BUCK电路分析

合集下载

BUCK-BOOST电路原理分析

BUCK-BOOST电路原理分析

BUCK/BOOST 电路原理分析
Buck 变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。

图中,Q 为开关管,其驱动电压一般为PWM(Pulse width modulaTIon 脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。

Boost 变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。

开关管Q 也为PWM 控制方式,但最大占空比Dy 必须限制,不允许
在Dy=1 的状态下工作。

电感Lf 在输入侧,称为升压电感。

Boost 变换器也
有CCM 和DCM 两种工作方式
Buck/Boost 变换器:也称升降压式变换器,是一种输出电压既可低于
也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电。

BUCK电路工作原理分析

BUCK电路工作原理分析

BUCK电路工作原理分析首先介绍BUCK电路的基本组成部分。

BUCK电路由一个开关元件(一般为MOSFET)和一个电感组成。

开关元件用来开关输入电源和电感之间的连接,以控制输出电压的平均值。

电感是储能元件,在开关元件导通期间,通过电流源向电感储存能量;在开关元件截断期间,储存在电感中的能量通过二极管和负载传输到输出端。

BUCK电路的工作周期分为两个阶段:导通阶段和截断阶段。

在导通阶段,开关元件导通,输入电压通过电感和开关元件传递到负载,同时电感储存能量。

在截断阶段,开关元件截断,输入电压被限制在电感和负载之间,储存在电感中的能量则通过二极管和负载传输到输出端。

接下来详细分析BUCK电路的工作过程。

在导通阶段,开关元件导通,电感上的电流线性增大。

根据基尔霍夫电压定律,电感的电压降等于输入电压与输出电压之差,即Vi-Vo。

此时,电感积累的能量与电流和时间的乘积成正比,即E=(1/2)*L*i^2,其中L为电感的电感值,i为通过电感的电流。

由于电流增大连续的速率相同,可以得到E与i成正比。

在截断阶段,开关元件截断,电感储存的能量被传输到输出端。

此时,电感上的电流开始减小。

根据基尔霍夫电压定律,电感的电压降等于输出电压与负载间的电压降,即Vo。

上述能量传输的过程实际上可以看作是电感的电能转换为输出电压的能量转移。

BUCK电路的输出电压与输入电压之比由两个决定因素来控制:占空比和电感的值。

占空比是指开关元件导通时间与一个工作周期的比值。

占空比越小,输出电压越小。

而电感的值越大,输出电压也就越大。

通过合理选择这两个参数的组合,可以实现不同的输出电压。

此外,由于BUCK电路的开关频率相对较高,通常在几十kHz至数百kHz范围内,也就意味着它不会引入明显的视觉闪烁或噪音。

同时,由于BUCK电路的输入端接近恒流源,输出端接近恒压源,因此具有较好的抗扰动能力。

综上所述,BUCK电路基于开关原理和电感储能原理,通过控制开关元件的导通和截断,实现输入电压的降压功能。

降压式变换电路(Buck电路)原理详解

降压式变换电路(Buck电路)原理详解

降压式变换电路(Buck电路)原理详解⼀、BUCK电路基本结构开关导通时等效电路开关关断时等效电路⼆、等效的电路模型及基本规律(1)从电路可以看出,电感L和电容C组成低通滤波器,此滤波器设计的原则是使 us(t)的直流分量可以通过,⽽抑制 us(t) 的谐波分量通过;电容上输出电压 uo(t)就是 us(t) 的直流分量再附加微⼩纹波uripple(t) 。

(2)电路⼯作频率很⾼,⼀个开关周期内电容充放电引起的纹波uripple(t) 很⼩,相对于电容上输出的直流电压Uo有:电容上电压宏观上可以看作恒定。

电路稳态⼯作时,输出电容上电压由微⼩的纹波和较⼤的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的⼩纹波近似原理。

(3)⼀个周期内电容充电电荷⾼于放电电荷时,电容电压升⾼,导致后⾯周期内充电电荷减⼩、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直⾄达到充放电平衡,此时电压维持不变;反之,如果⼀个周期内放电电荷⾼于充电电荷,将导致后⾯周期内充电电荷增加、放电电荷减⼩,使电容电压下降速度减慢,这种过程的延续直⾄达到充放电平衡,最终维持电压不变。

这种过程是电容上电压调整的过渡过程,在电路稳态⼯作时,电路达到稳定平衡,电容上充放电也达到平衡,这是电路稳态⼯作时的⼀个普遍规律。

(4)开关S置于1位时,电感电流增加,电感储能;⽽当开关S置于2位时,电感电流减⼩,电感释能。

假定电流增加量⼤于电流减⼩量,则⼀个开关周期内电感上磁链增量为:此增量将产⽣⼀个平均感应电势:此电势将减⼩电感电流的上升速度并同时降低电感电流的下降速度,最终将导致⼀个周期内电感电流平均增量为零;⼀个开关周期内电感上磁链增量⼩于零的状况也⼀样。

