第六章非平稳时间序列模型-1

合集下载

非平稳时间序列建模步骤

非平稳时间序列建模步骤

非平稳时间序列建模步骤介绍非平稳时间序列是指其统计特性在时间上发生变化的序列。

在实际应用中,我们经常面临非平稳时间序列的建模问题,如股票价格、气温变化等。

本文将探讨非平稳时间序列建模的步骤和方法。

为什么要建立模型非平稳时间序列在其统计特性的变化中存在一定的规律性,因此建立模型可以帮助我们理解和预测序列的行为。

模型可以从数据中提取有用的信息,揭示序列的规律和动态特征。

步骤一:观察时间序列的特性在建立模型之前,我们首先需要观察时间序列的特性,包括趋势、周期性、季节性和随机性等。

这些特性是决定时间序列模型选择的重要因素。

步骤二:平稳化处理由于非平稳时间序列的统计特性随时间变化,不利于建模和分析。

因此,我们需要对时间序列进行平稳化处理。

常用的平稳化方法包括差分法和变换法。

2.1 差分法差分法是通过计算相邻两个观测值的差异来实现序列的平稳化。

一阶差分是指相邻观测值之间的差异,二阶差分是指一阶差分的差异,以此类推。

差分法可以有效地去除序列的趋势和季节性,使序列平稳。

2.2 变换法变换法是通过对时间序列进行数学变换,将非平稳序列转化为平稳序列。

常用的变换方法包括对数变换、平方根变换和 Box-Cox 变换等。

变换法可以改变序列的分布特性,使序列满足平稳性的要求。

步骤三:选择模型平稳化处理后,我们需要选择合适的模型进行建模。

常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)、季节性自回归移动平均模型(SARIMA)和指数平滑模型等。

3.1 自回归移动平均模型(ARMA)ARMA 模型是描述时间序列随机变动的经典模型,其包括自回归和移动平均两个部分。

自回归部分考虑了序列的历史值对当前值的影响,移动平均部分考虑了序列的误差对当前值的影响。

ARMA 模型适用于没有趋势和季节性的平稳序列。

3.2 自回归积分移动平均模型(ARIMA)ARIMA 模型是在 ARMA 模型基础上引入了积分项,用于处理非平稳序列。

时间序列分析模型

时间序列分析模型

时间序列分析模型时间序列分析是一种广泛应用于统计学和经济学领域的建模方法,用于研究随时间变化的数据。

它的目的是揭示和预测数据中隐含的模式和关系,以便更好地理解和解释现象,并做出相应的决策。

时间序列分析模型可以分为统计模型和机器学习模型两类。

一、统计模型1.平稳时间序列模型:平稳时间序列是指在统计学意义上均值和方差都是稳定的序列。

常用的平稳时间序列模型包括:自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)和季节性自回归整合移动平均模型(SARIMA)等。

-自回归移动平均模型(ARMA)是根据时间序列数据的自相关和移动平均性质建立的模型。

它将序列的当前值作为过去值的线性组合来预测未来值。

ARMA(p,q)模型中,p表示自回归项的阶数,q表示移动平均项的阶数。

-自回归整合移动平均模型(ARIMA)在ARMA模型基础上引入差分操作,用于处理非平稳时间序列。

ARIMA(p,d,q)模型中,d表示差分的次数。

-季节性自回归整合移动平均模型(SARIMA)是ARIMA模型的扩展,在存在季节性变化的时间序列数据中应用。

SARIMA(p,d,q)(P,D,Q)s模型中,s表示季节周期。

2.非平稳时间序列模型:非平稳时间序列是指均值和/或方差随时间变化的序列。

常用的非平稳时间序列模型包括:趋势模型、季节性调整模型、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。

