清华北大自主招生模拟试题(数学)
清华北大自主招生模拟试题(数学)
![清华北大自主招生模拟试题(数学)](https://img.taocdn.com/s3/m/4ec0e029192e45361066f5f6.png)
自主招生模拟试题--03一、选择题(本大题共6小题,每小题3分,共18分)1.设A 是整数集的一个非空子集,对于A k ∈,如果A k ∉-1,且A k ∉+1,那么称k 是A 的一个“孤立元”.给定}8,7,6,5,4,3,2,1{=S ,由S 的三个元素构成的所有集合中,不含“孤立元”的集合个数为【 】. A.5 B.6 C.7 D.82.若函数1463)(23+++=x x x x f ,且1)(=a f ,19)(=b f ,则=+b a 【 】. A.2- B.0 C.1 D.23.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是【 】.A.12B.18C.24D.364.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n 年的累计产量为)12)(1(21)(++=n n n n f 吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限的年数为【 】.A.5B.6C.7D.8 5.若ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是【 】.A.(0,)+∞B.51(0,)2+ C.5151(,)22-+ D.51(,)2-+∞ 6.若设集合}10,,2,1{ =A ,则满足“每个子集至少有2个元素,且每个子集中任意两个元素之差的绝对值均大于1.”的A 的子集个数为【 】.A.55B.89C.109D.133 二、填空题(本大题共4小题,每小题3分,共12分) 7.函数424236131y x x x x x =--+--+的最大值为____________.8.若函数x x a y sin )3cos (2-=的最小值为3-,则实数a 的取值范围是____________.9.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6 局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为____________.10.多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A 在平面α内,其余顶点在α的同侧,正方体上与顶点A 相邻的三个顶点到α的距离分别为1,2和4,P 是正方体的其余四个顶点中的一个,则P 到平面α的距离可能是:①3; ②4; ③5; ④6; ⑤7以上结论正确的有______________.(写出所有正确结论的编号..) 三、解答题(本大题共5小题,每小题14分,共70分)11.设b x ax x f ++=4)(2)0(<a ,方程0)(=x f 的两实根为21,x x ,方程x x f =)(的两实根为βα,. (1)若1||=-βα,求b a ,的关系式;(2)若b a ,均为负整数,且1||=-βα,求)(x f 的解析式; (3)若21<<<βα,求证:7)1)(1(21<++x x .12.已知正实数12,,n a a a …,的和为1,求证:222211212231112n n n n n a a a a a a a a a a a a --++++≥++++…. 13.设AB 是抛物线px y 22=)0(>p 的一条过焦点的弦,且AB 与x 轴不垂直,点P 是y 轴上异于坐标原点O 的一点,且满足B A P O ,,,四点共圆,设B A P ,,的纵坐标依次为210,,y y y ,求210y y y +的值.14.在直角坐标平面内,设x 轴,y 轴正方向上的单位向量分别是i ,j,该坐标平面内的点n A ,n B 满足以下两个条件:①1OA j = ,且1+n n A A =i +j ;②i OB 31=,且1+n n B B =2()33n i ⨯.(1)求n OA 及n OB 的坐标;(2)若四边形11++n n n n A B B A 的面积是n a ,求n a 的表达式;(3)是否存在正整数M ,对*N n ∈都有n a <M 成立?若存在,求M 的最小值;若不存在,说明理由. 15.设ABC ∆的内切圆半径为1,三边长a BC =,b CA =,c AB =.若a ,b ,c 都是整数,求证:ABC ∆为直角三角形.自主招生模拟试题答题纸ABCDA 1B 1C 1D 1第10题图α一、选择题(本大题共6小题,每小题3分,共18分)题号 1 2 3 4 5 6 答案二、填空题(本大题共4小题,每小题3分,共12分)题号7 8 9 10 答案三、解答题(本大题共5小题,每小题14分,共70分)11.12.13.14.15.参考答案一、选择题(本大题共6小题,每小题3分,共18分)1.设A 是整数集的一个非空子集,对于A k ∈,如果A k ∉-1,且A k ∉+1,那么称k 是A 的一个“孤立元”.给定}8,7,6,5,4,3,2,1{=S ,由S 的三个元素构成的所有集合中,不含“孤立元”的集合个数为【 】. A.5 B.6 C.7 D.8解析:依题可知,由S 的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:62.若函数1463)(23+++=x x x x f ,且1)(=a f ,19)(=b f ,则=+b a 【 】. A.2- B.0 C.1 D.2()()()()()()()()()()()()()()()()()()3323333222223223614=13110,3131101,1311019,11123613=06380365=0f x x x x x xg y y y g y f a a a f b b b g a g b g a a b a a a a b a ab b a b b b b a =+++++++=+=++++==++++=⇒++∴+⇒+=-⎧+++⎪⇒+-+++++=⎨++-⎪⎩- 法一:设,则为奇函数且为单调递增函数,且=-9,=9,=-9=g -b-1,法二:易得()()()22260,380,0.D ab b a b a b ++>++>∴+<选。
2020年北京海淀区清华大学自主招生数学试卷(强基计划)-学生用卷
![2020年北京海淀区清华大学自主招生数学试卷(强基计划)-学生用卷](https://img.taocdn.com/s3/m/629dcf47793e0912a21614791711cc7931b77886.png)
2020年北京海淀区清华大学自主招生数学试卷(强基计划)-学生用卷1、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第1题 2020~2021学年北京海淀区高三单元测试 已知x 2+y 2⩽1,求x 2+xy −y 2的最值.2、【来源】设a ,b ,c 均为大于零的实数,若一元二次方程ax 2+bx +c =0有实根,则( ). A. max {a,b,c }⩾12(a +b +c) B. max {a,b,c }⩾49(a +b +c) C. min {a,b,c }⩽14(a +b +c) D. min {a,b,c }⩽13(a +b +c)3、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第13题 2020~2021学年北京海淀区高三单元测试|a →|⩽1,|b →|⩽1,|a →+2b →+c →|=|a →−2b →|,则|c →|的最值为( ) A. 最大值为4√2 B. 最大值为2√5 C. 最小值为0 D. 最小值为24、【来源】在△ABC 中,AC =1, BC =√3,AB =2,M 为AB 的中点,将△BCM 沿CM 折起,使得三棱锥B −ACM 的体积为√212,则折起后AB 的长可以为( ).A. 1B. √2C. √3D. 25、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第5题2020~2021学年北京海淀区高三单元测试P为椭圆x24+y23=1上一点,A(1,0),B(1,1),求|PA|+|PB|的取值范围.6、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第7题2020~2021学年北京海淀区高三单元测试P为双曲线x24−y2=1上一点,A(−2,0),B(2,0),令∠PAB=α,∠PBA=β,下列为定值的是()A. tanαtanβB. tanα2tanβ2C. S△PAB tan(α+β)D. S△PAB cot(α+β)7、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第2题2020~2021学年北京海淀区高三单元测试非等边三角形ABC中,BC=AC,O,P分别为△ABC的外心和内心,D在BC上,OD⊥BP,下列选项正确的是()A. BODP四点共圆B. OD//ACC. OD//ABD. DP//AC8、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第3题已知集合A,B,C⊆{1,2,3,⋯,2020},且A⊆C,B⊆C,则有序集合组(A,B,C)的个数是().A. 22020B. 32020C. 42020D. 520209、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第4题已知数列{a n }满足a 0=1,|a i+1|=|a i +1|(i ∈N ),则A =|∑a k 20k=1|的值可能是( ). A. 0B. 2C. 10D. 1210、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第6题 已知△ABC 的三条边长均为整数,且面积为有理数,则|AB |的值可能是( ). A. 1B. 2C. 3D. 411、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第8题甲、乙、丙三人一起做同一道题,甲说:“我做错了.”,乙说:“甲做对了.”,丙说:“我做错了.”,而事实上仅有一人做对题目且仅有一人说谎了,那么谁可能做对了题目( ). A. 甲 B. 乙 C. 丙 D. 