这种在稳态状况下⼀个周期内电感电流平均增量(磁链平均增量)为零的现象称为:电感伏秒平衡。

这也是电⼒电⼦电路稳态运⾏时的⼜⼀个普遍规律。

三、电感电流连续⼯作模式(CCM)下稳态⼯作过程分析。

BUCK-BOOST电路工作过程分析及说明

BUCK-BOOST电路工作过程分析及说明

BUCK-BOOST电路工作过程分析及说明一、直流斩波电路的基本原理Buck/Boost变换器是输出电压可低于或高于输入电压的一种单管直流变换器,其电路如图4.8。

与Buck和Boost电路不同的是,电感L f在中间,不在输出端也不在输入端,且输出电压极性与输入电压相反。

开关管也采用PWM控制方式。

Buck/Boost变换器也有电感电流连续和断续两种工作方式,此处以电感电流在连续状态下的工作模式。

图4.8是电感电流连续时的主要波形。

图4.10是Buck/Boost变换器在不同工作模态下的等效电路图。

电感电流连续工作时,有两种工作模态,图4.11(a)的开关管Q导通时的工作模态,图(b)是开关管Q关断、D续流时的工作模态。

V o图4.9电路ArrayVi LFi Qi DV图4.10感电流连续工作波形V oV o(a) Q 导通 (b) Q 关断,D 续流图5.11 Buck/Boost 不同开关模态下等效电路二、电感电流连续工作原理和基本关系电感电流连续工作时,Buck/Boost 变换器有开关管Q 导通和开关管Q 关断两种工作模态。

1.在开关模态1[0~t on ]:t=0时,Q 导通,电源电压V in 加载电感L f 上,电感电流线性增长,二极管D 戒指,负载电流由电容C f 提供:f L fin di L V dt=(2-1)oo LDV I R =(2-2)ofo dV C I dt= (2-3)t=t on 时,电感电流增加到最大值max L i ,Q 关断。

在Q 导通期间电感电流增加量f L i ∆f inL y fV i D T L ∆=⋅ (2-4)2.在开关模态2[t on ~ T]:t=t on 时,Q 关断,D 续流,电感L f 贮能转为负载功率并给电容C f 充电,f L i 在输出电压Vo 作用下下降:f L fo di L V dt=(2-5)f o o oL fo f LDdV dV V i C I C dt dt R =+=+ (2-6)t=T 时,f L i 见到最小值min L i ,在t on ~ T 期间f L i 减小量f L i ∆为:(1)f o o L off y f fV Vi t D T L L ∆=⋅=- (2-7)此后,Q 又导通,转入下一工作周期。

buck电路输出电压公式推理

buck电路输出电压公式推理

buck电路输出电压公式推理Buck电路输出电压公式推理。

一、Buck电路基本结构。

Buck电路(降压变换器)主要由输入电源V_in、开关管(通常为MOSFET)、二极管、电感L、电容C和负载电阻R组成。

当开关管导通时,二极管反向截止,输入电源向电感充电,电感电流线性上升,此时电感储存能量;当开关管截止时,二极管正向导通,电感释放能量给负载和电容充电。

二、工作原理分析。

1. 开关管导通阶段(t_on)- 设开关管导通时间为t_on,在这个阶段,电感电压V_L = V_in-V_out(根据基尔霍夫电压定律,电感两端电压等于输入电压减去输出电压)。

- 由于电感电压和电流的关系为V_L = L(di)/(dt),在导通阶段电感电流的变化率为(di)/(dt)=frac{V_in - V_out}{L}。

- 假设电感初始电流为I_L0,那么在导通结束时电感电流I_L1=I_L0+frac{(V_in-V_out)t_on}{L}。

2. 开关管截止阶段(t_off)- 设开关管截止时间为t_off,在这个阶段,电感电压V_L=-V_out(此时电感通过二极管向负载和电容放电)。

- 电感电流的变化率为(di)/(dt)=-frac{V_out}{L}。

- 在截止结束时电感电流I_L2=I_L1-frac{V_outt_off}{L}。

- 由于在稳态情况下,电感电流在一个周期开始和结束时相等,即I_L0 =I_L2。

- 将前面的表达式代入可得:I_L0=I_L0+frac{(V_in-V_out)t_on}{L}-frac{V_outt_off}{L}。

- 化简可得:(V_in-V_out)t_on=V_outt_off。

三、输出电压公式推导。

1. 定义开关周期T = t_on+t_off,占空比D=frac{t_on}{T},则t_off=(1 - D)T。

2. 将t_on=DT和t_off=(1 - D)T代入(V_in-V_out)t_on=V_outt_off中,得到:- (V_in-V_out)DT = V_out(1 - D)T。

