关于扩散与固态相变课件

合集下载

扩散与固态相变PPT课件

扩散与固态相变PPT课件

置换式固溶体中,溶质、溶剂原子大 小相近,具有相近的迁移率,在扩散 中,溶质、溶剂原子同时扩散的现象。
(二)根据扩散方向是否与浓度梯度的 方向相同
1、下坡扩散:是沿着浓度降低的方向 进行扩散,使浓度趋于均匀化。
2、上坡扩散:沿着浓度升高的方向进行扩散,
使浓度发生两极分化。如硅钢和碳钢焊接后热处 理后碳浓度的分布。
将一块黄铜(Cu-wZn 30%)放一铜盒中,两者的界面用钼丝包扎, 经过高温长时退火后,发现钼丝间的距离缩小了。 黄铜中的Zn原子通过界面向外扩散,铜盒内的Cu原子向黄铜内扩散,且 黄铜内流出的Zn原子数多,而铜盒中Cu原子流入黄铜内较少。 向纯铜的一方流入较多的Zn原子,要建立较多的新原子平面使体积胀大, 产生较多的空位反向流入界面内的黄铜,黄铜内的空位多了。
3. 复合机制 在扩散过程中,当间隙原子和空位相遇时,二者
同时消失,这便是间隙原子与空位的复合机制,如 图。这种扩散一般是在存在费仑克尔缺陷的晶体中
进行。
4. 易位机制
相邻原子对调位置或是通过循环式的对调位置,从 而实现原子的迁移和扩散。这种扩散机制称为易位 式扩散机制。此种扩散机制要求相邻的两个原子或 更多的原子必须同时获得足够大的能量,以克服其 它原子的作用才能离开平衡位置实现易位,因而这 种过程必然会引起晶格较大的畸变,所以实现的可
迁移
另一平衡位置
二、扩散机理
扩散的微观机制
晶体中的原子以它的平衡位置为中心做晶 格热振动,由于热运动的起伏,总有一些原子 在热振动中能获得足够大的能量,从原来的平 衡位置跃迁到另一个平衡位置。扩散现象正是 这种微观原子迁移的结果。
原子在晶体中扩散的微观机制可以分为 四种:
1. 空位机制

材料科学基础基本第六章 扩散与固态相变

材料科学基础基本第六章 扩散与固态相变
第六章 扩散与固态相变
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节
扩散定律及其应用 扩散机制 影响扩散的因素与扩散驱动力 几个特殊的有关扩散的实际问题 固态相变中的形核 固态相变的晶体成长 扩散型相变 无扩散相变
第一节 扩散定律及其应用
一. 扩散定律
(1)稳态扩散-菲克第 一定律 (Fick’s first law)
图5-6
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.
合金元素对碳在-Fe中的扩散的 影响
菲克第二定律
当扩散处于非稳态,即各点的浓度随时间 而改变时,利用式(1)不容易求出。但通 常的扩散过程大都是非稳态扩散,为便于求 出,还要从物质的平衡关系着手,建立第二
对于一定的扩散系统D0及Q为常数。某些 扩散系统的D0及Q见表6-2。由表中的数 据可以看到,置换扩散的Q值较高,这是
渗金属比渗碳慢得多的原因之一。
影响扩散 的因素
合金元素的影响
影响扩散的因素
1)温度:由(5-5)式可知D与温度成指数关系,可见温度对扩散速度影响很大。 例如从表6-2中可以看到,当温度从500℃升高到900℃时,Fe在-Fe中的扩散 系数从3.010-21增加到1.810-15m2/s,增加了近六个数量级。
对于半无限固体其表面 浓度保持不变,例如对 于气体扩散问题,其表 面分压保持一定的情况 下,进行如下假设:
1)扩散前任何扩散 原子在体内的分布是均 匀的,此时的浓度设为C0
2)在表面的值设为 零且向固体内部为正方 向;
3)在扩散开始之前 的时刻确定为时间为零