没有人12、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第9题 2020~2021学年北京海淀区高三单元测试Rt △ABC 中,∠ABC =90°,AB =√3,BC =1,PA→|PA →|+PB →|PB →|+PC →|PC →|=0→,以下正确的是( ).A. ∠APB =120°B. ∠BPC =120°C. 2BP =PCD. AP =2PC13、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第10题2020~2021学年北京海淀区高三单元测试 lim n→∞∑arctan n k=12k 2=( )A. 34π B. π C. 3π2D. 7π314、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第11题从0∼9这十个数中任取五个数组成一个为五位数ABCDE (A 可以为0),则396|ABCDE 的概率是( ). A.1396B.1324C.1315D.121015、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第12题随机变量X (=1,2,3,⋯),Y (=0,1,2),满足P (X =k )=12k 且Y ≡X (mod3),则E (Y )=( ). A. 47B. 87C. 127D. 16716、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第14题若存在x ,y ∈N ∗,使得x 2+ky ,y 2+kx 均为完全平方数,则正整数k 可能是( ). A. 2B. 4C. 5D. 617、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第15题 求值:sin(arctan1+arccos√10+arcsin√5)=( ).A. 0B. 12C. √22D. 118、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第16题已知正四棱锥中,相邻两侧面构成的二面角为α,侧棱和底面夹角为β,则().A. cosα+tan2β=1B. secα+tan2β=−1C. cosα+2tan2β=1D. secα+2tan2β=−119、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第17题2020~2021学年北京海淀区高三单元测试已知f(x)=2e xe x+e−x+sinx,x∈[−2,2],则f(x)上下界之和为.20、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第18题已知函数f(x)的图象如图所示,记y=f(x),x=a,x=t(a<t<c)及x轴围成的曲边梯形面积为S(t),则下列说法正确的是().A. S(t)⩽cf(b)B. S′(t)⩽f(a)C. S′(t)⩽f(b)D. S′(t)⩽f(c)21、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第19题 2020~2021学年北京海淀区高三单元测试定义数列{a n },若∀n ∈N ∗,∃m ∈N ∗,使得S n =a m ,则称数列{a n }为“某数列”,以下正确的是( )A. a n ={1,n =12n−2,n ⩾2,数列{a n }为“某数列”B. a n =kn ,k 为常数,则{a n }为“某数列”C. 存在任意两项均不相同的某数列a n ,且对于任意n ∈N ∗,|a n |<√nD. 对任意等差数列{a n },存在“某数列”{b n }和{c n },使得a n =b n +c n22、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第20题求值:∫sin 2xsin 4x+cos 4x2πdx =( ).A. πB. √2πC. 2πD. √5π23、【来源】已知f(z)=z 10+z −10+12(z 5+z −5),则( ). A. f(z)=0存在实数解B. f(z)=0共有20个不同的复数解C. f(z)=0复数解的模长都等于1D. f(z)=0存在模长大于1的复数解24、【来源】设多项式f(x)的各项系数都是非负实数,且f(1)=f ′(1)=f ′′(1)=f ′′′(1)=1,则f(x)的常数项的最小值为( ). A. 12B. 13C. 14D. 1525、【来源】《红楼梦》《三国演义》《水浒》《西游记》四部书分列在只有四层架子的书柜的不同层上,小赵、小钱、小孙,小李分别借阅了四部书中的一部,现已知:小钱借阅了第一层的书籍,小赵借阅了第二层的书籍,小孙借阅的是《红楼梦》,《三国演义》陈列在第四层,则().A. 《水浒》一定陈列在第二层B. 《西游记》一定陈列在第一层C. 小孙借阅的一定是第三层的书籍D. 小李借阅的一定是第四层的书籍26、【来源】设数列{a n}的前n项和为S n=(−1)n a n+12n+n−3,且实数t满足(t−a n+1)(t−a n)<0,则t的取值范围是().A. (−34,11 4)B. (−34,11 5)C. (−35,11 4)D. (−35,11 5)27、【来源】已知实数a,b满足a3+b3+3ab=1,设a+b的所有可能取值构成的集合为M,则().A. M为单元素集B. M为有限集,但不是单元素集C. M为无限集,且有下界D. M为无限集,且无下界28、【来源】设A ,B 分别是x 轴,y 轴上的动点,若以AB 为直径的圆C 与直线2x +y −4=0相切,则圆C 面积的最小值为( ). A. π5B. 2π5C. 4π5D. π29、【来源】设α,β为锐角,且cos(α+β)=sin αsin β ,则tanα的最大值为( ). A. √24B. √33 C. 1 D. √230、【来源】设函数f(x)=e x +a(x −1)+b 在区间[1,3]上存在零点,则a 2+b 2的最小值为( ). A. e2 B. e C. e 22 D. e 231、【来源】设复数z 满足|3z −7i |=3,令z 1=z 2−2z+2z−1+i,则|z 1|的( ).A. 最大值为83B. 最大值为73C. 最小值为43D. 最小值为2332、【来源】在平面直角坐标系中,横坐标与纵坐标都是整数的点称为格点,所有顶点都是格点的多边形称为格点多边形.若一个格点多边形内部有8个格点,边界上有10个格点,则这个格点多边形的面积为( ). A. 10B. 11C. 12D. 1333、【来源】设实数x 1,x 2,⋯,x 21满足0⩽x i ⩽1(i =1,2,⋯,21),则∑21i=1∑|x i −x k |21k=1的最大值为( ). A. 110B. 120C. 220D. 24034、【来源】已知实数x ,y ,z 满足{ 19x 3−13y 2−y =119y 3−13z 2−z =119z 3−13x 2−x =1,则( ).A. (x,y,z)只有1组B. (x,y,z)有4组C. x ,y ,z 均为有理数D. x ,y ,z 均为无理数35、【来源】使得nsin1>1+5cos1成立的最小正整数n 的值为( ). A. 3B. 4C. 5D. 636、【来源】已知复数z 1,z 2在复平面内对应的点为Z 1,Z 2,O 为坐标原点,若|z 1|=1,5z 12−2z 1z 2+z 22=0,则△OZ 1Z 2的面积为( ).A. 1B. √3C. 2D. 2√31 、【答案】见解析;2 、【答案】 B;C;D;3 、【答案】 B;C;4 、【答案】 B;C;5 、【答案】[4−√5,4+√5];6 、【答案】 A;C;7 、【答案】 A;D;8 、【答案】 D;9 、【答案】 C;D;10 、【答案】 C;D;11 、【答案】 A;B;12 、【答案】 A;B;C;D;13 、【答案】 A;14 、【答案】 C;15 、【答案】 B;16 、【答案】 C;D;17 、【答案】 D;18 、【答案】 D;19 、【答案】 2;20 、【答案】 A;C;21 、【答案】 A;B;C;D;22 、【答案】 B;23 、【答案】 B;C;24 、【答案】 B;25 、【答案】 C;D;26 、【答案】 A;27 、【答案】 B;28 、【答案】 C;29 、【答案】 A;30 、【答案】 D;31 、【答案】 A;D;32 、【答案】 C;33 、【答案】 C;34 、【答案】 A;D;35 、【答案】 C;36 、【答案】 A;第11页,共11页。
清华北大自主模拟试题(数学)
![清华北大自主模拟试题(数学)](https://img.taocdn.com/s3/m/9825b8b4c77da26925c5b0eb.png)
自主招生模拟试题--011.已知集合542{|20}{1,1}x x x ax bx c ++++==-,求实数,,a b c 的值.2.已知F 是椭圆C :2222x y +=的左焦点,且椭圆上的动点,A B 使得ABF ∆的内心总在直线1x =-上,求证:直线AB 过定点.3.抛掷一枚质地均匀的硬币,正面朝上得1分,反面朝上得2分,求“得n 分”的概率.4.数列}{n a 的前4项依次为 ,5,8,9,1,且4+i a 是3i i a a ++的个位数字,求证:220002198621985|4a a a +++ .5.已知集合22{|,,}A r r t s t s B ==+∈,且,x y A ∈, (1)若B Z =,求证:xy A ∈; (2)若B Q =,且0x ≠,求证:yA x∈.6.如图,已知,E F 分别是,AB CD 的中点,直线,AD BC 与EF 分别交于,P Q ,且AD BC =, 求证:APE BQE ∠=∠.7.是否存在周长为6,且面积为整数的直角三角形?若不存在,请给出证明;若存在,请计算所有满足条件的直角三角形的斜边上的高.8.已知复数z x yi =+,,x y 均为有理数,且||1z =,求证:对任意的*N n ∈,2|1|nz -都是有理数.FDPEABQ C自主招生模拟试题答题纸1.2.4.6. F DPE ABQC8.参考答案1.已知542{|20}{1,1}x x x ax bx c ++++==-,求实数,,a b c 的值. 解:由题意可知1,1-是方程54220x x ax bx c ++++=的根,故有3010a b c a b c +++=⎧⎨+-+=⎩,即12b a c =-⎧⎨+=-⎩.从而有5422322(1)(22)x x ax bx c x x x x a ++++=-++++.又由于方程32220x x x a ++++=至少有一个实数根,而由题意可知这个实数根必为1-或1.(1)若1-是方程32220x x x a ++++=的一个实数根,则2a =-,此时方程32220x x x a ++++=可化为3220x x x ++=,显然0x =也是该方程的一个实数根,不符合题意.(2)若1是方程32220x x x a ++++=的一个实数根,则6a =-,此时方程32220x x x a ++++=可化为32224(1)(34)0x x x x x x ++-=-++=,显然2340x x ++=没有实数根,符合题意.此时可求得实数,,a b c 的值分别为6,1,4a b c =-=-=.2.已知F 是椭圆2222x y +=的左焦点,椭圆上的动点,A B 使得ABF ∆的内心总在直线1x =-上,求证:直线AB 过定点.证明:由题意知直线AB 的斜率存在,故可设方程为x my n =+(0)m ≠,且1122(,),(,)A x y B x y ,则:由2222x my n x y =+⎧⎨+=⎩得222(2)220m y mny n +++-=.故12222mn y y m +=-+,212222n y y m -=+. 因点F 的坐标为(1,0)-,且ABF ∆内心在直线1x =-上,故可得直线,AF BF 的斜率都存在,且和为0,即1212011y yx x +=++.