m α=⋅【答案】B【分析】 根据垂径定理、锐角三角函数的定义进行判断即可解答.【详解】解:⊙AB 是O 的直径,弦CD OA ⊥于点E , ⊙12DE CD = 在Rt EDO ∆中,OD m =,AOD α∠=∠ ⊙tan =DE OEα ⊙=tan 2tan DE CD OE αα=,故选项A 错误,不符合题意;又sin DE ODα= ⊙sin DE OD α=⊙22sin CD DE m α==,故选项B 正确,符合题意; 又cos OE ODα= ⊙cos cos OE OD m αα==⊙AO DO m ==⊙cos AE AO OE m m α=-=-,故选项C 错误,不符合题意;⊙2sin CD m α=,cos OE m α= ⊙2112sin cos sin cos 22COD S CD OE m m m αααα∆=⨯=⨯⨯=,故选项D 错误,不符合题意; 故选B .【点睛】本题考查了垂径定理,锐角三角函数的定义以及三角形面积公式的应用,解本题的关键是熟记垂径定理和锐角三角函数的定义.12.(2021·山东泰安市·中考真题)如图,在ABC 中,6AB =,以点A 为圆心,3为半径的圆与边BC 相切于点D ,与AC ,AB 分别交于点E 和点G ,点F 是优弧GE 上一点,18CDE ∠=︒,则GFE ∠的度数是( )A .50°B .48°C .45°D .36°【答案】B【分析】 连接AD ,由切线性质可得⊙ADB =⊙ADC =90°,根据AB=2AD 及锐角的三角函数可求得⊙BAD =60°,易求得⊙ADE =72°,由AD=AE 可求得⊙DAE =36°,则⊙GAC =96°,根据圆周角定理即可求得⊙GFE 的度数.【详解】解:连接AD ,则AD =AG =3,⊙BC与圆A相切于点D,⊙⊙ADB=⊙ADC=90°,在Rt⊙ADB中,AB=6,则cos⊙BAD=ADAB=12,⊙⊙BAD=60°,⊙⊙CDE=18°,⊙⊙ADE=90°﹣18°=72°,⊙AD=AE,⊙⊙ADE=⊙AED=72°,⊙⊙DAE=180°﹣2×72°=36°,⊙⊙GAC=36°+60°=96°,⊙⊙GFE=12⊙GAC=48°,故选:B.【点睛】本题考查切线性质、锐角的三角函数、等腰三角形的性质、三角形的内角和定理、圆周角定理,熟练掌握切线性质和圆周角定理,利用特殊角的三角函数值求得⊙BAD=60°是解答的关键.13.(2021·浙江绍兴市·中考真题)如图,正方形ABCD内接于O,点P在AB上,则P∠的度数为()A.30B.45︒C.60︒D.90︒【答案】B【分析】连接OB ,OC ,由正方形ABCD 的性质得90BOC ∠=°,再根据圆周角与圆心角的关系即可得出结论.【详解】解:连接OB ,OC ,如图,⊙正方形ABCD 内接于O ,⊙90BOC ∠=° ⊙11904522BPC BOC ∠=∠=⨯︒=︒ 故选:B .【点睛】此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.(2021·四川凉山彝族自治州·中考真题)点P 是O 内一点,过点P 的最长弦的长为10cm ,最短弦的长为6cm ,则OP 的长为( )A .3cmB .4cmC .5cmD .6cm 【答案】B【分析】根据直径是圆中最长的弦,知该圆的直径是10cm ;最短弦即是过点P 且垂直于过点P 的直径的弦;根据垂径定理即可求得CP 的长,再进一步根据勾股定理,可以求得OP 的长.【详解】解:如图所示,CD ⊙AB 于点P .根据题意,得AB =10cm ,CD =6cm .⊙OC =5,CP =3⊙CD ⊙AB ,⊙CP =12CD =3cm .根据勾股定理,得OP .故选B .【点睛】此题综合运用了垂径定理和勾股定理.正确理解圆中,过一点的最长的弦和最短的弦.15.(2021·四川自贡市·中考真题)如图,AB 为⊙O 的直径,弦CD AB ⊥于点F ,OE AC ⊥于点E ,若3OE =,5OB =,则CD 的长度是( )A .9.6B .C .D .19【答案】A【分析】 先利用垂径定理得出AE =EC ,CF =FD ,再利用勾股定理列方程即可【详解】解:连接OC⊙AB ⊙CD , OE ⊙AC⊙ AE =EC ,CF =FD⊙OE =3,OB =5⊙OB =OC =OA =5⊙在Rt ⊙OAE 中4AE =⊙AE =EC =4设OF =x ,则有2222AC AF OC OF -=-22228(5)5x x -+=-x =1.4在Rt ⊙OFC 中, 4.8FC ==⊙29.6CD FC ==故选:A【点睛】本题考查垂径定理、勾股定理、方程思想是解题关键16.(2021·山东临沂市·中考真题)如图,PA 、PB 分别与O 相切于A 、B ,70P ∠=︒,C 为O 上一点,则ACB ∠的度数为( )A .110︒B .120︒C .125︒D .130︒ 【答案】C【分析】由切线的性质得出⊙OAP =⊙OBP =90°,利用四边形内角和可求⊙AOB =110°,再利用圆周角定理可求⊙ADB =55°,再根据圆内接四边形对角互补可求⊙ACB .【详解】解:如图所示,连接OA ,OB ,在优弧AB 上取点D ,连接AD ,BD ,⊙AP 、BP 是切线,⊙⊙OAP =⊙OBP =90°,⊙⊙AOB =360°-90°-90°-70°=110°,⊙⊙ADB =55°,又⊙圆内接四边形的对角互补,⊙⊙ACB =180°-⊙ADB =180°-55°=125°.故选:C .【点睛】本题考查了切线的性质、圆周角定理、圆内接四边形的性质.解题的关键是连接OA 、OB ,求出⊙AOB .17.(2021·湖北鄂州市·中考真题)如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是( )A .3B .CD 【答案】D【分析】由题意知90APC ∠=︒,又AC 长度一定,则点P 的运动轨迹是以AC 中点O 为圆心,12AC 长为半径的圆弧,所以当B 、P 、O 三点共线时,BP 最短;在Rt BCO ∆中,利用勾股定理可求BO 的长,并得到点P 是BO 的中点,由线段长度即可得到PCO ∆是等边三角形,利用特殊Rt APC ∆三边关系即可求解.【详解】解:222PA PC AC +=∴90APC ∠=︒取AC 中点O ,并以O 为圆心,12AC 长为半径画圆 由题意知:当B 、P 、O 三点共线时,BP 最短AO PO CO ∴== 11322CO AC BC ==⨯==BO ∴=BP BO PO ∴=-=∴点P 是BO 的中点∴在Rt BCO ∆中,12CP BO PO === ∴PCO ∆是等边三角形∴60ACP ∠=︒ ∴在Rt APC ∆中,tan 603AP CP =⨯︒=12APC S AP CP ∆∴=⨯==【点睛】本题主要考察动点的线段最值问题、点与圆的位置关系和隐形圆问题,属于动态几何综合题型,中档难度.解题的关键是找到动点P 的运动轨迹,即隐形圆.18.(2021·浙江嘉兴市·中考真题)如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为( )A B .2C D .4 【答案】A【分析】连接DF ,EF ,过点F 作FN ⊙AC ,FM ⊙AB ,结合直角三角形斜边中线等于斜边的一半求得点A ,D ,F ,E 四点共圆,⊙DFE =90°,然后根据勾股定理及正方形的判定和性质求得AE 的长度,从而求解.【详解】解:连接DF ,EF ,过点F 作FN ⊙AC ,FM ⊙AB⊙在ABC ∆中,90BAC ∠=︒,点G 是DE 的中点,⊙AG =DG =EG又⊙AG =FG⊙点A ,D ,F ,E 四点共圆,且DE 是圆的直径⊙⊙DFE =90°⊙在Rt ⊙ABC 中,AB =AC =5,点F 是BC 的中点,⊙CF =BF =122BC =,FN =FM =52 又⊙FN ⊙AC ,FM ⊙AB ,90BAC ∠=︒⊙四边形NAMF 是正方形⊙AN =AM =FN =52又⊙90NFD DFM ∠+∠=︒,90DFM MFE ∠+∠=︒⊙NFD MFE ∠=∠⊙⊙NFD ⊙⊙MFE⊙ME =DN =AN -AD =12 ⊙AE =AM +ME =3⊙在Rt ⊙DAE 中,DE故选:A .【点睛】本题考查直径所对的圆周角是90°,四点共圆及正方形的判定和性质和用勾股定理解直角三角形,掌握相关性质定理正确推理计算是解题关键.19.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,6 【答案】D【分析】先根据题意得出OA =8,OC =2,再根据勾股定理计算即可【详解】解:由题意可知:AC =AB⊙()8,0A ,()2,0C -⊙OA =8,OC =2⊙AC =AB =10在Rt ⊙OAB 中,6OB ==⊙B (0,6)故选:D【点睛】本题考查勾股定理、正确写出点的坐标,圆的半径相等、熟练进行勾股定理的计算是关键 20.(2021·广西来宾市·中考真题)如图,O 的半径OB 为4,OC AB ⊥于点D ,30BAC ∠=︒,则OD 的长是( )A B C .2 D .3【答案】C【分析】 根据圆周角定理求出⊙COB 的度数,再求出⊙OBD 的度数,根据“30°的锐角所对的直角边等于斜边的一半”求出OD 的长度.【详解】⊙ ⊙BAC =30°,⊙⊙COB =60°,⊙⊙ODB =90°,⊙⊙OBD =30°,⊙OB =4,⊙OD =12OB =142⨯=2. 故选:C .【点睛】本题考查了圆周角定理,直角三角形的性质,掌握相关定理和性质是解题的关键.21.(2021·湖北荆州市·中考真题)如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴的正半轴上,点D 在OA 的延长线上.若()2,0A ,()4,0D ,以О为圆心、OD 长为半径的弧经过点B ,交y 轴正半轴于点E ,连接DE ,BE 、则BED ∠的度数是( )A .15︒B .22.5︒C .30D .45︒【答案】C【分析】连接OB ,由题意易得⊙BOD =60°,然后根据圆周角定理可进行求解.【详解】解:连接OB ,如图所示:⊙()2,0A ,()4,0D ,⊙2,4OA OB OE OD ====, ⊙12OA OB =, ⊙四边形OABC 是矩形,⊙90OAB ∠=︒,⊙30OBA ∠=︒,⊙9060BOD OBA ∠=︒-∠=︒, ⊙1302BED BOD ∠=∠=︒; 故选C .【点睛】本题主要考查圆周角定理、矩形的性质及含30°的直角三角形的性质,熟练掌握圆周角定理、矩形的性质及含30°的直角三角形的性质是解题的关键.22.(2021·湖北宜昌市·中考真题)如图,C ,D 是O 上直径AB 两侧的两点.设25ABC ∠=︒,则BDC ∠=( )A .85︒B .75︒C .70︒D .65︒【答案】D【分析】 先利用直径所对的圆周角是直角得到⊙ACB =90°,从而求出⊙BAC ,再利用同弧所对的圆周角相等即可求出⊙BDC .【详解】解:⊙C ,D 是⊙O 上直径AB 两侧的两点,⊙⊙ACB =90°,⊙⊙ABC =25°,⊙⊙BAC =90°-25°=65°,⊙⊙BDC =⊙BAC =65°,故选:D .【点睛】本题考查了圆周角定理的推论,即直径所对的圆周角是90°和同弧或等弧所对的圆周角相等,解决本题的关键是牢记相关概念与推论,本题蕴含了属性结合的思想方法.23.(2021·河北中考真题)如图,等腰AOB 中,顶角40AOB ∠=︒,用尺规按⊙到⊙的步骤操作: ⊙以O 为圆心,OA 为半径画圆;⊙在O 上任取一点P (不与点A ,B 重合),连接AP ;⊙作AB 的垂直平分线与O 交于M ,N ;⊙作AP 的垂直平分线与O 交于E ,F .结论⊙:顺次连接M ,E ,N ,F 四点必能得到矩形;结论⊙:O 上只有唯一的点P ,使得OFM OAB S S =扇形扇形.对于结论⊙和⊙,下列判断正确的是( )A .⊙和⊙都对B .⊙和⊙都不对C .⊙不对⊙对D .⊙对⊙不对【答案】D【分析】 ⊙、根据“弦的垂直平分线经过圆心”,可证四边形MENF 的形状;⊙、在确定点P 的过程中,看⊙MOF =40°是否唯一即可.【详解】解:⊙、如图所示.⊙MN 是AB 的垂直平分线,EF 是AP 的垂直平分线,⊙MN 和EF 都经过圆心O ,线段MN 和EF 是⊙O 的直径.⊙OM =ON ,OE =OF .⊙四边形MENF 是平行四边形.⊙线段MN 是⊙O 的直径,⊙⊙MEN =90°.⊙平行四边形MENF 是矩形.⊙结论⊙正确;⊙、如图2,当点P 在直线MN 左侧且AP =AB 时,⊙AP =AB ,⊙AB AP =.⊙MN ⊙AB ,EF ⊙AP , ⊙1122AE AP AN AB ==,. ⊙AE AN =. ⊙1===202AOE AON AOB ∠∠∠.⊙40EON =∠.⊙=40MOF EON =∠∠.⊙扇形OFM 与扇形OAB 的半径、圆心角度数都分别相等,⊙OFM OAB S S =扇形扇形.如图3,当点P 在直线MN 右侧且BP =AB 时,同理可证:FOM AOB S S =扇形扇形.⊙结论⊙错误.故选:D【点睛】本题考查了圆的有关性质、矩形的判定、扇形面积等知识点,熟知圆的有关性质、矩形的判定方法及扇形面积公式是解题的关键.24.(2021·湖北黄冈市·中考真题)如图,O 是Rt ABC △的外接圆,OE AB ⊥交O 于点E ,垂足为点D ,AE ,CB 的延长线交于点F .若3OD =,8AB =,则FC 的长是( )A .10B .8C .6D .4【答案】A【分析】 先根据垂径定理可得4=AD ,再利用勾股定理可得5OE OA ==,然后根据三角形中位线定理即可得.