常微分方程(王高雄)第三版 2.1
常微分方程第一到四章知识

教材及参考资料
• 教 材: 常微分方程,(第三版)(07年精品教材), 王高雄等 (中山大学), 高教出版社
• 参考书目: [1] 常微分方程, 东北师大数学系编,高教出版社 [2] 常微分方程讲义,王柔怀、伍卓群编,高教出版社 [3] 常微分方程及其应用,周义仓等编,科学出版社 [4] 微分方程定性理论,张芷芬等编,科学出版社。
"
证明: 对y sinx,由于
y y sin x sin x 0
"
y cosx,y sin x 故对x (, ), 有
' "
故y sinx是微分方程 y" y 0在(,)上的一个解 . 同理y cosx是微分方程 y" y 0在(,)上的一个解 .
y sinx,y cosx都是方程 y y 0的特解 .
"
可在通解y c1sinx c2cosx中分别取 c1 1, c2 0, 得到: y sinx, c1 0, c2 1, 得到: y cosx.
定解条件
为了从通解中得到合乎要求的特解,必须根据实 际问题给微分方程附加一定的条件,称为定解条件 求满足定解条件的求解问题称为定解问题 常见的定解条件是初始条件,n阶微分方程的初始 条件是指如下的n个条件:
课程的教学目的与任务
• 通过该课程的学习,使学生正确理解常微分 方程的基本概念,掌握其基本理论和主要方法, 具备良好的解题能力,为学习本学科近代发展理 论和后继课程打下基础。同时通过一些成功利用 微分方程解释实际现象问题的著名范例,培养学 生利用微分方程建立数学模型解决实际问题的能 力,认识到数学来源于实践,又服务于实践,从 而培养学生的数学实践观和加强数学实践能力。 该课程又是数学分析的继续和进一步学习泛函分 析、数理方程等必不可少的基础,对提高学生的 素质,使之更好地适应当前经济建设的需要提供 必备的知识基础。
常微分方程第三版答案(王高雄)

dx
2 2
y
1 2 = ln x − ln 1 + x + ln c (c ≠ 0), (1 + 2
y )(1 + x ) = c x
1+
y
2
(1 + x ) = c x
2
2
4 (1 + x) ydx + (1 − y ) xdy = 0 y=0 x=0 ln x + x + ln y − y = c, xy ≠ 0 ln xy + x − y = c, 1+ x 1− y dx = dy = 0 x y
按
dy 1 − 2 x y −1 dx 够 x 2 次0 个 dy 1 − 2 x y +1 dx 次- x 2 个
18.
x dy = = f ( xy ) y dx x dy 2 + x 2 y 2 = y dx 2 − x 2 y 2 xy = u, x
xy = u
1 . y (1 + x 2 y 2 )dx = xdy (2).
y+x
dy dy = , dx dx
x
dy du = −y dx dx
1 du du u 1 − 1 = f(u), = (f(u) + 1) = (uf(u) + u) y dx dx = y(f(u) + 1) x x x=0 y=0 du 1 3 = (2u + u ), dx x xy ≠ 0s du 2u + u
在个
次个e 次 ce
− sin t
+ sin t − 1 个个个
个
截
dy x − y = ex xn dx n 个个 个个个n
《常微分方程》(王高雄)第三版课后答案

e 8 : dy = −
y2 +3x
dx
y
解:变量分离,得 y dy = − 1 3x + c
e e y2
3
9 : x(ln x − ln y)dy − ydx = 0
解:方程可变为:− ln y • dy − y dx = 0
x
x
令u = y ,则有:1 dx = − ln u d ln u
x
x
1 + ln u
两 边 积 分 得 arctg
x(t)=x’(0)t+c 所以 x(t)=tg[x’(0)t+c] 当 t=0 时 x(0)=0 故 c=0 所以
x(t)=tg[x’(0)t]
02411 黄罕鳞(41) 甘代祥(42)
关注公众号【大学资料宝典】,获取大学各科期末复习资料+海量网课资源
11. dy = (x+ y)2 dx 解:令x + y = t,则 dy = dt + 1
dx dx 原方程可变为:dt = 1 + 1
dx t2
变量分离得: 1 dt = dx, 两边积分arctgt = x + c
t2 +1
代回变量得:arctg(x + y) = x + c
12. dy = 1
所以 x(0)=0. x’(t)= lim x(t + Δt) − x(t) = lim x(Δt)(1 + x2 (t)) = x'(0)(1 + x2 (t) )
Δt
Δt[1 − x(t)x(Δt)
dx(t) = x'(0)(1 + x2 (t)) dt
二阶常系数常微分方程的初等解法求解技巧(K12教育文档)