又由1122(,),(,)A x y B x y 在直线x my n =+上得11x my n =+,22x my n =+.从而有12122(1)()0my y n y y +++=.再结合韦达定理可得2n =-. 综上可知直线AB 过定点(2,0)-.3.抛掷一枚质地均匀的硬币,正面朝上得1分,反面朝上得2分,求“得n 分”的概率.解:设事件“得n 分”的概率为n P ,由于事件“得n 分”的情形可以是:先得了2n -分(其概率为2n P -),再掷得一次反面;也可以是先得了1n -分(其概率为1n P -),再掷得一次正面,因此有121122n n n P P P --=+,又由题意易得112P =,234P =,故11[2()]32nn P =⋅+-.4.数列}{n a 的前4项依次为 ,5,8,9,1,且4+i a 是3i i a a ++的个位数字,求证:220002198621985|4a a a +++ . 证明:当i a 为奇或偶时,分别记i b 为0,1,则得}{n b : ;1,1,1,0,0,1,0,0,1,1,0,1,0,1,1;1,1,1,0,0,1,0,0,1,1,0,1,0,1,1 且i a 与i b 的奇偶性相同.由于数列}{n a ,}{n b 的定义及前面得到的新数列}{n b 的一些项,可见}{n b 是以15为周期的周期数列,即可得i i b b =+15,而)15(m od 52000,),15(m od 61986),15(m od 51985≡≡≡ ,于是有051985==b b ,161986==b b ,…,052000==b b ,即在1985到2000的这16项中,奇数、偶数各有8项,由于偶数的平方能被4整除,奇数的平方被4除余1,由此命题得证. 5.已知22{|,,}A r r t s t s B ==+∈,且,x y A ∈, (1)若B Z =,求证:xy A ∈; (2)若B Q =,且0x ≠,求证:yA x∈. 证明:(1)因为B Z =,且,x y A ∈,所以可设2222,x m n y p q =+=+,其中,,,m n p q Z ∈, 因为2222222222()()()()()()()()xy m n p q mp mq np nq mp nq np mq =++=+++=++-, 而,,,(),()m n p q Z mp nq np mq Z ∈⇒+-∈,所以xy A ∈.(2)证明:因为B Q =,且,x y A ∈,所以可设2222,x m n y p q =+=+,其中,,,m n p q Q ∈.因为2222222222222222222()()()()()()()()x xy m n p q mp nq np mq mp nq np mq y y p q p q p q p q++++-+-====+++++, 而,,,m n p q Q ∈2222(),()mp nq np mq Q p q p q +-⇒∈++,所以yA x∈. 6.是否存在周长为6,且面积为整数的直角三角形?若不存在,请给出证明;若存在,请计算所有满足条件的直角三角形的斜边上的高.解:设直角三角形的三边长为,,a b c ,且c 为斜边,则由三边不等关系,,a c b c a b c <<+>可得263c a b c c<++=<,于是23c <<. 又由22222()2(6)4c a b a b ab c S =+=+-=--可得:93(0,3)S c =-∈.而S 为整数,故1S =,或2S =.当2S =时,73c =,于是可得4ab =,113a b +=,故此时无解. 当1S =时,83c =,经验证,此时满足题意.从而不难由三角形面积公式求得该三角形斜边上的高为34.7.如图,已知,E F 分别是,AB CD 的中点,直线,AD BC 与EF 分别交于,P Q ,且AD BC =, 求证:APE BQE ∠=∠.分析:抓住中点,将需证明的两个角度集中到一个三角形内.如图1,联接BD ,取其中点O ,联接,OE OF .如图2,过B 作AD 的平行线,交直线DE 于点O ,联接OC . 如图3,以,DA DF 为邻边作平行四边形得点S ,以,CB CF 为邻边作平行四边形得点T ,然后证SF TF =,及SE TE =即可.如图4,设直线,AD BC 交于点M ,过M 作AB 的平行线,交直线EF 于点N .本法的关键在于先证AP BQ =,然后再由平行线的性质证明PM QM =,进而完成证明.其中,在证明AP BQ =时,用正弦定理应当会简洁一些.本题的证明方法还有很多,在此不再列举.值得注意的是:由题目还可以得出结论AP BQ =.FDPE A BQ C图2OFDPE ABQC图1OF DPE ABQC图4N MFDPEABQ C图3TSFD PEABQ C变式问题:如图,已知点,E F 分别在,AB CD 上,且满足:::AE EB DF FC AD BC ==,直线,AD BC 分别与直线EF 交于点,P Q ,求证:APE BQE ∠=∠.值得注意的几个问题:1.例1的各种证明方法,本题能否继续应用?2.本题中的,AP BQ 应当有怎样的数量关系?3.例1的方法4中,在证明AP BQ =时,除了用正弦定理,你还会用别的方法吗?8.已知复数z x yi =+,,x y 均为有理数,且||1z =,求证:对任意的*N n ∈,2|1|nz-都是有理数.证明:令cos sin z i θθ=+,其中cos ,sin x y θθ==,则由题意知cos ,sin θθ都是有理数,再由棣莫弗公式得2cos 2sin 2nzn i n θθ=+,从而222|1|(cos 21)sin 222cos 22|sin |n z n n n n θθθθ-=-+=-=.以下用数学归纳法证明:对任意的*N n ∈,cos ,sin n n θθ均为有理数.(1)当1n =时,cos ,sin θθ都是有理数,结论显然成立.(2)假设当n k =时,cos ,sin k k θθ均为有理数,则由于sin(1)sin cos cos sin k k k θθθθθ+=+,以及cos(1)cos cos sin sin k k k θθθθθ+=-,因此当1n k =+时,cos(1),sin(1)n n θθ++均为有理数.由(1),(2)可知,对任意的*N n ∈,cos ,sin n n θθ是有理数. 故对任意的*N n ∈,2|1|2|sin |n z n θ-=都是有理数.Q PFABD EC。
2024年高中自主招生素质检测数学试题及参考答案
![2024年高中自主招生素质检测数学试题及参考答案](https://img.taocdn.com/s3/m/e4678a4c905f804d2b160b4e767f5acfa0c7835b.png)
学校姓名考场座位号2024年自主招生素质检测数学试题注意事项:1.本试卷满分为150分,考试时间为120分钟㊂2.全卷包括 试题卷 (4页)和 答题卡 (2页)两部分㊂3.答题一律要求用0.5m m 黑色签字笔在答题卡上规定的地方答卷,作图题使用2B 铅笔作答,考试不使用计算器㊂4.考试结束后,请将 试题卷 和 答题卡 一并交回㊂一㊁选择题:共10小题,每小题5分,共50分㊂在每小题给出的四个选项中,只有一项是符合题目要求的㊂1.由5个相同的小立方体搭成的几何体如图所示,现拿走一个小立方体,得到几何体的主视图与左视图均没有变化,则拿走的小立方体是A .①B .②C .③D .④2.黄山景色绝美,景观奇特. 五一 假期,黄山风景区进山游客近13万人,黄山景区门票旺季190元/人,以此计算, 五一 假期黄山景区进山门票总收入用科学计数法表示为A .0.247ˑ107B .2.47ˑ107C .2.47ˑ108D .247ˑ1053.下列因式分解正确的是A .2x 2+y 2+4x y =(2x +y )2B .x 3-2x y +x y 2=x (x -y )2C .x 2-(3y -1)2=(x -1+3y )(x +1-3y )D .a x 2-a y 2+1=a (x +y )(x -y )+14.已知点A (x 1,y 1),B (x 2,y 2)是抛物线y =a x 2-3x +3上两点,当a -x 1-x 2=2时,y 1=y 2,则该抛物线与坐标轴的交点个数为A .3个或0个B .3个或1个C .2个或0个D .2个5.若关于x 的不等式组x +2a <03x +a <15的解集中的任意x 的值,都能使不等式x -4<0成立,则实数a 的取值范围为A .a <-3B .a <-2C .a ȡ-2D .a ȡ36.如图,已知әA B C 中,A D 为øB A C 的平分线,A B =8,B C =6,A C =10,则D C 的值为A .10B .2C .5D .17.如图,B (-2,0),C (4,0),且B E 所在的直线与A C 垂直,øA C B -øB A O =45ʎ,连接O D ,若射线O D 上有一点M ,横坐标为6,则әB O M 的面积为A .3B .6C .23D .728.定义:用M a ,b ,c 表示这三个数的中位数,用M i n {a ,b ,c }表示这三个数的最小数.例如:M {-1,12,0}=0,M i n {-1,12,0}=-1.如果M {4,x 2,2x -1}=M i n {4,x 2,2x -1},则x 的值为A .2或-2B .1或12C .2或12D .1或529.如图,әA B C 中,A B =B C ,øB =120ʎ,E 为平面内一点,若A E =3,C E =2,则B E 的值可能为A .2.5B .3C .0.3D .0.510.如图,直线A B :y =13x +b 与反比例函数y =kx相交于点A (3,5),与y 轴交于点B ,将射线A B 绕点A 逆时针旋转45ʎ,交反比例函数图象于点C ,则点A ㊁B ㊁C 构成的三角形面积为A .12B .1110C .232D .554二㊁填空题:共4小题,每小题5分,共20分㊂11.某市为改善市容,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均绿地面积的增长率为.12.若x 9+x 8+ +x 2+x +1=0,则x 的值为.13.定义:对于函数y =l g x (x >0),y 随x 的增大而增大,且l g 10=1,l g xy=l g x -l g y ,l g x y =l g x +l g y .若1a +5b =5,则l g a +l g b 的最大值为.14.已知二次函数y =2x 2+b x +c 图象的对称轴为直线x =34,且过点(3,10),若其与直线y =3交于A ㊁B 两点,与直线y =x +5交于P ㊁Q 两点,则P Q 2A B值为.三㊁解答题:共5题,共80分㊂解答应写出文字说明,证明过程和解题步骤㊂15.(12分)(1)若13a +25b =1,23a +35b =3,求a 2-b 2+8b -172025;(2)先化简再求值:m +2m -m -1m -2ːm -4m 2-4m +4,其中m =2s i n 30ʎ㊃t a n 45ʎ-32t a n 30ʎ.16.(12分)请按以下要求完成尺规作图.(1)如图1,菱形A B C D 中,点P 在对角线B D 上,请作出一对以B D 所在直线为对称轴的全等三角形,使交B A 于点M ,交B C 于点N ,әP B M ɸәP B N .