第七章 数模和模数转换电路
(数字电子技术)第7章数模与模数转换
第7章 数/模与模/数转换
7.1 概述 7.2 数/模转换 7.3 模/数转换 7.4 本章小结 7.5 例题精选 7.6 自我检测题
第7章 数/模与模/数转换
7.1 概 述
随着以数字计算机为代表的各种数字系统的广泛普及和 应用,模拟信号和数字信号的转换已成为电子技术中不可或 缺的重要组成部分。数/模转换指的是把数字信号转换成相 应的模拟信号,简称D/A转换,同时将实现该转换的电路称 为D/A转换器,简称DAC;模/数转换指的是把模拟信号转 换为数字信号,简称A/D转换,并将实现该转换的电路称为 A/D转换器,简称ADC。
当Rf=R时
uo=
uR 2n
n-1
di zi
i= 0
由上式可以看出,此电路完成了从数字量到模拟量的转 换,并且输出模拟电压正比于数字量的输入。
第7章 数/模与模/数转换
2. 集成DAC电路AD7524 AD7524(CB7520)是采用倒T型电阻网络的8位并行D/A 转换器,功耗为20 mW,供电电压UDD为5~15 V。 AD7524典型实用电路如图7.2.5所示。
第7章 数/模与模/数转换
7.3.4 常见的ADC电路
1. 逐次逼近型ADC 逐次逼近型ADC是按串行方式工作的,即转换器输出 的各位数码是逐位形成的。图7.3.6为原理框图,该电路由电 压比较器、逻辑控制器、D/A转换器、逐次逼近寄存器等组 成。
第7章 数/模与模/数转换
图 7.3.6 பைடு நூலகம்次逼近型ADC原理图
第7章 数/模与模/数转换
(2) 四舍五入法:取最小量化单位Δ=2Um/(2n-1-1), 量化时将0~Δ/2之间的模拟电压归并到0·Δ,把Δ/2~3·Δ/2之 间的模拟电压归并到1·Δ,依此类推,最大量化误差为Δ/2。 例如,需要把0~+1 V之间的模拟电压信号转换为3位二进制 代码,这时可取Δ=(2/15)V,那么0~(1/15)V之间的电压就 归并到0·Δ,用二进制数000表示;数值在(1/15)~(3/15)V之 间的电压归并到1·Δ,用二进制数001表示,并依此类推,如 图7.3.5(b)
数模与模数转换电路
数模与模数转换电路随着数字技术,特别是计算机技术的飞速发展与普及,在现代控制、通信及检测领域中,对信号的处理广泛采用了数字计算机技术。
由于系统的实际处理对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别和处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析、处理后输出的数字量往往也需要将其转换成为相应的模拟信号才能为执行机构所接收。
这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路——模数转换电路和数模转换电路。
能将模拟信号转换成数字信号的电路,称为模数转换器(简称A/D 转换器);而将能把数字信号转换成模拟信号的电路称为数模转换器(简称D/A 转换器),A/D 转换器和D/A 转换器已经成为计算机系统中不可缺少的接口电路。
在本章中,将介绍几种常用A/D 与D/A 转换器的电路结构、工作原理及其应用。
1 D/A 转换器一. D/A 转换器的基本原理数字量是用代码按数位组合起来表示的,对于有权码,每位代码都有一定的权。
为了将数字量转换成模拟量,必须将每1位的代码按其权的大小转换成相应的模拟量,然后将这些模拟量相加,即可得到与数字量成正比的总模拟量,从而实现了数字—模拟转换。
这就是构成D/A 转换器的基本思路。
图9.1—1所示是D/A 转换器的输入、输出关系框图,D 0~D n-1是输入的n 位二进制数,v o 是与输入二进制数成比例的输出电压。
图9.1—2所示是一个输入为3位二进制数时D/A 转换器的转换特性,它具体而形象地反映了D/A 转换器的基本功能。