Buck电路的原理分析和参数设计

Buck电路的原理分析和参数设计

Buck电路的原理分析和参数设计连续工作状态一Buck工作原理将快速通断的晶体管置于输入与输出之间,通过调节通断比例(占空比)来控制输出直流电压的平均值。

该平均电压由可调宽度的方波脉冲构成,方波脉冲的平均值就是直流输出电压。

Q导通:输入端电源通过开关管Q及电感器L对负载供电,并同时对电感器L充电。

电感相当于一个恒流源,起传递能量作用电容相当于恒压源,在电路里起到滤波的作用Q闭合:电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。

导通时Q的电流闭合时C的电流L的电流和输出电流的关系。

输出电压与输入电压的关系(不考虑损耗)二 buck 的应用Buck 为降压开关电路,具有效率高,体积小,功率密度高的特点1.Buck 的效率Buck 的损耗:1.交流开关损耗 2.管子导通损耗3.电感电容等效电阻损耗Buck 的效率很高,一般可以达到60%以上,2.Buck 的开关频率频率越高,功率密度越大,但也同时带来了开关损耗。

在25~50KHZ 范围内buck 的体积可随频率的增大而减小。

三.参数的设计1.电感的参数电感的选择要满足直到输出最小规定电流时,电感电流也保持连续。

在临界不连续工作状态时 2120I I I -=ON OI T I V V L 20-=' ON I T LV V I I 012-=- 所以L L '≥ L 越大,进入不连续状态时的电流就越小2.电容的参数电容的选择必须满足输出纹波的要求。

电容纹波的产生:1. 电容产生的纹波: 相对很小,可以忽略不计2. 电容等效电感产生的纹波:在300KHZ~500KHZ 以下可以忽略不计3. 电容等效电阻产生的纹波:与esr 和流过电容电流成正比。

为了减小纹波,就要让esr 尽量的小。

不连续工作状态(1)开关管Q 导通,电感电流由零增加到最大(2)开关管Q 关断,二极管D 续流,电感电流从最大降到零; (3)开关管Q 和二极管D 都关断(截止),在此期间电感电流保持为零,负载由输出滤波电容来供电。

buck电路

buck电路

buck电路1. 简介Buck电路是一种直流-直流(DC-DC)转换器,也称为降压转换器。

它可将高电压直流输入转换为较低电压直流输出。

Buck电路由开关器件(通常为MOSFET)和辅助元件(如电感和电容)组成。

Buck电路在许多电子设备中广泛应用,包括电源适配器、电动汽车、太阳能系统等。

Buck电路具有高效率、紧凑的尺寸和较低的成本等优点,因此成为DC-DC转换的常用选择。

2. 工作原理Buck电路基于开关定时的原理工作。

下面是Buck电路的基本工作原理:1.开关器件关闭状态:当开关器件(MOSFET)处于关闭状态时,输入电压(Vin)通过电感(L)和二极管(D)充电,形成一种电流。

2.开关器件导通状态:当开关器件导通时,电感储存的能量被释放,通过二极管和负载电阻(RL)供电。

此时,输出电压(Vout)取决于导通时间和电感电流。

3.控制方式:通过控制开关器件导通时间的长短,可以调节输出电压的大小。

典型的控制方式有PWM(脉宽调制)和PFM(脉冲频率调制)。

3. Buck电路的主要元件Buck电路由以下主要元件组成:•MOSFET开关器件:用于控制输入电压通过电路的通断状态。

•电感(L):用于储存能量,并平滑输出电流。

•二极管(D):与电感形成一个循环,用于导通电感储存的能量到负载电阻。

•输出电容(C):平滑输出电压,减少纹波。

•控制电路:用于控制开关器件的导通时间,以调节输出电压。

4. 优缺点Buck电路具有以下优点:•高效率:Buck电路的能效通常较高,能够将输入电压有效转换为输出电压。

•紧凑尺寸:Buck电路的设计紧凑,适合在空间有限的电子设备中使用。

•低成本:相比于其他DC-DC转换器,Buck电路的成本较低。

然而,Buck电路也存在一些缺点:•输出电压稳定性差:由于输入电压波动或载荷变化,Buck电路的输出电压可能不太稳定。

•EMI干扰:Buck电路的开关动作可能引起电磁干扰(EMI),对其他电子设备造成影响。

BUCK电路工作原理分析

BUCK电路工作原理分析

BUCK电路工作原理分析BUCK电路是一种常见的降压DC-DC转换器,通过调节开关管的导通时间,将输入电压降低到所需的输出电压。

在实际应用中,BUCK电路主要应用于功率管理领域,如电源适配器、DC-DC模块和电动车充电器等。

BUCK电路的工作原理可以简单概括如下:当输入电压施加到电路上时,开关管施加一个调制的矩形波信号,使得输入电压在开关管通断的过程中传递到输出端,从而实现对输出电压进行调节。