你有几种解法?请在下图中完成;(保留必要作图痕迹,不写作法)(2)如图2,点P 是菱形A B C D 内部一点,请作出一条过点P 的直线,交射线B A ㊁射线B C 于点M ㊁N ,且B M =B N ,聪明的你肯定有多种不同作法?请在下图中完成两种作法,并选择其中一种证明:B M =B N .(保留必要作图痕迹,不写作法)17.(15分)如图,直角三角形A B C中,以直角边A B为直径作圆交A C于点D,过点D作D MʅA B于点M,E为D M的中点,连接A E并延长交B C于点F,B F=E F.(1)求证:C F=B F;(2)求t a nøD E F;(3)若D F=2,求圆的面积.18.(19分)已知四边形A B C D,A B=4,点P在射线B C上运动,连接A P.(1)若四边形A B C D为正方形,点M在A P上,且øA D M=øA P D.请判断A M㊁A P㊁A C之间数量关系,并说明理由;(2)若四边形A B C D为菱形呢?øB=60ʎ,其他条件与(1)同,则(1)中的结论还成立吗?并说明理由;(3)若四边形A B C D为正方形,将线段A P绕点P顺时针旋转90ʎ于P Q,此时D Q的最小值为多少?A Q+D Q的最小值呢?并说明理由.19.(22分)已知抛物线y=a x2+b x+c的顶点坐标为A(1,4),与x轴交点分别为点B㊁C(点B在点C 左侧),与y轴交点为D,一次函数y=k x+4(k>0)与x轴所形成的夹角的正切值为4,方程k x+4=a x2+b x+c有两个相等的实数根.(1)求该抛物线的解析式;(2)点M是该抛物线上一动点,则在抛物线对称轴上是否存在点N,使得以A㊁B㊁M㊁N为顶点的四边形为平行四边形?若存在,请求出所有满足条件的点N坐标及该平行四边形的面积;若不存在,请说明理由;(3)若将该抛物线向左平移1个单位,再向下平移4个单位得到抛物线y',点D关于x轴的对称点为D',若过点D'的直线与y'交于P㊁Q两点(点P在点Q左侧),点Q关于y轴的对称点为Q',若әP Q O与әP Q Q'面积相等,求直线P Q的解析式.2024年自主招生素质检测数学参考答案选择题:共10小题,每小题5分,满分50分㊂题号12345678910答案CBCBCABDAD填空题:共4小题,每小题5分,满分20分㊂11.20% 12.-1 13.1 14.2654.ʌ解析ɔ x 1+x 2=a -2,抛物线的对称轴x =--32a,ʑ32a =a -22⇒a 2-2a -3=0⇒(a +1)(a -3)=0⇒a 1=-1,a 2=3,ʑ①当a 1=-1时,y =-x 2-3x +3,Δ=9+12>0,与坐标轴的交点个数为3个;②当a 2=3时,y =3x 2-3x +3,Δ=9-4ˑ3ˑ3<0,与坐标轴的交点个数为1个.5.ʌ解析ɔ x <-2a ,x <15-a 3,①-2a >15-a 3,解得a <-3,ʑx <15-a 3,ȵx <4,ʑ15-a 3ɤ4,解得a ȡ3(舍去);②-2a ɤ15-a 3,解得a ȡ-3,ʑx <-2a ,ȵx <4,ʑ-2a ɤ4,解得a ȡ-2.6.ʌ解析ɔ 由角平分线定理S әA B D S әA C D =A B ㊃h A C ㊃h =45=B D D C ,ʑ45=6-D C D C ,解得D C =103.7.ʌ解析ɔ øB E O =øB A E +øA B E ,øA C B =øB A O +45ʎ,R t әB O E ʐR t әB D C ,ʑøB E O =øA C B ,ʑøA B D =45ʎ,则әA B D 为等腰直角三角形,A D =B D ,ʑR t әA E D ɸR t әB C D ,ʑA E =B C ,S әA E D =S әB C D ,ʑh 1=h 2,ʑ点D 在øA O C 的角平分线上,M (6,6),S әB O M =2ˑ62=6.8.ʌ解析ɔ 由图像知x 2=2x -1,解得x =1;或2x -1=4,解得x =52.9.ʌ解析ɔ 设B E =x ,将әA B E 绕B 点顺时针旋转120ʎ到әC B E ',C E '=A E =3,øE B E '=120ʎ,B E =B E '=x ,易得E E '=3x ,在әC E E '中,C E '-C E <E E '<C E '+C E ,即3-2<3x <2+3,解得33<x <533.10.ʌ解析ɔ 由题知,直线y =13x +b 与反比例函数y =k x相交于点A(3,5),则13ˑ3+b =5,解得b =4,k =15,法一:直线A C 与y 轴交于点M ,从M 点作直线A B 的垂线,垂足为N ,A M =(m -5)2+32,MN =(4-m )s i n θ=(4-m )310,A M =2MN ,ʑ(m -5)2+9=95(m -4)2⇒5(m -5)2+45=9(m -4)2,2m 2-11m -13=0⇒(2m -13)(m +1)=0,ʑm =132(舍)或m =-1,直线A C 的方程为y =2x -1.2x -1=15x ⇒2x 2-x -15=0⇒(2x +5)(x -3)=0,解得x 1=-52,x 2=3,ʑ点C (-52,-6),S әA B C =5ˑ(3+52)2=554.法二:易知l A B :y =13x +4,设l A C :y =k 2x +b ,由倒角公式得t a n 45ʎ=k 2-k 11+k 1k 2=k 2-131+13k 2=1,k 2-13=13k 2+1,两边平方得k 2=2或k 2=-12(舍),又l A C 过点A ,ʑl A C :y =2x -1(与y 轴交点为M ),与y =15x 联立得x C =-52,ʑS әA B C =12BM |x A -x C |=554.12.ʌ答案ɔ -1ʌ解析ɔ 若x =0,等式不成立,则x ʂ0,等式两边同乘x ,ʑx 10+x 9+x 8+ +x 2+x =0⇒x 10-1=0⇒x 10=1,解得x =ʃ1.当x =1时,等式不成立;当x =-1时,等式成立.13.ʌ解析ɔ l g a +l g b =l ga b ,即求a b 的最大值,12a +54b ȡ212a ㊃54b =258a b ,258a b ɤ5⇒a b ɤ10.14.ʌ解析ɔ 由题知,-b 4=34,解得b =-3,抛物线过点(3,10),代入数据解得c =1,抛物线y =2x 2-3x +1,当y =3时,2x 2-3x +1=3,解得x 1=-12,x 2=2,A B =52,当y =x +5时,2x 2-3x +1=x +5⇒x 2-2x -2=0⇒x 3+x 4=2,x 3x 4=-2,(x 3-x 4)2=(x 3+x 4)2-4x 3x 4=12,P Q =(1+k 2)(x 3-x 4)2=26,P Q 2A B =265.15.(12分)ʌ解析ɔ (1)13a +25b =1, ①23a +35b =3, ②①+②得a +b =4,(2分) a 2-b 2+8b -17=(a +b )(a -b )+8b -17=4a -4b +8b -17=4a +4b -17=-1,(4分)a 2-b 2+8b -17 2025=-1.(6分)(2)原式=m +2m -m -1m -2㊃(m -2)2m -4=m 2-4-(m 2-m )m (m -2)㊃(m -2)2m -4=m -4m (m -2)㊃(m -2)2m -4=m -2m,(8分)m =2ˑ12-32ˑ33=12,(10分) ʑ原式=12-212=-3.(12分) 16.(12分)ʌ解析ɔ (1)提示:作P M ㊁P N 分别垂直于A B ㊁A C ,如图1;(2分)过P 点作MN 垂直于B D ,如图2;(4分)P 作E F ʊB C A B 于点E C D 于点F E M =E P M P 交B C 于点N作法二:先作B M '=B N ',交A B 于点M ',交B C 于点N ',连接M 'N ',将直线M 'N '平移过点P ,交A B 于点M ,交B C 于点N ,即MN 为所求直线,如图4;(8分)选择作法一证明:ȵE M =E P ,ʑøE M P =øE P M ,ȵE F ʊB C ,ʑøE P M =øB NM ,ʑøE M P =øB NM ,ʑB M =B N .(12分)选择作法二证明:ȵB M '=B N ',ʑøB M 'N '=øB N 'M ',M 'N 'ʊMN ,ʑøB MN =øB M 'N ',øB NM =øB N 'M ',ʑøB MN =øB NM ,ʑB M =B N .(12分)(作法不限,合理即可)17.ʌ解析ɔ (1)ȵD M ʊB C ,ʑәA D E ʐәA C F ,әA E M ʐәA F B ,ʑA E A F =D E C F ,A E A F =E M B F,(2分) ȵD E =E M ,ʑC F =B F ;(4分)(2)取A B 的中点O ,即为圆心,连接O F ,设圆O 的半径为r ,延长A B 交D F 延长线于G ,由(1)知,F 为R t әB C D 中斜边B C 的中点,ʑD F =B F =E F ,ʑøF D E =øD E F =øA E M ,ȵøG +øG D M =øE A M +øA E M =90ʎ,则øG =øE A M ,ʑA F =F G ,在әA F G 中,F B ʅA G ,则A B =B G =2r ,A O =r ,O G =3r ,(6分)ȵO F ʊA C ,ʑO G A O =F G D F=3,即F G =3D F ,(8分) ȵD F =B F ,ʑF G =3B F ,ʑc o s øB F G =B F F G =13,ʑt a n øD E F =t a n øE D F =t a n øB F G =B G B F=22;(10分)(3)ȵD F =B F ,ʑB F =2,由(2)知,t a n øB F G =B G B F=22,ʑB G =42,(12分)ȵB G =2r ,ʑr =22.(13分)S 圆O =πr 2=8π.(15分)18.ʌ解析ɔ (1)A C 2=2A M ㊃A P .(2分)理由如下:如图1,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D ,ʑA D 2=A M ㊃A P ,在正方形A B C D 中,A D =22A C,ʑ(22A C )2=A M ㊃A P ,ʑA C 2=2A M ㊃A P .(6分)(2)(1)中的结论不成立.(7分) 理由如下:如图2,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D,ʑA D 2=A M ㊃A P ,ȵ在菱形A B C D 中,øB =60ʎ,则B C =A B =A C =A D ,ʑA C 2=A M ㊃A P .(11分)(3)如图3,过点Q 分别作Q E ʅB C 的延长线于点E ,Q F ʅC D 于点F ,ʑQ F =C E ,设B P =m ,A P =Q P ʑR t әA B P ɸR t әP E Q ,则B P =Q E =m ,A B =P E =4,ȵC E +P C =B P +P C =4,ʑC E =B P =m ,在R t әD F Q 中,Q F =C E =m ,D F =C D -C F =4-m ,(15分) D Q 2=D F 2+Q F 2=(4-m )2+m 2=2m 2-8m +16=2(m -2)2+8,当m =2时,D Q 取得最小值,D Q m i n =22,(17分) 分析易知Q 在C D '上运动,作D 关于C D '的对称点C ',连接Q C ',则(A Q +D Q )m i n =(A Q +Q C ')m i n =A C '=42+82=45.