【详解】解:,8OE AB AB ⊥=,142AD AB ∴==, 3OD =,5OA ∴=,5OE ∴=,OE AB ⊥,90A ADO BC =︒∠∴∠=,//OE FC ∴,又OA OC =,OE ∴是ACF 的中位线,210FC OE ∴==,故选:A .【点睛】本题考查了垂径定理、三角形中位线定理等知识点,熟练掌握垂径定理是解题关键.25.(2021·湖南邵阳市·中考真题)如图,点A ,B ,C 是O 上的三点.若90AOC ∠=︒,30BAC ∠=︒,则AOB ∠的大小为( )A .25︒B .30C .35︒D .40︒【答案】B【分析】首先根据圆周角定理求得BOC ∠的度数,根据AOC ∠的度数求AOB AOC BOC ∠=∠-∠即可.【详解】解:⊙30BAC ∠=︒⊙⊙BOC=223060BAC ∠=⨯︒=︒,⊙90AOC ∠=︒,906030AOB AOC BOC ,故选:B .【点睛】考查了圆周角定理及两锐角互余性质,求得BOC ∠的度数是解题的关键.26.(2021·湖南长沙市·中考真题)如图,点A ,B ,C 在⊙O 上,54BAC ∠=︒,则BOC ∠的度数为()A .27︒B .108︒C .116︒D .128︒【答案】B【分析】直接利用圆周角定理即可得.【详解】解:54BAC ∠=︒,∴由圆周角定理得:2108BOC BAC ∠=∠=︒,故选:B .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.27.(2021·湖北武汉市·中考真题)如图,AB 是O 的直径,BC 是O 的弦,先将BC 沿BC 翻折交AB 于点D .再将BD 沿AB 翻折交BC 于点E .若BE DE =,设ABC α∠=,则α所在的范围是( )A .21.922.3α︒<<︒B .22.322.7α︒<<︒C .22.723.1α︒<<︒D .23.123.5α︒<<︒【答案】B【分析】 将⊙O 沿BC 翻折得到⊙O ′,将⊙O ′沿BD 翻折得到⊙O ″,则⊙O 、⊙O ′、⊙O ″为等圆.依据在同圆或等圆中相等的圆周角所对的弧相等可证明AC DC DE EB ===,从而可得到弧AC 的度数,由弧AC 的度数可求得⊙B 的度数.【详解】解:将⊙O 沿BC 翻折得到⊙O ′,将⊙O ′沿BD 翻折得到⊙O ″,则⊙O 、⊙O ′、⊙O ″为等圆.⊙⊙O 与⊙O ′为等圆,劣弧AC 与劣弧CD 所对的角均为⊙ABC ,⊙AC CD =.同理:DE CD =.又⊙F 是劣弧BD 的中点,⊙DE BE =.⊙AC DC DE EB ===.⊙弧AC 的度数=180°÷4=45°.⊙⊙B =12×45°=22.5°. ⊙α所在的范围是22.322.7α︒<<︒;故选:B .【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了翻折的性质、弧、弦、圆周角之间的关系、圆内接四边形的性质,等腰三角形的判定,找出图形中的等弧是解题的关键.二、填空题28.(2021·黑龙江中考真题)如图,在O 中,AB 是直径,弦AC 的长为5cm ,点D 在圆上,且30ADC ∠=︒,则O 的半径为_____.【答案】5cm【分析】连接BC ,由题意易得30ABC ADC ∠=∠=︒,进而问题可求解.【详解】解:连接BC ,如图所示:⊙30ADC ∠=︒,⊙30ABC ADC ∠=∠=︒,⊙AB 是直径,⊙90ACB ∠=︒,⊙5cm AC =,⊙210cm AB AC ==,⊙O 的半径为5cm ;故答案为5cm .【点睛】本题主要考查圆周角定理及含30°直角三角形的性质,熟练掌握圆周角定理及含30°直角三角形的性质是解29.(2021·安徽中考真题)如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.【分析】先根据圆的半径相等及圆周角定理得出⊙ABO =45°,再根据垂径定理构造直角三角形,利用锐角三角函数解直角三角形即可【详解】解:连接OB 、OC 、作OD ⊙AB⊙60A ∠=︒⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =30°又75B ∠=︒⊙⊙ABO =45°在Rt ⊙OBD 中,OB =1⊙BD⊙BD =AD =⊙AB【点睛】本题考查垂径定理、圆周角定理,正确使用圆的性质及定理是解题关键30.(2021·湖南张家界市·中考真题)如图,ABC 内接于O ,50A ∠=︒,点D 是BC 的中点,连接OD ,OB ,OC ,则BOD ∠=_________.【答案】50︒【分析】圆上弧长对应的圆周角等于圆心角的一半,再利用等腰三角形三线合一的性质,即可得出答案.【详解】解:根据圆上弦长对应的圆周角等于圆心角的一半,12A BOC ∠=∠, 100BOC ∴∠=︒,OB OC =, BOC ∴为等腰三角形, 又点D 是BC 的中点,根据等腰三角形三线合一,OD ∴为BOC ∠的角平分线,50BO D ∴∠=︒,故答案是:50︒.【点睛】本题考查了弦长所对应的圆周角等于圆心角的一半和等腰三角形三线合一的性质,解题的关键是:根据性质求出BOC ∠,再利用角平分线或三角形全等都能求出解.31.(2021·广东中考真题)在ABC 中,90,2,3ABC AB BC ∠=︒==.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为_____.-【分析】由已知45ADB ∠=︒,2AB =,根据定角定弦,可作出辅助圆,由同弧所对的圆周角等于圆心角的一半可知,点D 在以O 为圆心OB 为半径的圆上,线段CD 长度的最小值为CO OD -.【详解】如图: 以12AB 为半径作圆,过圆心O 作,ON AB OM BC ⊥⊥, 以O 为圆心OB 为半径作圆,则点D 在圆O 上,45ADB ∠=︒90AOB ∠=︒∴2AB =1AN BN ==AO ∴==112ON OM AB ===,3BC =OC ∴==CO OD ∴-线段CD 长度的最小值为-.-【点睛】 本题考查了圆周角与圆心角的关系,圆外一点到圆上的线段最短距离,勾股定理,正确的作出图形是解题的关键.32.(2021·江苏宿迁市·中考真题)如图,在Rt⊙ABC 中,⊙ABC =90°,⊙A =32°,点B 、C 在O 上,边AB 、AC 分别交O 于D 、E 两点﹐点B 是CD 的中点,则⊙ABE =__________.【答案】13︒【分析】如图,连接,DC 先证明,BDC BCD ∠=∠再证明,ABE ACD ∠=∠利用三角形的外角可得:,BDC A ACD A ABE ∠=∠+∠=∠+∠再利用直角三角形中两锐角互余可得:()2902,BDC A ABE ∠=︒-∠+∠再解方程可得答案.【详解】解:如图,连接,DC B 是CD 的中点,,,BD BC BDC BCD ∴=∠=∠,DE DE =,ABE ACD ∴∠=∠,BDC A ACD A ABE ∴∠=∠+∠=∠+∠90,32,ABC A ∠=︒∠=︒()2902,BDC A ABE ∴∠=︒-∠+∠45453213.ABE A ∴∠=︒-∠=︒-︒=︒故答案为:13.︒【点睛】本题考查的是圆周角定理,三角形的外角的性质,直角三角形的两锐角互余,掌握圆周角定理的含义是解题的关键.33.(2021·江苏南京市·中考真题)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .【答案】5【分析】连接OA ,由垂径定理得AD =4cm ,设圆的半径为R ,根据勾股定理得到方程2224(2)R R =+-,求解即可【详解】解:连接OA ,⊙C 是AB 的中点,⊙OC AB ⊥ ⊙14cm 2AD AB == 设O 的半径为R ,⊙2cm CD =⊙(2)cm OD OC CD R =-=-在Rt OAD ∆中,222OA AD OD =+,即2224(2)R R =+-,解得,5R =即O 的半径为5cm故答案为:5【点睛】本题考查的是垂径定理及勾股定理,根据垂径定理判断出OC 是AB 的垂直平分线是解答此题的关键. 34.(2021·湖北随州市·中考真题)如图,O 是ABC 的外接圆,连接AO 并延长交O 于点D ,若50C ∠=︒,则BAD ∠的度数为______.【答案】40︒【分析】连接BD ,则C D ∠=∠,再根据AD 为直径,求得BAD ∠的度数【详解】如图,连接BD ,则50D C ∠=∠=︒AD 为直径90ABD ∴∠=︒90905040BAD D ∴∠=︒-∠=︒-︒=︒故答案为40︒【点睛】此题主要考查了圆周角定理,圆周角定理是中考中考查重点,熟练掌握圆周角定理是解决问题的关键. 35.(2021·江苏连云港市·中考真题)如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.【答案】25【分析】连接OC ,根据等腰三角形的性质和三角形内角和定理得到⊙BOC =100°,求出⊙AOC ,根据等腰三角形的性质计算.【详解】解:连接OC ,⊙OC =OB ,⊙⊙OCB =⊙OBC =40°,⊙⊙BOC =180°-40°×2=100°,⊙⊙AOC =100°+30°=130°,⊙OC =OA ,⊙⊙OAC =⊙OCA =25°,故答案为:25.【点睛】本题考查的是圆的基本性质、等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键.36.(2021·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,直线33y x =+与O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为_________.【答案】【分析】过O 作OE ⊙AB 于C ,根据垂径定理可得AC =BC =12AB ,可求OA =2,OD Rt ⊙AOD 中,由勾股定理AD =,可证⊙OAC ⊙⊙DAO ,由相似三角形性质可求AC 即可. 【详解】 解:过O 作OE ⊙AB 于C ,⊙AB 为弦,⊙AC =BC =12AB ,⊙直线33y x =+与O 相交于A ,B 两点,⊙当y =00x +=,解得x =-2, ⊙OA =2,⊙当x =0时,y =⊙OD=3, 在Rt ⊙AOD中,由勾股定理3AD ===, ⊙⊙ACO =⊙AOD =90°,⊙CAO =⊙OAD ,⊙⊙OAC ⊙⊙DAO ,AC AO AO AD =即2AO AC AD === ⊙AB =2AC故答案为【点睛】本题考查直线与圆的位置关系,垂径定理,直线与两轴交点,勾股定理,三角形相似判定与性质,掌握以上知识、正确添加辅助线是解题关键.37.(2021·江苏扬州市·中考真题)在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.⊙该弧所在圆的半径长为___________;⊙ABC 面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ',请你利用图1证明30BA C '∠>︒;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长2AB =,3BC =,点P 在直线CD 的左侧,且4tan 3DPC ∠=. ⊙线段PB 长的最小值为_______;⊙若23PCD PAD S S =,则线段PD 长为________.【答案】(1)⊙2;2;(2)见解析;(3);⊙4 【分析】(1)⊙设O 为圆心,连接BO ,CO ,根据圆周角定理得到⊙BOC =60°,证明⊙OBC 是等边三角形,可得半径;⊙过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,以BC 为底,则当A 与D 重合时,⊙ABC 的面积最大,求出OE ,根据三角形面积公式计算即可;(2)延长BA ′,交圆于点D ,连接CD ,利用三角形外角的性质和圆周角定理证明即可;(3)⊙根据4tan 3DPC ∠=,连接PD ,设点Q 为PD 中点,以点Q 为圆心,12PD 为半径画圆,可得点P 在优弧CPD 上,连接BQ ,与圆Q 交于P ′,可得BP ′即为BP 的最小值,再计算出BQ 和圆Q 的半径,相减即可得到BP ′;⊙根据AD ,CD 和23PCD PAD S S =推出点P 在⊙ADC 的平分线上,从而找到点P 的位置,过点C 作CF ⊙PD ,垂足为F ,解直角三角形即可求出DP .【详解】解:(1)⊙设O 为圆心,连接BO ,CO ,⊙⊙BAC =30°,⊙⊙BOC =60°,又OB =OC ,⊙⊙OBC 是等边三角形,⊙OB =OC =BC =2,即半径为2;⊙⊙⊙ABC 以BC 为底边,BC =2,⊙当点A 到BC 的距离最大时,⊙ABC 的面积最大,如图,过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,⊙BE =CE =1,DO =BO =2,⊙OE⊙DE 2,⊙⊙ABC 的最大面积为)1222⨯⨯2;(2)如图,延长BA ′,交圆于点D ,连接CD ,⊙点D 在圆上,⊙⊙BDC =⊙BAC ,⊙⊙BA ′C =⊙BDC +⊙A ′CD ,⊙⊙BA ′C >⊙BDC ,⊙⊙BA ′C >⊙BAC ,即⊙BA ′C >30°;(3)⊙如图,当点P在BC上,且PC=32时,⊙⊙PCD=90°,AB=CD=2,AD=BC=3,⊙tan⊙DPC=CDPC=43,为定值,连接PD,设点Q为PD中点,以点Q为圆心,12PD为半径画圆,⊙当点P在优弧CPD上时,tan⊙DPC=43,连接BQ,与圆Q交于P′,此时BP′即为BP的最小值,过点Q作QE⊙BE,垂足为E,⊙点Q是PD中点,⊙点E为PC中点,即QE=12CD=1,PE=CE=12PC=34,⊙BE=BC-CE=3-34=94,⊙BQ4,⊙PD 52,⊙圆Q的半径为155 224⨯=,⊙BP′=BQ-P′Q,即BP;⊙⊙AD =3,CD =2,23PCD PAD S S =, 则23CD AD =, ⊙⊙P AD 中AD 边上的高=⊙PCD 中CD 边上的高,即点P 到AD 的距离和点P 到CD 的距离相等,则点P 到AD 和CD 的距离相等,即点P 在⊙ADC 的平分线上,如图,过点C 作CF ⊙PD ,垂足为F ,⊙PD 平分⊙ADC ,⊙⊙ADP =⊙CDP =45°,⊙⊙CDF 为等腰直角三角形,又CD =2,⊙CF =DF⊙tan⊙DPC =CF PF =43,⊙PF =4,⊙PD =DF +PF【点睛】本题是圆的综合题,考查了圆周角定理,三角形的面积,等边三角形的判定和性质,最值问题,解直角三角形,三角形外角的性质,勾股定理,知识点较多,难度较大,解题时要根据已知条件找到点P 的轨迹. 38.(2021·辽宁本溪市·中考真题)如图,由边长为1的小正方形组成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 和点D ,则tan =ADC ∠________.。