当开关管导通时,电感储能器会储存能量,同时输出电压为输入电压减去开关管压降;而当开关管断开时,电感储能器释放储存的能量,从而输出电压变为输入电压的一部分,供给负载。

在BUCK电路中,主要包括开关管、电感储能器、二极管和输出滤波电容等组件。

具体的工作原理如下:1.开关管:BUCK电路中的开关管主要是承担对输入电压进行开关控制的作用。

当开关管导通时,输入电压通过开关管传递到输出端,同时电感储能器中的能量得以储存;当开关管断开时,电感储能器释放储存的能量,从而输出电压得以维持。

常用的开关管有MOSFET和IGBT等。

2.电感储能器:电感储能器是BUCK电路中的重要元件,用来储存输入电压传递过来的能量。

当开关管导通时,电感储能器中的电流增加,能量被储存起来;而当开关管断开时,电感储能器中的电流减小,能量被释放出来。

通过电感储能器储存和释放能量的交替过程,实现了对输入电压进行降压的目的。

3.二极管:在BUCK电路中,二极管主要用来保护开关管,防止反向电压对开关管造成损害。

当开关管导通时,二极管不导通,电流流经开关管;而当开关管断开时,二极管导通,释放电感储能器中储存的能量,从而实现对输出电压的稳定输出。

二极管的选择要考虑其反向恢复特性和导通损耗等因素。

4.输出滤波电容:输出滤波电容主要用来对输出电压进行滤波处理,去除波动和噪声,保证输出电压的稳定性和平滑性。

输出滤波电容的容值要根据实际应用需求和输出波形的允许范围来选择,可以通过合适的滤波设计来改善电路的性能。

BUCK_BOOST电路原理分析

BUCK_BOOST电路原理分析

BUCK_BOOST电路原理分析BUCK-BOOST电路是一种常用的电源变换电路,可以将输入电压转换为更高或更低的输出电压。

它是基于开关电源工作原理的一种变换电路,通过控制开关管的导通和断开,来实现电源电压的变换和稳定输出。

BUCK-BOOST电路的基本原理如下:1.电感的作用:BUCK-BOOST电路中,电感起到存储能量的作用。

当开关管导通时,电感充电,存储电能;当开关管断开时,电感放电,释放电能。

通过电感的存储和释放,可以使得输出电压保持平稳。

2.开关管控制:BUCK-BOOST电路中的开关管通常为MOSFET管或BJT 管。

通过控制开关管的导通和断开,可以控制电感充电和放电的时间。

当开关管导通时,电感充电,输出电压增大;当开关管断开时,电感放电,输出电压降低。

3.反馈控制:BUCK-BOOST电路通常会添加反馈控制回路来实现电压的稳定输出。

在反馈控制回路中,通过采样电路获取输出电压信号,并与参考电压进行比较,得到误差信号。

然后通过控制开关管的导通和断开,来调整输出电压,使得误差信号逐渐趋近于零,实现稳定输出。

4.脉宽调制(PWM)控制:BUCK-BOOST电路通常使用脉宽调制控制方法来实现开关管的控制。

脉宽调制就是根据误差信号改变开关管的导通时间,使得开关管导通时间与断开时间按照一定规律改变,从而实现稳定的输出电压。

5.滤波电容的作用:BUCK-BOOST电路中,通常会添加滤波电容,用于平滑输出电压。

滤波电容能够吸收电感放电过程中的脉动,并保持输出电压的稳定性。

总的来说,BUCK-BOOST电路是通过控制开关管的导通和断开来实现电压的变换和稳定输出的。

通过电感的存储和释放能量、反馈控制回路、脉宽调制控制和滤波电容的作用,可以实现输入电压到输出电压的变换,并保持输出电压的稳定性。

BUCK-BOOST电路在电源设计中具有广泛的应用,可满足不同电压要求的设备需求。

Buck电路原理分析详解

Buck电路原理分析详解










同样,在一个周期进行分析,


Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
3、DCM Mode:关键点原件波形见图六
图六
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
3、DCM Mode: 由图六可知,电路系统工作在DCM模式下,需要满足两个条件,一、电感充磁开 始以及消磁结束时流经电感的电流为零;二、电感消磁时间小于开关管关断时