(19分) 19.ʌ解析ɔ (1)由题可知k =4,ʑy =4x +4(2分) 2的顶点坐标为A y =a x -12即4x +4=a (x -1)2+4⇒a x 2-(2a +4)x +a =0有两个相等的实数根,ʑΔ=(2a +4)2-4a 2=0,解得a =-1,ʑ抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3;(5分)(2)设M 点坐标为(m ,-m 2+2m +3),N 点坐标为(1,n ),A (1,4),令-x 2+2x +3=0,解得x 1=-1,x 2=3,所以B (-1,0),C (3,0),(7分)若A B 为对角线,1-12=m +12,解得m =-1(舍去);若A M 为对角线,m +12=1-12,解得m =-1(舍去);若A N 为对角线,1+12=m -12,解得m =3;(9分) 4+n 2=0-m 2+2m +32,解得n =-4,此时M (3,0),N (1,-4),(10分)S ▱A B M N =4ˑ82=16;(12分) (3)由题可知,抛物线y '=-x 2,点D (0,3)关于x 轴的对称点D '(0,-3),直线P Q 过点D ',设直线P Q 的解析式为y P Q =k x -3,若k >0,如图1,S әP Q O =S әP Q Q ',则Q 'O ʊP Q ,则әQ 'H O ɸәQ H D ',所以O H =12O D '=32,H (0,-32),所以Q (62,-32),Q '(-62,-32),直线P Q 的解析式为y P Q =62x -3;(16分)若k <0,如图2,过点Q '作直线l ʊP Q ,取l 与y 轴交点M ,作O L ʅP Q 于点L ,MH ʅP Q 于点H ,所以O L ʊHM ,S әP Q O =S әP Q O ',所以O L =HM ,所以四边形O L MH 为平行四边形,则对角线互相平分,所以M (0,-6),同理,әD 'K Q ɸәM K Q ',所以D 'K =K M =12D 'M =32,所以K (0,-92),(20分) 因为点Q 的纵坐标为-92,所以Q (322,-92),直线P Q 的解析式为y P Q =-22x -3.(21分)综上,直线P Q 的解析式为y P Q =6x -3或y P Q =-2x -3.分)。
清华大学自主招生试题 数学 Word版含解析
![清华大学自主招生试题 数学 Word版含解析](https://img.taocdn.com/s3/m/e99a68e4b9f3f90f76c61bce.png)
一、选择题1.设复数z=cos 23π+isin 23π,则2111-1z z +-=( ) (A)0 (B)1 (C)12 (D)322.设数列{}n a 为等差数列,p,q,k,l 为正整数,则“p+q>k+l ”是“p q k l a a a a +>+”的( )条件(A)充分不必要 (B)必要不充分 (C)充要 (D)既不充分也不必要 3.设A 、B 是抛物线y=2x 上两点,O 是坐标原点,若OA ⊥OB,则( )(A)|OA|·|OB|≥2 (B)|OA|+|OB|≥22(C)直线AB 过抛物线y=2x 的焦点 (D)O 到直线AB 的距离小于等于14.设函数()f x 的定义域为(-1,1),且满足:①()f x >0,x ∈(-1,0);②()f x +()f y =()1x yf xy++,x 、y ∈(-1,1),则()f x 为 (A)奇函数 (B)偶函数 (C)减函数 (D)有界函数5.如图,已知直线y=kx+m 与曲线y=f (x)相切于两点,则F(x)=f (x)−kx 有( )(A)2个极大值点 (B)3个极大值点 (C)2个极小值点 (D)3个极小值点 6.△ABC 的三边分别为a 、b 、c .若c=2,∠C=3π,且sinC+sin(B −A)−2sin2A=0,则有( ) (A)b=2a (B)△ABC 的周长为3 (C)△ABC 的面积为33(D)△ABC 的外接圆半径为337.设函数2()(3)xf x x e =-,则( )(A)()f x 有极小值,但无最小值 (B) ()f x 有极大值,但无最大值 (C)若方程()f x =b 恰有一个实根,则b>36e(D)若方程()f x =b 恰有三个不同实根,则0<b<36e 8.已知A={(x,y)∣222x y r +=},B={(x,y)∣222()()x a y b r -+-=,已知A∩B={(11,x y ),(22,x y )},则( )(A)0<22a b +<22r (B)1212()(y )0a x x b y -+-= (C)12x x +=a ,12y y +=b (D)22a b +=1122ax by +9.已知非负实数x,y,z 满足22244x y z +++2z=3,则5x+4y+3z 的最小值为( ) (A)1 (B)2 (C)3 (D)410.设数列{n a }的前n 项和为n S ,若对任意正整数n ,总存在正整数m ,使得n S =m a ,则( )(A ){n a }可能为等差数列 (B ){n a }可能为等比数列(C ){n a }的任意一项均可写成{n a }的两项之差(D)对任意正整数n ,总存在正整数m ,使得n a =m S11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( ) (A)甲 (B)乙 (C)丙 (D)丁12.长方体ABCD −1111A B C D 中,AB=2,AD=A 1A =1,则A 到平面1A BD 的距离为( )(A)13 (B)23(C)22 (D)6313.设不等式组||||22(1)x y y k x +≤⎧⎨+≤+⎩所表示的区域为D ,其面积为S ,则( )(A)若S=4,则k 的值唯一 (B)若S=12,则k 的值有2个(C)若D 为三角形,则0<k ≤23(D)若D 为五边形,则k>4 14.△ABC 的三边长是2,3,4,其外心为O ,则OA AB OB BC OC CA ⋅+⋅+⋅=( ) (A)0 (B)−15 (C)−212(D)−29215.设随机事件A 与B 互相独立,且P(B)=0.5,P(A −B)=0.2,则( )(A)P(A)=0.4 (B)P(B −A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916.过△ABC 的重心作直线将△ABC 分成两部分,则这两部分的面积之比的( ) (A)最小值为34 (B)最小值为45 (C)最大值为43 (D 最大值为5417.从正15边形的顶点中选出3个构成钝角三角形,则不同的选法有( )(A)105种 (B)225种 (C)315种 (D)420种18.已知存在实数r ,使得圆周222x y r +=上恰好有n 个整点,则n 可以等于( ) (A)4 (B)6 (C)8 (D)12 19.设复数z 满足2|z|≤|z −1|,则( ) (A)|z|的最大值为1 (B)|z|的最小值为13 (C)z 的虚部的最大值为23(D)z 的实部的最大值为1320.设m,n 是大于零的实数,a =(mcosα,msinα),b =(ncosβ,nsinβ),其中α,β∈[0,2π)α,β∈[0,2π).定义向量12a =(2m α2m α),12b =(2n β2n β),记θ=α−β,则( )(A)12a ·12a =a (B)1122a b ⋅=2mn θ(C)112222||44a b mn θ-≥(D)112222||44a b mn θ+≥21.设数列{n a }满足:1a =6,13n n n a a n++=,则( ) (A)∀n ∈N ∗,n a <3(1)n + (B)∀n ∈N ∗,n a ≠2015 (C)∃n ∈N ∗,n a 为完全平方数 (D)∃n ∈N ∗, n a 为完全立方数 22.在极坐标系中,下列方程表示的图形是椭圆的有( ) (A )ρ=1cos sin θθ+ (B )ρ=12sin θ+ (C )ρ=12cos θ- (D )ρ=112sin θ+23.设函数2sin ()1xf x x x π=-+,则( )(A )()f x ≤43(B)|()f x |≤5|x| (C)曲线y=()f x 存在对称轴 (D)曲线y=()f x 存在对称中心24.△ABC 的三边分别为a ,b,c ,若△ABC 为锐角三角形,则( ) (A)sinA>cosB (B)tanA>cotB (C)222a b c +> (D)333a b c +>25.设函数()f x 的定义域是(−1,1),若(0)f =(0)f '=1,则存在实数δ∈(0,1),使得( ) (A)()f x >0,x ∈(−δ,δ) (B)()f x 在(−δ,δ)上单调递增 (C)()f x >1,x ∈(0,δ) (D)()f x >1,x ∈(−δ,0)26.在直角坐标系中,已知A(−1,0),B(1,0).若对于y 轴上的任意n 个不同的点k P (k=1,2,…,n),总存在两个不同的点i P ,j P ,使得|sin ∠A i P B −sin ∠A j P B|≤13,则n 的最小值为( )(A)3 (B)4 (C)5 (D)627.设非负实数x,y 满足2x+y=1,则22x y + )(A)最小值为45 (B)最小值为25(C)最大值为1 (D)最大值为12328.对于50个黑球和49个白球的任意排列(从左到右排成一行),则( )(A)存在一个黑球,它右侧的白球和黑球一样多 (B)存在一个白球,它右侧的白球和黑球一样多(C)存在一个黑球,它右侧的白球比黑球少一个 (D)存在一个白球,它右侧的白球比黑球少一个29.从1,2,3,4,5中挑出三个不同数字组成五位数,其中有两个数字各用两次,例如12231,则能得到的不同的五位数有( ) (A)300个 (B)450个 (C)900个 (D)1800个30.设曲线L 的方程为42242(22)(2)y x y x x +++-=0,则( ) (A)L 是轴对称图形 (B)L 是中心对称图形 (C)L ⊂{(x,y)∣22x y +≤1} (D)L ⊂{(x,y)∣−12≤y ≤12} ##Answer## 1.【解析】2111-1z z +-=211-zz z zz z +-=11-z z z z +-=22cos sin 1332221-cos sin 2sin 333i i i πππππ-+--=212sin 2sincos333i πππ-⋅-22cos()sin()333(cossin )22i i ππππ-+-+ =cos 0sin 02sin [cos()sin()]366i i πππ+-+-77)sin()]663i ππ-+- 31sin )6623i i ππ+=1,选B2.【简解】 ()p q k l a a a a +-+=[(p+q)-(k+l)]d ,与公差d 的符号有关,选D3.【解析】设A(211,x x ),B(222,x x ),OA OB ⋅=1212(1)x x x x +=0⇒211x x =-答案(A),||||OA OB ⋅2211221111(1)(1)x x x x ++2121111x x +++11122||||x x +⋅=2,正确;答案(B),|OA|+|OB|≥2||||OA OB ⋅22,正确;答案(C),直线AB 的斜率为222121x x x x --=21x x +=111x x - 方程为y-21x =(111x x -)(x-1x ),焦点(0,14)不满足方程,错误;答案(D),原点到直线AB :(111x x -)x-y+1=0的距离2111()1x x -+1,正确。