中考数学考点29圆的基本性质总复习(解析版)
圆的基本性质【命题趋势】圆的基本性质是中考考查的重点.常以选择题.填空题和解答题考查为主;其中选择题和填空题的难度不会太大.对应用、创新、开放探究型题目.会根据当前的政治形势、新闻背景和实际生活去命题.进一步体现数学来源于生活.又应用于生活。
【中考考查重点】一、运用垂径定理及其推论进行计算二、运用圆周角定理及其推论进行计算三、垂径定理雪与圆周角定理结合考点:圆的有关概念圆的定义:在一个平面内.线段OA绕它固定的一个端点O旋转一周.另一个端点A所形成的图形叫圆。
这个固定的端点O叫做圆心.线段OA叫做半径。
圆的表示方法:以O点为圆心的圆记作⊙O.读作圆O。
圆的特点:在一个平面内.所有到一个定点的距离等于定长的点组成的图形。
确定圆的条件:1)圆心;2)半径。
备注:圆心确定圆的位置.半径长度确定圆的大小。
【补充】1)圆心相同且半径相等的圆叫做同圆;2)圆心相同.半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆。
圆的对称性:1)圆是轴对称图形.经过圆心的每一条直线都是它的对称轴;2)圆是以圆心为对称中心的中心对称图形。
弦的概念:连结圆上任意两点的线段叫做弦(例如:右图中的AB)。
直径的概念:经过圆心的弦叫做直径(例如:右图中的CD)。
备注:1)直径是同一圆中最长的弦。
2)直径长度等于半径长度的2倍。
⏜.读弧的概念:圆上任意两点间的部分叫做圆弧.简称弧。
以A、B为端点的弧记作AB作圆弧AB或弧AB。
等弧的概念:在同圆或等圆中.能够互相重合的弧叫做等弧。
半圆的概念:圆的任意一条直径的两个端点把圆分成两条弧.每一条弧都叫做半圆。
优弧的概念:在一个圆中大于半圆的弧叫做优弧。
劣弧的概念:小于半圆的弧叫做劣弧。
弦心距概念:从圆心到弦的距离叫做弦心距。
1.(2021秋•顺义区期末)如图.在⊙O中.如果=2.则下列关于弦AB与弦AC之间关系正确的是()A.AB=AC B.AB=2AC C.AB>2AC D.AB<2AC【答案】D【解答】解:如图.取弧AB的中点D.连接AD.BD.则=2=2.∵=2.∴==.∴AD=BD=AC.在△ABD中.AD+BD>AB.∴AC+AC>AB.即AB<2AC.故选:D.2.(2021秋•平原县期末)下列语句.错误的是()A.直径是弦B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心D.平分弧的半径垂直于弧所对的弦【答案】B【解答】解:直径是弦.A正确.不符合题意;在同圆或等圆中.相等的圆心角所对的弧相等.B错误.符合题意;弦的垂直平分线一定经过圆心.C正确.不符合题意;平分弧的半径垂直于弧所对的弦.D正确.不符合题意;故选:B.3.(2021秋•玉林期末)如图.从A地到B地有两条路可走.一条路是大半圆.另一条路是4个小半圆.有一天.一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走.它不敢与猫同行(怕被猫吃掉).就沿着4个小半圆行走.假设猫和老鼠行走的速度相同.那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定【答案】C【解答】解:以AB为直径的半圆的长是:π•AB;设四个小半圆的直径分别是a.b.c.d.则a+b+c+d=AB.则老鼠行走的路径长是:a+πb+πc+πd=π(a+b+c+d)=π•AB.故猫和老鼠行走的路径长相同.故选:C.考点:垂径定理垂径定理:垂直于弦的直径平分这条弦.并且平分弦所对的两条弧。
2021年江苏各市(苏州扬州泰州盐城无锡等)中考数学真题分项汇编16 圆含详解
专题16圆一、圆的基本性质1.(2021·江苏无锡市)用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为________.2.(2021·江苏扬州市)如图是某圆柱体果罐,它的主视图是边长为10cm 的正方形,该果罐侧面积为_____2cm .3.(2021·江苏盐城市)一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为_______.4.(2021·江苏宿迁市)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________.二、圆锥与扇形5.(2021·江苏徐州市)如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的( )A .27倍B .14倍C .9倍D .3倍6.(2021·江苏南京市)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .7.(2021·江苏常州市)如图,BC 是O 的直径,AB 是O 的弦.若60AOC ∠=︒,则OAB ∠的度数是( )A .20︒B .25︒C .30D .35︒8.(2021·江苏宿迁市)如图,在Rt△ABC 中,△ABC =90°,△A =32°,点B 、C 在O 上,边AB 、AC 分别交O 于D 、E 两点﹐点B 是CD 的中点,则△ABE =__________.9.(2021·江苏盐城市)如图,在△O 内接四边形ABCD 中,若100ABC ∠=︒,则ADC ∠=________︒.10.(2021·江苏连云港市)如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.11.(2021·江苏南京市)如图,,,,,FA GB HC ID JE 是五边形ABCDE 的外接圆的切线,则BAF CBG DCH EDI AEJ ∠+∠+∠+∠+∠=______︒.12.(2021·江苏徐州市)如图,AB 是O 的直径,点C D 、在O 上,若58ADC ∠=︒,则BAC ∠=_________°.13.(2021·江苏连云港市)如图,正方形ABCD 内接于O ,线段MN 在对角线BD 上运动,若O 的面积为2π,1MN =,则AMN 周长的最小值是( )A .3B .4C .5D .614.(2021·江苏常州市)如图,在Rt ABC 中,90,30,1ACB CBA AC ∠=︒∠=︒=,D 是AB 上一点(点D 与点A 不重合).若在Rt ABC 的直角边上存在4个不同的点分别和点A 、D 成为直角三角形的三个顶点,则AD 长的取值范围是________.15.(2021·江苏扬州市)在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.△该弧所在圆的半径长为___________;△ABC 面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ',请你利用图1证明30BA C '∠>︒;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长2AB =,3BC =,点P 在直线CD 的左侧,且4tan 3DPC ∠=. △线段PB 长的最小值为_______;△若23PCD PAD S S =,则线段PD 长为________.三、圆的切线16.(2021·江苏泰州市)如图,平面直角坐标系xOy 中,点A 的坐标为(8,5),△A 与x 轴相切,点P 在y 轴正半轴上,PB 与△A 相切于点B .若△APB =30°,则点P 的坐标为 ___.17.(2021·江苏南京市)如图,已知P 是O 外一点.用两种不同的方法过点P 作O 的一条切线.要求: (1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.18.(2021·江苏南通市)如图,AB 为O 的直径,C 为O 上一点,弦AE 的延长线与过点C 的切线互相垂直,垂足为D ,35CAD ∠=︒,连接BC .(1)求B 的度数;(2)若2AB =,求EC 的长.19.(2021·江苏盐城市)如图,O 为线段PB 上一点,以O 为圆心OB 长为半径的△O 交PB 于点A ,点C 在△O 上,连接PC ,满足2PC PA PB =⋅.(1)求证:PC 是△O 的切线;(2)若3AB PA =,求AC BC的值. 20.(2021·江苏无锡市)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA ,40ACD ∠=︒,求证:OAB CDE ∽.21.(2021·江苏宿迁市)如图,在Rt △AOB 中,△AOB =90°,以点O 为圆心,OA 为半径的圆交AB 于点C ,点D 在边OB 上,且CD= BD .(1)判断直线CD 与圆O 的位置关系,并说明理由;(2)已知24tan 7DOC ∠=,AB =40,求O 的半径.22.(2021·江苏苏州市)如图,四边形ABCD 内接于O ,12∠=∠,延长BC 到点E ,使得CE AB =,连接ED . (1)求证:BD ED =;(2)若4AB =,6BC =,60ABC ∠=︒,求tan DCB ∠的值.23.(2021·江苏扬州市)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =60BCD ∠=︒,求图中阴影部分的面积.24.(2021·江苏连云港市)如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E ,若2EDC ABC S S =,求tan BAC ∠的值.25.(2021·江苏泰州市)如图,在△O中,AB为直径,P为AB上一点,P A=1,PB=m(m为常数,且m>0).过点P的弦CD△AB,Q为BC上一动点(与点B不重合),AH△QD,垂足为H.连接AD、BQ.(1)若m=3.△求证:△OAD=60°;△求BQDH的值;(2)用含m的代数式表示BQDH,请直接写出结果;(3)存在一个大小确定的△O,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值,求此时△Q的度数.26.(2021·江苏苏州市)如图△,甲,乙都是高为6米的长方体容器,容器甲的底面ABCD是正方形,容器乙的底面EFGH是矩形.如图△,已知正方形ABCD与矩形EFGH满足如下条件:正方形ABCD外切于一个半径为5米的圆O,矩形EFGH内接于这个圆O,2EF EH=.(1)求容器甲,乙的容积分别为多少立方米?(2)现在我们分别向容器甲,乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后.把容器甲的注水流量增加a立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变.直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为t时,我们把容器甲的水位高度记为h甲,容器乙的水位高度记为h乙,设h h h-=乙甲,已知h(米)关于注水时间t(小时)的函数图像如图△所示,其中MN平行于横轴.根据图中所给信息,解决下列问题:△求a的值;△求图△中线段PN所在直线的解析式.专题16圆一、圆的基本性质1.(2021·江苏无锡市)用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为________.【答案】50 3【分析】先求出扇形的弧长,再根据圆的周长公式,即可求解.【详解】△扇形的弧长=120501001803ππ⨯=,△圆锥的底面半径=1003π÷2π=503.故答案是:503.【点睛】本题主要考查扇形的弧长公式,掌握圆锥的底面周长等于圆锥展开扇形的弧长,是解题的关键.2.(2021·江苏扬州市)如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为_____2cm.【答案】100π【分析】根据圆柱体的主视图为边长为10cm的正方形,得到圆柱的底面直径和高,从而计算侧面积.【详解】解:△果罐的主视图是边长为10cm的正方形,为圆柱体,△圆柱体的底面直径和高为10cm,△侧面积为1010π⨯=100π,故答案为:100π.