1234567001010*********110111D/A转换器D D D 01n-1...v o输入输出v o /VD 000图9.1—1 D/A 转换器的输入、输出关系框图 图9.1—2 3位D/A 转换器的转换特性二. 倒T 形电阻网络D/A 转换器在单片集成D/A 转换器中,使用最多的是倒T 形电阻网络D/A 转换器。
第7章 模数转换及数模转换
一个完整的微机闭环实时控制系统示意图
COMPUTER SCIENCE AND TECHNOLOGY
zhaohw@
2
7.2 传感器
• A/D转换器是将模拟的电信号转换成数字信号。所以将物理量 转换成数字量之前,必须先将物理量转换成电模拟量。传感 器是把非电量的模拟量(如温度、压力、流量等)转换成电 压或电流信号。 • 因此,传感器一般是指能够进行非电量和电量之间转换的敏 感元件。传感器的精度直接影响整个系统的精度,如果传感 器误差较大,则测量电路、放大电路以及A/D转换电路和微机 的处理都会受到影响。 • 物理量的多样性使得传感器的种类繁多,下面对几种常用的 传感器作以简单的介绍。
COMPUTER SCIENCE AND TECHNOLOGY
zhaohw@
15
1.DAC 0832主要特性 . 主要特性
• • • • • • • • • • 8位分辨率, 电流型输出, 外接参考电压-10V~+10V, 可采用双缓冲、单缓冲或直接输入三种工作方式, 单电源+5V~+15V, 电流建立时间1µs, R-2R T型解码网络, 线性误差0.2%FS(FS为满量程), 非线性误差0.4%FS, 数字输入与TTL兼容。
COMPUTER SCIENCE AND TECHNOLOGY
zhaohw@
3
1.温度传感器 .
• 热电偶是一种大量使用的温度传感器,它是利用热电势效应 来工作的,室温下的典型输出电压为毫伏数量级。温度测量 范围与热电偶的材料有关,常用的有镍铝-镍硅热电偶和铂铑铂热电偶。热电偶的热电势-温度曲线一般是非线性的,需要 采取措施进行非线性校正。 • 另一种温度传感器为热敏电阻,它是一种半导体新型感温元 件,具有负的电阻温度系数,当温度升高时,其电阻值减小, 在使用热敏电阻作为温度传感器时,将温度的变化反映在电 阻值的变化中,从而改变电压或电流值。
【精品】数模转换与模数转换
【关键字】精品第7章数-模转换与模-数转换第1讲数-模转换一、教学目的:1、数模转换的基本原理。
2、理解常见的数模转换电路。
3、掌握数模转换电路的主要性能指标。
二、主要内容:1、数模转换的定义及基本原理2、权电阻D/A转换器、倒T型D/A转换器的电路结构特点、工作原理及其主要技术参数3、DAC主要性能指标三、重点难点:权电阻D/A转换器、倒T型D/A转换器的电路结构特点、工作原理及其主要技术参数。
四、课时安排:2学时五、教学方式:课堂讲授六、教学过程设计复习并导入新课:新课讲解:[重点难点]权电阻D/A转换器、倒T型D/A转换器的电路结构特点、工作原理及其主要技术参数,逐次逼近型A/D转换器、双积分型A/D转换器的电路结构特点、工作原理及其主要技术参数。
[内容提要]本章介绍数字信号和模拟信号相互转换的基本原理和常见转换电路。
必要性与意义:自然界中,许多物理量是模拟量,电子系统中的输入、输出信号多数也是模拟信号。
而数字系统处理的数字信号却具有抗干扰能力强、易处理等优点;利用数字系统处理模拟信号的情况也越来越普遍。
由于数字系统只能对数字信号进行处理,因此要根据实际情况对模拟信号和数字信号进行相互转换。
随着计算机技术和数字信号处理技术的快速发展,在通信、自动控制等许多领域,常常需要将输入到电子系统的模拟信号转换成数字信号后,再由系统进行相应的处理,而数字系统输出的数字信号,还要再转换为模拟信号后,才能控制相关的执行机构。
这样,就需要在模拟信号与数字信号之间建立一个转换接口电路—模数转换器和数模转换器。
A/D转换定义:将模拟信号转换为数字信号的过程称为模数转换(Analog to Digital),或A/D转换。
能够完成这种转换的电路称为模数转换器(Analog Digital Converter),简称ADC。