, T为工作周期,D为占空比: 为Q管导通时间,所以,




伏秒积平衡 即
开关管Q1关断时,同理根据KVL定律:
忽略二极管 的正向压降,有





①=② ,可以得出:

Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
1、CCM Mode:关键点原件波形见图四
图四
Return To Page 7
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
1、CCM Mode:
开关管Q1导通时,根据KVL定律:



五、BUCK电路仿真验证:
图七
Buck电路原理分析
上述电路中基本参数设置:
驱动波形:V=14V, f=20KHz,D=50%;输入电压:Vin=10Vdc;储能电感:L=80uH 1、BCM模式仿真验证:根据电路系统工作在BCM模式下的条件,进行理论计算,

Buck电路原理分析

Buck电路原理分析
二、Buck电路工作原理
1、基本工作原理分析 当开关管Q1驱动为高电平时,开关管导通,储能电感L1被充磁,流经电感的电流 线性增加,同时给电容C1充电,给负载R1提供能量。等效电路如图二
图二
Return To Page 6
Buck电路原理分析
二、Buck电路工作原理
1、基本工作原理分析
当感开 电关 流管 线Q性1减驱少动,为输低出电电平压时靠,输开出关滤管波关电断容,C储L1放能电电以感及L1减通小过的续电流感二电极流管维放持电,,等电
L m in
Lmax
Io T
2
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
2、BCM Mode:关键点原件波形见图五
图五
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
2、BCM Mode:
参照图四与图五电感电流的波形,可以得知电感最小电流逐渐减小到零
T
on
V V o
in
T T on
d
同样,在一个周期对电感电流进行分析:
Io
I Lmax T * D
2T
T
d
Buck电路原理分析
四、外为参数对系统工作模式的影响:
图六
Buck电路原理分析
四、外为参数与系统工作模式的关系:
参考图六,在一个周期对电感电流进行分析:
I I I I T
TD
L min
I
L min
TIo TD T
d
V
in
V oTD
2L
0
L V in V oTD
2I o
图六
Buck电路原理分析

BUCK电路工作原理分析

BUCK电路工作原理分析

BUCK电路工作原理分析
在工作时,BUCK电路通过周期性地开关和关闭开关来实现降压。


开关(MOSFET或BJT)处于闭合状态时,电感L会存储能量,同时保持电
流稳定。

此时负载电流通过电感流过,并且电容起到平滑输出电压的作用。

当开关闭合后,电感L短路,造成通过电感的电流急剧上升。

由于其
自感性质,电感L会阻碍电流的急剧变化,并产生一个反向自感电动势。

这个电动势使得电感两端的电压降低,导致开关附近的电压下降。

随后,开关断开,使电感L开始工作。

自感电动势的作用下,电感L
试图保持电流不变,并使电流通过负载电阻RL。

负载电流通过负载电阻RL,同时也通过电容C来平滑电压,这样就实现了稳定的输出电压。

BUCK电路的输出电压可以通过调节开关的占空比来控制。

占空比是
开关打开时间和一个开关周期时间之间的比例。

当占空比增加时,开关会
更长时间地打开,导致电感L存储更多的能量,进而增加输出电压。

相反,当占空比减小时,输出电压随之降低。

需要注意的是,BUCK电路的能量转换过程并不是100%有效的。

部分
能量会以热量的形式损失在开关和电感元件中,所以BUCK电路的效率并
不会达到100%。

因此,在实际应用中需要考虑能量损失和热量管理问题,以确保电路的正常运行。

总结起来,BUCK电路通过周期性的开关和断开来实现降压,通过自
感电压变化来稳定输出电压。

通过调节开关的占空比,可以灵活地控制输
出电压。

然而,电路效率受到能量损失的影响,因此在设计中需要综合考
虑电路的效率和热量管理问题。

BUCK电路分析原创

BUCK电路分析原创

IRF644_BUCK电路功能简介:输入24V直流电源,稳定输出8V电压,即通过TL494控制开关管IRF644通断斩波实现降压。

详细原理介绍:TL494通过外接震荡电路R1,C1产生脉冲,震荡频率为F=1.1/(R*C),494内部三极管通断在发射极产生高低电平,当494内部三极管发射极为低电平时,三极管基极被R12拉为低电平,Q2导通,Q1栅极通过R9,D4,Q2放电,Q1栅极被拉低,Q1截止;高电平时Q2截止,Q1栅极为高电平,Q1也导通,Q1源极输出电压。