【点睛】本题考查了几何体的三视图,解题的关键是根据三视图得到几何体的相关数据.3.(2021·江苏盐城市)一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为_______.【答案】6π【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:该圆锥的侧面积=12×2π×2×3=6π.故答案为6π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.4.(2021·江苏宿迁市)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________.【答案】48π【分析】首先根据底面圆的半径求得扇形的弧长,然后根据弧长公式求得扇形的半径,然后利用公式求得面积即可.【详解】解:△底面圆的半径为4,△底面周长为8π,△侧面展开扇形的弧长为8π,设扇形的半径为r,△圆锥的侧面展开图的圆心角是120°,△120180rπ=8π,解得:r=12,△侧面积为π×4×12=48π,故答案为:48π.【点睛】考查了圆锥的计算,解题的关键是了解圆锥的侧面展开扇形的弧长等于底面圆的周长,难度不大.二、圆锥与扇形5.(2021·江苏徐州市)如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的()A .27倍B .14倍C .9倍D .3倍【答案】C【分析】 设OB =x ,则OA =3x ,BC =2x ,根据圆的面积公式和正方形的面积公式,求出面积,进而即可求解.【详解】解:由圆和正方形的对称性,可知:OA =OD ,OB =OC ,△圆的直径与正方形的对角线之比为3:1,△设OB =x ,则OA =3x ,BC =2x ,△圆的面积=π(3x )2=9πx 2,正方形的面积=()2122x =2x 2, △9πx 2÷2x 2=9142π≈,即:圆的面积约为正方形面积的14倍, 故选C .【点睛】本题主要考查圆和正方形的面积以及对称性,根据题意画出图形,用未知数表示各个图形的面积,是解题的关键.6.(2021·江苏南京市)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .【答案】5【分析】连接OA ,由垂径定理得AD =4cm ,设圆的半径为R ,根据勾股定理得到方程2224(2)R R =+-,求解即可【详解】解:连接OA ,△C 是AB 的中点,△OC AB ⊥ △14cm 2AD AB ==设O 的半径为R ,△2cm CD =△(2)cm OD OC CD R =-=-在Rt OAD ∆中,222OA AD OD =+,即2224(2)R R =+-,解得,5R =即O 的半径为5cm故答案为:5【点睛】本题考查的是垂径定理及勾股定理,根据垂径定理判断出OC 是AB 的垂直平分线是解答此题的关键.7.(2021·江苏常州市)如图,BC 是O 的直径,AB 是O 的弦.若60AOC ∠=︒,则OAB ∠的度数是()A .20︒B .25︒C .30D .35︒【答案】C【分析】先根据平角的定义求出△AOB ,再根据等腰三角形的性质求解,即可.【详解】解:△60AOC ∠=︒,△△AOB =180°-60°=120°,△OA =OB ,△OAB ∠=△OBA =(180°-120°)÷2=30°,故选C .【点睛】本题主要考查圆的基本性质以及等腰三角形的性质,掌握圆的半径相等,是解题的关键.8.(2021·江苏宿迁市)如图,在Rt△ABC 中,△ABC =90°,△A =32°,点B 、C 在O 上,边AB 、AC 分别交O 于D 、E 两点﹐点B 是CD 的中点,则△ABE =__________.【答案】13︒【分析】如图,连接,DC 先证明,BDC BCD ∠=∠再证明,ABE ACD ∠=∠利用三角形的外角可得:,BDC A ACD A ABE ∠=∠+∠=∠+∠再利用直角三角形中两锐角互余可得:()2902,BDC A ABE ∠=︒-∠+∠再解方程可得答案.【详解】解:如图,连接,DC B 是CD 的中点,,,BD BC BDC BCD ∴=∠=∠,DE DE =,ABE ACD ∴∠=∠,BDC A ACD A ABE ∴∠=∠+∠=∠+∠90,32,ABC A ∠=︒∠=︒()2902,BDC A ABE ∴∠=︒-∠+∠45453213.ABE A ∴∠=︒-∠=︒-︒=︒故答案为:13.︒【点睛】本题考查的是圆周角定理,三角形的外角的性质,直角三角形的两锐角互余,掌握圆周角定理的含义是解题的关键. 9.(2021·江苏盐城市)如图,在△O 内接四边形ABCD 中,若100ABC ∠=︒,则ADC ∠=________︒.【答案】80【分析】根据圆内接四边形的性质计算出18080ADC ABC ∠∠=︒-=︒即可.【详解】解:△ABCD 是△O 的内接四边形,△ABC =100°,△△ABC +△ADC =180°,△180********ADC ABC ∠∠=︒-=︒-︒=︒.故答案为80.【点睛】本题考查了圆内接四边形的性质、解题的关键是熟练掌握圆内接四边形的性质.10.(2021·江苏连云港市)如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.【答案】25【分析】连接OC ,根据等腰三角形的性质和三角形内角和定理得到△BOC =100°,求出△AOC ,根据等腰三角形的性质计算.【详解】解:连接OC,△OC=OB,△△OCB=△OBC=40°,△△BOC=180°-40°×2=100°,△△AOC=100°+30°=130°,△OC=OA,△△OAC=△OCA=25°,故答案为:25.【点睛】本题考查的是圆的基本性质、等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键.FA GB HC ID JE是五边形ABCDE的外接圆的切线,则11.(2021·江苏南京市)如图,,,,,∠+∠+∠+∠+∠=______︒.BAF CBG DCH EDI AEJ【答案】180︒【分析】由切线的性质可知切线垂直于半径,所以要求的5个角的和等于5个直角减去五边形的内角和的一半.【详解】如图:过圆心连接五边形ABCDE的各顶点,∠+∠+∠+∠+∠则OAB OBC OCD ODE OEA=∠+∠+∠+∠+∠OBA OCB ODC OED OAE1=-⨯︒=︒(52)1802702∴BAF CBG DCH EDI AEJ∠+∠+∠+∠+∠=⨯︒-∠+∠+∠+∠+∠590()OAB OBC OCD ODE OEA=︒-︒450270180=︒.故答案为:180︒.【点睛】本题考查了圆的切线的性质,多边形的内角和公式2180()n -⨯︒(n 为多边形的边数),由半径相等可得“等边对等角”,正确的理解题意作出图形是解题的关键.12.(2021·江苏徐州市)如图,AB 是O 的直径,点C D 、在O 上,若58ADC ∠=︒,则BAC ∠=_________°.【答案】32【分析】由同弧所对的圆周角相等和直径所对的圆周角为90°然后根据三角形内角和即可求出BAC ∠的度数.【详解】△58ADC ∠=︒,△58ABC ADC ∠=∠=︒,又△AB 是直径,△90ACB ∠=︒,△905832BAC =︒-︒=︒∠.故答案为:32.【点睛】此题考查了同弧所对圆周角的性质和直径所对圆周角的性质,解题的关键是熟练掌握同弧所对圆周角的性质和直径所对圆周角的性质.13.(2021·江苏连云港市)如图,正方形ABCD 内接于O ,线段MN 在对角线BD 上运动,若O 的面积为2π,1MN =,则AMN 周长的最小值是( )A .3B .4C .5D .6【答案】B【分析】 利用将军饮马之造桥选址的数学方法进行计算.【详解】如图所示,(1)N 为BD 上一动点,A 点关于线段BD 的对称点为点C ,连接CN ,则=CN AN ,过A 点作CN 的平行线AG ,过C 点作BD 的平行线CG ,两平行线相交于点G ,AG 与BD 相交于点M .//,//,CN MG NM CG∴四边形CNMG 是平行四边形∴MG CN =∴MG AN =则=1AMN C AN AM NM MG AM ++=++(2)找一点'N , 连接'CN ,则'='CN AN ,过G 点作'CN 的平行线MG ,连接'AM 则''=''''''''''1AM N C AN AM N M AN AM CG AN AM NM AN AM ++=++=++=++.此时1''1AN AM AN AM ++<++∴''AMN AM N C C <∴(1)中AMN 周长取到最小值四边形CNMG 是平行四边形∴CNM NMA ∠=∠四边形ABCD 是正方形∴CO OA =,AC BD ⊥又CNM NMA ∠=∠,NOC MOA ∠=∠,CO OA =∴()CNO AOM AAS ≅∴ON OM =又AC BD∴AN AM =∴ANM 是等腰三角形22S r ππ==,则圆的半径r =1111222OM MN ==⨯= 2222219+24AM r OM ⎛⎫==+= ⎪⎝⎭ 32AM ∴= 3=2+1=42AMN C ∴⨯ 故选:B .【点睛】本题难度较大,需要具备一定的几何分析方法.关键是要找到AMN 周长取最小值时M N 、的位置.14.(2021·江苏常州市)如图,在Rt ABC 中,90,30,1ACB CBA AC ∠=︒∠=︒=,D 是AB 上一点(点D 与点A 不重合).若在Rt ABC 的直角边上存在4个不同的点分别和点A 、D 成为直角三角形的三个顶点,则AD 长的取值范围是________.【答案】43<AD <2 【分析】以AD 为直径,作O 与BC 相切于点M ,连接OM ,求出此时AD 的长;以AD 为直径,作O ,当点D 与点B 重合时,求出AD 的长,进入即可得到答案.【详解】解:以AD 为直径,作O 与BC 相切于点M ,连接OM ,则OM △BC ,此时,在Rt ABC 的直角边上存在3个不同的点分别和点A 、D 成为直角三角形,如图,△在Rt ABC 中,90,30,1ACB CBA AC ∠=︒∠=︒=,△AB =2,△OM △BC , △1sin 302OM OB ︒==, 设OM =x ,则AO =x , △122x x =-,解得:23x =, △AD =2×23=43, 以AD 为直径,作O ,当点D 与点B 重合时,如图,此时AD =AB =2,△在Rt ABC 的直角边上存在4个不同的点分别和点A 、D 成为直角三角形的三个顶点,则AD 长的取值范围是:43<AD <2. 故答案是:43<AD <2.【点睛】本题主要考查圆的综合问题,熟练掌握圆周角定理的推论,解直角三角形,画出图形,分类讨论,是解题的关键.15.(2021·江苏扬州市)在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.△该弧所在圆的半径长为___________;△ABC 面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ',请你利用图1证明30BA C '∠>︒;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长2AB =,3BC =,点P 在直线CD 的左侧,且4tan 3DPC ∠=. △线段PB 长的最小值为_______;△若23PCD PAD S S =,则线段PD 长为________.【答案】(1)△2;2;(2)见解析;(3) 【分析】(1)△设O 为圆心,连接BO ,CO ,根据圆周角定理得到△BOC =60°,证明△OBC 是等边三角形,可得半径; △过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,以BC 为底,则当A 与D 重合时,△ABC 的面积最大,求出OE ,根据三角形面积公式计算即可;(2)延长BA ′,交圆于点D ,连接CD ,利用三角形外角的性质和圆周角定理证明即可;(3)△根据4tan 3DPC ∠=,连接PD ,设点Q 为PD 中点,以点Q 为圆心,12PD 为半径画圆,可得点P 在优弧CPD 上,连接BQ ,与圆Q 交于P ′,可得BP ′即为BP 的最小值,再计算出BQ 和圆Q 的半径,相减即可得到BP ′; △根据AD ,CD 和23PCD PAD S S =推出点P 在△ADC 的平分线上,从而找到点P 的位置,过点C 作CF △PD ,垂足为F ,解直角三角形即可求出DP .【详解】解:(1)△设O 为圆心,连接BO ,CO ,△△BAC =30°,△△BOC =60°,又OB =OC ,△△OBC 是等边三角形,△OB =OC =BC =2,即半径为2;△△△ABC 以BC 为底边,BC =2,△当点A 到BC 的距离最大时,△ABC 的面积最大,如图,过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,△BE =CE =1,DO =BO =2,△OE△DE 2,△△ABC 的最大面积为)1222⨯⨯2;(2)如图,延长BA ′,交圆于点D ,连接CD ,△点D 在圆上,△△BDC =△BAC ,△△BA ′C =△BDC +△A ′CD ,△△BA ′C >△BDC ,△△BA ′C >△BAC ,即△BA ′C >30°;(3)△如图,当点P在BC上,且PC=32时,△△PCD=90°,AB=CD=2,AD=BC=3,△tan△DPC=CDPC =43,为定值,连接PD,设点Q为PD中点,以点Q为圆心,12PD为半径画圆,△当点P在优弧CPD上时,tan△DPC=43,连接BQ,与圆Q交于P′,此时BP′即为BP的最小值,过点Q作QE△BE,垂足为E,△点Q是PD中点,△点E为PC中点,即QE=12CD=1,PE=CE=12PC=34,△BE=BC-CE=3-34=94,△BQ,△PD 52,△圆Q的半径为155 224⨯=,△BP′=BQ-P′Q BP△△AD=3,CD=2,23PCD PADS S=,则23 CDAD=,△△P AD中AD边上的高=△PCD中CD边上的高,即点P到AD的距离和点P到CD的距离相等,则点P到AD和CD的距离相等,即点P在△ADC的平分线上,如图,过点C作CF△PD,垂足为F,△PD平分△ADC,△△ADP=△CDP=45°,△△CDF为等腰直角三角形,又CD=2,△CF=DF△tan△DPC=CFPF=43,△PF△PD=DF+PF.