分类变量的统计分析
第三单元3分类变量的统计分析
第三单元3分类变量的统计分析一、分类变量的描述统计分析分类变量的描述统计分析主要包括频数分布、频率分布和柱状图等。
1.频数分布频数(frequency)是每个类别在样本或总体中的出现次数。
频数分布(frequency distribution)是指将各个类别的频数按照从小到大的顺序列出,以显示它们的分布情况。
频数分布可以通过计算或绘制柱状图来展示。
2.百分比分布百分比(percentage)是每个类别频数与总频数的比例。
百分比分布(percentage distribution)是指将各个类别的百分比按照从小到大的顺序列出,以显示它们的分布情况。
百分比分布可以通过计算或绘制饼状图来展示。
3.柱状图柱状图(bar chart)是一种常用的展示分类变量分布情况的图形。
在柱状图中,每个类别在x轴上对应一个竖直的条形,条形的高度表示该类别的频数或百分比。
柱状图不仅可以展示各个类别的分布情况,还可以进行不同类别之间的比较。
二、分类变量的关联性分析分类变量的关联性分析可以帮助我们了解两个或多个分类变量之间的相关性。
其中常用的关联性分析方法包括卡方检验和列联表分析。
1.卡方检验卡方检验(chi-square test)是一种非参数统计方法,用于检验两个分类变量之间是否存在相关性。
卡方检验的原假设是两个变量独立无关,备择假设是两个变量相关。
通过计算卡方统计量和对应的P值,可以判断两个变量之间的关联性。
2.列联表分析列联表(contingency table)是用来描述两个或多个分类变量之间关系的表格。
通过计算每个类别的频数或百分比,并绘制列联表的热图或堆积图,可以直观地展示两个变量的关联性。
此外,通过计算列联表的卡方值和判断显著性水平,还可以进行进一步的关联性分析。
三、分类变量的预测分析分类变量的预测分析可以帮助我们根据已有数据对未知数据进行分类。
其中常用的预测分析方法包括逻辑回归和决策树。
1.逻辑回归逻辑回归(logistic regression)是一种用于建立分类模型的统计学方法。
预防医学(二)第十七章 分类变量资料的统计 分析
第二节 分类变量资料的统计推断
• 一、率的抽样误差与标准误 • 由随机抽样造成的样本率和总体率的差异,以及各样本率 之间的差异称为率的抽样误差。 • 率的抽样误差可用率的标准误来表示 • 率的标准误的计算
• σp为率的标准率,π为总体率,n为样本含量
第二节 分类变量资料的统计推断
• 二、总体率的可信区间估计 • 方法:查表法、正态近似法 • 1.查表法 • 当样本含量较小(如n≤50),特别是p接近于0或1时,可根 据样本含量n和阳性数x,查相关统计学教材“百分率的可信区间” 表,求得总体率可信区间。
第三节 卡方检验(X2检验)
• 一、四格表资料的X2检验 • 2.假设检验步骤 • (1)建立检验假设,确定检验水准 • H0:π1=π2,即试验组与对照组的总体有效率相等。 • H1:π1≠π2,即试验组与对照组的总体有效率不等 • α=0.05(双侧检验) • (2)计算检验统计量
• A为实际频数 • T为理论频数
第三节 卡方检验(X2检验)
• 三、行✖列表资料的X2检验 • 例:某医院用3种方案治疗急性无黄疸型病毒性肝炎 254例, 观察结果见下表,问3种疗法的有效率是否不等。
• 检验假设具体步骤: • H0:3种治疗方案的有效率相等
第三节 卡方检验(X2检验)
• 三、行✖列表资料的X2检验 • 检验假设具体步骤: • H1:3种治疗方案的有效率不全等,α=0.05
第二节 分类变量资料的统计推断
• 四、率的u检验 • 2.计算检验统计量 • (2)两样本率比较的u检验
• 其中P1和P2为两样本率,Sp1-p2为两样本率之差的标准误, P含c量为两样本合并率,Pc=(X1+X2)/(n1+n2),n1和n2分别为两样本
分类变量资料的统计分析培训课件
660
6
0.91
5.41
初中生
1115
49
4.39
44.14
高中生
1563
56
3.58
50.45
合计
3338
111
3.33
100.00