通过Q1的通断,在Q1的源极输出高电平24V低电平为0V的矩形波,最后通过494内部误差比较器调节占空比,输出8V稳定电压。

电路分析:1、震荡电路:2、相位补偿:参数设置与频率有关3、开关电路D3:为15V稳压二极管,当输入电压大于15V时将输入电压稳定在15V,以保护开关管,使-20V<<=Vgs<<=20VR12:当低电平到来时拉低Q2基极电压D2:防止Q1放电时电流倒流烧坏芯片Q2:导通时为Q1放电R5:在电源关闭前栅极不知处于何种状态,,在电源打开时无法立即响应,防止电源接通时漏极电流过大,R3:Q1栅极充电电阻,加速充电,为芯片手册中R GR9、D4:Q1的放电回路Q1:开关管4、输出调节为电压比较器提供反馈电压5、电感、电容计算参考公式1、L=(1-D)*RT/2=(1-0.33)*10*0.00005/2=268µHC=V oDT2/8LΔV o=0.42*5*(0.00005)2=268*10-6*0.005=61.5µF式中电流纹波系数取KIND =0.2,FSW=500kHZ是开关电源的工作频率。

BUCKBOOST电路原理分析

BUCKBOOST电路原理分析

BUCKBOOST电路原理分析其原理如下:1.工作原理:当输入电压 Vin 施加到电路中时,开关器件通断周期性地将输入电压施加到能量存储元件上。

当开关器件处于闭合状态时,输入电压 Vin施加到能量存储元件上,储存了一部分能量。

当开关器件处于断开状态时,能量存储元件释放储存的能量,将其转移到输出负载上。

2.降压模式:在降压模式下,输入电压 Vin 大于输出电压 Vout。

当开关器件处于闭合状态时,输入电压 Vi 施加到能量存储元件上,电感储存了一部分能量。

当开关器件处于断开状态时,能量存储元件(电感)释放储存的能量,此时输出电压 Vout 较低。

3.升压模式:在升压模式下,输入电压 Vin 小于输出电压 Vout。

当开关器件处于闭合状态时,能量存储元件(电感)施加输入电压 Vin,将其储存。

当开关器件处于断开状态时,能量存储元件释放储存的能量,此时输出电压Vout 较高。

4.控制电路:控制电路通过检测输出电压 Vout 的大小,控制开关器件的通断状态,以维持所需的输出电压。

当输出电压低于设定值时,控制电路使开关器件闭合,输入电压通过能量存储元件传递给输出负载。

当输出电压高于设定值时,控制电路使开关器件断开,能量存储元件释放储存的能量给输出负载供电。

5.优点:-宽范围的输入电压调整能力,适用于多种应用。

-输出电压可高于或低于输入电压,提供更大的灵活性。

- 由于能量存储元件的存在,Buck Boost电路具有较好的噪声抑制能力。

6.应用领域:-电池供电系统,如电动汽车、无人机等。

-通信设备,如无线基站、卫星通信设备等。

-太阳能电池和风能发电系统。

-各种LED照明应用。

总之,BUCKBOOST电路通过开关器件和能量存储元件的配合,实现对输入电压的降压或升压,可以在宽范围的输入电压下调整输出电压,并具有良好的噪声抑制能力。

这种电路结构在很多领域中发挥着重要的作用。

buck电路分析

buck电路分析
1)电感电流连续模式 CCM(Continuous current mode)
开关状态 1:Q 导通( 0 ≤ t ≤ ton )
t = 0 时刻,Q 管被激励导通,二极管 D 中的电流迅速转换到 Q 管。二极管 D 被截止,等效电
路如图 5-5b 所示,这时电感上的电压为:
uL
=
L
diL dt
若 VO 在这期间保持不变,则有:

ΔVO
=
ΔQ C
电容充电电荷量即电流曲线与横轴所围的面积:
ΔQ = S
=
ΔI L 2
⋅T 2
=
ΔI L
⋅T
,则:
2
8
(5-12)
Δ VO
= ΔUC
=
Q C
=
ΔI L ⋅T 8C
=
ΔI L 8Cf
(5-13)
将(5-11)代入(5-13)得:
ΔU C
=
(Vd −Vo ) δ 8LCf 2
=
VO (1− δ ) 8LCf 2
到Vd ,且输出电压最大值不超过Vd 。
考虑到 T = 1 f ,变换(5-5)和(5-8)可得 ΔiL 的表达式:
ΔiL
=
Vd −Vo Lf
δ
=
Vo
(1− δ ) Lf
(5-11)
由于滤波电容上的电压等于输出电压,电容两端的电压变化量实际上就是输出电压的纹波电压
ΔVO , ΔVO 的波形如图 5-6a 所示。
2、电感电流断续工作方式(Discontinuous current mode)
图 5-6b 给出了电感电流断续时的工作波形,它有三种工作状态:①Q 导通,电感电流 iL 从零增