【点睛】本题是圆的综合题,考查了圆周角定理,三角形的面积,等边三角形的判定和性质,最值问题,解直角三角形,三角形外角的性质,勾股定理,知识点较多,难度较大,解题时要根据已知条件找到点P的轨迹.三、圆的切线16.(2021·江苏泰州市)如图,平面直角坐标系xOy中,点A的坐标为(8,5),△A与x轴相切,点P在y轴正半轴上,PB与△A相切于点B.若△APB=30°,则点P的坐标为___.【答案】()0,11.【分析】连接AB,作AD△x轴,AC△y轴,根据题意和30°直角三角形的性质求出AP的长度,然后由圆和矩形的性质,根据勾股定理求出OC的长度,即可求出点P的坐标.【详解】如下图所示,连接AB ,作AD △x 轴,AC △y 轴,△PB 与△A 相切于点B△AB △PB ,△△APB =30°,AB △PB ,△P A =2AB =2510⨯=.△90,90,90O OCA ADO =︒=︒=︒∠∠∠,△四边形ACOD 是矩形,点A 的坐标为(8,5),所以AC =OD =8,CO =AD =5,在Rt PAC △中,6PC ==.如图,当点P 在C 点上方时,△5611OP OC CP =+=+=,△点P 的坐标为()0,11.【点睛】此题考查了勾股定理,30°角直角三角形的性质和矩形等的性质,解题的关键是根据题意作出辅助线.17.(2021·江苏南京市)如图,已知P 是O 外一点.用两种不同的方法过点P 作O 的一条切线.要求: (1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.【答案】答案见解析.【分析】方法一:作出OP 的垂直平分线,交OP 于点A ,再以点A 为圆心,P A 长为半径画弧,交O 于点Q ,连结PQ ,PQ 即为所求.方法二:作出以OP 为底边的等腰三角形BPO ,再作出△OBP 的角平分线交OP 于点A ,再以点A 为圆心,P A 长为半径画弧,交O 于点Q ,连结PQ ,PQ 即为所求.【详解】解:作法:连结PO ,分别以P 、O 为圆心,大于12PO 的长度为半径画弧,交于两点,连结两点交PO 于点A ;以点A 为圆心,P A 长为半径画弧,交O 于点Q ,连结PQ ,PQ 即为所求.作法:连结PO ,分别以P 、O 为圆心,以大于12PO 的长度为半径画弧交PO 上方于点B ,连结BP 、BO ;以点B 为圆心,任意长为半径画弧交BP 、BO 于C 、D 两点,分别以于C 、D 两点为圆心,大于12CD 的长度为半径画弧交于一点,连结该点与B 点,并将其反向延长交PQ 于点A ,以点A 为圆心,P A 长为半径画弧,交O 于点Q ,连结PQ ,PQ 即为所求.【点睛】本题考查了作图——复杂作图,涉及垂直平分线的作法,角平分线的作法,等腰三角形的作法,圆的作法等知识点.复杂作图是在五种基本作图的基础上进行作图.解题的关键是熟悉基本几何图形的性质,结合基本几何图形的性质把复杂作图拆解成基本作图,逐步操作.18.(2021·江苏南通市)如图,AB 为O 的直径,C 为O 上一点,弦AE 的延长线与过点C 的切线互相垂直,垂足为D ,35CAD ∠=︒,连接BC .(1)求B的度数;(2)若2AB=,求EC的长.【答案】(1)55°;(2)718π.【分析】(1)连接OC,如图,利用切线的性质得到OC△CD,则判断OC△AE,所以△DAC=△OCA,然后利用△OCA=△OAC 得到△OAB的度数,即可求解;(2)利用(1)的结论先求得△AEO=△EAO=70°,再平行线的性质求得△COE=70°,然后利用弧长公式求解即可.【详解】解:(1)连接OC,如图,△CD是△O的切线,△OC△CD,△AE△CD,△OC△AE,△△DAC=△OCA,△OA=OC,△CAD=35°,△△OAC=△OCA=△CAD=35°,△AB为△O的直径,△△ACB=90°,△△B=90°-△OAC=55°;(2)连接OE,OC,如图,由(1)得△EAO =△OAC +△CAD =70°,△OA =OE ,△△AEO =△EAO =70°,△OC △AE ,△△COE =△AEO =70°,△AB =2,则OC =OE =1,△EC 的长为70718018018n r πππ==. 【点睛】本题考查了切线的性质,圆周角定理,弧长公式等知识,解题的关键是学会添加常用辅助线.19.(2021·江苏盐城市)如图,O 为线段PB 上一点,以O 为圆心OB 长为半径的△O 交PB 于点A ,点C 在△O 上,连接PC ,满足2PC PA PB =⋅.(1)求证:PC 是△O 的切线;(2)若3AB PA =,求AC BC的值. 【答案】(1)见解析;(2)12【分析】(1) 连接OC ,把2PC PA PB =⋅转化为比例式,利用三角形相似证明90PCO ∠=︒即可;(2)利用勾股定理和相似三角形的性质求解即可.【详解】(1)证明:连接OC△2PC PA PB =⋅ △PC PB PA PC=, 又△△P =△P ,△PAC PCB ∽△PAC PCB =∠∠,PCA PBC ∠=∠△PCO PCB OCB ∠=∠-∠△PCO PAC OCB ∠=∠-∠又△OC OB =△OCB OBC ∠=∠△PCO PAC ABC ACB ∠=∠-∠=∠已知C 是O 上的点,AB 是直径,△90ACB ∠=︒,△90PCO ∠=︒△AC PO ⊥,△PC 是圆的切线;(2)设AP a =,则3AB a =, 1.5r a =△ 1.5OC a =在Rt △PCO 中△ 2.5OP a =, 1.5OC a =,△2PC a =已知PAC PCB ∽,AC PA BC PC= △12AC BC =. 【点睛】本题考查了切线的判定,三角形相似的判定和性质,勾股定理,熟练掌握切线的判定方法,灵活运用三角形相似的判定证明相似,运用勾股定理计算是解题的关键.20.(2021·江苏无锡市)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA ,40ACD ∠=︒,求证:OAB CDE ∽.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知△ABC =90°,由切线的性质可知△OBP =90°,进而即可得到结论;(2)先推出20OCB OBC ∠=∠=︒,从而得△AOB =40°,继而得△OAB =70°,再推出△CDE =70°,进而即可得到结论.【详解】证明:(1)△AC 是O 的直径,△△ABC =90°,△PB 切O 于点B ,△△OBP =90°,△90PBA ABO OBC ABO ∠+∠=∠+∠=︒,△PBA OBC ∠=∠;(2)△20PBA ,PBA OBC ∠=∠,△20OBC ∠=︒,△OB =OC ,△20OCB OBC ∠=∠=︒,△△AOB =20°+20°=40°,△OB =OA ,△△OAB =△OBA =(180°-40°)÷2=70°,△△ADB =12△AOB =20°,△AC 是O 的直径,△△ADC =90°,△△CDE =90°-20°=70°,△△CDE =△OAB ,△40ACD ∠=︒,△40ACD AOB ∠=∠=︒,△OAB CDE ∽.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.21.(2021·江苏宿迁市)如图,在Rt △AOB 中,△AOB =90°,以点O 为圆心,OA 为半径的圆交AB 于点C ,点D 在边OB 上,且CD= BD .(1)判断直线CD 与圆O 的位置关系,并说明理由;(2)已知24tan 7DOC ∠=,AB =40,求O 的半径.【答案】(1)直线CD 与圆O 相切,理由见解析;(2)【分析】(1)连接,OC 证明90,DCB OCA ∠+∠=︒可得90,OCD ∠=︒ 从而可得答案;(2)由24,tan ,7CD OC CD DOC OC ⊥∠== 设24,CD x = 则7,OC x = 再求解25,7,OD x OA x == 再表示49,OB OD BD x =+= 再利用222,AO BO AB += 列方程解方程,可得答案.【详解】解:(1)直线CD 与圆O 相切,理由如下:如图,连接,OC90,,AOB OA OC ∠=︒=90,,B OAC OAC OCA ∴∠+∠=︒∠=∠,CD BD =,B DCB ∴∠=∠90,DCB OCA ∴∠+∠=︒1809090,OCD ∴∠=︒-︒=︒,OC CD ∴⊥ OC 为O 的半径,CD ∴是O 的切线.(2)24,tan ,7CD OC CD DOC OC ⊥∠== 设24,CD x = 则7,OC x =25,7,OD x OA OC x ∴===,CD BD =24,BD x ∴=49,OB OD BD x ∴=+=40,90,AB AOB =∠=︒222,AO BO AB ∴+=()()22274940,x x ∴+= 232,49x ∴=12x x ∴==(负根舍去)O ∴的半径为:777OC x ==⨯= 【点睛】本题考查的是切线的判定与性质,勾股定理的应用,等腰三角形的性质,锐角三角函数的应用,一元二次方程的解法,熟练应用基础知识,把知识串联起来是解题的关键.22.(2021·江苏苏州市)如图,四边形ABCD 内接于O ,12∠=∠,延长BC 到点E ,使得CE AB =,连接ED . (1)求证:BD ED =;(2)若4AB =,6BC =,60ABC ∠=︒,求tan DCB ∠的值.【答案】(1)见解析;(2 【分析】(1)由圆内接四边形的性质可知180A BCD ∠+∠=︒,再由180DCE BCD ∠+∠=︒,即可得出A DCE ∠=∠.根据圆周角定理结合题意可知AD CD =,即得出AD CD =.由此易证()ABD CED SAS △≌△,即得出BD ED =. (2)过点D 作DM BE ⊥,垂足为M .根据题意可求出10BE =,结合(1)可知152BM EM BE ===,即可求出1CM =.根据题意又可求出230∠=︒,利用三角函数即可求出DM =最后再利用三角函数即可求出最后结果. 【详解】(1)证明:△四边形ABCD 是圆的内接四边形,△180A BCD ∠+∠=︒.△180DCE BCD ∠+∠=︒,△A DCE ∠=∠.△12∠=∠,△AD CD =,△AD CD =. 在ABD △和CED 中,AB CE A DCE AD CD =⎧⎪∠=∠⎨⎪=⎩△()ABD CED SAS △≌△,△BD ED =.(2)解:如图,过点D 作DM BE ⊥,垂足为M .△6BC =,4AB CE ==,△10BE BC CE =+=.由(1)知BD ED =. △152BM EM BE ===. △1CM BC BM =-=.△60ABC ∠=︒,12∠=∠,△230∠=︒.△tan 305DM BM =⋅︒==.△tan DM DCB CM ∠== 【点睛】 本题为圆的综合题.考查圆内接四边形的性质,圆周角定理,全等三角形的判定和性质,等腰三角形的判定和性质以及解直角三角形.利用数形结合的思想并正确作出辅助线是解答本题的关键.23.(2021·江苏扬州市)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π【分析】(1)过点B 作BF △CD ,证明△ABD △△FBD ,得到BF =BA ,即可证明CD 与圆B 相切;(2)先证明△BCD 是等边三角形,根据三线合一得到△ABD =30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF △CD ,△AD △BC ,△△ADB =△CBD ,△CB =CD ,△△CBD =△CDB ,△△ADB =△CDB ,又BD =BD ,△BAD =△BFD =90°,△△ABD △△FBD (AAS ),△BF =BA ,则点F 在圆B 上,△CD 与圆B 相切;(2)△△BCD =60°,CB =CD ,△△BCD 是等边三角形,△△CBD =60°△BF △CD ,△△ABD =△DBF =△CBF =30°,△△ABF =60°,△AB =BF =△AD =DF =tan30AB ⋅︒=2,△阴影部分的面积=S △ABD -S 扇形ABE=(230122360π⨯⨯⨯-=π.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.24.(2021·江苏连云港市)如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E ,若2EDC ABC S S =,求tan BAC ∠的值.