二阶常系数常微分方程的初等解法求解技巧(word版可编辑修改)二阶常系数常微分方程的初等解法求解技巧(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(二阶常系数常微分方程的初等解法求解技巧(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为二阶常系数常微分方程的初等解法求解技巧(word版可编辑修改)的全部内容。
二阶常系数常微分方程的初等解法求解技巧(word版可编辑修改)二阶常系数常微分方程的初等解法求解技巧郑燕,王俊霞太原师范学院数学系,山西晋中,030619摘要:本文总结介绍了三类二阶常系数常微分方程的初等解法求解技巧,分别是:特征根法;常数变易法;比较系数法.同时结合例题进行具体讲解.虽然当今社会关于二阶常微分方程初等解法求解技巧的研究已经获得了很大的成就,但它的已有理论仍然得不到求知者的满足,需要大家进一步发展,使之更加完善。
关键词:二阶常系数齐次线性微分方程;特征根法;常数变易法;比较系数法;二阶常系数非齐次线性微分方程.1。
预备知识(1.1)其中以及f(t)都是连续函数并且区间是a t b。
如果,则方程(1)就变成了(1.2)我们形如方程(1.2)的方程叫做二阶齐次线性微分方程,把方程(1。
1)叫做二阶非齐次线性微分方程.并且把方程(1.1)叫做方程(1.2)对应的齐次线性微分方程。
2.求解方法技巧2.1常数变易法常数变易法是将常数看作是的待定函数,然后求出非齐次线性方程的通解。
求解过程如下:设,是方程(1.2)的基本解组,则(2.1.1)是方程(1。
2)的通解。
将常数看作是t的待定函数,那么方程(2。
常微分方程(王高雄)第三版 2.1教学教材

(I)齐次方程
ddyxg(yx)
(II) 形如 ddyxfaa21xxbb12yycc12的方,程 其中 a1,b1,c1,a2,b2,c2为任意.常数
(I) 形如
dyg(y) dx x
(2.5)
方程称为齐次方程, 这里g(u)是u的连续函. 数
求解方法: 10 作变量代换(引入新变量)u y ,方程化为
x
du g(u)u, (这里d由 yx于 duu)
dx x
dx dx
20 解以上的变量分离方程
30 变量还原.
例4 求解方程 xdy 2xyy dx
(x0)
解: 方程变形为 dy2 yy dx x x
(x0)
这是齐次方程, 令u y 代入得 x
x du u 2 uu 即 x du 2 u
dx
为 (1)的情形,可化为变量分离方程求解.
解的步骤:
10解方 程 aa21xx 组 bb1 2yy cc1200,
得解yx
,
20 作变换 YXyx,方程化为
dY a1Xb1Y dX a2Xb2Y
g
(
Y X
)
30再经变 u换 Y,将以上方程化离 为方 变程 量分
X
40 求解
50 变量还原
dx
10 分离变量, 当 (y)0时 ,将 (2.1)写成
dy f (x)dx,
(y)
这样变量就“分离”开了.
20 两边积分得
dy
(y)f(x)d xc (2.2)
1 的某一原函数 f (x)的某一原函数 ( y)
由 (2.2)所确定 y的 (x,c)就 函 (2 为 .数 1)的.解
例:
分离变量:
常微分方程(王高雄)第三版

1 积分曲线 一阶微分方程
dy f (x, y) dx
的解 y(x所 ) 表x示 y平面上的一,条曲
称为微分方程的积分曲线.
而其通 y解 (x,c对 ) 应 xy平面上的一, 族
称这族曲线为族 积 . 分曲线
.
2 方向场
设函 f(x数 ,y)的定义 D,在 域 D内 为每(一 x,y)处 点 ,都画 上一f个 (x,y以 )的值为 ,中 斜心 率 (x,在 y)点的,线 称段 带 有这种直线 D为 段方 的 d程 y 区 f(x域 ,y)
dt
yn1
fn1(t;
y1,L
yn)
yn
fn(t;y1,L yn)
.
dx
Lorenz方程
dt dy
dt
a(y xz
x) cx
y
dz d t
y bz
Volterra两种种群竞争模型
dx d t
x(a bx cy )
dy
d t
y (d ex
fy )
c1
c2 cn
(,, ,(n1)) (c1,c2, ,cn)
c1
c2 cn 0
(n1) c1
(n1) c2
(n1) cn
其中 (k)表示ddkxk .
.
例3 验证 yc1exc2exc3e2x3是微分方
y'"2y"y' 2y6 的通. 解 证明: 由于 y' c1 exc2ex2c3e2x
七、驻定与非驻定
dyf(y),yDRn dt
与t无关,驻定系统
dyf(t,y),yDRn dt
与t有关,非驻定系统
.
八 相空间与轨线
常微分方程(第三版) 王高雄等编 高等教育出版社 课后习题答案

1常微分方程习题答案2.11.xy dx dy2=,并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得。
故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。
故特解是时,代入式子得。
当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123.yxy dx dy x y 321++=解:原式可化为:x x y xxyxyx yyxyc c c c x dx x dy y yx ydxdy2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+∙+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dxdy dx dy xycy ud uudx x x y u dx xydy x y ydx dy y x x c dy yy yydxdy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdudxdux u dx dy ux y u x y y dx dy xc x arctgu dx x du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y ee ee ee eexy uu xy x uu xyxyyx xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。
常微分方程(第三版)