- 趋势模型用于描述数据中的趋势变化,例如线性趋势模型(y = ax + b)和指数趋势模型(y = ab^x)等。

-季节性调整模型用于调整季节性变化对数据的影响,常见的方法有季节指数调整和X-12-ARIMA方法。

-自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)在非平稳时间序列中引入差分操作进行模型建立。

二、机器学习模型机器学习模型在时间序列分析中发挥了重要作用,主要应用于非线性和高维数据的建模和预测。

非平稳时间序列

非平稳时间序列
值为-1.95. 小于此值,拒绝
3 工程项目管理规划
三种情况的 的临界值是不一样的
进行单位根检验必须选择合适的回归模型. 一个简单的原 则,如果数据没有明显的趋势,则在回归模型中包括常数 项;如果有明显的趋势,则在回归模型中既要包含常数项 和时间趋势项
3 工程项目管理规划
四个问题
数据生成过程未知,有可能包括滑动平均部分 可能包括不止一个滞后项,如果实际数据生成过程是
E [Yt+s | Yt ] Yt ts (11)ts1 (11 s1)t1
预测方差为{1+(1
2 1
)
(1
2 1
2 s-1
)}
2
3 工程项目管理规划
动态乘子的比较
趋势平稳过程
xt t+(B)t
动态乘子:
xt
t
s
趋势平稳过程满足
,
j0
所以
2 j
lims
xt s
t
0.
3 工程项目管理规划
t
s
因为
|
i0
i
|
, 所以s的增加
s趋于0.
3 工程项目管理规划
非平稳过程
多数经济变量的时间序列都有随着时间增加而增长的趋势, 不具有均值回复的特点.
两种刻画:
带趋势的平稳随机过程(前面已讲) 单位根过程
3 工程项目管理规划
随机趋势过程
有一类随机过程, 如果再 t 时刻扰动项发生变化, 那么它 的影响会一直存在下去,不会随着时间 t 增大会立刻衰 减到0. 这样过程成为随机趋势过程。
41 3 工程项目管理规划
如果拒绝零假设, 这时检验 量,拒绝得出结论平稳,否则非平稳.

时间序列分析中的平稳性与非平稳性

时间序列分析中的平稳性与非平稳性

时间序列分析中的平稳性与非平稳性时间序列分析是一种用来研究时间数据的统计方法,它可以揭示出时间序列数据的模式和趋势,并预测未来的发展。

在进行时间序列分析时,我们经常会遇到平稳性和非平稳性的问题,本文将重点讨论这两个概念及其在时间序列分析中的重要性。

1. 什么是平稳性?平稳性是指时间序列在统计特性上具有不变性,即其均值和方差不随时间的推移而发生改变。

具体而言,平稳时间序列的均值在时间维度上是稳定的,方差也不会随时间变化而增加或减小。

此外,平稳时间序列的自协方差只与时间间隔有关,而与特定时间点无关。

2. 平稳性的判断方法为了判断一个时间序列是否具有平稳性,我们可以使用一些统计检验方法。

常见的方法有ADF检验(Augmented Dickey-Fuller test)、KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin test)等。

ADF检验通常用于检验平稳性,其原假设是时间序列具有单位根(非平稳),如果检验结果拒绝了原假设,则可以得出时间序列是平稳的结论。

3. 非平稳性的表现形式非平稳性的时间序列可能会呈现出明显的趋势、季节性或周期性变化。

趋势是时间序列长期的、持续的上升或下降,季节性是指时间序列在特定时间点上出现的周期性波动,周期性是指时间序列存在长期的、不规则的上升或下降。

4. 非平稳性的处理方法如果时间序列是非平稳的,我们需要对其进行处理,以使其具备平稳性。

常见的处理方法有差分法、对数变换等。

差分法可以通过计算相邻时间点的差值来消除趋势和季节性,对数变换则可以通过对时间序列取对数来减少其波动性。

5. 平稳性的重要性平稳性在时间序列分析中非常重要,具有以下几个方面的意义: - 简化模型:平稳时间序列的统计特性稳定,可以简化模型的建立和预测。

- 降低误差:平稳时间序列的随机误差具有恒定的方差,使得模型的预测更准确。

- 提高可靠性:基于平稳时间序列建立的模型具有更好的可靠性和稳定性,可以更好地应对未来的变化。

(完整word版)时间序列分析基于R__习题答案及解析

(完整word版)时间序列分析基于R__习题答案及解析

第一章习题答案略第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。

显著性水平=0.05不能视为纯随机序列。

2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 ()0t E x =,21() 1.9610.7t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115φ=3.3 ()0t E x =,10.15() 1.98(10.15)(10.80.15)(10.80.15)t Var x +==--+++10.80.7010.15ρ==+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-=1110.70φρ==,2220.15φφ==-,330φ=3.4 10c -<<, 1121,1,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩3.5 证明:该序列的特征方程为:32--c 0c λλλ+=,解该特征方程得三个特征根:11λ=,2c λ=3c λ=-无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。

第六章 时间序列分析

第六章 时间序列分析
6 - 46
统计学
长期趋势分析方法
数列修匀法:
• 时距扩大法(平均数扩大和总数扩 大法)
• 移动平均法(简单和加权移动平均 法)
趋势模型法
6 - 47
统计学
时距扩大法
时距扩大法
• 平均数扩大法 • 总数扩大法
优缺点
• 简单明了 • 损失的信息过多,不便于进一步分
析例题
6 - 48
6 - 11
统计学
序时平均数的计算
序时平均数的计算
总量指标数列
相对数和平均数数列
时期数列 时点数列
连续登记 间断登记
间隔相等
间隔不等
6 - 12
统计学 时期数列序时平均数
时期数列序时平均数的计算公式例题
a a1 a2 ... an1 an
ai
n
n
有时以持续的时间长度为权数(加权算 术平均法)
6 - 20
统计学
平均增长量
平均增长量