率和构成比不是同一指标,在应用时应注意加以区分。
精
9
相对比
相对比:指两个有关指标之比,说明两个指标的比 例关系。
相对比=甲指标(或 乙指标
100%)
两个指标可以是绝对数、相对数、平均数,可以是性质相 同或性质不同,但两个指标互不包含。
•甲地麻疹发病率为 100/667×100%=15% •乙地麻疹发病率为 50/250×100%=20%
用相对数能较好地反映分类变量资料的特征。
精
3
第一节 分类变量资料的统计描述
• 常用相对数 • 应用相对数时的注意事项 • 率的标准化法
精
4
相对数
• 相对数:是两个有关联的数值或指标之比。 • 常用的相对数有:
精
15
直接法
适用情况:已知被标化组各年龄组的实际率Pi,
用标准人口数或标准人口构成进行计算。
p'
N i pi Ni
或p'
Ci pi
其中 Ni 为第i 组标准人口数, Ni 为标准组总人数, pi 为第i 组的实际率,Ci 为第组标准人口构成。
精
16
表 10-4 甲、乙两社区 20 岁以上居民高血压标准化患病率(直接法)
精
14
计算标准化率时,首先要选定一个比较的“标准”。 如,对年龄构成进行标化时,可选用全国、全省等大范围人 口构成资料作标准,也可将比较组的合并人口或以其中任一 组的人口构成作标准。 原则上,选定的标准人口应有代表性、较稳定,容易获得, 便于比较。 根据获得的资料和选定的标准不同,标准化法可分为直接法 和间接法。
分类变量资料的统计分析.I
详细描述
市场调查中,分类变量常用于描述消费者的偏好、态度 和行为。例如,消费者对于某产品的品牌偏好、购买频 率、使用体验等都可以用分类变量来表示。对这些分类 变量进行分析,可以帮助企业了解市场需求、消费者行 为模式和产品优缺点,从而制定更有效的营销策略。
案例二:医学研究中的分类变量分析
总结词
医学研究中,分类变量常用于描述患者的疾病类型、治疗方式等。
比例与百分比
比例
某一类别的观察值数量与另一类别观察值数量的比值,用于比较不同类别的相对 大小。
百分比
某一类别的观察值数量与总观察值数量的比值乘以100,用于了解各类别的相对比 例。
集中趋势的度量
众数
出现次数最多的数值,反映数据的集 中趋势。
中位数
将数据从小到大排列后,位于中间位 置的数值,反映数据的集中趋势。
案例四:市场细分中的分类变量分析
要点一
总结词
要点二
详细描述
市场细分是市场营销中的重要概念,分类变量是市场细分 的重要依据。
市场细分是根据消费者的需求、行为和特征等因素将市场 划分为若干个具有相似性的子市场。分类变量是市场细分 的重要依据,例如消费者的年龄、性别、收入、职业等因 素都可以作为分类变量用于市场细分。通过对这些分类变 量的分析,企业可以更好地了解不同市场的需求特点,从 而制定更有针对性的营销策略,提高市场占有率和竞争力 。
总结词
社交网络分析中,分类变量常用于描述用户的行为、 关系和属性。
详细描述
在社交网络分析中,分类变量被广泛用于描述用户的 行为、关系和属性。例如,用户的行为可以分为发帖 、评论、点赞等类型;关系可以分为好友、关注、粉 丝等类型;属性可以包括用户的性别、年龄、职业等 。对这些分类变量进行分析,可以帮助研究者了解社 交网络的结构、用户行为模式和信息传播规律等,从 而更好地理解社交网络中的各种现象。
分类变量资料的统计分析练习
A 乙文结果更为可信 B 两文结果相矛盾 C 甲文结果更为可信 D 两文的结果基本一致 E 甲文说明总体的差异更大
5. 行*列表的卡方检验应该注意 A 任意格子的理论数小于 1,则应该用校正公式 B 若有五分之一以上的格子数理论数小于 5,则要考虑合理并组 C 任意格子的理论数小于 5 就应该并组 D 若有五分之一以上的理论数格子数小于 5,则应该用校正公式 E 以上都不对
-
+
23
12
35
-
7
8
15
合计
30
20
50
21某医生在专业上刻苦钻研,发明了 治疗某种顽疾的新疗法,要确证该疗 法比常规疗法治疗某种疾病更优,他 进行了一次临床试验,对照组和治疗 组两组,分别使用新疗法和常规疗法, 治疗结果如下表:试问,以上试验结 果能否说明新疗法优于传统疗法?