常微分方程(第三版) 习题2.52.ydy x xdy ydx 2=-解:2x ,得:ydy x xdyydx =-2c y x yd +-=221即c y x y =+221 4.xyx ydx dy -=解:两边同除以x ,得xy x y dxdy -=1令u x y= 则dxdu x u dx dy += 即dx dux u dx dy +=uu -=1 得到()2ln 211y c u -=,即2ln 21⎪⎭⎫ ⎝⎛-=y c y x另外0=y 也是方程的解。
6.()01=-+xdy ydx xy 解:0=+-xydx xdy ydxx d x yx d yy d x -=-2得到c x y x d +-=⎪⎪⎭⎫⎝⎛221即c x y x =+221 另外0=y 也是方程的解。
8.32xy x y dx dy += 解:令u xy= 则:21u x u dx du x u dx dy +=+= 即21u x dx du x= 得到22x dxu du =故c xu +-=-11 即211xx c y += 另外0=y 也是方程的解。
10. 21⎪⎭⎫⎝⎛+=dx dy dx dy x解:令p dxdy= 即pp x 21+=而p dx dy=故两边积分得到 c p p y +-=ln 212因此原方程的解为pp x 21+=,c p p y +-=ln 212。
12.x y xe dx dy e =⎪⎭⎫⎝⎛+-1 解:y x xe dxdy+=+1令 u y x =+则 dx du dx dy =+111-=-=u xe dx du dx dy 即xdx eduu =c x e u+=--221故方程的解为c x eyx =++221 14.1++=y x dxdy解: 令u y x =++1则dx du dx dy =+1 那么u dx du dx dy =-=1dx u du=+1求得: ()c x u +=+1ln故方程的解为()c x y x +=++1ln 或可写 为xce y x =++1 16.()y e dxdyx -=++211 解:令u e y=- 则u y ln -= ()1211-=+-u dxduu x ()dx x du u u 11121+-=-c x u u ++=-`1112 即方程的解为()c x y x e y+=+218.()0124322=-+dy y x dx y x 解: 将方程变形后得124322-=y x y x dx dy 22223412412y x y x y x y x dy dx -=-= 同除以2x 得:232412yy x dy dx x -=令3x z = 则24323yy z dy dz -= 23223cy y z +=即原方程的解为232323cy y x +=19.X(04)(2)2=+-x dxdyy dx dy 解:方程可化为2y()(24)(,4)()22dxdy x dx dy x y x dxdyx dx dy +=+= 令[][]ce t e t c dt e t y pdx dy e t x t p dy x e dxdyc x y x arctg xdx y x darctg xdx y x xdy ydx xdy y x x y y c y y x c y yy x dyy y y x d dy y y y xdy ydx y dy y xdy ydx dy y x ydx cy y x c y yx y d y x d dy y x ydx xy y e y xy x xy xNy M x x N x y M dy x y xydx dy y x y dx y x cye x c e yxy c e z y y e z y dy dz e z e dy dz y z e e z z e e z z ze e e z dy dx dy e z dx e dy dzy z dy dx yz x z y x dy yxe dx e y p c x y c tg c d c d x d d dy p dy dx y y p dx dy dx dy y x c yc c c x c x x c x x y cx p xdp pdx x y p xdp pdx p dp p x dx p p dp x xp dx p p dp p x x dx p p dx dp p x x p p dx dp p x p dx dp x p p x p x p x p x xp y p dx dy t t tt dx dydy y y xy xzzz z z z z z z z z z z yx y x +-+=++==+====-++===+-=-+-=+=+++-=+=+=-+=-=++-=-=-=-=-+=⎰-=-=-∂∂-∂∂-=∂∂=∂∂=-+=-+=+=+=+-=+-=+++=++-=+--+=+-=-=++====-++±==++=+∂=+∂∂=+∂∂=∂∂=∂∂∂∂=∂==∂==∂-∂===⎥⎦⎤⎢⎣⎡-+=+=+⋅===-±===-=∴=---=+-+-=-+--=--++=+=-==⎰⎰⎰----)1(,0.25.2,0)(.240),()111,1,)1(0)1(.23101,0)3(24282,6,20)3(2032.22)(,)(,ln ln 1,111)1(,)1()1(,0)1()1.(2110,1)sec cos cos cos sin sin 1sin ,cos 11(sin 1,sin 1)(1.20.42,2424,,0,24,040)4()4(0)4()4(,0)22()22(,)22()22(2222,2224,22222222222222322323242234422422322222222222222222222232222得由解:令所以方程的解为解:方程可化为也是解。
常微分方程(王高雄)2

x y 1 0 解方程组 x y 3 0
得x 1, y 2,
令X x 1, Y y 2代入方程得
Y dY X Y 1 X Y dX X Y 1 2 X du 1 u Y 令u , 得 X X dX 1 u
例10 求微分方程
( y xy )dx ( x x y)dy 0
2 2
的通解.
解:
令u xy, 则du xdy ydx
代入方程并整理得
u(1 u)dx (1 u)(xdu udx) 0
即
2u dx x(1 u)du 0
2
u 1 2dx du 2 u x 1 2 两边积分得 ln u ln x c u 1 x 变量还原得通解为 ln c. xy y
du
dx = sgn x x 1 + u2
两边积分得: 整理后得
du
ln u 1 u 2 ln x ln c
x > 0 : u + 1 + u2 = cx
y y 2 变量还原得 x > 0 : + 1 + ( ) = cx x x
最后由初始条件 y(1) 0, 可定出c 1.
为齐次方程,由(I)可化为变量分离方程.
2
a1 a2 b1
b2 a1 b1 设 k , 则方程可改写成 a2 b2 dy a1 x b1 y c1 k (a2 x b2 y ) c1 f (a2 x b2 y) dx a2 x b2 y c2 a2 x b2 y c2
p ( x ) dx y ce ,
c为任常数 .
常微分方程第三答案王高雄等