清华北大自主招生试题
![清华北大自主招生试题](https://img.taocdn.com/s3/m/1d7056d5951ea76e58fafab069dc5022aaea46e6.png)
清华北大自主招生试题清华北大是中国两所著名的大学,其中拥有自主招生的选拔方式,试题内容也备受关注。
下面是一份清华北大自主招生试题及其解析。
数学部分:1、已知函数f(x)=x^3+ax^2+bx+c,当x=1时,f(x)的值最小。
求a、b、c的值。
解析:首先,f(x)在x=1处的值最小,即f'(1)=0,且f''(1)>0;其次,根据函数值的大小可得c<f(1)。
根据题意解方程组f(1)=1+a+b+c,f'(1)=3+2a+b=0,得a=-2,b=-7/2,c=5/2。
2、图中正方形ABCDEF的对角线AC的中点为点M,点P和点Q分别在边EF和边CD上,使得BP和AQ平行。
证明:BP=2AQ。
解析:连接PM和QM,设BP=k,AQ=1,则PM^2=PC^2+CM^2=k^2+1,QM^2=QC^2+CM^2=4+k^2-2k,故PM^2=2QM^2,即k=2。
语文部分:1、读下面一段话,回答后文提出的问题。
我小时候家里非常穷,每天晚上我都要在家里自学功课。
有一次,我的教师给我布置了画一幅山水画,我画得非常认真,可是画的并不好。
我为此很沮丧,所以我们来另想一个办法吧。
我最初的计划是成为一个演员,我将前往汉城发展,并已经经过了第一轮入学考试,但是我还是不能放弃我的学习,以此来打破这个恶性循环。
问题:作者的小时候遇到什么样的困境,他最初的梦想是成为什么?他如何应对这种困境?答案:作者小时候家庭贫困,无法接受优越的教育;他最初的梦想是成为一个演员;他通过自学和努力学习打破困境。
2、阅读下面一篇文章,回答问题。
《荔枝赞》是一首家喻户晓的诗歌,它形象地描绘了夏天荔枝的美味与丰盈,这使得荔枝在中国的文化传统中具有独特的地位。
它种植的地区在中国非常广泛,有许多的品种和不同的名称,如广西的“白蒙皮”、“桂味”,海南的“红心”,广东的“春蜜”等。
由于其可口可心的味道和独特的诱人香气,许多人前来尝鲜、品鉴,荔枝从而成为夏季的必选水果之一。
2023年北京大学自主招生考试数学试题及答案详解
![2023年北京大学自主招生考试数学试题及答案详解](https://img.taocdn.com/s3/m/c8b0a8d405a1b0717fd5360cba1aa81144318fd6.png)
北京大学 2023 年优秀中学生寒假学堂数学试题说明:本试题为考生回忆版,共 20 题,每题 5 分,考试时间 60 分钟。
1.设复数,,a b c 满足2223330,3a b c a b c a b c ++=++=++=,则202320232023a b c ++的值为A .0B .3C .2023D .其它三个答案都不对2.方程组2223334,6,10x y z x y z x y z ++=++=++=的解的个数为A .0B .3C .6D .其它三个答案都不对3.设三角形ABC 的三个顶点为复平面上的三点123,,z z z ,满足1231231223310,82i,1510i z z z z z z z z z z z z =++=+++=+,则三角形ABC 内心的复数坐标z 的虚部所在区间为A .(0.0,5) C .(1,2)B .(0,0.5)D .其它三个答案都不对4.若P 是三角形ABC 的外心,0,120PA PB BC C λ++==︒∠,则实数λ的值为B .其它三个答案都不对2A . -1C . −3D .12-5.在四面体ABCD 中,面ABC 与面BCD 成60︒的二面角,顶点A 在BCD 的投影H 是三角形BCD 的垂心,G 是三角形ABC 的重心,若4,AH AB AC ==,则GH 的长度是ABC .其它三个答案都不对D6.过单位正方体1111ABCD A B C D -对角线1BD 做截面,则截面面积的最小值为A.3B.4C .其它三个答案都不对D .627.已知直线l 与双曲线22221(0)x y b a a b-=>>两支分别交于点,P Q ,O 为原点,若OP OQ ⊥,则O 到直线l 的距离为A .abb a-B .2ab b a -C .其它三个答案都不对D8.在三角形ABC 中,444222,,,2(),72AB c AC b BC a a b c c a b A ===++=+∠=︒,则B ∠=A .其它三个答案都不对B .63︒C .45︒D .60︒9.设222121011133520212023S =+++⋅⋅⋅ ,则[]S 的值为A .251B .252C .其它三个答案都不对D .25310.过椭圆22221(0)x y a b a b+=>>左焦点1F 做倾角为60︒的直线l 交椭圆与,A B 两点,若2AF BF =,则椭圆的离心率为A .34B .23C .其它三个答案都不对D .1211.以一个正方体的顶点为顶点构成的棱锥的个数为A .其它三个答案都不对B .104C .106D .10812.已知函数:f →R R 的图像关于点3(,0)4-中心对称且3()(),(1)1,(0)22f x f x f f =-+-==-,则(1)(2)(2022)f f f +++ 的值为A .其它三个答案都不对B .6-C .6D .013.已知数列{}n a 满足12111,1,,2n n n a a a a a n +-===+≥,则2020202320212022a a a a ⋅-⋅的值为A .1-B .1C .2-D .其它三个答案都不对14.对于任意的实数z ,方程组22,231,x ay z xy z z +=⎧⎨=++⎩有实数解(,)x y ,则参数a 的变化范围是A .[4,0)-B .[2,2)-C .其它三个答案都不对D .[0,4)15.以一个给定正2022边形的4个顶点为顶点的梯形称为好梯形,好梯形的个数为A .100910101011⋅⋅B .100810091010⋅⋅C .100010111012⋅⋅D .其它三个答案都不对16.已知圆内接四边形的边长为2,6,4AB BC CD DA ====,则四边形ABCD 的面积为A.B.C.D .其它三个答案都不对17.设π,(0,)2x y ∈,则222211cos sin sin cos x x y y+的最小值为A .8B .10C .9D .其它三个答案都不对18.设=2023,x y =20232023,且y nn n=a x ,x n=b y ,则( )A.∃N ∈ n ∀n >,N a n <b ,n +a b n <∀n > ∀∈n ,n a b C. ++,使得nB.D. 其它三个选项<均不对19.数列{a }n 满足a 012=1,=2,a a =6且+32+1=7n n n n a a a a +5++,记k =(2023)!,则a k −1模 ) B.13179的余数为( A.166C.1D.其它三个选项均不对20.有六件货物,其中两件为次品,其余四件合格,每次从中抽取一件检验后不放回,求恰好需要四次检验就能确定出次品的概率.2023年北京大学优秀中学生寒假学堂数学测试题答案1.解:因为2222()2220a b c a b c ab bc ca ab bc ca ++=+++++⇒++=且3332223()()=1a b c abc a b c a b c ab bc ca abc ++-=++++---⇒从而我们有=001a b c ab bc ca abc ++⎧⎪++=⎨⎪=⎩由韦达定理知,,a b c 是方程310x -=的三个根.由于20231(mod 3)≡,所以202320232023=0a b c a b c ++++=故选择A .2.解:类似于上题,我们可以得到=452x y z xy yx zx xyz ++⎧⎪++=⎨⎪=⎩从而,,x y z 是方程324520t t t -+-=的三个根,注意到322452(1)(2)t t t t t -+-=--从而,,x y z 是1,1,2的一个排列,即原方程组的解有3组,故选择B .3.解:不失一般性,设10z =,则1212+=8+21510z z i z z i=+,从而有23=532z z i=+,不妨设23,z z 对应的点为A 和B ,内心为I ,从而有5,13,8OA OB AB ===且3Im()()OA z OA AB OB r ⋅=++⋅所以105138r =++于是我们有510100.5165169594r <=<<=++++从而选择B 4.解:设AB 的中点为D ,则2PA PB PD +=.由0PA PB PC λ++=,有20PD PC λ+= 所以向量,PD PC共线,又P 是ABC ∆外心,故PA PB PD AB =⇒⊥,从而CD AB ⊥,因为120ACB ∠=,所以120APB ∠=,即四边形APBC 是棱形,于是2PA PB PD PC+== 所以20PD PC PC PC λλ+=+= 所以1λ=-,故选择A .5.设平面AHD 交BC 于F ,则BC DF ⊥,从而BC ADF ⊥面,于是BC AF ⊥,这说明AFH ∠为平面ABC 与平面BCD 成的二面角,即60AFH ∠=.在ABC ∆中,由AB AC =可知BF CF =,从而G 在AF 上且13GF AF =.在直角三角形AHF 中,4AF =,所以FH AF GF ===.在GFH ∆中,由余弦定理可得2221122cos 27GH GF FH GH HF AFH =+-⋅∠=从而9GH ==,故选择B6.解:由对称性,我们只需要考虑截面与面1AD 的交线交线段1AA 于E 的情形.注意到截面面积1112BD A BED F S S S BD d ∆===⋅=四边形其中d 为点E 到线段1BD 的距离.要使得截面面积S 最小,只需要考虑1AA 上的点到1BD 的距离d 最小.取E 为1AA 的中点,易得1OE BD ⊥,且1OE AA ⊥,此时d OE =为异面直线1AA 到1BD 的距离,为d 的最小值且min 122d EF ==.于是截面面积min min 2622S ===故选择D .7.解:不妨设OP m OQ n ==,且POx θ∠=。
北京大学自主招生数学试题及答案1
![北京大学自主招生数学试题及答案1](https://img.taocdn.com/s3/m/dc59519f26fff705cc170acc.png)
南方球队总得分为 =189
北方球队总得分为 =21
南方球队内部比赛总得分 =105
北方球队内部比赛总得分 =15
北方胜南方得分=21-15=6
北方球队最高得分=5+6=11
因为11×15=165<189
所以南方球队中至少有一支得分超过11分.