第七章扩散与固态相变

第七章扩散与固态相变
3、互扩散系数 在置换式固熔体中扩散系数与纯组元的扩散不同
20
第三节 影响扩散的因素与扩散驱动力 一、影响扩散的因素
Q D D0 exp( ) RT 1 S D0 2 Z exp( ) 6 R
S f S m 1 2 D0 exp( ) 6 k
D0的变化范围在5×10-6~5×10-4m2· s-1之间,而Q和T与扩散系 数成指数关系变化,影响要大很多。以铜为例:800℃时 DCu=5×10-9,Γ=5×105,20 ℃时DCu=5×10-34,Γ=5×10-20
第七章 扩散与固态相变
机械工程学院 谷万里
1
第一节
一、扩散第一定律
扩散定律及其应用
菲克(A· Fick)在1855年提出,在稳态条件下 dC/dt=0时,单位时间内通过垂直于扩散方向单位截 面的物质流量J与该处的浓度梯度成正比。
J Ddc / dx
D称为扩散系数
问题
这一规律在微观上如何解释?扩散系数的意义何在?
33
二、均匀形核与非均匀形核
1、均匀形核
总应变能为:
ΔG=-VΔGV+Aγ+VΔGS 于液态相变相比增加了一项 弹性应变能。仿照液-固相转 变可得出临界晶核形成功的 表达式
2 rk Gv Gs 16 3 Gk 3(Gv Gs ) 2
实际形核过程中ΔGk将趋于最小
34

2 exp( y )dy 0
Z
8
渗碳炉
9
RCWC无马弗渗碳炉 特点:连续自动生产效率高,炉内有特定的强制换气系统, 渗透快,渗层深,处理后的工件质量稳定,表面光洁。
10
半导体硅片的掺杂
分几个步骤进行,目的是为了精确控制B含量。该条件下 扩散第二定律的解为:

第七章扩散与固态相变

第七章扩散与固态相变
碳原子从内壁渗入,外壁渗出达到平衡时,则为稳态扩散 单位面积中碳流量: J=q/(At)=q/(2πrLt) A:圆筒总面积,r及L:园筒半径及长度,q:通过圆筒的碳 量 则 J=q/(At)=q/(2πrLt)=-D(dc/dx) =-D( dc/dr) 即-D= [q/(2πrLt)]×1/ ( dc/dr) = [q(dlnr)]/[( 2πLt ) dc]
稳态扩散下的菲克第一定律推导
x轴上两单位面积1和2,间距,面上原子浓度为年n1、n2 若原子平均跳动频率 B, dt时间内从平面1到平面2 的原子数为1/6 B n1,跳离平面2到平面1的原子数为 1/6 B n2,
稳态扩散下的菲克第一定律推导
沿一个方向只有1/2的几率则单位时间内两 者的差值即扩散原子净流量 J=(1/6) B (n1-n2) =(1/6) B C1 -(1/6) B C2 =1/6 B 2 dcB/dx 令D= 1/6 B 2 ,则
图2是典型的扩散问题。两根含有不同初始浓度溶 质原子的合金棒焊接在一起,经高温加热一段时间 后,溶质原子自浓度高的一侧流向浓度低的一侧, 使合金棒沿纵向的浓度梯度减小,溶质原子在合金 棒中分布趋于变得均匀。
根据扩散的定义和前面的分析,在图2的例子 中,有三个基本条件是扩散必需的: (1)扩散驱动力 使物质发生迁移(定向), 一定存在着某种力或场,如浓度梯度。 (2)温度 原子迁移所必需的基本条件, 温度越高,扩散越容易。 (3)时间 扩散是一个物质迁移的过程, 而过程的概念就体现在时间上。

x 2 Dt
2
,式(3)为
x Dt
C A 2 D exp( )d B A 2
0
exp( 2 )d B 0 0 exp ( 2 ) d 由高斯误差积分:

第五章 金属扩散及固态转变

第五章 金属扩散及固态转变

⑷原子扩散的影响
对于扩散型相变,新旧两相的成分不同,相变通过 组元的扩散才能进行。在此种情况下,扩散就成为 相变的主要控制因素。但原子在固态中的扩散速度 远低于液态,两者的扩散系数相差几个数量级。 当过冷度增加到一定程度时,扩散成为决定性 因素,再增大过冷度会使转变速度减慢,甚至 原来的高温转变被抑制,在更低温度下发生无 扩散相变。 例如共析钢从高温奥氏体状态快速冷却下来,扩 散型的珠光体相变被抑制,在更低温度下发生无 扩散的马氏体相变,生成亚稳的马氏体组织。
a)
b)
c)
d)
e)
图5-14 共析转变的形核与生长示意图
1 共析转变的形核
⑴假定富含B组元的β为领 先相,γ相需源源不断提供 B组元才能保证β相的生长。 ⑵由于B组元不断降低,这 样为富含A组元的α相的形 核创造了条件,于是便在B 元的侧面形成了α相。 ⑶ α相 β相就这样不断地交 替生长,并向γ相纵深发展, 最后形成层片状的共析领域。
所有元素在α-Fe 的扩散系数>γ-Fe 中的扩散系数
例:900℃时,置换原子Ni在α -Fe中的扩散系数比在γ -Fe 中约大 1400 倍 ;527℃时 , 间隙原子 N 在 α -Fe 中的扩散系数 比在γ -Fe 中约大1500倍。
表明:致密度大,扩散系数小. 应用:渗氮温度尽量选在共析转变温度以下(590 ℃),可 以缩短工艺周期。
应用举例 铸造合金消除枝晶偏析的均匀化退火
钢在加热和冷却时的一些相变
变形金属的回复与再结晶
钢的化学热处理
金属加热过程中的氧化和脱碳
固态扩散的实验(柯肯达尔效应) • 把Cu、Ni棒对焊,在焊接面上镶嵌上钨丝作为界面 标志。加热到高温并保温,界面标志钨丝向纯Ni一 侧移动了一段距离.

材料成形技术课件第七章扩散与固相反应

材料成形技术课件第七章扩散与固相反应

无论金属体系或离子化合物体系,空
位机构是固体材料中质点扩散的主要机构。
在一般情况下离子晶体可由离子半径不同 的阴、阳离子构成晶格,而较大离子的扩 散多半是通过空位机构进行的。
b-间隙机构:处于
间隙位置的质点从一间 隙位移入另一相邻间隙 位的过程,此过程必须 引起周围晶格的变形。 与空位机构相比, 间隙机构引起的晶格变 形大。因此间隙原子相 对晶格位上原子尺寸越 小,间隙机构越容易发 生。
处于对等位置上的二个或二个以上的结点原子同时跳动
进行位置交换,由此而发生位移。尽管这是一种无点缺
陷晶体结构中可能发生的扩散机构,但至今还未在实验
中得到证实。但据报导在CaO-Al2O3-SiO2三元系统熔体中 的氧离子扩散近似于依这种机构进行。
到目前为止已为人们所认识的
晶体中原子或离子的迁移机构主 要有:空位机构和间隙机构。
二、化学键的影响
不同的固体材料其构成晶体的化学键性质 不同,因而扩散系数也就不同。 在金属键、离子键或共价键材料中,空位 扩散机构始终是晶粒内部质点迁移的主导方式, 且因空位扩散活化能由空位形成能△Hf和原子 迁移能△HM构成,故激活能常随材料熔点升高 而增加。但当间隙原子比格点原子小得多或晶 格结构比较开放时,间隙机构将占优势。
Nerst-Einstein方程 或扩散系数的一般热力学方程
Ln i Di Bi RT (1 ) LnN i
理解:
Ln i 1 LnN i
扩散系数热力学因子
对于理想混合体系,活度系数
i 1
*
Di Di RTBi
*
Di 自扩散系数; 一种原子或离子通过由该种原子或离子所
三、结构缺陷的影响
晶界对离子扩散的选择性增强作用 ,例如在Fe2O3、

上海交大材料科学基础3固体中的扩散PPT课件

上海交大材料科学基础3固体中的扩散PPT课件
理化学过程与其有关,因此,扩散成为材料科学的主 要内容之一。
扩散的分类
(1)根据有无浓度变化 自扩散:原子经由自己元素的晶体点阵而迁移的扩散。 (如纯金属或固溶体的晶粒长大。无浓度变化。) 互扩散:原子通过进入对方元素晶体点阵而导致的扩散。 (有浓度变化)
(2)根据扩散方向 下坡扩散:原子由高浓度处向低浓度处进行的扩散。 造成浓度均匀化 上坡扩散:原子由低浓度处向高浓度处进行的扩散。 造成浓度差异
t3 t2 t1 C2
限 长
不同时刻