Buck电路分析

Buck电路分析

Buck 电路参数选择原理和计算3.1 参数选择原理在Buck 电路中的电感L 和电容C 组成低通滤波器,此滤波器的设计原则是,使输出电压的直流分量可以通过,抑制输出电压的开关频率及其谐波分量通过。

但是,构建一个能够让直流分量通过而且完全滤除开关频率及其谐波分量的完美的滤波器是不可能的,所以,在输出中至少有一小部分是由于开关产生的高频谐波。

因此,输出电压波形事实上如图3.1所示,可以表达为)()(00t u U t u ripple +=(3.1)U )(t ripple (0t u图3.1输出电压波形所以实际的输出电压由所需要的直流分量0U 加少量的交流分量ripple u 所组成,交流分量由低通滤波器未能完全衰减的开关谐波所产生。

由于直流变换器的作用使产生所需的直流的输出,因此希望输出电压开关纹波应很小。

所以,通常可以假设开关纹波的幅值远远小于直流分量,即0maxU u ripple<<(3.2)因此,输出电压近似为直流分量0U ,而忽略其小纹波成分ripple u ,即00)(U t u ≈(3.4)上述近似称为小纹波近似,或称线性纹波近似,可大大简化变换器波形的分析。

下面分析电感电流波形,进而得出电感的计算公式。

通过电感电压波形的积分可以得到电感电流。

开关在位置1时,电感在左侧与输入电压d U 相连,电路简化为下图3.1(a )。

电感电压为)()(0t u U t u d L -=(3.5)dU )(0t u(a ))(0t u(b ) 图3.1如上所述,输出电压)(0t u 为其直流分量0U 加小的交流纹波成分)(t u ripple 。

采用小纹波近似,式(3.4)中的)(0t u 用其直流分量0U 代替,得到0)(U U t u d L -=(3.6)开关在位置1时,电感电压等于0U U d -,如图3.1(b )所示。

电感电压方程为dtt di Lt u L L )()(= (3.7)在第一个子区间,由上式可以解得电感电流波形的斜率为LU U Lt u dtt di d L L 0)()(-== (3.8)由于开关在位置1时,电感电压近似为常量,因此电感电流的变化率也近似为常数,电感电流线性上升。

BUCK电路案例分析图文说明

BUCK电路案例分析图文说明

BUCK 电路案例分析图文说明BUCK 电路是一种降压斩波器,降压变换器输出电压平均值U o 总是小于输入电压U d 。

一、BUCK 电路工作原理Q1导通期间(t on ):电力开关器件导通,电感蓄能,二极管D 反偏。

等效电路如图5.7(b)所示 ;Q1关断期间(t off ):电力开关器件断开,电感释能,二极管D 导通续流。

等效电路如5.7 (c)所示;由波形图5.7 (b)可以计算出输出电压的平均值为:)0(1)(100⎰⎰⎰⋅+⋅==SononST tt d ST Sdt dt u T dt t u T U则:d dS onDU U T t U ==0,D 为占空比。

忽略器件功率损耗,即输入输出电流关系为:d d O d O I DI U U I 1==。

图4.6 BUCK电路工作过程二、电感工作模式分析下图4.7为BUCK电路中电感流过电流情况。

图4.7电感电流波形图电感中的电流i L是否连续,取决于开关频率、滤波电感L和电容C的数值。

1.电感电流i L连续模式:⑴在t on 期间:电感上的电压为dtdi Lu LL = 由于电感L 和电容C 无损耗,因此i L 从I 1线性增长至I 2,上式可以写成onLon O d t I L t I I LU U ∆=-=-12Od L on U U LI t -∆=)(式中△I L =I 2-I 1为电感上电流的变化量,U O 为输出电压的平均值。

⑵在t off 期间:假设电感中的电流i L 从I 2线性下降到I 1,则有offLO t I LU ∆=则,OLoff U I Lt ∆=可求出开关周期TS 为)(1O d O dL off on S U U U LU I t t fT -∆=+==fLD D U fLU U U U I d d O d O L )1()(-=-=∆上式中△I L 为流过电感电流的峰-峰值,最大为I 2,最小为I 1。

BUCK电路

BUCK电路

开关电源拓扑结构分析(图文)一.非隔离型开关变换器(一).降压变换器Buck电路:降压斩波器,入出极性相同。

由于稳态时,电感充放电伏秒积相等,因此:Ui-Uo)*ton=Uo*toff,Ui*ton-Uo*ton=Uo*toff,Ui*ton=Uo(ton+toff),Uo/Ui=ton/(ton+toff)=Δ即,输入输出电压关系为:Uo/Ui=Δ(占空比)图1:Buck电路拓补结构在开关管S通时,输入电源通过L平波和C滤波后向负载端提供电流;当S关断后,L通过二极管续流,保持负载电流连续。