组别 有效
治疗组
3040
100.0
14. 男性肺癌发病率是女性的 10 倍,该指标为 A 相对比 B 构成比 C 流行率 D 标准化流行率 E 定基比
• 15. 某医生欲比较三种疗法治 疗某种疾病的疗效,中药加 针灸组治疗20例,其中15例 好转,单纯中药组治疗21例, 12例好转,西药组治疗23例, 18例好转。若对该资料进行 卡方检验,自由度应该为
6. 用两种不同方法治疗胆结石,中医治疗 19 人,其中 15 例治愈;西医治 疗 18 人,治愈 12 人。若比较两种方法的治疗效果,应该用
7. 欲比较两地肝癌的死亡率时,对两个率 A 应该对年龄和性别均进行标化 B 应对年龄进行标化 C 应该对性别进行标化 D 不需要标化,直接比较 E 以上都不是源自19对照组15
治疗组
38
对照组
描述分类变量资料的主要统计指标
描述分类变量资料的主要统计指标在描述统计中,经常要描述两个变量之间的关系,这就是指标。
描述分类变量资料的主要统计指标有:平均数(AV)、中位数(median)、众数(major)、方差(F)、标准差(SD)、相关系数(r)、误差(SEM)、信赖区间(CI)、 F统计值等。
一、全距n。
平均数在统计学上指全部观察单位的算术平均数,即众数、中位数和方差的算术平均数。
它反映了各个变量在总体中所占的比例。
用公式表示为n=AV。
例如:成人牙齿脱落率调查,共调查成人2046人,其中有根以上完全不能保留者占4.5%,按标准脱落百分数计算,每根牙齿应脱落2%。
则该项调查结果的全距是2.5%。
全距愈小说明变量在总体中所占的比例愈大,代表性愈强。
二、方差 1。
方差又称离散系数或变异系数。
由于各个观察单位所得的资料是来自不同的变量,因而这些资料都是不可比的。
但在抽样调查时,要使各个单位取得同样的结论,在对总体进行分析时,就必须把各单位的观察结果加以平均化,从而消除了由于来源不同引起的资料不可比问题,并使各单位的离散状况趋于一致。
这就需要用变异系数将各单位的资料加以平均,使其成为总体的平均资料。
因此,方差就是各个单位的变异程度的一种度量。
方差的符号是σ,单位是标准差(SD)。
2。
标准差的计算公式为:SD=∑[(X-Y)÷2]×100%。
式中SD表示标准差。
标准差的大小是随研究的目的而异的,通常用于某些问题的检验或推断。
如:某县的全年工业总产值的多少与全年粮食总产量的多少成正比;销售额的增长速度快慢与企业利润成正比。
对于全距,方差,标准差,原因,方差是概率统计的专有名词。
在实际工作中,我们通常简单地用:均数×方差=总体标准差(均值×方差=总体方差),来概括变量之间的关系。
当然,我们在阅读统计资料时,有时也会碰到一些专门用语,如果只看题目或只看这些专门用语,也很难理解题意,但只要知道它们的含义就行了。
医学统计方法—分类变量资料的统计分析
常用类型: ➢率(rate) ➢构成比(constituent ratio) ➢相对比(relative ratio),等
概念:又称频率指标或强度指标,是指某一现象在一定条件 下实际发生的例数与可能发生该现象的总例数之比,用以说 明某现象发生的频率或强度。
2
91 1 4.90
bc
9 1
(3)确定P值:
查
x
2界
值表,来自得x 2 0.05,1
3.84
x2 0.01,1
6.63。
现 x2 =4.90,x2> x20.05, 故 P<0.05 (4) 做出推断结论:
按α=0.05水准,拒绝H0 ,接受H1,差异有统计学 意义,可以认为两种培养方法的效果不同, A培养基 效果优于B培养基。
计算相对数时应有足够的样本含量; 资料分析时不能以构成比代替率; 资料的对比应注意其可比性; 样本率(或构成比)的比较应考虑抽样误差。
表 某年某医院两种疗法治疗某传染病各型的治愈率(%)
病型
新疗法
传统疗法
治疗例数 治愈例数 治愈率 治疗例数 治愈例数 治愈率
普通型 350
重型
150
217
药物 甲药 乙药 合计
表1 两药物疗效的比较
有效
无效
合计
65 (57.4) 17(24.6)
82
40 (47.6) 28 (20.4)
68
105
45
150
表内蓝体数字为实际頻数,括号里数字为 理论頻数,是假设两药物疗效无差别算得
若假设H0:π1=π2成立,四个格子的实际频数 A 与理论 频数 T 相差不应该很大,即统计量x2值不应该很大。如 果x2值很大,则反过来推断A 与T 相差太大,超出了抽样 误差允许的范围,从而怀疑H0的正确性,继而拒绝H0, 接受其对立假设 H1,即π1≠π2 。