边 界 条 件 : t≥0 时 ,
扩散元素

浓度分布曲线

x=∞,C=C1,
t1< t2< t3
其 解
C1
x=-∞, C=C2
0
x
令 则
,x 代入
Dt c dc
c D 2 c
t
x 2
x dc
t dt 2 Dt3/2 d
c x
ddcxddc
1 Dt
2c ;;;;;;x2
(3) Fick第二定律的解
非稳态扩散方程是偏微分方程,解的形 式与边界条件、初始条件等有关。 一般需要数值求解; 但是,在边界条件、初始条件较简单时, 可以求出解析解。
误差函数解
设扩散系数D是常数;
初始条件:t=0时,
C 2>C 1的 扩 散 偶
A
C2
C1
B
x>0,C=C1,
扩散方向


C

x<0, C=C2
均匀化退火
C
若要将浓度起伏降低 C max
到原来的1/100,
C m ean

材料的凝固-气相沉积扩散与固态相变

材料的凝固-气相沉积扩散与固态相变

温度
温度越高,扩散系数越大,扩散速率越快。T与D成指数关系,对 扩散影响较大。
例:碳在γ-Fe中扩散时,D0=2×10-5m2/s,Q=140×103J/mol。 D1200=1.61×10-11m2/s; D1300=4.74×10-11m2/s。
晶体缺陷
晶界和表面处原子排列不紧密,不规则,能量较高,扩散激活 能低,即QL>Qgb>Qs,故扩散系数关系为Ds>Dgb>Dl。 晶界扩散与体扩散的相对贡献以 Dgb 衡量。
Z
exp(S
f
S m ) R
通常其值为5×10-6~5×10-4m2·s-1,故对扩散过程影响较小。
扩散激活能Q
扩散机制:间隙扩散 Q H;空位扩散 Q H f H m 。 晶体结构:结构不太紧密的晶体中,原子扩散容易。
原子结合力:结合键强,熔点高,激活能大,扩散不易。
合金成分: 间隙固溶体:溶质浓度高,扩散容易; 置换固溶体:使熔点降低的元素,合金D升高, 反之亦然。
J1
x
(D
C x
)
x
dx
(J1
J
2)
dx
x
(D
C x
)
适用于:非稳态扩散
c D 2 c
t
x2
浓度随时间的变化与浓度分布曲线在该点的二阶导数成正比。
c D 2 c
t
x2
扩散第二定律应用
➢ 钢的渗碳
钢棒在富含一定浓度的CH4气氛中进行渗碳处理。(零件被看作是 无限长的棒,并假定碳在奥氏体中的扩散系数为一常数)
➢ Al-Cu合金的淬火时效
选用Al-WCu4%合金,加热至550℃,Cu原子全部溶入α固溶体 中,冷却进行时效处理 。

材料科学基础 第3章 固体中的扩散课件

材料科学基础 第3章 固体中的扩散课件

2
)d
因此
可以证明:
erf () 1
erf ( ) erf ( )
误差函数值可以从表中 查出
C A1
2
erf ( )
A2
11/53
表β与erf(β)的对应值(β:0~27)
β0
1
2
3
4
5
6
7
8
9
0.0 0.0000 0.0113 0.0226 0.0338 0.0451 0.0564 0.0676 0.0789 0.0901 0.1013
(3)晶界扩散及表面扩散
由于表面、晶界及位 错等畸变,使得 DL<DB<DS, 因此扩散易沿晶面和晶界 进行,其扩散速率大于晶 体内的扩散速率。沿晶面 或晶界进行的扩散也称 “短路”扩散。
返回
30/53
3.3.2 原子跳跃和扩散系数
原子的扩散是通过原子的跳跃实现的, 原子一次跳跃只有一个原子间距,其跳跃的 方向是随机的,但在一定温度下,原子跳跃 的频率是一定的
26/53
(1)间隙机制
间隙原子从一个位置跳到另一个间 隙位置,主要发生在具有较小半径的溶 质原子的间隙固溶体中。
挤列机制
推填机制
28/53
(2)空位机制
由于晶体中必定存在一定浓度 的空位。因此,原子的扩散可借助 空位进行,这种扩散较易于进行, 因此大多数置换固溶体的扩散采用 这种机制来进行。
29/53
设有一块含有n个原子的晶体,在dt时间内共跳跃m次,
则平均每个原子在单位时间内跳跃的次数(即跳跃频率
为):
1、2为两相邻平行
m n dt
晶面,与纸面垂直; 间距为d。
若单位面积上的间隙原子数为n1和n2, 在某一温度下其跳跃频率为Γ;由晶面 1跳到晶面2或由晶面2跳到晶面1的几率 为P,则在△t时间内,由晶面1→2或由 2→1的原子数分别为:

《固体中的扩散》PPT课件

《固体中的扩散》PPT课件

编辑ppt
12
填隙机制(间接间隙机制)
D
C
在填隙机制中,有两个原子同时 易位运动,其中一个是间隙原子,
B A
另一个是处于点阵上的原子。
间隙原子将阵点上的原子挤到
间隙位置上去,自己进入阵点位置。
由于点阵所施加的约束不同,在填隙机制中,
又分为如图所示的沿ABC移动的共线跳动
和沿ABD移动的非共线跳动。
金中 (4)出现。
原子直接换位示意
编辑ppt
14
(2) 环形换位机制(crowdion configuration)
同一平面上的数个原子同时进行环形旋转式交换 位置。这种机制具有较低的势垒,不过需要原子 之间有大量的合作运动,也不容易实现。
编辑ppt
15
实现扩散,必须同时具备两个条件:
(1)扩散原子近旁存在空位(或间隙); (2) 扩散原子具有可以超过能垒的自由能。
互(异)扩散(mutual diffusion):原子通过进入对 方元素晶体点阵而导致的扩散。
编辑ppt
6
(2)根据扩散方向
下坡扩散(downhill diffusion)和上坡扩散(uphill diffusion)
下坡扩散(downhill diffusion):原子由高浓度处向低浓 度处进行的扩散。
另一方面是对扩散的微观的机理的认识把扩散与晶体内原子的和缺陷的运动联系起来建立起某些扩散机理的模型一方面是对扩散表象学的认识即对扩散的宏观现象的研究如对物质的流动和浓度的变化进行实验的测定和理论的分析利用所得到的物质输运过程的经验的表象的规律以定量地讨论固相中的各种反应过程如固体的烧结分解锈蚀晶体的生长相变离子晶体的导电金属与合金的热处理等
解:此时通过管子中铁膜的氮气通量为

材料的凝固气相沉积扩散与固态相变课件

材料的凝固气相沉积扩散与固态相变课件

凝固过程中的相变
相变
物质在凝固过程中,物理状态发生改变的现象。
相变类型
共晶、包晶、固溶体等。
相变过程
形核、长大、粗化等。
凝固过程中的扩散与传
1 2 3
扩散 物质在固态或液态中,由于浓度梯度而引起的迁 移现象。
传输过程 溶质传输、热能传输、动量传输等。
扩散与传输对凝固过程的影响 影响晶粒形貌、组织结构、热处理工艺等。
气相沉 积
物理气相沉 积
物理气相沉积(PVD)是一种利用物理方法将固体材料转化为气态,再通过冷却和 凝结的过程在基材上形成固态薄膜的技术。
PVD技术包括真空蒸发镀膜、溅射镀膜和离子镀膜等,广泛应用于电子、光学、机 械和航空航天等领域。
PVD技术具有高沉积速率、低温度、高纯度等优点,但同时也存在薄膜附着力差、 设备成本高等问题。
材料的凝固气相 沉积扩散与固态 相变课 件
目录
• 气相沉积 • 固态相变 • 材料性能与结构 • 材料科学与工程中的挑战与前景
材料的凝固
凝固的基本原理
01
02
03
凝固
物质从液态变为固态的过 程。
凝固的热力学条件
系统的自由能随温度降低 而减小。
凝固的动力学条件
液态物质冷却速率达到某 一阈值时开始凝固。
新材料的研 发
新材料的研究需要大量的实验和理论 计算,需要不断探索新的制备方法和 工艺。
新材料的应用
新材料的应用需要考虑到其性能、安 全性、经济性等多个方面,需要进行 全面的评估和测试。
THANKS
固态相变的应用
应用领域
金属材料、陶瓷材料、复合材料等。
应用实例
钢铁工业中的连续冷却相变,用于控制钢材的组织和性能;陶瓷材料的烧结和相 变,用于制备高性能陶瓷材料;复合材料的界面相变,对复合材料的力学性能和 稳定性具有重要影响。