习题2.11.xy dxdy2=,并求满足初始条件:x =0,y =1的特解. 解:对原式进行变量分离得21211,0)(,ln 2112xc x e y c y x e c ce y c x y xdx dy y======+==为故满足初始条件的特解代入得把这里即两边同时积分得:2.,0)1(2=++dy x dx y并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得: xy c y x y x c y c x y dx x dy y ++=====++=++=+=-1ln 1111,001ln 1,1ln 1:1112故特解是时,代入上式得当。
时显然也是原方程的解当即两边同时积分得3.yx xy y dx dy 321++= 解:原式可化为:)1(1)1)(1(1ln 21ln 1ln 2111,011122222222232232≠=++=++++-=++=+≠+++=c cx x y x e x y c x x y dx xx dy y y y y x x y y dx dy c )故原方程的通解为(即两边积分得故分离变量得显然 .0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:。
两边积分得:变量分离,得:则令解:c x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y u u +-=++=++-++=++===+-==-++ln )1ln(21111,11,,,0)()(:52210ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,633222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dx dux u dx dy ux y u x y y dx dy x e e e e e eee xy uu xy x x yxyy x xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=-+--两边积分解:变量分离:。
常微分方程教案(王高雄)第三章

目录第三章一阶微分方程的解的存在定理 (I)内容提要及其它 (1)3.1 解的存在唯一性定理与逐步逼近法 (3)3.1.1 存在唯一性定理 (3)3.1.1.1 特殊情况 (3)1、等价积分方程 (4)2、逐步逼近法 (4)3、引理 (4)3.1.1.2 一般情况 (8)3.1.2 近似计算和误差估计 (9)3.2 解的延拓 (11)3.2.1 局部的利普希茨条件 (11)3.2.2 解的延拓 (11)3.2.3 饱和解 (12)3.2.4 解的延拓定理 (13)3.2.5 解延拓定理的应用 (13)3.3 解对初值的连续性和可微性定理 (15)3.3.1 引言 (15)3.3.2 解关于初值的对称性 (15)3.3.3 引理 (15)3.3.4 解对初值的连续依赖定理 (15)3.3.5 解对初值和参数的连续依赖定理 (16)3.3.6 解对初值得可微性 (17)3.4 奇解 (20)3.4.1 包络和奇解 (20)3.4.2 C-判别曲线法 (20)3.4.3 P-判别曲线 (22)第五节内容提要及其它 (24)3.5 数值解 (25)主要内容 (25)具体内容 (25)主题 (25)3.5.1 欧拉公式 (26)3.5.1.1 基本方法 (26)3.5.1.2 格式 (26)3.5.1.3 局部截断误差和精度 (26)3.5.1.4 隐式欧拉公式 (26)3.5.1.5两步欧拉公式 (27)3.5.1.6应用 (27)3.5.2 改进的欧拉方法 (28)3.5.2.1 梯形格式 (28)3.5.2.2 改进的欧拉格式 (28)3.5.2.3 例题分析(p101-102) (29)3.5.3 龙格-库塔方法 (31)3.5.3.1 设计思想 (31)3.5.3.2二阶Runge-Kutta (32)3.5.3.3 三阶Runge-Kutta (33)3.5.4 收敛性和稳定性 (35)3.5.4.1 收敛性问题 (35)3.5.4.2 稳定性 (35)本章小结及其它 (37)第三章一阶微分方程的解的存在定理内容提要及其它授课题目(章、节)第三章:一阶微分方程的解的存在定理教材及主要参考书(注明页数)教材:常微分方程(第三版),王高雄等,高等教育出版社,2006年,p75-119主要参考书:[1]常微分方程,东北师范大学微分方程教研室编,高等教育出版社,2005,p71-115[2]数学分析(下)(第二版),华东师范大学数学系编,高等教育出版社,1998,p33-46[3]常微分方程习题解,庄万主编,山东科学技术出版社,2003,p170-224[4]差分方程和常微分方程,阮炯编著,复旦大学出版社,2002,p149-164目的与要求:掌握一阶常微分方程初值问题的解的存在唯一性定理及其证明方法,理解常微分方程初值问题的解的延拓和解对初值以及参数的连续依赖性和可微性定理.了解一阶常微分方程奇解和包络的概念以及求奇解的方法.教学内容与时间安排、教学方法、教学手段:教学内容:第1节解的存在唯一性定理;第2节解的延拓;第3节解对初值的连续性和可微性;第4节奇解;(数学与应用数学专业)第5节数值解。
常微分方程王高雄第三版答案文库