各逐期增长量之和 增长量个数
累计增长量 原数列项数-1
6 - 21
统计学
时间序列的速度指标
6 - 22
统计学
发展速度
发展速度

报告期水平 基期水平
6 - 23
统计学
发展速度分类
定基发展速度
a1 / a0 , a2 / a0 ,..., an / a0
3. 排列的时间可以是年份、季度、月份或 其他任何时间形式例题
6-6
统计学
时间序列的种类
一、总量指标时间数列 1.时期数列 2.时点数列 二、相对指标时间数列 三、平均指标时间数列
6-7
统计学 编制时间序列的原则

时间序列分析基于R——习题答案

时间序列分析基于R——习题答案

第一章习题答案略第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。

显著性水平=0.05不能视为纯随机序列。

2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 ()0t E x =,21() 1.9610.7t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115φ=3.3 ()0t E x =,10.15() 1.98(10.15)(10.80.15)(10.80.15)t Var x +==--+++10.80.7010.15ρ==+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-=1110.70φρ==,2220.15φφ==-,330φ=3.4 10c -<<, 1121,1,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩3.5 证明:该序列的特征方程为:32--c 0c λλλ+=,解该特征方程得三个特征根:11λ=,2λ=3λ=无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。

时间序列的平稳非平稳协整格兰杰因果关系

时间序列的平稳非平稳协整格兰杰因果关系

时间序列的平稳、非平稳、协整、格兰杰因果关系步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。

若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。

如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。

1.单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。

常用的ADF检验包括三个模型方程。

在李子奈的《高级计量经济学》上有该方法的全部步骤,即从含趋势项、截距项的方程开始,若接受原假设,则对模型中的趋势项参数进行t 检验,若接受则进行对只含截距项的方程进行检验,若接受,则对一阶滞后项的系数参数进行t检验,若接受,则进行差分后再ADF检验;若拒绝,则序列为平稳序列。

2.当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。

3.当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验:(1)EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性;(2)JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)。

4.当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别。

5.格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。

非平稳时间序列的确定性模型的识别

非平稳时间序列的确定性模型的识别

实验:非平稳时间序列的确定性模型的识别(设计性实验)实验题目:爱荷华州1948—1979年非农产品季度收入数据如下所示。

601 604 620 626 641 642 645 655 682 678 692 707736 753 763 775 775 783 794 813 823 826 829 831830 838 854 872 882 903 919 937 927 962 975 9951001 1013 1021 1028 1027 1048 1070 1095 1113 1143 1154 11731178 1183 1205 1208 1209 1223 1238 1245 1258 1278 1294 13141323 1336 1355 1377 1416 1430 1455 1480 1514 1545 1589 16341669 1715 1760 1812 1809 1828 1871 1892 1946 1983 2013 20452048 2097 2140 2171 2208 2272 2311 2349 2362 2442 2479 25282571 2634 2684 2790 2890 2964 3085 3159 3237 3358 3489 35883624 3719 3821 3934 4028 4129 4205 4349 4463 4598 4725 48274939 5067 5231 5408 5492 5653 5828 5965通过分析数据,选择适当模型拟合该序列长期趋势。

实验内容:给出实际问题的非平稳时间序列,要求利用R统计软件,对该序列进行分析,掌握非平稳时间序列的确定性部分的分离方法,建立合适的某一类确定性模型(趋势分析方法、季节效应分析、既有趋势分析方法又有季节效应分析的综合分析方法)。

