人教版初中数学因式分解解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学因式分解解析
一、选择题
1.已知a ,b ,c 满足3a b c ++=,2224a b c ++=,则
222222
222a b b c c a c a b
+++++=---( ). A .0
B .3
C .6
D .9
【答案】D
【解析】
【分析】
将等式变形可得2224+=-a b c ,2224+=-b c a ,2224+=-a c b ,然后代入分式中,利用平方差公式和整体代入法求值即可.
【详解】
解:∵2224a b c ++=
∴2224+=-a b c ,2224+=-b c a ,2224+=-a c b
∵3a b c ++= ∴222222
222+++++---a b b c c a c a b
=222
444222---++---c a b c a b
=()()()()()()222222222-+-+-+++---c c a a b b c a
b
=222+++++c a b
=()6+++c a b
=6+3
=9
故选D .
【点睛】 此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.
2.下列多项式不能使用平方差公式的分解因式是( )
A .22m n --
B .2216x y -+
C .22b a -
D .22449a n -
【答案】A
【解析】
【分析】
原式各项利用平方差公式的结构特征即可做出判断.
【详解】
下列多项式不能运用平方差公式分解因式的是22m n --.
故选A .
【点睛】
此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.
3.下列分解因式正确的是( )
A .x 3﹣x=x (x 2﹣1)
B .x 2﹣1=(x+1)(x ﹣1)
C .x 2﹣x+2=x (x ﹣1)+2
D .x 2+2x ﹣1=(x ﹣1)2
【答案】B
【解析】
试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.
解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;
B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;
C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;
D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.
故选B .
考点:提公因式法与公式法的综合运用.
4.下列等式从左到右的变形是因式分解的是( )
A .2x (x +3)=2x 2+6x
B .24xy 2=3x •8y 2
C .x 2+2xy +y 2+1=(x +y )2+1
D .x 2﹣y 2=(x +y )(x ﹣y )
【答案】D
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
A 、不是因式分解,故本选项不符合题意;
B 、不是因式分解,故本选项不符合题意;
C 、不是因式分解,故本选项不符合题意;
D 、是因式分解,故本选项符合题意;
故选D .
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
5.下列各式中,由等式的左边到右边的变形是因式分解的是( )
A .(x +3)(x -3)=x 2-9
B .x 2+x -5=(x -2)(x +3)+1
C .a 2b +ab 2=ab(a +b)
D .x 2+1=x 1()x x
+ 【答案】C
【解析】
【分析】 根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
A 、是整式的乘法,故A 错误;
B 、没有把一个多项式转化成几个整式积的形式,故B 错误;
C 、把一个多项式转化成了几个整式积的形式,故C 正确;
D 、没有把一个多项式转化成几个整式积的形式,故D 错误;
故选:C .
【点睛】
本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.
6.下列各式中,从左到右的变形是因式分解的是( )
A .2a 2﹣2a+1=2a (a ﹣1)+1
B .(x+y )(x ﹣y )=x 2﹣y 2
C .x 2﹣6x+5=(x ﹣5)(x ﹣1)
D .x 2+y 2=(x ﹣y )2+2x
【答案】C
【解析】
【分析】
根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.
【详解】
A 、2a 2-2a+1=2a (a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;
B 、(x+y )(x-y )=x 2-y 2,这是整式的乘法,故此选项不符合题意;
C 、x 2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;
D 、x 2+y 2=(x-y )2+2xy ,等号的右边不是整式的积的形式,故此选项不符合题意; 故选C .
【点睛】
此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.
7.下列从左到右的变形,是因式分解的是( )
A .2(a ﹣b)=2a ﹣2b
B .221(a b)(a b)1-=-+++a b
C .2224(2)x x x -+=-
D .22282(2)(2)x y x y x y -=-+
【答案】D
【解析】
【分析】