冠军在南方球队中
当x=8时
所有球队总得分为 =300
北京大学自主招生数学试题及答案
1 求证:边长为1的正五边形对角线长为
略解:三角形ABE∽三角形DAE,则:
2.已知六边形AC1BA1CB1中AC1=AB1,BC1=BA1,CA1=CB1,∠A+∠B+∠C=∠A1+∠B1+∠C1,
求证:△ABC面积是六边形AC1BA1CB1的一半。
略解:如图得证
3 已知
4 排球单循坏赛 南方球队比北方球队多9支 南方球队总得分是北方球队的9倍 求证 冠军是一支南方球队(胜得1分 败得0分)
解:设北方球队共有x支,则南方球队有x+9支
所有球队总得分为
南方球队总得分为
北方球队总得分为
南方球队内部比赛总得分
北方球队内部比赛总得分
解得:
因为 为整数
x=6或x=8
当x=6时
南方球队总得分为 =270
北方球队总得分分 =28
北方胜南方得分=30-28=2
北方球队最高得分=7+2=9
因为9×17=153<270
所以南方球队中至少有一支得分超过9分.
冠军在南方球队中
综上所述,冠军是一支南方球队
5 (理科)O-XYZ坐标系内xoy平面系内 绕y轴旋转一周构成一个不透光立体 在点(1,0,1)设置一光源xoy平面内有一以原点为圆心的圆C被光照到的长度为2π,求C上未被照到的长度。
清北学长精心打造——北约自主招生数学模拟试题及参考答案(四)
![清北学长精心打造——北约自主招生数学模拟试题及参考答案(四)](https://img.taocdn.com/s3/m/c172470ce87101f69e319546.png)
绝密★启用前清北学长精心打造——北约自主招生数学模拟试题(四)考试范围:xxx ;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息<br/>2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(5*6=30分)1.已知函数()()432,,,f x x ax bx cx d a b c d =++++为实常数的图象经过三点12,2A ⎛⎫ ⎪⎝⎭,13,3B ⎛⎫ ⎪⎝⎭,14,4C ⎛⎫ ⎪⎝⎭,则()()15f f +的值等于() A .0B .1C .265D .252.已知函数()122,x f x -=-关于x 的方程()()220f x f x k -+=,下列四个命题中是假.命题的是()A .存在实数k ,使得方程恰有2个不同的实根;B .存在实数k ,使得方程恰有4个不同的实根;C .存在实数k ,使得方程恰有6个不同的实根;D .存在实数k ,使得方程恰有8个不同的实根;3.函数f 定义在正整数有序对的集合上,并满足(,),(,)(,),f x x x f x y f y x ==()(,)(,)x y f x y yf x x y+=+,则(14,52)f 的值为( )A .364B .182C .91D .无法计算4.二次函数c bx ax y ++=2的图象的一部分如图,则a 的取 值范围是 ( )A .01<≤-aB .1->aC .01<<-aD .1-≤a5.关于x 、y 的方程20071111=++xy y x 的正整数解(x ,y )的个数为( )A .16B .24C .32D .486.设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是 ( )第II 卷(非选择题)二、填空题(6*6=36分)7.定义: 区间[](),c d c d <的长度为d c -. 已知函数3log y x =的定义域为[],a b , 值域为[]0,2,则区间[],a b 长度的最大值与最小值的差等于________.8.设na 是(3+x )n的展开式中x 项的系数(n=2, 3, 4,… ), 则当n >100时,223a +333a +…+nn a 3的整数部分的值为.9. 平面上给定ΔA 1A 2A 3及点p 0,定义A s =A s-3,s ≥4,构造点列p 0,p 1,p 2,…,使得p k+1为绕中心A k+1顺时针旋转1200时p k 所到达的位置,k=0,1,2,…,若p 1986=p 0.则ΔA 1A 2A 3为 三角形。
北大自主招生数学试题
![北大自主招生数学试题](https://img.taocdn.com/s3/m/6cae94093d1ec5da50e2524de518964bce84d255.png)
北大自主招生数学试题一、下列哪个数列不是等差数列?A. 1, 3, 5, 7, ...B. 2, 4, 8, 16, ...C. 10, 8, 6, 4, ...D. -1, 0, 1, 2, ...(答案:B)二、若复数z满足(1+i)z=2i,则z等于?A. 1-iB. 1+iC. -1+i(答案)D. -1-i三、设函数f(x) = x3 - 3x2 + 2,则f(x)的极小值点为?A. x = 0B. x = 1C. x = 2(答案)D. x = 3四、在三角形ABC中,若sinA:sinB = 3:4:5,则cosC的值为?A. 1/5B. -1/5(答案)C. 3/5D. 4/5五、已知向量a = (1, 2),b = (2, 1),则向量a与b的夹角θ的余弦值为?A. √5/5B. 2√5/5(答案)C. 1/√5D. -1/√5六、设集合A = {x | x2 - 5x + 6 = 0},B = {x | x2 - ax + a - 2 = 0},若B是A的子集,则a的取值范围是?A. a = 2或a = 3或a = 5B. a = 3或a = 5(答案)C. a = 2或a = 5D. a = 2或a = 3七、已知圆C的方程为x2 + y2 - 2x - 5 = 0,直线l的方程为2x - y - 1 = 0,则圆心C到直线l的距离为?A. √5B. 2√5/5C. √5/5(答案)D. 3√5/5八、若实数x, y满足约束条件x + y ≤ 2, x - y ≤ 1, x ≥ 0,则z = 2x + y的最大值为?A. 2B. 3C. 4D. 5(答案)九、设函数f(x) = ex - e(-x),则不等式f(x + 2) < f(1 - x)的解集为?A. (-∞, 3/2)B. (-3/2, +∞)(答案)C. (-∞, -1/2)D. (1/2, +∞)十、已知矩阵A = [1 2; 3 4],向量β = [5; 6],若向量α满足Aα = β,则α为?A. [-1; 2]B. [2; -1](答案)C. [1; 1]D. [-2; 1]。
高三清华北大自主招生数学训练题含答案
![高三清华北大自主招生数学训练题含答案](https://img.taocdn.com/s3/m/0cf64c64b94ae45c3b3567ec102de2bd9605debc.png)
数学自主招生训练题(2)1.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24,2.已知菱形ABCD 的边长为2,120BAD,点,E F 分别在边,BC DC 上,BEBC ,DFDC .若1AE AF,23CE CF,则( )(A )12 (B )23 (C )56 (D )7123.已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为(A )a b c << (B )a c b << (C )c a b << (D )c b a <<4.已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是(A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫ ⎪⎝⎭5.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ﹣σ<ξ<μ+σ)=68.26%,P (μ﹣2σ<ξ<μ+2σ)=95.44%) A . 4.56% B . 13.59% C . 27.18% D . 31.74%6.一条光线从点(﹣2,﹣3)射出,经y 轴反射后与圆(x+3)2+(y ﹣2)2=1相切,则反射光线所在直线的斜率为( ) A . ﹣或﹣ B . ﹣或﹣ C . ﹣或﹣ D .﹣或﹣ 7.设函数f (x )=,则满足f (f (a ))=2f (a )的a 的取值范围是( )A .[,1]B . [0,1]C .[,+∞)D . [1,+∞)8.已知0b 0,a >>,椭圆1C 的方程为1x 2222=+b y a ,双曲线2C 的方程为1x 2222=-by a ,1C 与2C 的离心率之积为23,则2C 的渐近线方程为 (A ) 02x =±y (B )02=±y x (C )02y x =±(D )0y 2x =± 9.若实数x ,y 满足x 2+y 2≤1,则|2x+y ﹣2|+|6﹣x ﹣3y|的最小值是 .10.某食品的保鲜时间y (单位:小时)与储存温度x (单位:C )满足函数关系bkx ey +=( 718.2=e 为自然对数的底数,k 、b 为常数)。
清华自主招生数学创新试题大全
![清华自主招生数学创新试题大全](https://img.taocdn.com/s3/m/19be4aae482fb4daa48d4b77.png)
1、(Ⅰ)已知函数:1()2()(),([0,),)n n n f x x a x a x n N -*=+-+∈+∞∈求函数()f x 的最小值;(Ⅱ)证明:()(0,0,)22n n n a b a b a b n N *++≥>>∈;(Ⅲ)定理:若123,,k a a a a L 均为正数,则有123123()n n nn nk k a a a a a a a a k k++++++++≥L L 成立(其中2,,)k k N k *≥∈为常数.请你构造一个函数()g x ,证明:当1231,,,,,k k a a a a a +L 均为正数时,12311231()11n n n nn k k a a a a a a a a k k ++++++++++≥++L L .解:(Ⅰ)令111'()2()0n n n f x nx n a x ---=-+=得11(2)()2n n x a x x a x x a --=+∴=+∴=…2分当0x a ≤≤时,2x x a <+ '()0f x ∴≤ 故()f x 在[0,]a 上递减.当,'()0x a f x >>故()f x 在(,)a +∞上递增.所以,当x a =时,()f x 的最小值为()0f a =.….4分(Ⅱ)由0b >,有()()0f b f a ≥= 即1()2()()0n n n n f b a b a b -=+-+≥故 ()(0,0,)22n n na b a b a b n N *++≥>>∈.