实验要求:处理数据,掌握非平稳时间序列的确定性模型的识别的方法,并根据具体的实验题目要求完成实验报告,并及时上传到给定的FTP和课程网站。

非平稳和季节时间序列模型分析方法

非平稳和季节时间序列模型分析方法

非平稳和季节时间序列模型分析方法时间序列分析是指对时间序列数据进行建模和预测的统计方法。

根据数据的特点,时间序列可以分为平稳序列和非平稳序列。

在实际应用中,很多时间序列数据并不满足平稳性的假设,因此需要对非平稳序列进行处理和分析。

非平稳序列分析的方法之一是差分法。

差分法的基本思想是通过对原始序列进行差分,得到一个新的序列,使其成为平稳序列。

差分法可以通过一阶差分、二阶差分等方法来实现。

一般来说,一阶差分可以用来处理线性趋势,而二阶差分可以用来处理二次趋势。

另一种非平稳序列分析的方法是趋势-季节分解法。

这种方法首先对时间序列进行趋势分解,将原始序列拆分为趋势、季节和残差三个部分。

然后对残差序列进行平稳性检验,判断是否需要进一步进行差分。

最后,可以利用拆分后的趋势和季节序列进行预测。

对于带有季节性的时间序列数据,还可以采用季节时间序列模型进行分析。

常见的季节时间序列模型包括季节自回归移动平均模型(SARIMA)和季节指数平滑模型。

这些模型可以对季节性进行建模,并利用历史数据进行预测。

总结起来,非平稳和季节时间序列的分析方法可以包括差分法、趋势-季节分解法和季节时间序列模型。

这些方法能够有效地处理和分析非平稳和带有季节性的时间序列数据,为实际应用提供了重要的参考。

时间序列分析是一种广泛应用于金融、经济、气象、销售、股票市场等领域的数据分析方法,它的目标是根据过去的数据模式,预测未来的趋势和行为。

在时间序列分析中,平稳性是一个重要的概念,指的是在时间序列的整个时间范围内,序列的统计特性不会随着时间的推移而发生显著的变化。

然而,在实际应用中,很多时间序列数据并不满足平稳性的假设,因此需要对非平稳序列进行处理和分析。

非平稳序列的特点是随着时间的推移,其均值、方差和协方差等统计特性会发生显著的变化。

这使得对其进行建模和预测变得困难。

因此,我们需要采取一些方法来处理非平稳序列,使其满足平稳性的假设。

差分法是一种常用的处理非平稳序列的方法。

非平稳时间序列分析

非平稳时间序列分析

非平稳时间序列分析1、首先画出时序图如下:t从时序图中看出有明显的递增趋势,而该序列是一直递增,不随季节波动,所以认为该序列不存在季节特征。

故对原序列做一阶差分,画出一阶差分后的时序图如下:difx140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10从中可以看到一阶差分后序列仍然带有明显的增长趋势,再做二阶差分:dif2x90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110做完二阶差分可以看到,数据的趋势已经消除,接下来对二阶差分后的序列进行194519501945 19551960196519701975198019851990199520001950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000检验:AutocorrelationsLag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error0 577.333 1.00000 | |********************| 01 -209.345 -.36261 | *******| . | 0.0712472 -52.915660 -.09166 | .**| . | 0.0800693 9.139195 0.01583 | . | . | 0.0806004 15.375892 0.02663 . |* . | 0.0806155 -59.441547 -.10296 .**| . | 0.0806606 -23.834489 -.04128 | . *| . | 0.0813247 100.285 0.17370 | . |*** | 0.0814318 -146.329 -.25346 | *****| . | 0.0832909 52.228658 0.09047 | . |**. | 0.08711810 21.008575 0.03639 | . |* . | 0.08759311 134.018 0.23213 | . |***** | 0.08767012 -181.531 -.31443 | ******| . | 0.09073613 23.268470 0.04030 | . |* . | 0.09610814 71.112195 0.12317 | . |** . | 0.09619415 -105.621 -.18295 | ****| . | 0.09699116 37.591996 0.06511 . |* . | 0.09872717 23.031506 0.03989 | . |* . | 0.09894518 45.654745 0.07908 | . |** . | 0.09902719 -101.320 -.17550 | ****| . | 0.09934720 127.607 0.22103 | . |**** | 0.10090821 -61.519663 -.10656 | . **| . | 0.10333722 35.825317 0.06205 | . |* . | 0.10389323 -93.627333 -.16217 | .***| . | 0.10408124 55.451208 0.09605 | . |** . |从其自相关图中可以看出二阶差分后的序列自相关系数很快衰减为零,且都在两倍标准差范围之内,所以认为平稳,白噪声检验结果:Autocorrelation Check for White NoiseTo Chi- Pr >Lag Square DF ChiSq------------------- Autocorrelations -------------------6 30.70 6 <.0001 -0.363 -0.092 0.016 0.027 -0.103 -0.04112 84.54 12 <.0001 0.174 -0.253 0.090 0.036 0.232 -0.31418 97.98 18 <.0001 0.040 0.123 -0.183 0.065 0.040 0.07924 126.99 24 <.0001 -0.175 0.221 -0.107 0.062 -0.162 0.096P 值都小于 0.05 ,认为不是白噪声。

平稳性和非平稳时间序列分析

平稳性和非平稳时间序列分析
22
β1 + β 3 Xt 如果我们作下列变换 ecmt = Yt − 1− β2 α = β2 − 1 ,那么模型变为:

∆Yt = β 0 + β1∆X t + αecmt −1 + ε t
误差修正模型的自动调整机制类似于适应性预 期模型。如果误差修正项的系数 α 在统计上 是显著的,它将告诉我们 Y 在一个时期里的失 衡,有多大一个比例部分可在下一期得到纠正。 或者更应该说“失衡”对下一期 水平变化的 Y 影响的大小)。
6
1、基本的DF检验方法 (1)检验时间序列{ Yt }是否属于最基本的 单位根过程,也就是随机游走过程 Yt = Yt −1 + ε t ,其中 ε t 为白噪声过程。 (2)检验思路 首先 Yt 服从如下的自回归模型 Yt = δYt −1 + ε t
7
如果其中 δ = 1 ,或者变换成如下的回归 模型 ∆Yt = λYt −1 + ε t 中的 λ = 0 ,那么时间序列{ Yt }就是最基 本的单位根过程 Yt = Yt −1 + ε t ,肯定是非平 稳的。 对上述差分模型中的显著性检验,就是 检验时间序列是否存在上述单位根问题。
25
ˆ 3、把 ut −1 作为误差修正项,代入前述ECM 模型。因为 Yt 和 X t 有协整关系,ECM模 型各项都平稳,因此可直接用OLS法估计 参数。最后再进行相关检验和进行应用 分析等。
26
15
四、时间序列的协积性 (一)定义 如果一组时间序列都 X 1 ,L, X n 是同阶单积 的( I (d ) ),并且存在向量 ( β1 ,L, β n ) 使加权组合 β1 X 1 + L + β n X n 为平稳序列 (I (0)),则称这组时间序列为“协积的 协积的” 协积的 (Cointegrated),其中 ( β1 ,L, β n ) 称为 “协积向量”。

(6)14.1非平稳时间序列的概念

(6)14.1非平稳时间序列的概念
i =1 i =1
(14.1.4)
(14.1.4) 式表明yt的方差随时间的变化而变化,平稳性 的第二个条件遭到破坏,即随机游走时间序列是非 平稳序列。 但是,随机游走时间序列的一个很有用的一个特点 是:若将(14.1.1)式写成差分形式便有
△yt = yt–yt-1 = ut
稳的。
(14.1.5)
i =1 t
由上式可知,同样可证明(14.1.11)是非平稳的。
§14.1 非平稳时间序列基本概念 时间序列的非平稳性,是指时间序列的统计规律随 着时间的位移而发生变化,即生成变量时间序列数 据的随机过程的统计特征随时间变化而变化。只要 宽平稳的三个条件不全满足,则该时间序列便是非 平稳的。当时间序列是非平稳的时候,如果仍然应 用OLS进行回归,将导致虚假的结果或者称为伪回归。 这是因为其均值函数、方差函数不再是常数,自协方 差函数也不仅仅是时间间隔的函数。
3. 带趋势项的随机游走序列 随机游走序列(14.1.1) 和(14.1.6)是比较简单的 非平稳序列,它们是 yt = µ + β t + yt-1 + ut (14.1.11)
的特例。 (14.1.11) 式称为带趋势项的随机游走序 列,容易证明,该时间序列也是非平稳时间序列。
由(14.1.11)有
t 由于 E ( y ) = y + tµ + ∑ E ( ) = y + tµ ui t 0 0 i =1
(14.1.9) (14.1.10)
2 V ( yt ) = V ( y0 + tµ + ∑ ui ) = ∑ V (ui ) = t σ u i =1 i =1
t
t
(14.1.9)和(14.1.10)式表明yt的均值和方差都是 t的函数,而且随着时间发散到无穷大。显然,带漂 移项的随机游走时间序列也是非平稳时间序列。

非平稳时间序列汇总

非平稳时间序列汇总

3
§ 5. 3.1 非平稳序列和单整
1.确定性时间趋势
描述类似图5.9形式的非平稳经济时间序列有两种方
法,一种方法是包含一个确定性时间趋势
yt a t ut
(5.3.1)
其中 ut 是平稳序列;a + t 是线性趋势函数。这种过程
也称为趋势平稳的,因为如果从式(5.3.1)中减去 a + t,
随机游走,说明 yt 的差分序列yt是平稳序列。
6
实际上,在5.1节中讨论的回归方程的序列自相
关问题暗含着残差序列是一个平稳序列。这是因为,
如果残差序列是一个非平稳序列,则说明因变量除 了能被解释变量解释的部分以外,其余的部分变化 仍然不规则,随着时间的变化有越来越大的偏离因 变量均值的趋势,这样的模型是不能够用来预测未
12
(1) 如果 -1< <1,则 yt 平稳(或趋势平稳)。 (2) 如果 =1,yt 序列是非平稳序列。(5.3.4)式可写成:
显然 yt 的差分序列是平稳的。 是非平稳的。
yt yt 1 yt ut
(3) 如果 的绝对值大于1,序列发散,且其差分序列
yt ( 1) yt ut
11
1. DF检验 为说明DF检验的使用,先考虑3种形式的回归模型
yt yt 1 ut
yt yt 1 a ut
(5.3.5) (5.3.6) (5.3.7)
yt yt 1 a t ut
其中 a 是常数, t 是线性趋势函数,ut ~ i.i.d. N (0, 2) 。
单整 I(2) ;以不变价格表示的消费额、收入等流量数
据经常表现为1阶单整I(1) ;而像利率、收益率等变化 率的数据则经常表现为0阶单整I(0) 。