扩散与固相反应PPT课件

扩散与固相反应PPT课件

D0
a02 0
exp(
S R
)
Q —— 扩散活化能
空位扩散:空位形成能+空位迁移能 间隙扩散:间隙原子迁移能
第27页/共85页
3、本征扩散与非本征扩散 根据空位的来源:本征点缺陷(弗、肖)—— 本征扩散
掺杂点缺陷 —— 非本征扩散
由本征点缺陷产生的空位浓度:
NV
n N
exp(
Gf ) 2RT
ex
扩散 —— 当物质内有梯度(化学位、浓度、应力梯度等)存在
时,由于物质的热运动而导致质点的定向迁移过程。
扩散是一种传质过程:宏观上表现为物质的定向迁移 扩散的本质:质点的热运动(无规则运动)
注意:扩散中原子运动的自发性、随机性、经常性,以及 原子随机运动与物质宏观迁移的关系
3.扩散推动力 —— 化学位梯度
x
erf
1
C(x, C0
t)
Dt K
Dt
则:在同样条件下
x1 K Dt1 t1
x2 K Dt2
t2
∵ x2=2 x1,∴ t2=4t1=4(小时)
第15页/共85页
2. 恒定量扩散
对于第二种情况,t 0, x 0, C(x,0) 0 t 0, x 0, C(0,0) Q
1 AK 2
6
例如:1)对于体心立方结构
A=8, r
3 2 a0
K
3 2
则:
1 8 ( 3 )2 1
6
2
第25页/共85页
2)对于立方面心格子
A=12,
r
2 2
a0
K 2 2
则:
1 12 ( 2 )2 1
6
2
(2)间隙扩散

材料科学基础课件第八章 固态相变第一节第二节

材料科学基础课件第八章   固态相变第一节第二节

扩散的宏观规律
则菲克第二定律表达式为:
若D为常数,则:
从形式上看,扩散中某点

成正比
扩散的宏观规律
本质上菲克第一定律和第二定律是一个定 律,都表明扩散过程总是使不均匀体系均匀化, 由非平衡逐渐达到平衡。
扩散的宏观规律
(2)三维扩散 采用不同坐标系有不同的形式。 1、直角坐标系
扩散系数若与浓度无关,也与空间位置无关时:
扩散的宏观规律
扩散的宏观规律
①求在T、t下,振幅
的衰减值。
②在一定T及振幅衰减值下,求所需时间,如:
t=0.1167(l2/D) l愈小、D愈大,则时间愈短,均化速度愈快。
第四章 晶态固体中的扩散
第二节 扩散的微观机制
• 教学内容: • 三种主要的扩散机制(间隙机制,填隙机制,空位机
制)溶质原子的跳动。晶态中原子的无规则行走及相 变效应,原子迁移的统计。原子跳动与扩散系数的微 观表达式。
扩散系数
在Cu-Ni、Cu-Sn、Ag-Au、Ni-Co、Ni-Au 等扩散偶中都有发现这种效应。 2、本征扩散系数、互扩散系数 产生原因:A、B作为溶质组元溶入对方一侧并
进行扩散时,各自扩散系数不同。 置换固溶体中溶质原子迁移时,溶剂原子
必须与之配合。 本征扩散系数:A、B各自的扩散系数DA、DB。 互扩散系数:实验测定的表观扩散系数。
方法、弛豫方法及核方法等。 1、稳态扩散过程中的扩散系数
薄壁金属管:L、r、t,两边浓度不变, 即 dC/dt=0,如碳在铁中的扩散系数的测定。
扩散系数
结合一定的试验条件,m、L、t均可测量出 来,用剥层分析的方法, 得出碳浓度沿管壁的径 向分布,做出C一1nr曲 线,便可求出扩散系数 D,D随浓度变化,只有 在稀薄固溶体或在较小 浓度范围内才为常数。