………………………………………5分(Ⅲ)证明:要证: 12311231()11n n n nn k k a a a a a a a a k k ++++++++++≥++L L只要证:112311231(1)()()n n n n n nk k k a a a a a a a a -+++++++≥++++L L设()g x =1123123(1)()()n n n nn n k a a a x a a a x -+++++-++++L L …………………7分 则11112'()(1)()n n n k g x k nx n a a a x ---=+⋅-++++L令'()0g x =得12ka a a x k+++=L …………………………………………………….8分当0x ≤≤12ka a a k+++L 时,1112'()[(]()n n k g x n kx x n a a a x --=+-++++L故12()[0,]k a a a g x k +++L 在上递减,类似地可证12()(,)ka a a g x k++++∞L 在递增所以12()k a a a x g x k +++=L 当时,的最小值为12()ka a a g k+++L ………………10分而11212121212()(1)[()]()n n n n n n k k k k k a a a a a a a a a g k a a a a a a k k k-+++++++++=+++++-++++L L L L L =1121212(1)[()()(1)()]n n n n nn n k k k nk k a a a a a a k a a a k -++++++++-++++L K L =11212(1)[()()]n n n n n n k k nk k a a a k a a a k -++++-+++L L =1112121(1)[()()]n n n n n n k k n k k a a a a a a k---++++-+++L L 由定理知: 11212()()0n n n nn k k k a a a a a a -+++-+++≥L L 故12()0ka a a g k+++≥L故112311231(1)()()n n n n n n k k k a a a a a a a a -+++++++≥++++L L即: 12311231()11n n n nn k k a a a a a a a a k k ++++++++++≥++L L .…………………………..14分2、用类比推理的方法填表答案:5354321b b b b b b =••••3、10.定义一种运算“*”:对于自然数n 满足以下运算性质:(i )1*1=1,(ii )(n +1)*1=n *1+1,则n *1等于A .nB .n +1C .n -1D .2n 答案:D4、若)(n f 为*)(12N n n ∈+的各位数字之和,如:1971142=+,17791=++,则17)14(=f ;记=∈===+)8(*,)),(()(,)),(()(),()(20081121f N k n f f n f n f f n f n f n f k k 则K ____ 答案:55、下面的一组图形为某一四棱锥S-ABCD 的侧面与底面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自主招生模拟试题--04说明:第1--4题每题15分,第5--6题每题20分,试卷总分为100分. 1.求最小的正实数k ,使得111()9ab bc ca k a b c+++++≥对所有的正实数,,a b c 都成立.2.如图,已知O 分别与等边三角形ABC 的三边,,AB BC CA 相切于点,,D E F ,设劣弧DF 上的点P 到三边,,AB BC CA 的距离依次为123,,d d d ,求证:132d d d +=.3.设定义在[1,1]-上的函数221()||33f x x bx c =-++的最大值为M ,求M 的最小值.4.如图,O 是边长为1的正六边形ABCDEF 的中心,一条路径是指从点O 出发,沿着线段又回到点O ,求长度为2013的路径条数.5.已知非直角三角形ABC 的最小边长为5,且tan tan tan [tan ][tan ][tan ]A B C A B C ++≤++,其中符号[]x 表示不超过实数x 的最大整数,求ABC ∆的面积?6.已知函数()bf x ax c x=++(0)a >的图像在点(1,(1))f 处的切线方程为1y x =-. (1)将,b c 用a 表示出来;(2)若()ln f x x ≥在[1,)+∞上恒成立,求a 的取值范围; (3)求证:对所有正整数n ,都有1111ln(1)232(1)n n n n ++++>+++ .OFABCEDd 1d 3d 2F DOE ABCP自主招生模拟试题答题纸1. 2.d 1d 3d 2FDOEABCP4.OFA B CE D参考答案1.求最小的正实数k ,使得111()9ab bc ca k a b c+++++≥对所有的正实数,,a b c 都成立. 解:首先令1a b c ===,则有2k ≥. 其次,证明:1112()9ab bc ca a b c+++++≥对所有的正实数,,a b c 都成立. 由于3111133ab ab a b a b++≥⋅⋅⋅=,同理可得:113bc b c ++≥,113ca c a ++≥.以上三式相加即得:1112()9ab bc ca a b c+++++≥. 综上可知,所求k 的最小值为2.2.如图,已知O 分别与等边三角形ABC 的三边,,AB BC CA 相切于点,,D E F ,设劣弧DF 上的点P 到三边,,AB BC CA 的距离依次为123,,d d d ,求证:132d d d +=.证明:如图,以O 为原点,OA 所在直线为y 轴建立坐标系,不妨设O 的半径为1,则点P 坐标为(cos ,sin )θθ(30150)θ︒≤≤︒,则由题意可得:直线AC 的方程为:cos30cos3010x y ︒+︒-=; 直线AB 的方程为:cos150cos15010x y ︒+︒-=; 直线BC 的方程为:01=+y .由点到直线的距离公式可得:13|cos cos30sin cos301||cos cos150sin cos1501|d d θθθθ+=︒+︒-+︒+︒-222sin (15)2sin (75)2[sin(15)sin(75)]2222θθθθ=-︒+-︒=-︒--︒2sin 12cos 2sin )2cos 2)(sin15sin 15(cos 2d =+=+=+︒-︒=θθθθθ.故,132d d d +=成立.3.设定义在[1,1]-上的函数221()||33f x x bx c =-++的最大值为M ,求M 的最小值. 解:由题意可知对任意的[1,1]x ∈-都有()f x M ≤,则: 21(1)|1|f b c M -=--+≤,1(0)||f c M =≤,21(1)|1|f b c M -=-++≤.y xd 1d 3d 2F DOEABCP故4(1)2(0)(1)M f f f ≥-++21121|1|2|||1|33333b c c b c =--+++-++21121|121|233333b c c b c ≥--+-⋅-++=. 即,12M ≥.事实上,当30,2b c ==时,21()||2f x x =-+在[1,1]-上的最大值为12.所以,实数M 的最小值为12. 4.如图,O 是边长为1的正六边形ABCDEF 的中心,一条路径是指从点O 出发,沿着线段又回到点O ,求长度为2013的路径条数. 解:由题意设从点O 出发沿着线段又回到点O ,且长度为n 的路径条数为n a ,从点A 出发沿着线段到点O ,且长度为n 的路径条数为n b ,则有11162n n n n n a b b a b ---=⎧⎨=+⎩1226n n n a a a --⇒=+.又由于6,021==a a ,故可求得1((77)(17)(77)(17))14n n n a =-⋅+++⋅-. 从而可得长度为2013的路径条数2013201320131((77)(17)(77)(17))14a =-⋅+++⋅-. 5.已知非直角三角形ABC 的最小边长为5,且tan tan tan [tan ][tan ][tan ]A B C A B C ++≤++,其中符号[]x 表示不超过实数x 的最大整数,求ABC ∆的面积?解:由题意知对所有实数x ,都有[]x x ≤,故tan tan tan [tan ][tan ][tan ]A B C A B C ++≥++.结合题目条件可知tan tan tan [tan ][tan ][tan ]A B C A B C ++=++,其中tan ,tan ,tan A B C 均为整数.不妨设tan ,tan ,tan A x B y C z ===(,,x y z 均为非零整数,且x y z ≤≤),则由tan tan()C A B =-+可得xyz x y z =++,而,,A B C 中最多一个钝角,即,y z 必为正整数,03xyz x y z z <=++≤,故3xy ≤,从而1,1x y ==,或1,2x y ==,或1,3x y ==.当1,1x y ==时,由xyz x y z =++知无解; 当1,2x y ==时,由xyz x y z =++知3z =;当1,3x y ==时,由xyz x y z =++知2z =,这与x y z ≤≤不符.故,在ABC ∆中,tan 1,tan 2,tan 3A B C ===,且5BC =.过点B 作高BD ,则在Rt BCD ∆中可求得DBACOFA BCE D1021,1023==CD BD ,在Rt ABD ∆中可求得3102AD =,故210AC =,故ABC ∆的面积为15. 6.已知函数()bf x ax c x=++(0)a >的图像在点(1,(1))f 处的切线方程为1y x =-.(1)将,b c 用a 表示出来;(2)若()ln f x x ≥在[1,)+∞上恒成立,求a 的取值范围; (3)求证:对所有正整数n ,都有1111ln(1)232(1)nn n n ++++>+++ . 解:(1)求导得2'()bf x a x =-,再由题意得'(1)1(1)0f a b f a b c =-=⎧⎨=++=⎩,解得112b a c a=-⎧⎨=-⎩(0)a >. (2)由(1)可知1()12a f x ax a x-=++-(0)a >. 令1()()ln 12ln a g x f x x ax a x x -=-=++--,[1,)x ∈+∞,则21(1)()'()aa x x a g x x ---=.当102a <<时,11a a ->,若1(1,)a x a-∈,则'()0g x <,故()g x 在区间1(1,)aa -上单调递减.所以,当1(1,)ax a -∈时,()(1)0g x g <=,即()ln f x x <,不合题意. 当12a ≥时,11aa-≤,若1x ≥,则'()0g x ≥,故()g x 在区间(1,)+∞上单调递增.所以,当[1,)x ∈+∞时,()(1)0g x g ≥=,即()ln f x x ≥,符合题意.综上可知,实数a 的取值范围为1[,)2+∞.(3)由(2)的结论知:当12a ≥时,()ln f x x ≥在[1,)+∞上恒成立. 取12a =时有11()()ln 2f x x x x =-≥在[1,)+∞上恒成立,当1x >时,11()()ln 2f x x x x=->.依次令2341,,,,123n x n += 可得:212111ln ln 20()(1)121222=-<-=+;3132111ln ln 3ln 2()()2223223=-<-=+;4143111ln ln 4ln 3()()3234234=-<-=+;……111111lnln(1)ln ()()2121n n n n n n n n n n ++=+-<-=+++.将以上n 个等式相加,整理可得:1111ln(1)232(1)nn n n ++++>+++ .。