常微分方程王高雄第三版答案_百度文库百度首页 | 百度知道 | 百度文库首页 | 手机文库 | 注册 | 登录新闻网页贴吧知道MP3 图片视频百科文库帮助全部 DOC PDF PPT XLS TXT百度文库 > 高等教育下载收藏分享加入文辑常微分方程王高雄第三版答案高等教育出版社《常微分方程》王高雄第三版答案高等教育出版社《常微分方程》王高雄第三版答案<<隐藏下载本文档需要登录,并付出相应财富值。
如何获取财富值?大小: 638.1KB所需财富值: 20喜欢此文档的人还喜欢4268人阅读常微分方程第三版答案(王高雄) 19829人阅读常微分方程王高雄第三版答案6103人阅读常微分方程(第三版)课后答案 1570人阅读常微分方程第三版——答案 1192人阅读第三版常微分方程答案.doc 文库书店等你来逛点击进入书店 prevnext当前文档信息4.5已有160人评价浏览:10591次下载:1285次贡献时间:2010-02-13贡献者: dengliang19854 手不释卷四级文档关键词文档关键词暂无收录此文档的文辑信息与计算科学专业电子资...创建者:某某丙哥收藏量:2常微分,微分几何,数学建模...创建者:nazai娜收藏量:0家教创建者:gaojunzi0830 收藏量:0更多相关推荐文档常微分方程答案4.114人评 2页常微分方程08秋重修11人评 4页常微分方程答案 4.212人评 6页常微分方程试题参考答案计分...5人评 5页高雄餐旅大学发展5人评 1页更多同分类热门文档政治无敌笔记43139人评 27页处理人际关系的55个绝招37631人评 9页新东方美文背诵30篇38598人评 25页16天记住7000考研单词18523人评 30页Excel的使用方法与技巧49012人评 68页如要投诉或提出意见建议,请到百度文库投诉吧反馈。
©2011 Baidu使用百度前必读文库协议iPhone2.0震撼升级文库iPhone华丽升级2.0,超逼真3D翻页,支持多格式、原文档下载,享受原汁原味的文档盛宴…马上体验。
《常微分方程》(王高雄)第三版课后

y= 1 。 1 + ln1 + x
3
dy = 1 + y2 dx xy + x3 y
解:原式可化为:
dy = 1 + y2 •
1
1+ 显然
y2
≠
0, 故分离变量得
y
dy =
1
dx
dx y x + x3
y
1+ y2
x + x3
两边积分得 1 ln1 + 2
y2
=
ln
x
−
1 ln1 + 2
x2
+ ln c (c
c x2 , y
=
0也包含在此通解中。
故原方程的解为原
x2
y2 y2 +
2
=
c
x2,
x
=
0.
解 (2)令xy = u,则原方程化为 du = 1 (u 2 + u 2 + u) = 1 4u
dx x 2 − u 2
x 2−u2
分离变量得 2 − u 2 du = 1 dx,两边积分得 ln y = x 2 y 2 + c,这也就是方程的解。
dx dx
dx t 2
变量分离
t
t2 2 +1
dt
=
dx,两边积分t
−
arctgt
=
x
+
c,代回变量
x + y − arctg(x + y) = x + c
13. dy = 2x − y − 1 dx x − 2 y + 1
解:方程组2x − y −1 = 0, x − 2 y + 1 = 0;的解为x = − 1 , y = 1 33
常系数线性微分方程的解法常微分方程课件高教社王高雄教材配套

汇报人:
特征值和特征向量
特征值:线性变 换的特征值是线 性变换矩阵的特 征多项式的根
特征向量:线性 变换的特征向量 是线性变换矩阵 的特征多项式的 解
特征值和特征向 量的关系:特征 值和特征向量是 线性变换矩阵的 特征多项式的解 和根
特征值和特征向量 的应用:特征值和 特征向量在常系数 线性微分方程的解 法中有广泛的应用, 如求解线性微分方 程的解、求解线性 微分方程组的解等
积分因子法
积分因子法的定义:通过求解积分因子,将微分方程转化为积分方程,从而求解微分方程的方法。 积分因子法的步骤:首先,求解积分因子;然后,将微分方程转化为积分方程;最后,求解积分方程。
积分因子法的应用:适用于求解常系数线性微分方程,如二阶常系数线性微分方程。
积分因子法的优缺点:优点是简单易行,缺点是适用范围有限,仅适用于常系数线性微分方程。
,
汇报人:
目录
定义和形式
常系数线性微分方程:含有未知函数及其导数的方程,其系数为常数
一阶常系数线性微分方程:形如y' + py = q(t)的方程,其中p和q(t)为常数
二阶常系数线性微分方程:形如y'' + py' + qy = r(t)的方程,其中p、q和r(t)为 常数
高阶常系数线性微分方程:形如y(n) + p(n-1)y(n-1) + ... + qy = r(t)的方程,其中p(n-1)、q和r(t)为常 数
描述物体运动:如自由落体、弹簧 振子等
在物理中的应用
描述热传导:如热传导方程、热扩 散方程等
常微分方程