第06章 扩散与固态相变

第06章  扩散与固态相变

空位扩散机制(2)
晶体中空位的浓度 : 扩散系数为 :
扩散系数与温度之间的 关系 统称为置换扩散的激活能
1-3
互扩散
• 基本现象 • 柯肯达尔(Kirkendall)效应 • 互扩散的方程(达肯Darken方程)
互扩散基本现象
如果将一块钢和一块纯铁焊接在 一起,由于两种材料的碳含量不相同, 碳原子将从钢中向纯铁中不断扩散,碳 是溶解在铁晶格的间隙中形成的间隙固 溶体,这种迁移不会引起原来钢或纯铁 基体中晶格数量和位置的变化,这属于 一种间隙扩散类型。
34268s = 9.52hr
1-2
扩散的微观机制
• 原子热运动和扩散系数的关系 • 间隙扩散机制 • 空位扩散机制
原子热运动和扩散系数的关系
图示出晶体中两个相邻的晶面1、 2,面间距为α ,截面的大小为单位面 积。假定在1、2面上的溶质原子数(面 密度)分别为 n1和 n2.。每个原子的 跃迁频率Γ 是相同的,跃迁方向是随 机的,从晶面1到晶面2(或者相反)的 几率都是P。如果n1 > n2,在单位时间 从晶面1到晶面2的净流量为
空位扩散机制
扩散机制:在置换固溶体
中,由于晶格中存在空位, 空位周围的原子(包括溶剂和 溶质原子)由热运动可能进入 空位,即原子利用空位最后 达到迁移,当存在浓度梯度 (化学位梯度)时,溶质原子 就会发生定向的扩散迁移,这是置换原子扩散的主要 方式。 扩散进行有两个要求条件,一是有空位存在,二是空 位周围的原子从原来的平衡位置进入空位也要一定的 激活能。
扩散方程的误差函数解应用例二
例二:上例中处理条件不变,把碳含量达到0.4%C处 到表面的距离作为渗层深度,推出渗层深度与处理时 间之间的关系,层深达到1.0mm则需多少时间? 解:因为处理条件不变
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 复合机制 在扩散过程中,当间隙原子和空位相遇时,二者
同时消失,这便是间隙原子与空位的复合机制,如 图。这种扩散一般是在存在费仑克尔缺陷的晶体中
进行。
4. 易位机制
相邻原子对调位置或是通过循环式的对调位置,从 而实现原子的迁移和扩散。这种扩散机制称为易位 式扩散机制。此种扩散机制要求相邻的两个原子或 更多的原子必须同时获得足够大的能量,以克服其 它原子的作用才能离开平衡位置实现易位,因而这 种过程必然会引起晶格较大的畸变,所以实现的可
一个在空位旁边的原子就有机会跳入空位之中,使 原来的位置变为空位,如图。另外的邻近原子也可 能占据这个新形成的空位,使空位继续运动。这就 是空位机制扩散。大多数元素固体的自扩散以空位 扩散为主。在离子化合物和氧化物中也常有这种扩 散。
2. 间隙机制 是原子在点阵的间隙位置间跃迁而导致的扩散,
如图。在间隙机制中,还有从间隙位置到格点位置 再到间隙位置的迁移过程,其特点是间隙原子取代 近邻格点上的原子,原来格点上的原子移到一个新 的位置。前种间隙机制主要存在于溶质原子较小的 间隙式固溶体中,而后种间隙机制主要存在于自扩 散晶体中。
即J=-D(dc/dx) 其中D:扩散系数,cm2/s,J:扩散通量,g/cm2·s
式中负号表明扩散通量的方向与浓度梯度方向相反。
可见,只要存在浓度梯度,就会引起原子的扩散,
一、扩散第一定律
Fick第一定律(Fick’ s first law)描述在稳态扩散(steady state diffusion)情况下 ,即各处浓度不随时间变化,只随距离 变化而变化. (一定时间内,浓度不随时间变化dc/dt=0)
置换式固溶体中,溶质、溶剂原子大 小相近,具有相近的迁移率,在扩散 中,溶质、溶剂原子同时扩散的现象。
(二)根据扩散方向是否与浓度梯度的 方向相同
1、下坡扩散:是沿着浓度降低的方向 进行扩散,使浓度趋于均匀化。
2、上坡扩散:沿着浓度升高的方向进行扩散,
使浓度发生两极分化。如硅钢和碳钢焊接后热处 理后碳浓度的分布。
四、扩散的分类
(一)根据扩散过程中是否发生浓度变 化