平稳性和非平稳时间序列分析

平稳性和非平稳时间序列分析

28
随机游走一直围绕最初出发点为中心前后左右移动,但随着游走 时间次数增加,围绕最初出发点的来回的距离(方差)越来越远。
29

随机游走模型。 它最早于1905年7月由卡尔〃皮尔逊(Karl Pearson)在 《自然》杂志上作为一个问题提出: 假如有一个醉汉醉得非常严重,完全丧失方向感,把他放 在荒郊野外,一段时间之后再去找他,在什么地方找到他 的概率最大呢?

奖级
中奖条件 红球 蓝球
说明
单注奖金
一等奖
●●● ●●●

当奖池资金低于 1亿元时,奖金 总额为当期高等 选6+1中6+1 奖奖金的70%与 奖池中累积的奖 金之和。
---------时间序列的动态特性 时间序列模型:时间序列各观测值之间的关系。
从系统的观点来看,某一时刻进入系统的输入 对系统后继行为的影响
与t无关,与 有关的有限值
60
ARMA(p,q)模型的平稳性条件

宽平稳时间序列(week stationary)—指序列的 统计性质只要保证序列的二阶矩平稳就能保证序 列的主要性质近似稳定。
5
时间序列的平稳性定义
如果在任取时间 t 、 s 和 k 时,时间序列 X t 满足如下三个条件:
EXt2
EX t
E( X t t )( X s s ) E( X k k )( X k st k st )
t 1 j t j

类似
阶数增加,越来越复杂!
53
一般情况?
cov( zt , zt ) E zt mt zt mt E zt zt
E (at 1at 1 j at j )(at 1at 1 j at j )

计量经济学-第6章⑴时间序列的平稳性及其检验精品文档

计量经济学-第6章⑴时间序列的平稳性及其检验精品文档

0.059 3.679 4.216 6.300 7.297 11.332 12.058 15.646 17.153 18.010 22.414 22.481 24.288 25.162 26.036 26.240 26.381
-0.031 0.157 0.264 -0.191 -0.616 -0.229 -0.385 -0.181 -0.521 -0.364 -0.136 -0.451 -0.828 -0.884 -0.406 -0.162 -0.377 -0.236 0.000
(b)
图形表示出:该序列具有相同的均值, 但从样本自相关图看,虽然自相关系数迅速 下降到0,但随着时间的推移,则在0附近波 动且呈发散趋势。
样本自相关系数显示:r1=0.48,落在 了区间[-0.4497, 0.4497]之外,因此在5% 的显著性水平上拒绝1的真值为0的假设。
该随机游走序列是非平稳的。
• 注意:
确定样本自相关函数rk某一数值是否足够接近 于0是非常有用的,因为它可检验对应的自相关 函数k的真值是否为0的假设。
Bartlett曾证明:如果时间序列由白噪声过程生成, 则对所有的k>0,样本自相关系数近似地服从以0 为均值,1/n 为方差的正态分布,其中n为样本数。
也可检验对所有k>0,自相关系数都为0的联合 假设,这可通过如下QLB统计量进行:
例如:如果有两列时间序列数据表现出一致的变 化趋势(非平稳的),即使它们没有任何有意义的 关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的,而 且主要的经济变量如消费、收入、价格往往表现为 一致的上升或下降。这样,仍然通过经典的因果关 系模型进行分析,一般不会得到有意义的结果。