u
u
例3 R-L-C电路 电路
如图所示的R-L-C电路. 它包含电感L,电阻R,电容C及电源e(t). 设L,R,C均为常数,e(t)是时间t的已知函数.试求当开关K合上后,电 路中电流强度I与时间t之间的关系.
电路的 第二定律: 第二定律 解: 电路的Kirchhoff第二定律 在闭合回路中,所有支路上的电压的代数和为零 在闭合回路中 所有支路上的电压的代数和为零. 所有支路上的电压的代数和为零
三 线性和非线性
dy d y 1.如果方程 F(x, y, , L , n ) = 0 dx dx n dy d y 的左端为y及 , L , n 的一次有理式, dx dx 则称其为n 则称其为n阶线性方程.
如 (1) dy = 2 x
n
dx
(2) xdy − ydx = 0
是线性微分方程.
d 4x d 2x ( 4) + 5 2 + 3 x = sin t 4 dt dt
例1 镭的衰变规律:
设镭的衰变规律与该时刻现有的量成正比, 且已知t = 0时, 镭元素的量为R0克, 试确定在 任意t时该时镭元素的量.
注:镭的变化率与镭的量成正比。
解: 设t时刻时镭元素的量为R(t ),
dR(t ) 由于镭元素的衰变律就是R(t )对时间的变化律 , dt 依题目中给出镭元素的衰变律可得 :
dR = −kR, dt R(0) = R0
这里k > 0, 是由于R(t )随时间的增加而减少.
解之得 : R(t ) = R0 e − kt
即镭元素的存量是指数规律衰减的.
例2 物理冷却过程的数学模型
将某物体放置于空气中, 在时刻 t = 0 时, 测得它的温度为
常微分方程(第三版)课件第一章

§1.1 Sketch of ODE n阶隐式方程 n阶显式方程 方程组
偏微分方程 偏微分方程 不是微分方程
9. f 2 ( x) sin x
§1.1 Sketch of ODE
微分方程模型举例/Modeling of ODE/
CH.1 Introduction
本章要求/Requirements/
能快速判断微分方程的类型;
掌握高阶微分方程及其初值问题的一般形式;
理解微分方程解的意义。
§1.1 Sketch of ODE
§ 1.1 微分方程概述/ Sketch of ODE/
微分方程理论起始于十七世纪末,是研究自然现象强有 力的工具,是数学科学联系实际的主要途径之一。
§ 1.2 基本概念/Basic Conception/
1. 常微分方程和偏微分方程 2. 一阶与高阶微分方程 3. 线性和非线性微分方程 4. 解和隐式解 5. 通解和特解 6. 积分曲线和积分曲线族 7. 微分方程的几何解释-----方向场
§1.2 Basic Conception
常微分方程与偏微分方程/ODE and PDE/
电子课件
常微分方程
Ordinary differential equation
王高雄 周之铭 朱思铭 王寿松编
常微分方程
Ordinary differential equation
• • • • • • • 第一章 第二章 第三章 第四章 第五章 第六章 第七章 绪 论 一阶微分方程的初等解法 一阶微分方程的解的存在定理 高阶微分方程 线性微分方程组 定性理论初步1 2 一阶线性偏微分方程
常微分方程的解的表达式中,可能包含一个或者几个常
常微分方程教案(王高雄)第二章

第二章目录内容提要及其它 (1)第二章一阶微分方程的初等解法(初等积分) (2)第一节变量分离方程与变量变换 (2)一、变量分离方程 (2)二、可化为变量分离方程的类型 (6)1、齐次方程 (6)2、可化为变量分离方程 (7)三、应用例题选讲 (10)第二节线性方程与常数变易法 (11)第三节恰当方程与积分因子 (15)一、恰当方程 (15)二、积分因子 (20)第四节一阶隐含方程与参数表示 (23)一、可以解出y(或x)的方程 (24)二、不显含y(或x)的方程 (25)本章小结及其它 (27)内容提要及其它授课题目(章、节)第二章:一阶微分方程的初等解法教材及主要参考书(注明页数)教材:常微分方程(第三版),王高雄等,高等教育出版社,2006年,p30-74主要参考书:[1]常微分方程,东北师范大学微分方程教研室编,高等教育出版社,2005,p1-70[2]常微分方程教程,丁同仁等编,高等教育出版社,1991,p1-20[3]偏微分方程数值解法(第2版),陆金甫关治,清华大学出版社,2004,p1-12[4]常微分方程习题解,庄万主编,山东科学技术出版社,2003,p28-169[5]微分方程模型与混沌,王树禾编著,中国科学技术大学出版社,1999,p15-158[6]差分方程和常微分方程,阮炯编著,复旦大学出版社,2002,p38-124目的与要求:掌握变量分离方程、齐次方程、线性方程、伯努利方程和恰当方程的解法.理解变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.掌握四类典型的一阶隐方程的解法.能熟练求解变量分离方程、齐次方程、线性方程、伯努利方程、恰当方程和四类典型的一阶隐方程.领会变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.教学内容与时间安排、教学方法、教学手段:教学内容:第1节变量分离方程与变量变换;第2节线性方程与常数变易法;第3节恰当方程与积分因子;第4节一阶隐方程与参数表示:可以解出(或y x)的方程、不显含(或y x)的方程.时间安排:8学时教学方法:讲解方法教学手段:传统教学方法与多媒体教学相结合。
常微分方程教案(王高雄)第二章