1、自扩散:不伴有浓度变化的扩散,它 与浓度梯度无关。(驱动力为表面能的 降低)
2、互(异)扩散:伴有浓度变化的扩 散,它与异类原子的浓度差有关。
二、互扩散和柯肯达尔效应
3、互扩散和柯肯达尔效应 溶质原子扩散的同时引起溶剂原子的反向扩散--互扩散。
另一平衡位置
二、扩散机理
扩散的微观机制
晶体中的原子以它的平衡位置为中心做晶 格热振动,由于热运动的起伏,总有一些原子 在热振动中能获得足够大的能量,从原来的平 衡位置跃迁到另一个平衡位置。扩散现象正是 这种微观原子迁移的结果。
原子在晶体中扩散的微观机制可以分为 四种:
1. 空位机制
在一定温度下,晶体总会存在一定的空位。
固态扩散的分类—补充
1、按浓度变化 自扩散(self-diffusion) 互(异)扩散(mutual diffusion)
2、按是否与浓度梯度(concentration gradient)一致 上坡扩散(uphill diffusion) 下坡扩散(downhill diffusion)
3、按是否出现新相 原子扩散(atomic diffusion) 反应扩散(reaction diffusion)
能性很小,在扩散中不可能起主导作用。
三、固态金属扩散的条件
一、温度要足够高。 二、时间要足够长。 三、扩散原子要固溶。 四、扩散要有驱动力。 扩散的驱动力是化学位梯度
固态金属扩散的条件—补充
1、温度(T)要足够高。只有T足够高,才能使原子具 有足够的激活能,足以克服周围原子的束缚而发生迁移。 如Fe原子在500℃ 以上才能有效扩散,而C原子在100℃ 以上才能在Fe中扩散
第二节 扩散定律
稳定扩散,是指扩散物质的浓度分布不随时间变化的 扩散过程,使用菲克第一定律可解决稳定扩散问题。
不稳定扩散,是指扩散物质浓度分布随时间变化 的一类扩散,这类问题的解决应借助于菲克第 二定律。
1. 稳态扩散下的菲克第一定律(一定时间内,浓度 不随时间变化dc/dt=0)
单位时间内通过垂直于扩散方向的单位截面积的扩 散物质流量(扩散通量)与该面积处的浓度梯度成 正比
扩散的本质是原子的热运动 固态扩散是大量原子无序跃迁的结果。
扩散(diffusion): 物质中原子或分子的迁移现象。
扩散的本质是原子依靠热运动从一个位置迁移到另一 个位置。
扩散是固体中原子迁移的唯一方式。
扩散的基本过程
能量起伏
迁移
热运动的原子
ቤተ መጻሕፍቲ ባይዱ
从一个平衡位置
获得足够的能量
实现了
原子迁移即扩散
(三)根据扩散过程中是否出现新相分
1、原子扩散:在扩散过程中基体晶格始终保持 不变,没有新相产生。
2、反应扩散:通过扩散使固溶体的溶质组元的 浓度超过固溶度极限而形成新相的过程。新相可 以是固溶体或化合物。特点:相界处产生浓度突 变,突变的浓度正好对应于相中的极限浓度。二 元系的扩散层中不可能存在两相区。
将一块黄铜(Cu-wZn 30%)放一铜盒中,两者的界面用钼丝包扎, 经过高温长时退火后,发现钼丝间的距离缩小了。 黄铜中的Zn原子通过界面向外扩散,铜盒内的Cu原子向黄铜内扩散,且 黄铜内流出的Zn原子数多,而铜盒中Cu原子流入黄铜内较少。 向纯铜的一方流入较多的Zn原子,要建立较多的新原子平面使体积胀大, 产生较多的空位反向流入界面内的黄铜,黄铜内的空位多了。
关于扩散与固态相变
第一部分 扩散
概述 扩散定律 影响扩散的因素
第一节 概述
一、扩散现象和本质
定义: 系统内部的物质在浓度梯度、化学位梯度
应力梯度的推动力下,由于质点的热运动而导致 定向迁移,从宏观上表现为物质的定向输送, 此过程叫扩散
扩散是物质中原子(或分子)的迁移现象,是物 质传递的一种方式。
2、时间(t)要足够长。扩散原子在晶格中每一次最多迁 移0.3~0.5nm的距离,要扩散1㎜的距离,必须迁移近 亿次。
3、扩散原子要能固溶。扩散原子在基体金属中必须有 一定的固溶度,能溶入基体组元晶格,形成固溶体,才能进行 固态扩散。
4、扩散要有驱动力(driven force)。实际发生的定 向扩散过程都是在扩散驱动力作用下进行的。
相关文档
最新文档