分类变量的统计分析
分类变量的统计分析分类变量是指由有限个离散数值所组成的变量,例如性别、年级、职业等。
在统计学中,分类变量的统计分析可以帮助我们了解变量的分布、比较不同组之间的差异以及预测未来的趋势。
下面将详细介绍分类变量的统计分析方法。
1.描述统计:描述统计是对分类变量的基本统计特征进行描述和总结,包括频数、百分比和图表等。
频数是指每个类别出现的次数,百分比是指每个类别所占的比例。
通过频数和百分比可以直观地了解各个类别的分布情况,从而对整体的情况有一个直观的了解。
图表可以用来更直观地展示分类变量的分布情况,常用的图表包括饼图、柱状图和条形图等。
2.独立性检验:独立性检验用于判断两个或多个分类变量之间是否存在关联。
通常使用卡方检验进行独立性检验。
卡方检验的原假设是两个变量之间是独立的,备择假设则是两个变量之间存在关联。
通过卡方检验的结果可以判断两个变量之间是否存在显著性差异。
3.方差分析:方差分析用于比较多个分类变量之间的均值是否存在显著性差异。
方差分析将总体的方差分解为组内方差和组间方差,通过比较组间方差与组内方差的大小来判断不同组之间的均值是否显著不同。
方差分析常用于比较多个类别的平均值,例如不同年级学生的成绩差异、不同岗位员工的工资差异等。
4. 相关分析:相关分析用于判断两个分类变量之间的关系强度和方向。
常用的相关分析方法有Spearman秩相关系数和Kendall秩相关系数。
相关系数的取值范围为-1到1,当相关系数接近于1时,说明两个变量之间存在正相关关系;当相关系数接近于-1时,说明两个变量之间存在负相关关系;当相关系数接近于0时,说明两个变量之间不存在线性相关关系。
5.预测模型:分类变量的统计分析还可以用于建立预测模型,例如逻辑回归模型和决策树模型。
逻辑回归模型可以用来预测二分类变量的概率,例如预测一些人是否患有其中一种疾病。
决策树模型可以用来预测多分类变量的类别,例如预测一些植物的品种。
总之,分类变量的统计分析方法包括描述统计、独立性检验、方差分析、相关分析和预测模型等。
分类变量资料的统计分析 详细讲解
分类变量资料的统计分析详细讲解资料的统计分析通常包括描述统计和推断统计两个方面。
描述统计主要是对变量的单个特征进行分析,常用的统计指标包括频数、比例、均值、中位数、众数、标准差等;推断统计则是在样本数据的基础上推断总体数据的特征,常用的方法包括假设检验、方差分析、回归分析等。
本文将以分类变量为例,详细介绍分类变量资料的统计分析方法和步骤。
首先,分类变量是一种相互独立、不可顺序比较的变量,常见的示例包括性别、职业、学历等。
对于分类变量资料的统计分析,首先需要进行数据的整理和描述。
数据整理包括去除缺失值、异常值和重复值等处理。
应根据实际情况选择合适的处理方法,常用的方法有均值填充、删除等。
同时,需要将数据进行编码或离散化处理,便于后续的分析。
数据描述主要包括频数及比例的统计,可以用来描述分类变量的分布情况。
通过计算每个类别的频数和比例,可以获得分类变量的基本特征。
同时,可以使用图表来展示分类变量的分布情况,如饼图、柱状图等。
接下来,可以对分类变量与其他变量之间的关系进行分析。
常用的方法有卡方检验和列联表分析。
卡方检验适用于两个分类变量之间的关系检验,可以用来判断两个分类变量是否相关;列联表分析则可以用来描述两个分类变量之间的关系程度。
通过分析发现两个或多个分类变量之间的关联关系,可以更好地理解数据。
此外,对于分类变量的统计分析还可以进行组内和组间的比较。
组内比较主要是对同一分类变量的不同类别进行比较,常用的方法有t检验和方差分析;组间比较则是对不同分类变量之间的差异进行比较,可以使用相关分析和回归分析等方法。
最后,需要进行结果的解释和报告。
对分类变量资料的统计分析得出的结果进行解读,并进行相关性讨论。
通过各种统计方法对变量进行分析,报告结果可以提供决策者一个更全面的了解。
总结起来,分类变量资料的统计分析主要包括数据整理和描述、关联分析、比较分析和结果解释等步骤。
通过这些步骤可以更好地分析分类变量的特征、关系和差异,为实际问题的解决提供有力的支持和参考。
2-数值变量与分类变量的统计描述分析
实习二统计描述第164~180页实习二统计描述医学统计资料类型¾数值变量资料:又称为计量资料。