第6章 多元时间序列分析

第6章 多元时间序列分析

从协相关图可以看出,yt 与 xt3 , xt4 , xt5 , xt6 , xt7 的相关系数显著非零,则回归模型可以表示为:
yt 3 xt3 4 xt4 5 xt5 6 xt6 7 xt7 t 由于延迟的阶数较多,为减少待估参数的个 数,可以考虑拟合如下的 ARMA(1,2) 模型:
第二节 虚假回归
上一节我们介绍了平稳多元时间序列模型: ARIMAX模型,当响应序列和输入序列均为平稳 序列时,我们可以放心地使用ARIMAX模型来分 析变量间的因果关系。
如果序列不满足平稳性条件,使用ARIMAX 模型就要小心,因为这时容易产生虚假回归问题。
一、假回归的概念
若xt 与 yt 是非平稳序列,如下回归模型
t ˆ1 ˆ1
并不服从 t 分布,此时估计量 ˆ1 的真实方差要远
远大于 t 分布时的方差。
若仍采用 t 分布进行检验就会大大低估估计 量 ˆ1 的真实方差,从而高估 t 值,增大拒绝原假 设的概率(增大犯第一类错误的概率)。会导致 两个没有任何因果关系的序列变量通过了显著性 检验。
这样的一种回归有可能拟合优度、显著性水平 等指标都很好,但残差有高度的自相关性,并且极 不稳定。这种回归关系不能够真实反映因变量与解 释变量之间存在的均衡关系,而仅仅是数字上的巧 合而已。
首先构建响应序列和输入序列的回归模型:
yt
k i 1
i (B) i (B)
Bli
xit
t
式中,i (B) 为第 i个输入变量的自回归系数多项 式,i (B) 为第 i个输入变量的移动平均系数多项 式, li 为第i个输入变量的延迟阶数,{ t } 为回归 残差序列。
由于响应序列和输入序列均为平稳序列,所 以残差序列 { t } 也是平稳的。因此我们可以使用 ARMA模型继续提取残差序列中的相关信息。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t
• 2 L) ( p L) (
t
从而差分序列平稳,所以例子2中的序列是单位根过程。
对非平稳序列差分,只要进行一次或多次差分就可以 转化为平稳序列。差分的次数称为阶数。
■单位根过程例子:
令 Wt (1 L)d Yt , Wt 是一个ARMA(p,q)过程。
( L)Wt ( L) t
H0 : 1
xt
■单位根检验:
or
H0 : 0
xt
■如果H0为真, t
x et 是平稳的,此时
是二阶单整的,
t 是一阶单整的,记为I(1)
■如果
x t要差分两次才平稳,则 x t
记为I(2)
例子2:趋势平稳过程 Yt t at

at
表述为 ARMA(p,q)过程
单位根过程(Unit Root Process) 或差分平稳过程(Difference Stationary) Yt =+ut 其中{ ut }是平稳随机过程,称{Yt}是单位 根过程,或差分平稳过程。
单位根过程又称一阶单整过程,记为I(1),平 稳过程记为I(0)。类似,如果差分n-1次不稳,
(1)没有常数的均值函数,图形不表现出 均值回复现象。 (2)方差不是常数,并且随着时间的增加 趋于无穷。 (3)自相关函数不衰减,样本有限时,样 本自相关函数衰减速度慢。 (4)预测的方差随步长的增加趋于无穷 。
带随机趋势的非平稳随机过程
二,带漂移的随机游动 Yt =+ Yt-1 +t 通过迭代得到 Yt = y0 +t+t +…+1 因此带常数项的随机游动既有确定趋势又 有随机趋势。

p
( L)at ( L) t
(1 1 L p L )at (1 1 L q Lq ) t
如果 ( z ) 0 的根都在单位圆外,则 平稳随机过程。
ut 是
如果 ( z ) 0 的根有一个等于1,其他的都在单位 圆外,进行一次差分:

迭代上述模型,得到: Yt = y0 +t +…+1 性质 均值为常数:E(Yt)= y0 方差趋于无穷 Var(Yt)=Var(t +…+1)=t2
随机游动 Yt = Yt-1 +t

(1)
自协方差函数
E(Yt y0 )(Yt s y0 ) (t s) ts s (t s) / (t s)t t
|
i 0

t ~ WN (0, 2 )
i
|
预测上该类模型特点: 3)长期预测趋于无条件均值, 4)预测方差随着预测步长增加,但有界。 5)t时刻的扰动带来的影响随着时间的增加逐渐趋于0.
Yt s s 0 as s t
趋势平稳随机过程(TS) Trend-Stationary Stochastic Process
自协方差与时刻有关, 自相关函数不衰减,样本有限时,样本自相关 函数衰减速度慢
2
随机游动 Yt = Yt-1 +t

(1)
预测
模型(1)在预测原点h的向前一步预测
ˆ Yh (1) E(Yh1 | Yh , Yh1 ,) Yh
ˆ Yh (2) E (Yh 2 | Yh , Yh 1 , ) E (Yh 1 | Yh , Yh 1 ,) E (Yh 1 h 2 | Yh , Yh 1 , ) ˆ E (Y | Y , Y ,) Y (1) Y