输出电压因为占空比作用,不会超过输入电源电压。

(二).升压变换器Boost电路:升压斩波器,入出极性相同。

利用同样的方法,根据稳态时电感L的充放电伏秒积相等的原理,可以推导出电压关系:Uo/Ui=1/(1-Δ)图2:Boost电路拓补结构这个电路的开关管和负载构成并联。

在S通时,电流通过L平波,电源对L充电。

当S断时,L向负载及电源放电,输出电压将是输入电压Ui+U L,因而有升压作用。

(三).逆向变换器Buck-Boost电路:升/降压斩波器,入出极性相反,电感传输。

电压关系:Uo/Ui=-Δ/(1-Δ)图3:Buck-Boost电路拓补结构S通时,输入电源仅对电感充电,当S断时,再通过电感对负载放电来实现电源传输。

所以,这里的L是用于传输能量的器件。

(四).丘克变换器Cuk电路:升/降压斩波器,入出极性相反,电容传输。

电压关系:Uo/Ui=-Δ/(1-Δ)。

图4:Cuk变换器电路拓补结构当开关S闭合时,Ui对L1充电。

当S断开时,Ui+EL1通过VD对C1进行充电。

再当S闭合时,VD关断,C1通过L2、C2滤波对负载放电,L1继续充电。

这里的C1用于传递能量,而且输出极性和输入相反。

二.隔离型开关变换器1.推挽型变换器下面是推挽型变换器的电路。

图5:推挽型变换电路S1和S2轮流导通,将在二次侧产生交变的脉动电流,经过全波整流转换为直流信号,再经L、C滤波,送给负载。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BUCK 电路分析
李立清 2012/7/3 首先BUCK 电路基本电路如下
假设对BUCK 降压电路的基本要求
1. 输入直流电压;Ud=100v
2. 开管频率:f=40kHZ
3. 输出电压范围:Uo=50~80v
4. 输出电压纹波:<1%
5. 最大输出电流:5A(在额定负载下)
6.
效率不低于70%
7. 具有过流保护功能,动作电路:6A
8. 具有稳压功能
一.总体框图:
在电源系统中,一般由核心主电路,控制电路,驱动电路,保护电路,
输出的电压U0总小于Ud,一种降压式变换器,V是全控制器件,为MOSET管,为给负载电感电流提供通路,设置续流二极管VD (1)在t=0是,V管导通,VD管要承受反压,在V管导通时间为t1时间内,开关管V流过的电流就是电感电流,电感L
上电流直线上升,储存在电感中,电源E向负载供电,负
载电压U0=E,负载电流按指数曲线上升,
(2)在t=t1时刻V管关断,由于电感储能作用,电感电流必须要按某一回路能量释放。

二极管VD导通,,VD续流,负
载电流近似为0,负载电流指数曲线下降,
(3)为了是负载电流连续且脉动小,故应接上较大的电感L
(4)一个周期T结束再次重复,在工作在稳态时,一个周期的终值与初值相等,负载电压的平均U0=KE,通过调节占空比
K使输出的电压平均值U0为所需的值
二.对于MOSET管和续流二极管VD的选择
1. V截止时,回路通过二极管V续流,MOSET管正向承受电压100V;当K=1时,MOSET管有最大电流,其值为5A,故需要选择集电极最大连续电流Ic>5A,反向击穿电压>100V,如果考虑2倍安全裕量Ic>10A, 反向击穿电压>200V
2.二极管当K=1时,其承受最大反压100V,而当K趋近1时,其承受最大电流趋近5A,故需要选择Vc>100v,I>5A的二极管,如果考虑2倍安全裕量I>10A, 反向击穿电压>200V
3.电感的选择:选择大电感能够续流,此时的临界电感L:
L=U0(Ud-U0)/(2FUd I)
则L=80x(100-80)/(2x40x1000x100x5)=0.04mH,所以电感L>=0.04 Mh,取L=0.1 mH
4.电容选择电容既要是输出的电压纹波<1%,也不能取得太大,否则电压变化速度很慢,电容的选择:也取输出电压为80V来计算C=U0(Ud-U0)/(8L Uc F.F.Ud) (Uc=0.01)
C=80(100-80)/(8x0.1mH x 0.01x 40k x 40k x 100)=12.5uF
取C=13 uF
5.因为输出的电压为50V-80v,而输出的最大电流为5A,由欧姆定律R=U0(min)/I 电阻最小取R=50/5=10。

相关文档
最新文档