变量值是定量的,有单位的,表示为数值的大小。
¾无序分类资料:又称为计数资料。
变量值是定性的,没有单位,表示为相互独立的类别。
¾有序分类资料:又称为等级资料。
变量值是定性的,没有单位,各类别具有程度上的差异。
注:不同类型的资料,统计方法不同;各种类型的资料之间是可以相互转化的。
一、数值变量资料的统计描述统计描述包括两个方面:集中趋势的描述和离散趋势的描述一、数值变量资料的统计描述(一)数值变量资料的频数表频数表(frequency table):当变量值或者观测值较多时,将变量值分为适当的组段,统计各组段中相应的频数(或者人数),以描述数值变量资料的分布特征和分布类型。
一、数值变量资料的统计描述(一)数值变量资料的频数表频数表的用途1.描述数值变量资料的分布特征集中趋势(central tendency):频数最多的组段代表了中心位置(平均水平),从两侧到中心,频数分布是逐渐增加的。
离散趋势(tendency of dispersion):从中心到两侧,频数分布是逐渐减少的。
反映了数据的离散程度或者变异程度。
一、数值变量资料的统计描述(一)数值变量资料的频数表频数表的用途2.描述数值变量资料的分布类型正态分布:集中位置居中,左右两侧频数基本对称。
常见近似正态分布。
偏态分布:集中位置偏向一侧,频数分布不对称。
正偏态分布:集中位置偏向数值小的一侧或者左侧,有较长的右尾部。
负偏态分布:集中位置偏向数值大的一侧或者右侧,有较长的左尾部。
一、数值变量资料的统计描述(二)数值变量资料的频数分布图及正态曲线直方图及近似正态分布直方图及正偏态分布(二)数值变量资料的频数分布图及正态曲线一、数值变量资料的统计描述(三)集中趋势指标描述1.算数均数(均数mean )适用于正态分布或者近似正态分布总体均数:µ;样本均数:一、数值变量资料的统计描述一、数值变量资料的统计描述(三)集中趋势指标描述2.几何均数(geometric mean,G)适用于一种特殊的偏态分布资料:等比资料(常见于抗体滴度)。
第6章 分类变量的统计描述与参数估计
6.1.2 多个分类变量的联合描述 分类变量的联合描述使用列联表; 列联表是因分类变量的各类别交叉而成的复合频 数表,被称为行×列表; 列联表的分析结果直观、易比较; 应用列联表进行变量的交叉分析是数据分析报告 中分析结果显示的主要方式之一; 列联表分二维表和多维表(或n维表); 单元格内可给出原始频数、行与列百分比和总百 分比。
(3)率(Rate) 率是一个具有时间、速度、强度含义 的概念或指标,用于说明某个时期内某个 事件发生的频率或强度,其计算公式为: 某事件的发生率=观察期内发生某事件的对 象数/该时期开始时的观察对象数
相对数在使用时应当注意适用条件: 样本量较大时相对数比较稳定; 基数不同相对数不能直接相加求和。
第6章 分类变量的统计描述 与参数估计
2013.10
离散变量是把取值范围为有限个数或者是 一个数列构成的变量。 分类变量是表示分类情况的离散变量。 根据类别的有序性,分类变量可分为有序 分类变量(Ordinal Variable)和无序分类 变量(Nominal Variable),这两类变量 在统计描述上没有差别。
(2)构成比(Proportion) 构成比是把观察对象分为k个部分,其中 某一个/多个部分的例数占总例数的比例。它 描述某个事物内部各构成部分所占的比重,其 计算公式为: 构成比=某一组成部分的样本数/总样本数 构成比的分子必须是分母的一部分,所以 其取值0-1,百分比是一个标准的构成比,而 累计频率则是构成比概念的直接延伸。
6.1 指标体系概述
6.1.1 单个分类变量的统计描述 1.频数分布 频数(绝对频数)是指本类别出现的次数; 百分比(构成比)是指本类别出现的次数占 总次数的百分比,即本类别出现次数/总次 数×100%。
分类变量资料的统计分析
分类变量资料的统计分析分类变量是一种在研究或分析中常见的类型数据,它描述了被观察个体或对象之间的不同特征,可以将其分为不同的类别或组。
在统计学中,对分类变量的分析可以帮助我们了解不同类别的分布情况、比较不同类别之间的差异、探索不同类别与其他变量之间的关系等。
本文将介绍分类变量资料统计分析的一些常用方法。
首先,我们可以通过计算频数和频率来描述分类变量的分布情况。
频数是指每个类别中观察到的个体或对象的数量,频率则是频数除以总数后的比例。