【答案】(1)见解析;(2【分析】 (1)利用SAS 证明≌∆∆BAC DAC ,可得90ADC ABC ∠=∠=︒,即可得证;(2)由已知条件可得EDC EBA ∆∆∽,可得出:=DC BA :=CB BA tan BAC ∠;【详解】(1)△AC 平分BAD ∠,△BAC DAC ∠=∠.△AB AD =,AC AC =,△≌∆∆BAC DAC .△90ADC ABC ∠=∠=︒.△CD AD ⊥,△AD 是C 的切线.(2)由(1)可知,90EDC ABC ∠=∠=︒,又E E ∠=∠,△EDC EBA ∆∆∽.△2∆∆=EDC ABC S S ,且≌∆∆BAC DAC ,△:1:2∆∆=EDC EBA S S ,△:=DC BA△DC CB =,△:=CB BA△90ABC ∠=︒△tan ∠=CB BAC BA 【点睛】此题考查了切线的判定与性质,正切的性质,以及相似三角形的性质判定,熟练掌握基础知识是解本题的关键. 25.(2021·江苏泰州市)如图,在△O 中,AB 为直径,P 为AB 上一点,P A =1,PB =m (m 为常数,且m >0).过点P 的弦CD △AB ,Q 为BC 上一动点(与点B 不重合),AH △QD ,垂足为H .连接AD 、BQ .(1)若m =3.△求证:△OAD =60°;△求BQ DH的值; (2)用含m 的代数式表示BQ DH ,请直接写出结果; (3)存在一个大小确定的△O ,对于点Q 的任意位置,都有BQ 2﹣2DH 2+PB 2的值是一个定值,求此时△Q 的度数.【答案】(1)△见解析;△2;(2(3)存在半径为1的圆,45°【分析】(1)△连接OD ,则易得CD 垂直平分线段OA ,从而OD =AD ,由OA =OD ,即可得△OAD 是等边三角形,从而可得结论;△连接AQ ,由圆周角定理得:△ABQ =△ADH ,从而其余弦值相等,因此可得BQ AB DH AD= ,由△可得AB 、AD 的值,从而可得结论;(2)连接AQ 、BD , 首先与(1)中的△相同,有BQ AB DH AD =,由△APD △△ADB ,可求得AD 的长,从而求得结果; (3)由(2)的结论可得:22(1)BQ m DH =+,从而BQ 2﹣2DH 2+PB 222(1)m DH m =-+当m =1时,即可得是一个定值,从而可求得△Q 的值.【详解】(1)△如图,连接OD ,则OA =OD△AB =P A +PB =1+3=4△OA =122AB = △OP =AP =1即点P 是线段OA 的中点△CD △AB△CD 垂直平分线段OA△OD =AD△OA =OD =AD。
2020-2021中考数学压轴题专题复习—圆的综合的综合附答案解析
2020-2021中考数学压轴题专题复习—圆的综合的综合附答案解析一、圆的综合1.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠. (1)求证:CE 是半圆的切线; (2)若CD=10,2tan 3B =,求半圆的半径.【答案】(1)见解析;(2)413 【解析】分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.详解:(1)证明:如图,连接CO .∵AB 是半圆的直径, ∴∠ACB =90°.∴∠DCB =180°-∠ACB =90°. ∴∠DCE+∠BCE=90°. ∵OC =OB , ∴∠OCB =∠B. ∵=DCE B ∠∠, ∴∠OCB =∠DCE . ∴∠OCE =∠DCB =90°. ∴OC ⊥CE . ∵OC 是半径, ∴CE 是半圆的切线. (2)解:设AC =2x ,∵在Rt △ACB 中,2tan 3AC B BC ==, ∴BC =3x .∴()()222313AB x x x =+=.∵OD ⊥AB , ∴∠AOD =∠A CB=90°. ∵∠A =∠A , ∴△AOD ∽△ACB . ∴AC AOAB AD=. ∵1132OA AB x ==,AD =2x +10, ∴113221013xx x =+. 解得 x =8. ∴138413OA =⨯=. 则半圆的半径为413.点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.2.如图1O e ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC o ,∠=,过点P 作PD OP ⊥交O e 于点D .()1如图2,当//PD AB 时,求PD 的长;()2如图3,当»»DC AC=时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O e 的切线;②求PC 的长.【答案】(1)262)333①见解析,②. 【解析】分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长;()2①首先得出OBD V 是等边三角形,进而得出ODE OFB 90∠∠==o ,求出答案即可;②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案.详解:()1如图2,连接OD ,//OP PD PD AB ⊥Q ,,90POB ∴∠=o ,O Q e 的直径12AB =,6OB OD ∴==,在Rt POB V 中,30ABC o ∠=,3tan30623OP OB ∴=⋅=⨯=o , 在Rt POD V 中,22226(23)26PD OD OP =-=-=;()2①证明:如图3,连接OD ,交CB 于点F ,连接BD ,»»DC AC =Q ,30DBC ABC ∴∠=∠=o , 60ABD o ∴∠=,OB OD =Q , OBD ∴V 是等边三角形, OD FB ∴⊥,12BE AB =Q ,OB BE ∴=, //BF ED ∴,90ODE OFB o ∴∠=∠=,DE ∴是O e 的切线; ②由①知,OD BC ⊥,3cos30633CF FB OB ∴==⋅=⨯=o , 在Rt POD V 中,OF DF =,13(2PF DO ∴==直角三角形斜边上的中线,等于斜边的一半), 333CP CF PF ∴=-=-.点睛:此题主要考查了圆的综合以及直角三角形的性质和锐角三角函数关系,正确得出OBD V 是等边三角形是解题关键.3.矩形ABCD 中,点C (3,8),E 、F 为AB 、CD 边上的中点,如图1,点A 在原点处,点B 在y 轴正半轴上,点C 在第一象限,若点A 从原点出发,沿x 轴向右以每秒1个单位长度的速度运动,点B 随之沿y 轴下滑,并带动矩形ABCD 在平面内滑动,如图2,设运动时间表示为t 秒,当点B 到达原点时停止运动. (1)当t =0时,点F 的坐标为 ; (2)当t =4时,求OE 的长及点B 下滑的距离; (3)求运动过程中,点F 到点O 的最大距离;(4)当以点F 为圆心,FA 为半径的圆与坐标轴相切时,求t 的值.【答案】(1)F (3,4);(2)8-33)7;(4)t 的值为245或325. 【解析】试题分析:(1)先确定出DF ,进而得出点F 的坐标; (2)利用直角三角形的性质得出∠ABO =30°,即可得出结论;(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,即可得出结论; (4)分两种情况,利用相似三角形的性质建立方程求解即可.试题解析:解:(1)当t =0时.∵AB =CD =8,F 为CD 中点,∴DF =4,∴F (3,4); (2)当t =4时,OA =4.在Rt △ABO 中,AB =8,∠AOB =90°,∴∠ABO =30°,点E 是AB 的中点,OE =12AB =4,BO =43,∴点B 下滑的距离为843-.(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,∴FO=OE+EF=7.(4)在Rt △ADF 中,FD 2+AD 2=AF 2,∴AF =22FD AD +=5,①设AO =t 1时,⊙F 与x 轴相切,点A 为切点,∴FA ⊥OA ,∴∠OAB +∠FAB =90°.∵∠FAD +∠FAB =90°,∴∠BAO =∠FAD .∵∠BOA =∠D =90°,∴Rt △FAE ∽Rt △ABO ,∴AB AO FA FE =,∴1853t=,∴t 1=245,②设AO =t 2时,⊙F 与y 轴相切,B 为切点,同理可得,t 2=325. 综上所述:当以点F 为圆心,FA 为半径的圆与坐标轴相切时,t 的值为245或325. 点睛:本题是圆的综合题,主要考查了矩形的性质,直角三角形的性质,中点的意义,勾股定理,相似三角形的判定和性质,切线的性质,解(2)的关键是得出∠ABO =30°,解(3)的关键是判断出当O 、E 、F 三点共线时,点F 到点O 的距离最大,解(4)的关键是判断出Rt △FAE ∽Rt △ABD ,是一道中等难度的中考常考题.4.如图.在△ABC 中,∠C =90°,AC =BC ,AB =30cm ,点P 在AB 上,AP =10cm ,点E 从点P 出发沿线段PA 以2c m/s 的速度向点A 运动,同时点F 从点P 出发沿线段PB 以1c m/s 的速度向点B 运动,点E 到达点A 后立刻以原速度沿线段AB 向点B 运动,在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧,设点E 、F 运动的时间为t (s )(0<t <20).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=22 2 9?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.5.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.(1)求证:CD是⊙O的切线;(2)若圆O的直径等于2,填空:①当AD=时,四边形OADC是正方形;②当AD=时,四边形OECB是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB是菱形,∴OE=CE.又∵OC=OE,∴OC=OE=CE.∴∠CEO=60°.∵CE∥AB,∴∠AOD=60°.在Rt△OAD中,∠AOD=60°,AO=1,∴AD=.故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.6.解决问题:()1如图①,半径为4的Oe上,则PA的最大值和e外有一点P,且7PO=,点A在O最小值分别是______和______.()2如图②,扇形AOB的半径为4,45∠=o,P为弧AB上一点,分别在OA边找AOBV周长的最小,请在图②中确定点E、F的位置并直点E,在OB边上找一点F,使得PEFV周长的最小值;接写出PEF拓展应用()3如图③,正方形ABCD 的边长为42;E 是CD 上一点(不与D 、C 重合),CF BE ⊥于F ,P 在BE 上,且PF CF =,M 、N 分别是AB 、AC 上动点,求PMN V 周长的最小值.【答案】(1)11,3;(2)图见解析,PEF V 周长最小值为423)41042. 【解析】 【分析】()1根据圆外一点P 到这个圆上所有点的距离中,最远是和最近的点是过圆心和该点的直线与圆的交点,容易求出最大值与最小值分别为11和3;()2作点P 关于直线OA 的对称点1P ,作点P 关于直线OB 的对称点2P ,连接1P 、2P ,与OA 、OB 分别交于点E 、F ,点E 、F 即为所求,此时PEF V 周长最小,然后根据等腰直角三角形求解即可;()3类似()2题作对称点,PMN V 周长最小12PP =,然后由三角形相似和勾股定理求解.【详解】解:()1如图①,Q 圆外一点P 到这个圆上所有点的距离中,最大距离是和最小距离都在过圆心的直线OP 上,此直线与圆有两个交点,圆外一点与这两个交点的距离个分别最大距离和最小距离.PA ∴的最大值227411PA PO OA ==+=+=,PA 的最小值11743PA PO OA ==-=-=, 故答案为11和3;()2如图②,以O 为圆心,OA 为半径,画弧AB 和弧BD ,作点P 关于直线OA 的对称点1P ,作点P 关于直线OB 的对称点2P ,连接1P 、2P ,与OA 、OB 分别交于点E 、F ,点E 、F 即为所求.连接1OP 、2OP 、OP 、PE 、PF ,由对称知识可知,1AOP AOP ∠∠=,2BOP BOP ∠∠=,1PE PE =,2PF P F = ∴1245AOP BOP AOP BOP AOB ∠∠∠∠∠+=+==o , 12454590POP o o o ∠=+=, 12POP ∴V 为等腰直角三角形,121PP ∴==PEF V 周长1212PE PF EF PE P F EF PP =++=++=,此时PEF V 周长最小.故答案为;()3作点P 关于直线AB 的对称1P ,连接1AP 、1BP ,作点P 关于直线AC 的对称2P ,连接1P 、2P ,与AB 、AC 分别交于点M 、N .如图③ 由对称知识可知,1PM PM =,2PN P N =,PMN V 周长1212PM PN MN PM P N MN PP =++=++=,此时,PMN V 周长最小12PP =.由对称性可知,1BAP BAP ∠∠=,2EAP EAP ∠∠=,12APAP AP ==, ∴1245BAP EAP BAP EAP BAC o∠∠∠∠∠+=+== 12454590P AP ∠=+=o o o ,12P AP V ∴为等腰直角三角形,PMN ∴V 周长最小值12PP =,当AP 最短时,周长最小. 