带随机趋势的非平稳随机过程
随机游动 Yt = Yt-1 +t

(1)
把随机游动看成一个特殊的AR(1)模型,那 么 Yt-1 的系数是1,这不满足AR(1)模型平稳 性的条件。从而,随机游动序列不是弱平稳 的,称之为单位根非平稳时间序列。
一阶差分 Yt 为平稳 时间序列。 单位根过程
带随机趋势的非平稳随机过程
1.趋势平稳随机过程只有确定趋势;而单位根过 程具有随机趋势,有时也有确定趋势。 2.趋势平稳随机过程去掉趋势项平稳,单位根过 程差分后平稳。 3.趋势平稳随机过程方差是常数,均值是时间的 函数;单位根过程方差是时间的函数。
4,趋势平稳过程对冲击的反应是暂时 的,二单位根过程对冲击的反应是长久的。 5,趋势平稳随机过程长期预测与初始值无 关,预测方差有界;单位根过程长期预 测与初始值有关,并且预测均方差趋于 无穷。
许多经济变量的时间序列数据都有随时间增加 而增长的趋势,不具有均值回复的特性。如GDP
例如:
Yt c0 c1t ut
2
(1)
l
Yt c0 c1t c2t ... cl t ut (2)
势是确定性的,称为趋势平稳随机过程。
其中Ut 是平稳随机过程。该类模型认为趋

经济变量大部分情况是线性趋势,因此 趋势平稳过程常常有下面的定义:
(1 L)Wt (1 L) t
W (Y
i 1 i i 1
t
t
i
Yi 1 ) Yt Y0
假设Yt 0, 则
W
i 1
t
i
Yt
即一个ARMA过程求和可以得到一个ARIMA过程。 易知ARIMA(1,1,1)过程是单位根过程
两种非平稳随机过程的区别
Yt t ( L) t
其中


E( )
2 t
i
是白噪声过程, ( L) i Li t i 0
2

|
i 0
|
TS特点
以模型 Yt c0 c1t ut
(1) 为例:
2 2
E(Yt ) c0 c1t
Var(Yt ) E(Yt c0 c1t )
单位根检验-DF,ADF,PP,KPSS 检验
单位根检验大部分以非平稳性为零假设。 其中KPSS以平稳为零假设。 单位根检验的判断方法是: 如果计算出的统计量的值小于临界值,则 拒绝零假设,该过程是(趋势)平稳过程; 否则不能拒绝零假设,该过程是单位根过程。
练习题:P297,1
差分n次平稳,则该过程为n阶单整,记为I(n)。
单位根过程例子
例子1,随机游动 Yt = Yt-1 +t 是单位根过程

一阶差分 Yt t 是平稳的
AR(1): t xt 1 et 如果 1, 我们说存在单位根 x
■一阶差分
xt ( 1) xt 1 et xt 1 et

均值是时间的函数,方差是常数。
把趋势平稳随机过程去掉趋势项,成为一 个平稳随机过程 。

带随机趋势的非平稳随机过程
一,随机游动(random walk) Yt = Yt-1 +t (1) 其中{t }是白噪声过程 。

许多金融市场行为类似一个随机游动,比如,今天 的股票价格等于昨天的股票价格加上一个随机震荡。
h 1 h h 1 h
h
对任意的预测步长l>0,都有
ˆ Yh (l ) Yh 故随机游动不是均值回转的
可验证向前l步预测误差
ˆ eh (l ) Yhl Yh (l ) h1 hl
从而
Var(eh (l ) l
2
预测的方差随步长的增加趋于无穷
不平稳随机过程的特点
金融时间序列模型
第六章:非平稳时间序列模型
金融时间序列模型
6.1趋势平稳和单位根过程
平稳过程和非平稳过程的特点
平稳随机过程的定义:
EYt 2 EYt 2 E Yt 2 E Yt Ys ts t s,只与t s有关,与具体时刻 , s无关 t
(1 L)Yt (1 L) (1 L)t (1 L) (1 1 L q Lq ) (1 1 L p L )
p
t
(1 L)Yt
(1 L)(1 1 L q Lq ) (1 L)( 2 L) ( p L) (1 1 L q Lq )
平稳随机过程的特点
(1)不同时刻,均值相同;围绕常数的长期均 值波动,称为均值回复(Mean Reversion)。 (2)方差有界并且不随时间变化是常数。在每 一时刻,对均值的偏离基本相同,波动程度大 致相等。

线性平稳ARMA模型,可以表述成下面的
MA() 表达式:
Yt t t 1 t 1 ,
过程 {Yt } 被称为自回归-求和-滑动平均过程,记为 ARIMA(p,d,q). d是差分的次数,d通常小于3. 求和的含义指ARIMA过程可以表示成ARMA过程的和

例3一个ARIMA(1,1,1)过程如下:
(1 L)(1 L)Yt (1 L) t
令 Wt (1 L)Yt , 因此 Wt 是如下ARMA过程:
相关文档
最新文档