通过绘制条形图或饼图,可以直观地展示分类变量不同类别的频数或频率分布,帮助我们了解变量的整体情况。
其次,我们可以对不同类别之间的差异进行比较。
其中一种常用的方法是卡方检验,它用于检验两个或多个分类变量之间是否存在显著性差异。
卡方检验的原理是通过比较观察到的频数与期望频数之间的差异来判断差异是否显著。
比如,我们可以用卡方检验来确定两个不同群体之间的分布是否存在显著差异。
此外,分类变量的统计分析还可以探索其与其他变量之间的关系。
当我们有一个分类变量和一个或多个连续变量时,可以使用方差分析(ANOVA)来检验分类变量对连续变量的影响是否显著。
方差分析通过比较不同类别下的连续变量的均值来判断差异是否显著。
另外,我们还可以使用列联表分析来研究两个或多个分类变量之间的关联关系,例如,我们可以通过计算卡方值来确定两个分类变量之间的关联程度。
此外,还有一些其他常用的分类变量分析方法。
比如,在研究中,我们经常遇到多个分类变量之间的关联关系,可以使用多项Logistic回归模型来分析这些多分类变量之间的依赖关系。
另外,如果我们想预测或分类新的个体或对象所属的类别,可以使用分类树或逻辑回归等方法进行建模和预测。
综上所述,分类变量的统计分析是一种有价值的工具,可以帮助我们理解和揭示数据背后的模式和关联关系。
通过对分类变量的分布和差异进行描述分析,我们可以更好地理解数据,并从中提取有用的信息。
分类变量资料统计分析
2、发展速度和增长速度 ①定基比发展速度 ②环比发展速度 ③定基比增长速度 ④ 环比增长速度
2020/7/10
11
常用相对数指标:
发病率=某同时时期期内平某均病人新口病数例k数 患病率观 =察同期时间期患平某均病人 病 的口 例 新数 数 旧 k
第四章 分类变量资料的统计分析
统计分析统 统计 计推 描断 述
2020/7/10
1
第一节 分类变量资料的统计描述
一、常用的相对数指标 (一)构成比(proportion)
构成比即一事物内部各组成部分所占的比重 或分布。常用百分数表示。又称构成指标。
构成比 同= 某 一一 事组 物成 各部 组观 分 成位 察 的 部数 单 观 分位 察 1的0数 % 单 0
(1)研究对象是否同质 (2)其它影响因素在各组的内部构成是否相同 (3)同一地区不同时期资料的对比应注意客观
条件有无变化 5、样本率或构成比的比较应做假设检验
2020/7/10
16
三、率的标准化法
例4.4( P54) 某省疾病控制中心欲进行甲、 乙两地某病总死亡率的比较,收集资料见表4-5。
2020/7/10
感染率=感染受某检病人原数体人数 k 死亡率= 同 某年 年平 死均 亡人 总口 人k数 数
某病死(亡 疾率 病别死 )= 亡 某同 率 年年因平某均病人死 口 k亡数
某年龄组(年 死龄 亡别 率死 )=同 亡 某年 率 年同 某年 年龄 龄组 数 组平 k死
某死因构成因比某 总 =类 死死 亡因 人死 数亡 10人 % 0 数
术前中性白细胞构成比是71.66%。
构成比的特点: ①各组成部分的构成比之和为100 %或1。 ②事物内部某一部分的构成比发生变化,其它
分类变量的描述统计
4.双变量分类数据的频数分布
双变量分类数据的频数分布常常表现为一张二维表(two-way table),我们把它叫做列联表 (contingency table)。
下表展现了不同城市的女性对新款夏装的接受态度的调查数据表
表1.3 列联表
对新款夏装的态度
非常喜 欢
有点 喜欢
既不反对 有点不 完全不 不知 Row 也不喜欢 喜欢 喜欢 道 Total
Statistics: principle and application
南京大学金陵学院
12
(1)点图
1.2 频数分布表
图1.3 饮料的点图
(2)条形图
条形图是用宽度相同的柱子的高度或长短来表示各类别数据的图形
Statistics: principle and application
图1.4 饮料的条形图
1.1 变量的类型 1.2 频数分布表 1.3 两个分类变量的关系
Statistics: principle and application
南京大学金陵学院
3
学习目标及重难点
【学习目标】: 1.用频数分布表描述数据的分布 2.用点图、条形图等图形来展示数据 3.用列联表分析两个分类变量之间的关系 【重难点】: 1.掌握用条件相对频数表示的对比条形图 2.两个分类变量是否独立
态度
非常喜 欢
有点喜欢
既不反对也 有点不