第二章目录内容提要及其它 (1)第二章一阶微分方程的初等解法(初等积分) (2)第一节变量分离方程与变量变换 (2)一、变量分离方程 (2)二、可化为变量分离方程的类型 (6)1、齐次方程 (6)2、可化为变量分离方程 (7)三、应用例题选讲 (10)第二节线性方程与常数变易法 (11)第三节恰当方程与积分因子 (15)一、恰当方程 (15)二、积分因子 (20)第四节一阶隐含方程与参数表示 (23)一、可以解出y(或x)的方程 (24)二、不显含y(或x)的方程 (25)本章小结及其它 (27)内容提要及其它授课题目(章、节)第二章:一阶微分方程的初等解法教材及主要参考书(注明页数)教材:常微分方程(第三版),王高雄等,高等教育出版社,2006年,p30-74主要参考书:[1]常微分方程,东北师范大学微分方程教研室编,高等教育出版社,2005,p1-70[2]常微分方程教程,丁同仁等编,高等教育出版社,1991,p1-20[3]偏微分方程数值解法(第2版),陆金甫关治,清华大学出版社,2004,p1-12[4]常微分方程习题解,庄万主编,山东科学技术出版社,2003,p28-169[5]微分方程模型与混沌,王树禾编著,中国科学技术大学出版社,1999,p15-158[6]差分方程和常微分方程,阮炯编著,复旦大学出版社,2002,p38-124目的与要求:掌握变量分离方程、齐次方程、线性方程、伯努利方程和恰当方程的解法.理解变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.掌握四类典型的一阶隐方程的解法.能熟练求解变量分离方程、齐次方程、线性方程、伯努利方程、恰当方程和四类典型的一阶隐方程.领会变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.教学内容与时间安排、教学方法、教学手段:教学内容:第1节变量分离方程与变量变换;第2节线性方程与常数变易法;第3节恰当方程与积分因子;第4节一阶隐方程与参数表示:可以解出(或y x)的方程、不显含(或y x)的方程.时间安排:8学时教学方法:讲解方法教学手段:传统教学方法与多媒体教学相结合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
a1 a2 b1
b2 a1 b1 设 k , 则方程可改写成 a2 b2 dy a1 x b1 y c1 k (a2 x b2 y ) c1 f (a2 x b2 y) dx a2 x b2 y c2 a2 x b2 y c2
0的情形
令u a2 x b2 y, 则方程化为
dx 2 x 1 u
du
u 1 u cx
2
y y 2 1 ( ) c 可定出c 1.
故初值问题的解为
1 2 y ( x 1) 2
(II) 形如
dy a1 x b1 y c1 , dx a2 x b2 y c2
一、变量分离方程的求解
dy f ( x ) ( y ) dx
( 2.1)
1
0
分离变量 , 当 ( y) 0时, 将(2.1)写成 dy f ( x)dx, 这样变量就“分离”开了. ( y)
0
2
两边积分得 dy ( y) f ( x)dx c
(2.2)
f ( x )的某一原函数 1 的某一原函数 ( y)
du dy a2 b2 f (u) a2 b2 dx dx
这就是变量分离方程
3
a1 a2 b1 b2
0且c1与c2不同时为零的情形
a1 x b1 y c1 0 则 , a2 x b2 y c2 0
代表xy平面两条相交的直线 , 解以上方程组得交点 ( , ) (0,0).
当y 0时, 将变量分离 ,得
1 两边积分得: sin x c, y
dy cos xdx 2 y
1 因而通解为: y sin x c ,
其中c为任意常数 .
此外y 0也是方程的解 , 且不能在通解中取适当 的c得到.
再求初值问题的通解, 以y(0) 1代入通解 , 得c 1
yf ( xy)dx xg( xy)dy 0 u xy 2 dy x f ( xy ) u xy dx dy y y xf ( 2 ) u 2 dx x x
以及
M ( x, y)(xdx ydy) N ( x, y)(xdy ydx) 0
(其中M , N为x, y的齐次函数 , 次数可以不相同 )等一 些类型的方程 , 均可适当变量变换化为 变量分离方程 .
两边积分得:
ln y p ( x)dx c1
p ( x ) dx c1 y e
由对数的定义有
p ( x ) dx c1 y e
即
p ( x ) dx p ( x ) dx y e e ce . c1
此外y 0也是方程的解 , 若在上式中充许 c 0, 即知y 0也包括在上式中 ,
解:
x y 1 0 解方程组 x y 3 0
得x 1, y 2,
令X x 1, Y y 2代入方程得
Y dY X Y 1 X Y dX X Y 1 2 X du 1 u Y 令u , 得 X X dX 1 u
1 1 . 所以所求的特解为: y sin x 1 1 sin x
二、可化为变量分离方程类型 (I)齐次方程
dy y g( ) dx x