连接DF .CF BE Q ⊥,且PF CF =,45PCF ∠∴=o ,PCCF=45ACD ∠=o Q ,PCF ACD ∠∠∴=,PCA FCD ∠∠=,又ACCD=, ∴在APC V 与DFC V 中,AC PCCD CF=,PCA FCD ∠∠=C AP ∴V ∽DFC V ,AP AC DF CD∴== ∴AP =90BFC ∠=o Q ,取AB 中点O .∴点F 在以BC 为直径的圆上运动,当D 、F 、O 三点在同一直线上时,DF 最短.DF DO FO OC =-===AP ∴最小值为AP = ∴此时,PMN V 周长最小值12PP ====.【点睛】本题考查圆以及正方形的性质,运用圆的对称性和正方形的对称性是解答本题的关键.7.已知,ABC ∆内接于O e ,点P 是弧AB 的中点,连接PA 、PB ; (1)如图1,若AC BC =,求证:AB PC ⊥; (2)如图2,若PA 平分CPM ∠,求证:AB AC =; (3)在(2)的条件下,若24sin 25BPC ∠=,8AC =,求AP 的值.【答案】(1)见解析;(2)见解析5 【解析】 【分析】(1)由点P 是弧AB 的中点,可得出AP=BP , 通过证明APC BPC ∆≅∆ ,ACE BCE ∆≅∆可得出AEC BEC ∠=∠进而证明AB ⊥ PC.(2)由PA 是∠CPM 的角平分线,得到∠MPA=∠APC, 等量代换得到∠ABC=∠ACB, 根据等腰三角形的判定定理即可证得AB=AC.(3)过A 点作AD ⊥BC,有三线合一可知AD 平分BC,点O 在AD 上,连结OB ,则∠BOD =∠BAC ,根据圆周角定理可知∠BOD=∠BAC, ∠BPC=∠BAC ,由∠BOD=∠BPC 可得sin sin BDBOD BPC OB∠=∠=,设OB=25x ,根据勾股定理可算出OB 、BD 、OD 、AD 的长,再次利用勾股定理即可求得AP 的值. 【详解】解:(1)∵点P 是弧AB 的中点,如图1, ∴AP =BP , 在△APC 和△BPC 中AP BP AC BC PC PC =⎧⎪=⎨⎪=⎩, ∴△APC ≌△BPC (SSS ), ∴∠ACP =∠BCP , 在△ACE 和△BCE 中AC BC ACP BCP CE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△BCE (SAS ), ∴∠AEC =∠BEC , ∵∠AEC +∠BEC =180°, ∴∠AEC =90°, ∴AB ⊥PC ;(2)∵PA 平分∠CPM , ∴∠MPA =∠APC ,∵∠APC +∠BPC +∠ACB =180°,∠MPA +∠APC +∠BPC =180°, ∴∠ACB =∠MPA =∠APC , ∵∠APC =∠ABC , ∴∠ABC =∠ACB , ∴AB =AC ;(3)过A 点作AD ⊥BC 交BC 于D ,连结OP 交AB 于E ,如图2,由(2)得出AB =AC , ∴AD 平分BC , ∴点O 在AD 上,连结OB ,则∠BOD =∠BAC ,∵∠BPC =∠BAC , ∴sin sin BOD BPC ∠=∠=2425BDOB=, 设OB =25x ,则BD =24x , ∴OD =22OB BD -=7x ,在Rt ABD V 中,AD =25x +7x =32x ,BD =24x , ∴AB =22AD BD +=40x ,∵AC =8, ∴AB =40x =8, 解得:x =0.2,∴OB =5,BD =4.8,OD =1.4,AD =6.4, ∵点P 是¶AB 的中点, ∴OP 垂直平分AB , ∴AE =12AB =4,∠AEP =∠AEO =90°, 在Rt AEO ∆中,OE =223AO AE -=,∴PE =OP ﹣OE =5﹣3=2,在Rt APE ∆中,AP =22222425PE AE +=+=. 【点睛】本题是一道有关圆的综合题,考查了圆周角定理、勾股定理、等腰三角形的判定定理和三线合一,是初中数学的重点和难点,一般以压轴题形出现,难度较大.8.已知P 是O e 的直径BA 延长线上的一个动点,∠P 的另一边交O e 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O e 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.【答案】(1)CD=25;(2)m=23812n n- ;(3) n 的值为955或9155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论; (2)解Rt △POH ,得到Rt 3mOH OCH V =.在和Rt △1O CH 中,由勾股定理即可得到结论;(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =Q 中,=,,∴2OH =. ∵AB =6,∴3OC =. 由勾股定理得: 5CH = ∵OH ⊥DC ,∴225CD CH ==.(2)在Rt △1sin 3POH P PO m Q 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=.(3)△1POO 成为等腰三角形可分以下几种情况: ① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n-=,解得9n :=.即圆心距等于O e 、1O e 的半径的和,就有O e 、1O e 外切不合题意舍去.ii )11O P OO =,由22233m m n m -+-()() n =, 解得:23m n =,即23n 23812n n-=,解得9155n :=. ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132nn n-=,解得955n :=. 综上所述:n 的值为955或9155. 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.9.定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.理解: ⑴如图,已知是⊙上两点,请在圆上找出满足条件的点,使为“智慧三角形”(画出点的位置,保留作图痕迹);⑵如图,在正方形中,是的中点,是上一点,且,试判断是否为“智慧三角形”,并说明理由;运用:⑶如图,在平面直角坐标系中,⊙的半径为,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.【答案】(1)详见解析;(2)详见解析;(3)P 的坐标(223-,13),(223,13).【解析】试题分析:(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.试题解析:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ=,PM=1×2÷3=,由勾股定理可求得OM=,故点P的坐标(﹣,),(,).考点:圆的综合题.10.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高.(2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.【解析】【分析】(1)连接AC交圆于一点F,连接PF交AB于点E,连接CE即为所求.(2)连接OF交BC于Q,连接PQ即为所求.【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++(3)505-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxxy-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=5tan∠CAB=2,BP228+(4)x-2880x x-+DA 25x,则BD=525x,如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,tanβ=2,则cosβ=5,sinβ=5, EB =BDcosβ=(45﹣25x )×5=4﹣25x , ∴PD ∥BE , ∴EB BF PD PF =,即:2024588x y x xx y -+--=, 整理得:y =25x x 8x 803x 20-++; (3)以EP 为直径作圆Q 如下图所示,两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦,∵点Q 是弧GD 的中点,∴DG ⊥EP ,∵AG 是圆P 的直径,∴∠GDA =90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形,∴AG =EP =BD ,∴AB =DB+AD =AG+AD =5设圆的半径为r ,在△ADG 中,AD =2rcosβ=5,DG =5,AG =2r , 5+2r =45,解得:2r =51+, 则:DG =5=50﹣105, 相交所得的公共弦的长为50﹣105.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.12.如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径,»»BD AD =,DE ⊥BC ,垂足为E .(1)判断直线ED 与⊙O 的位置关系,并说明理由;(2)若CE =1,AC =4,求阴影部分的面积.【答案】(1)ED 与O e 相切.理由见解析;(2)2=33S π-阴影 【解析】【分析】 (1)连结OD ,如图,根据圆周角定理,由»»BD AD =得到∠BAD =∠ACD ,再根据圆内接四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可.【详解】(1)直线ED 与⊙O 相切.理由如下:连结OD ,如图,∵»»BD AD =,∴∠BAD =∠ACD .∵∠DCE =∠BAD ,∴∠ACD =∠DCE .∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC .∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD26023360π⋅⋅=-•22 23=π3-.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.13.如图①,已知Rt ABC ∆中,90ACB ∠=o ,8AC =,10AB =,点D 是AC 边上一点(不与C 重合),以AD 为直径作O e ,过C 作CE 切O e 于E ,交AB 于F .(1)若O e 的半径为2,求线段CE 的长;(2)若AF BF =,求O e 的半径;(3)如图②,若CE CB =,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.【答案】(1)42CE =(2)O e 的半径为3;(3)G 、E 两点之间的距离为9.6.【解析】【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;(2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE BC =OC BA ,即r 8-r =610,解得即可; (3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GE AB AC=,即12108GE =,解得即可. 【详解】(1)如图,连结OE .∵CE 切O e 于E ,∴90OEC ∠=︒.∵8AC =,O e 半径为2,∴6OC =,2OE =.∴2242CE OC OE =-=;(2)设O e 半径为r .在Rt ABC ∆中,90ACB ∠=︒,10AB =,8AC =, ∴226BC AB AC -=. ∵AF BF =, ∴AF CF BF ==. ∴ACF CAF ∠=∠. ∵CE 切O e 于E ,∴90OEC ∠=︒.∴OEC ACB ∠=∠,∴OEC BCA ∆~∆.∴OE OC BC BA =, ∴8610r r -=, 解得3r =.∴O e 的半径为3;(3)连结EG 、OE ,设EG 交AC 于点M ,由对称性可知,CB CG =.又CE CB =,∴CE CG =.∴EGC GEC ∠=∠.∵CE 切O e 于E ,∴90GEC OEG ∠+∠=︒.又90EGC GMC ∠+∠=︒,∴OEG GMC ∠=∠.又GMC OME ∠=∠,∴OEG OME ∠=∠.∴OE OM =.∴点M 与点D 重合.∴G 、D 、E 三点在同一条直线上.连结AE 、BE ,∵AD 是直径,∴90AED ∠=︒,即90AEG ∠=︒.又CE CB CG ==,∴90BEG ∠=︒.∴180AEB AEG BEG ∠=∠+∠=︒,∴A 、E 、B 三点在同一条直线上.∴E 、F 两点重合.∵90GEB ACB ∠=∠=︒,B B ∠=∠,∴GBE ABC ∆~∆. ∴GB GE AB AC =,即12108GE =. ∴9.6GE =.故G 、E 两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G 、D 、E 三点共线以及A 、E 、B 三点在同一条直线上是解题的关键.14.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,∠D =60°且AB =6,过O 点作OE ⊥AC ,垂足为E .