不喜欢
喜欢
完全不 喜欢
不知 道
合计
南京 上海
34.44% 22.58%
38.41% 30.97%
16.56% 25.81%
7.95% 13.55%
1.99% 0.66% 100.00% 5.81% 1.29% 100.00%
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r p' P P SMR ni Pi
当Pi代表死亡率时,r/(∑niPi)是被标化组的 实际死亡人数与预期死亡人数的比值,称为标准 化死亡比(standard mortality ratio , SMR) 。
30 30
WARNING
率的标准化应注意的问题
当各比较组内部构成不同,而且对总率有影响时,应
n=100,p = 0.9,np=90 > 5,n (1-p) =10 > 5
前已算得 S p 0.0088 0.03 ,则其95%CI为:
1.96S p
= 0.9 ±1.96 × 0.03 =( 0.8412 ,, 0.9588 ) 0.04 1.96 0.0088 (0.0228 0.0572 ) 即该新药有效率95%置信区间为84.12%~95.88%。
科别 住院人数 甲医院 乙医院 治愈人数 甲医院 乙医院 治愈率(%) 甲医院 乙医院
内科
外科 传染病科
1500
500 500
500
1500 500
975
470 475
315
1365 460
65.0
94.0 95.0
63.0
91.0 92.0
合计
2500
2500
1920
2140
76.8
85.6
28 28
34
率的标准误的计算: 理论值:
p
(1 )
n p(1 p ) n
35 35
估计值:
Sp
例 欲了解某种新药对慢性乙型肝炎的疗效, 对100名患者进行治疗,其中90人有效,试计算其
标准误。
本例n=100 p = 90/100 = 0.9,标准误为:
Sp
p(1 p) 0.04(1 0.04) 0.03 0.008 n 500
13
例2 某市乙型脑炎的发病率1990年为
4.48/10万,2000年为0.88/10万,则这两年相
对比为:
4.48 0.08 =5.09(倍) 或 100%=19.64% 0.88 4.48
14 14
例 3 某医院 2005年医护人员为 875 人,同年 平均开病床1436张,则该医院2005年病床数 与医护人员的相对比为:
②间接法
3.比较得出结论
23
23
①直接法
已知各科的真实治愈率。
Np p'
i i
N
Ni 或 p' pi N
24 24
甲、乙两医院的标准化治愈率(直接法Ⅰ)
科别 内科 外科 标准人口 Ni 2000 2000 原治愈率 Pi (%) 甲医院 65.0 94.0 乙医院 63.0 91.0 预期治愈人数 Ni Pi 甲医院 1300 1880 乙医院 1260 1820
P(X)
P(X)
P(X)
X
a. n=5
X
b. n=10
X
c. n=30
π=30%的二项分布示意图
40 40
率的抽样分布特征
1. 为离散型分布;
2. 当π=0.5 时,呈对称分布;
3. 当 n 增大时,只要π不太接近0或1,二项分布 逐渐逼近正态分布。 一般认为,当nπ和n(1-π)≥5时, 可近似看作 正 态分布。
41 41
总体率可信区间估计的方法
1. 正态近似法 当n足够大(n>50),且np和n(1-p) ≥ 5 总体率95%可信区间: p 1.96S p 总体率99%可信区间: p 2.58S p
42 42
上例中某地治疗100名患者,90人有效,得出
有效率90%,试估计该新药有效率95%置信区间。
36 36
二、总体率的可信区间估计
根据已知条件,总体率可信区间的估计有
2种方法:
正态近似法 查表法
37 37
二项分布
从某个二项分类总体中随机抽取含量一定的样本
,发生阳性结果的次数 x 的概率分布服从二项分
布 ( binomial distribution ) ,即样本中阳性数概
率等于二项式展开后各项。若总体阳性率为 π 、 样本含量为 n,阳性数为 X,则样本中出现 X个阳 性事件的概率可由下式求得。
7 7
二、构成比(proportion)
又称构成指标,表示事物内部某组成部分
概念
占其全部的比重或分布,常以百分率(%)
作为比例基数。
计算
构成比=
事物内部某一组成部分的观察单位数 100% 事物内部所有组成部分的观察单位总数