a1 x b1 y c1 f a x b y c 的方程, 2 2 2 其中a1 , b1 , c1 , a2 , b2 , c2为任意常数. dy ( II ) 形如 dx
故方程的所有解为:
10 y , x 1 ce
c 0.
10 y , c为任常数 , 和y 0. x 1 ce
y ln x c1 10 y
例3 求微分方程
dy p( x) y dx
的通解, 其中p( x)是x的连续函数 . dy 解: 将变量分离后得 p( x)dx y
(I) 形如
dy y g( ) dx x
(2.5)
方程称为齐次方程, 这里g (u)是u的连续函数 .
y 求解方法: 1 作变量代换 (引入新变量 )u , 方程化为 x dy du du g (u ) u (这里由于 x u) , dx dx dx x
0
2
0
解以上的变量分离方程
3
0
变量还原.
例4
求解方程
dy x 2 xy y dx
解: 方程变形为 dy y y 2 dx x x
( x 0)
( x 0)
y 这是齐次方程, 令u 代入得 x du du 即 x u 2 u u x 2 u dx dx
将变量分离后得
du dx x 2 u
两边积分得:
即
u ln( x) c
2
du dx x 2 u
u (ln( x) c) , ln( x) c 0, c为任意常数
代入原来变量,得原方程的通解为
x[ln( x ) c ]2 , y 0,
ln( x ) c 0
例6
求下面初值问题的解
dy dx
a1 x b1 y c1 dY a1 X b1Y Y f a xb y c dX f ( a X b Y ) g ( X ) 2 2 2 2 2
此外,诸如
dy f (ax by c) u ax by c dx
X x , 作变量代换(坐标变换) Y y dY a1 X b1Y 则方程化为 dX a2 X b2Y
为 (1)的情形,可化为变量分离方程求解.
解的步骤:
a1 x b1 y c1 0 1 解方程组 , a2 x b2 y c2 0
第二章 一阶微分方程的初等解法
§2.1 变量分离方程与变量变换
先看例子:
dy 2 2 x y 1 dx
dy x y ye dx
ye e
y x
定义1 形如
dy F ( x, y ) dx
dy f ( x) ( y ) dx
方程,称为变量分离方程.
(2.1)
这里f ( x), ( y)分别是x, y的连续函数 .
这里a1 , b1 , c1 , a2 , b2 , c2为常数.
的方程可经过变量变换化为变量分离方程. 分三种情况讨论
1 c1 c2 0的情形 y a1 b1 y dy a1 x b1 y x g( ) x dx a2 x b2 y a b y 2 2 x
为齐次方程,由(I)可化为变量分离方程.
其中 c e ,由于函数 y 2 x 1在x 0无意义 ,
c1 3
故此解只在 x 0或x 0之一中有意义 .
此外还有解 y 0, 这个解未包含在通解中 , 应补上 .
例4 解:
dy y 2 cos x 求初值问题 dx 的特解. y (0) 1 dy 先求方程 y 2 cos x的通解 , dx
将变量分离后得
(1 u )du dX 2 1 u X
1 两边积分得: arctan u ln(1 u 2 ) ln X c 2
变量还原并整理后得原方程的通解为
y2 2 2 arctan ln ( x 1) ( y 2) c. x 1
注:上述解题方法和步骤适用于更一般的方程类型.
例2 解:
dy y 求微分方程 y (1 ) dx 10
的所有解.
y 方程两边同除以 y (1 ), 再积分 10
积分得:
dy y y(1 ) 10
dx c1
y ln x c1 10 y
从上式中解出 y, 再将常数记为 c, 得
y 由y (1 ) 0, 求出方程的所有解为 y 0和y 10, 10
三、应用举例
火箭是如何发射升空的?
设t时刻火箭的速度为V(t), 质量为M(t), 准备发射时火箭的质量为Mo, 火箭马达喷 气速度为u
根据动量守恒定律 -MdV=udM
方程被称为齐奥尔科夫斯基方程, 用它可以计算火箭的到达速度。
0
x 得解 , y
X x 2 作变换 , 方程化为 Y y dY a1 X b1Y g ( Y ) X dX a2 X b2Y
0
0
Y 3 再经变换 u , 将以上方程化为变量分 离方程 X
4 求解
0
5 变量还原
0
dy x y 1 例7 求微分方程 的通解. dx x y 3
故方程的通解为
p ( x ) dx y ce ,
c为任常数 .
练习 求微分方程
解:
dy x y dx
3 2
的通解.
分离变量后得 两边积分得:
1 y dy dx x 1 2 y 2 ln x c1
3 2
4 4 , 整理后得通解为: y 2 2 (ln x c1 ) (ln cx )
由(2.2)所确定的函数 y ( x, c)就为(2.1)的解.
例:
分离变量: 两边积分:
dy x2 y2 1 dx dy 2 x dx 2 y 1
1 3 arctan y x C 3
dy 2 y 1
2 x dx C
注: 若存在y0 , 使 ( y0 ) 0, 则y y0也是(2.1)的解, 可能 它不包含在方程 (2.2)的通解中 , 必须予以补上 .
( y x 2 y 2 )dx xdy ,