(1)求OE 的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积.(结果保留π)【答案】(1)OE的长为32;(2)阴影部分的面积为3 2π【解析】(1)OE=32(2)S=32π15.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=12 AC•BC=12(x+3)(x+4)=12(x2+7x+12)=12×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;【解析】【分析】(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.【详解】设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn;(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•co s60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=3x2+(m+n)x+mn]=3(3mn+mn)3.【点睛】本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021中考数学圆的有关性质一、选择题1. 下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为() A.1 B.2 C.3 D.42. 把一个圆形纸片至少对折________次,才可以确定圆心()A.1 B.2 C.3 D.无数次3. 如图,☉O的直径AB垂直于弦CD.垂足是点E,∠CAO=22.5°,OC=6,则CD的长为()A.6B.3C.6D.124. 2018·济宁如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°5. 如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OPC.OB⊥AC D.AC平分OB6. 一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=8 dm,DC=2 dm,则圆形标志牌的半径为()A .6 dmB .5 dmC .4 dmD .3 dm7. 一条排水管的截面如图所示,已知排水管的半径OA =1 m ,水面宽AB =1.2 m ,某天下雨后,排水管水面上升了0.2 m ,则此时排水管水面宽为( )A .1.4 mB .1.6 mC .1.8 mD .2 m 8. 如图,在半径为5的⊙O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3 2D .4 2二、填空题9. 已知:如图,A ,B 是⊙O 上的两点,∠AOB =120°,C 是AB ︵的中点,则四边形OACB是________.(填特殊平行四边形的名称)10. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.11. 如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D=________°.12. 如图,在⊙O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O 于点D,则CD的最大值为________.13. 如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连接OD,BE,它们交于点M,且MD=2,则BE的长为________.14. 如图,定长弦CD在以AB为直径的⊙O上滑动(点C,D与点A,B不重合),M是CD 的中点,过点C作CP⊥AB于点P.若CD=3,AB=8,PM=l,则l的最大值是________.三、解答题15.(2020·泰州)如图,在O中,点P为AB的中点,弦AD、PC互相垂直,垂足为M ,BC分别与AD、PD相交于点E、N,连接BD、MN.(1)求证:N为BE的中点.(2)若O的半径为8,AB的度数为90 ,求线段MN的长.16. 如图,点E是△ABC的内心,线段AE的延长线交BC于点F(∠AFC≠90°),交△ABC的外接圆于点D.(1)求点F与△ABC的内切圆⊙E的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.17. 2018·北京对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(-2,6),B(-2,-2),C(6,-2).(1)求d(点O,△ABC);(2)记函数y=kx(-1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.18. 已知⊙O的半径为3,⊙P与⊙O相切于点A,经过点A的直线与⊙O、⊙P分别交于点B、C,cos∠BAO=13.设⊙P的半径为x,线段OC的长为y.(1)求AB的长;(2)如图,当⊙P与⊙O外切时,求y与x之间的函数关系式,并写出函数的定义域;(3)当∠OCA=∠OPC时,求⊙P的半径.答案一、选择题1. 【答案】C2. 【答案】B3. 【答案】A[解析]∵∠A=22.5°,∴∠COE=45°,∵☉O的直径AB垂直于弦CD,∴∠CEO=90°,CE=DE.∵∠COE=45°,∴CE=OE=OC=3,∴CD=2CE=6,故选A.4. 【答案】D[解析] 由同弧所对的圆周角等于圆心角的一半,可知∠α=2∠BCD=260°.而∠α+∠BOD=360°,所以∠BOD=100°.5. 【答案】A[解析] ∵AD是⊙O的直径,∴∠ACD=90°.∵四边形OBCD是平行四边形,∴CD∥OB,CD=OB,∴∠CPO=90°,即OB⊥AC,∴选项C正确;∴CP=AP.又∵OA=OD,∴OP是△ACD的中位线,∴CD=2OP,∴选项B正确;∴CD=OB=2OP,即P是OB的中点,∴AC平分OB,∴选项D正确.6. 【答案】B[解析] 如图,连接OD,OB,则O,C,D三点在一条直线上.因为CD垂直平分AB,AB=8 dm,所以BD=4 dm,OD=(OC-2)dm.由勾股定理,得42+(OC-2)2=OC2,解得OC=5(dm).故选B.7. 【答案】B[解析] 如图,过点O作OE⊥AB于点E,交CD于点F,连接OC.∵AB=1.2 m,OE⊥AB,OA=1 m,∴AE=0.6 m,∴OE=0.8 m.∵排水管水面上升了0.2 m,∴OF=0.8-0.2=0.6(m).由题意可知CD∥AB.∵OE⊥AB,∴OE⊥CD,∴CF=OC2-OF2=0.8 m,CD=2CF,∴CD=1.6 m.故选B.8. 【答案】C [解析] 如图,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,连接AO.∵OE ⊥AB ,∴AE =12AB =4.在Rt △OAE 中,OA =5,由勾股定理可得OE =3,同理得OF =3.又∵AB ⊥CD ,∴四边形OEPF 是正方形,∴PE =OE =3.在Rt △OPE 中,由勾股定理可得OP =3 2.二、填空题9. 【答案】菱形 [解析] 连接OC.∵C 是AB ︵的中点,∴∠AOC =∠COB =60°.又∵OA =OC =OB ,∴△OAC 和△OCB 都是等边三角形,∴OA =AC =BC =OB ,∴四边形OACB 是菱形.10. 【答案】8 [解析] 由题意可得A ,P ,B ,C 在同一个圆上,所以当BP 为圆的直径时,BP 最大,此时∠P AB =90°.过点C 作CD ⊥AB 于点D ,可求得AB =4 3,进而可求得BP 的最大值为8.11. 【答案】65 [解析] ∵∠C =25°,∴∠A =∠C =25°.∵⊙O 的直径AB 过弦CD 的中点E ,∴AB ⊥CD ,∴∠AED =90°,∴∠D =90°-25°=65°.12. 【答案】12[解析] 连接OD.因为CD ⊥OC ,所以CD =OD2-OC2,根据题意可知圆的半径一定,故当OC 最小时CD 最大,故当OC ⊥AB 时CD 最大,此时CD =12AB =12.13. 【答案】8 [解析] 连接AD ,如图所示.∵以AB为直径的⊙O与BC交于点D,与AC交于点E,∴∠AEB=∠ADB=90°,即AD⊥BC.又∵AB=AC,∴BD=CD.又∵OA=OB,∴OD∥AC,∴OD⊥BE,∴BM=EM,∴CE=2MD=4,∴AE=AC-CE=6,∴BE=AB2-AE2=102-62=8.14. 【答案】34[解析] 如图,当CD∥AB时,PM的长最大,连接OM,OC.∵CD∥AB,CP⊥AB,∴CP⊥CD.∵M为CD的中点,OM过点O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC.∵⊙O的直径AB=8,∴半径OC=4,∴PM=4.三、解答题15. 【答案】解:(1)连接AC .∵弧AP=弧PB ,∴∠1=∠2,∠3=∠4∵CP ⊥AD ,∴∠CME =∠CMA =90°∴∠A =∠5,∵∠A =∠B ,∠5=∠6,∴∠6=∠B ,∵∠3=∠4,DN =DN ,∴△DNE ≌△DNB∴EN =BN ,∴N 为BE 的中心.(2)∵弧AB 的度数为90°∴∠AOB =90°∵OA =OB ∴282AB OA ==∵AM =ME ,EN =BN ∴1422MN AB == 【解析】(1)可先证DE =DB ,∠ADP =∠BDP ,根据三线合一可证N 为BE 的中点.(2)利用MN 为△ABE 的中位线,可得AB =2MN ,进而求得MN 的长.16. 【答案】解:(1)设⊙E 切BC 于点M ,连接EM ,则EM ⊥BC .又线段AE 的延长线交BC 于点F ,∠AFC ≠90°,∴EF >EM ,∴点F 在△ABC 的内切圆⊙E 外.(2)证明:∵点E 是△ABC 的内心,∴∠BAD =∠CAD ,∠ABE =∠CBE .∵∠CBD =∠CAD ,∴∠BAD =∠CBD .∵∠BED =∠ABE +∠BAD ,∠EBD =∠CBE +∠CBD ,∴∠BED =∠EBD ,∴ED =BD .(3)如图①,连接CD .设△ABC 的外接圆为⊙O .∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.17. 【答案】解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2.(2)如图,函数y=kx(k≠0)的图象经过原点,在-1≤x≤1范围内,函数图象为线段.当函数y=kx(-1≤x≤1,k≠0)的图象经过点(1,-1)时,k=-1,此时d(G,△ABC)=1;当函数y=kx(-1≤x≤1,k≠0)的图象经过点(-1,-1)时,k=1,此时d(G,△ABC)=1. ∴-1≤k≤1.又∵k≠0,∴-1≤k≤1且k≠0.(3)如图,⊙T与△ABC的位置关系分三种情况:①当⊙T在△ABC的左侧时,d(⊙T,△ABC)=1,此时t=-4.②当⊙T 在△ABC 的内部时,当点T 与原点重合时,d (⊙T ,△ABC )=1,此时t =0;当点T 位于T 3位置时,由d (⊙T ,△ABC )=1知T 3M =2.∵AB =BC =8,∠ABC =90°,∴∠C =∠T 3DM =45°,则T 3D =2 2, ∴t =4-2 2. 故此时0≤t ≤4-2 2. ③当⊙T 在△ABC 的右侧时,由d (⊙T ,△ABC )=1知T 4N =2.∵∠T 4DC =∠C =45°,∴T 4D =2 2,∴t =4+2 2.综上,t =-4或0≤t ≤4-2 2或t =4+2 2.18. 【答案】(1)如图2,作OE ⊥AB ,垂足为E ,由垂径定理,得AB =2AE .在Rt △AOE 中,cos ∠BAO =13AE AO =,AO =3,所以AE =1.所以AB =2. (2)如图2,作CH ⊥AP ,垂足为H .由△OAB ∽△P AC ,得AO AP AB AC =.所以32x AC =.所以23AC x =. 在Rt △ACH 中,由cos ∠CAH =13,得1322AH AC ==. 所以1239AH AC x ==,224239CH AC x ==. 在Rt △OCH 中,由OC 2=OH 2+CH 2,得222422()(3)99y x x =++. 整理,得23649813y x x =++.定义域为x >0.图2 图3(3)①如图3,当⊙P 与⊙O 外切时,如果∠OCA =∠OPC ,那么△OCA ∽△OPC .因此OA OC OC OP =.所以2OC OA OP =⋅. 解方程236493(3)813x x x ++=+,得154x =.此时⊙P 的半径为154. ②如图4,图5,当⊙P 与⊙O 内切时,同样的△OAB ∽△P AC ,23AC x =. 如图5,图6,如果∠OCA =∠OPC ,那么△ACO ∽△APC . 所以AO AC AC AP=.因此2AC AO AP =⋅. 解方程22()33x x =,得274x =.此时⊙P 的半径为274. 图4 图5 图6考点伸展第(3)题②也可以这样思考:如图4,图5,图6,当∠OCA =∠OPC 时,3个等腰三角形△OAB 、△P AC 、△CAO 都相似,每个三角形的三边比是3∶3∶2.这样,△CAO 的三边长为92、92、3.△P AC 的三边长为274、274、92.。