8 8
2000年某医院某病的住院人数和死亡人数
病情严重程度 住院人数 病死数 死亡构成(%) 轻 300 12 26.7 病死率(%) 4.0
305 1380 470 2155
r P甲 ′ P p' 87.5% P SMR ×1920/1845 = 87.5%×1.04 = 91% ni Pi r P乙 ′ P p' 87.5% P SMR ×2140/2155 = 87.5%×0.99 = 86.6% ni Pi
i i
N
523 4000 × 1000 ‰ = 21.11 80% ‰ 100% 5000 24767
26 26
甲、乙两医院的标准化治愈率(直接法Ⅱ)
标准人口 科别 构成比 Ni / N 内科 外科 传染病科 合计 0.4 0.4 0.2 1.0 原治愈率 Pi (%) 预期治愈率 Ni/N×Pi (%)
解除烦恼
人数
64
构成比(%)
33.86
位次
1
显示气派
帮助社交
45
43
23.81
22.75
2
3
帮助思考
显示富有 其它 合计
16
12 9 189
8.47
6.35 4.76 100.0
4
5 6 —
19 19
WARNING
第二节 应用相对数的注意事项
1.计算相对数时,分母不宜过小 2.正确区分构成比和率 3.比较相对数时,应注意资料的可比性:率的标准化 4.分母不同的率不能简单相加求平均率 5.样本率或构成比的比较应进行假设检验
留一、二位整数。
医学上常用的率:
发病率、患病率、死亡率、病死率、治愈率、
生存率等。
6 6
某年某市三个区的肠道传染病发病率 市区 甲 乙 丙 合计 人口数 98740 75135 118730 292605 发病人数 503 264 466 1233 发病率(‰) 5.09 3.51 3.92 4.21
第十六章 分类变量的统计分析
统计分析 变量类型
数值变量
分类变量
1
分类变量的统计描述
常用相对数
应用相对数的注意事项
率的标准化法
2
绝对数与相对数的概念
绝对数(absolute number):
分类变量资料整理后所得到的原始数据, 通常不具有可比性。 相对数(relative number): 指两个有联系的指标之比,是分类变量 统计描述指标的统称。
3 3
第一节 常用相对数
相对数
率
构成比
相对比
4
一、率(rate)
又称频率指标,说明某现象
概念
发生的频率或强度。
计算
发生某现象的观察单位数 率= K 可能发生该现象的观察单位总数
5 5
比例基数K的取法:
可取百分率(%) 、千分率(‰) 、万分率(1/万) 、
十万分率(1/10万) 等,主要根据习惯用法和使结果保
n! P( x) x (1 ) n x x!(n x)!
x 0, 1, 2,, n
38 38
已知:①π=0.3,n =5;②π=0.3,n =10;③π=0.3, n=15;④π=0.5,n=10。根据上述公式求各阳性数事件的 概率并作概率分布图。
率的抽样分布图
39 39
对率进行标准化,然后再比较。
选用的标准不同,计算出的标准化率也不同。标准化
率只反映各被标化组的相对水平,不代表其实际水平。
各年龄组的率出现明显交叉时,不宜用标准化法。
若是抽样研究,样本标化率的比较应作假设检验。
31 31
统计分析
统计描述
统计推断
32
32
用样本信息来推 断总体的特征, 称为统计推断。
中
重 合计
350
150 800
18
15 45
40.0
33.3 100.0
5.1
10.0 5.6
9 9
某正常人的白细胞分类计数构成比
白细胞分类
中性粒细胞
分类计数
140
构成比(%)
70.0
淋巴细胞
单核细胞 嗜酸粒细胞 嗜碱粒细胞 合计
50
5 4 1 200
25.0
2.5 2.0 0.5 100.0
10 10
43
43
2.查表法
如果n、p不满足上述条件(n≤50),可根据二
项分布的原理估计总体率的置信区间。
即根据样本含量n和阳性数X查表得到总体率 的置信区间。
甲医院
65.0 94.0 95.0 76.8
乙医院
63.0 91.0 92.0 85.6
甲医院
26.0 37.6 19.0 82.6
Ni N pi
乙医院
25.2 36.4 18.4 80.0
Ni N pi
27 27
②间接法
未知:各科真实治愈率 已知:医院总治愈人数和各科住院人数 各科标准治愈率和总的标准治愈率(文献获得) 甲、乙两医院的治愈率