D/A转换定义:将数字信号转换为模拟信号的过程称为数模转换(Digital to Analog),或D/A转换。
数字逻辑:数模与模数转换电路
模拟信号
连续的、时间上连续变化 的信号,如声音、光线等 。
转换方式
数字信号可以通过数模转 换器转换为模拟信号,模 拟信号也可以通过模数转 换器转换为数字信号。
数字逻辑的基本门电路
AND门
当所有输入都为高电平(1)时,输 出才为高电平(1)。
NOT门
对输入信号取反,输入为高电平(1 )时输出为低电平(0),输入为低 电平(0)时输出为高电平(1)。
数字逻辑数模与模 数转换电路
目录
• 数字逻辑基础 • 数模转换电路(DAC) • 模数转换电路(ADC) • 数模与模数转换的应用 • 数模与模数转换的发展趋势
01
CATALOGUE
数字逻辑基础
数字信号与模拟信号的区别
01
02
03
数字信号
离散的、不连续的信号, 只有0和1两种状态,通常 用于表示二进制数。
集成化、微型化的电路设计
集成化
随着半导体工艺的进步,数模与 模数转换电路可以更加集成化, 减小电路体积,提高可靠性。
微型化
微型化设计可以减小电路板空间 占用,使得数模与模数转换电路 更加适用于小型化设备。
智能化的数据处理技术
数据校准
通过算法和校准技术,对数模与模数 转换电路的输出数据进行校准和修正 ,以提高转换精度。
权电阻型
根据输入数字码改变相应的权电阻的接 通或断开,从而改变输出电压。
权电容型
根据输入数字码改变相应的权电容的 充放电状态,从而改变输出电压。
权电流型
根据输入数字码改变相应的权电流源 的开关状态,从而改变输出电压。
权电压型
根据输入数字码改变相应的权电压源 的开关状态,从而改变输出电压。
DAC的性能参数
数模与模数转换电路
1. D/A转换器的转换精度
转换精度是指输出模拟量的实际值与理想值之差,差值越小, 其转换精度越高。转换误差原因很多,如转换器中各元件参数 的误差、运算放大器零漂的影响、基准电源不够稳定等。
D/A转换器误差主要有: (1)非线性误差
通常把在满量程范围内偏离转换特性的最大误差称非线性 误差,它与最大量程的比值称非线性度。产生的原因一个是 电阻网络中电阻值的偏差,另一个是模拟开关的导通电阻和 导通压降的实际值不等于零,且呈非线性。
(7.2.5) (7.2.6)
支路的电流表达式为
(7.2.7)
综上所述,集成运算放大器反向端的总电流为
根据运算放大器输入端“虚断”,有
(7.2.8) (7.2.9)
从上式可见,输出的模拟电压Uo与输入的数字量成正比, 从而实现了数字量到模拟量的转换。由于在倒T型电阻网络D/A 转换器中,各支路电流直接流入运算放大器的输入端,它们之间 不存在传输上的时间差,这一特点,不仅提高了转换速度,也减 少了动态过程中输出端可能出现的尖脉冲。常用的CMOS开关倒 T型电阻网络D/A转换器的集成电路有AD7520、DAC1210等。
图7.3.3 取样保持电路
当UL=1时,模拟开关S闭合。A1、A2接成电压跟随器,所以 输出Uo=U'o=UL。同时,U'o通过电阻R2对外接电容CH充电, 使UCH= UL.因电压跟随器的输出电阻非常小,所以对外接电容 CH的充电时间很短。
当UL=0时,模拟开关S断开,取样过程结束。由于UCH无放 电通路,所以UCH上的电压值能保持一段时间不变,使取样结果 Uo保持下来。
3.量化与编码
数字量在时间上和数值上是离散的。任何一个数字量的大小, 都是以某个最小数量单位的整数倍来表示的,因此,用数字量 表示取样电压时,就必须把它转化成这个最小数量单位的整数 倍,这个过程称为量化。最小数量单位叫做量化单位,用Δ表 示。由于输入电压是连续变化的,它的幅值不一定能被Δ整除, 因而不可避免地会引入误差,这种误差称为量化误差。量化误 差属于原理误差,是不可被消除的。A/D转换器的位数越多, 量化误差的绝对值就越小。
数字电子技术基础课件:数模与模数转换电路
数/模与模/数转换电路
8.2.2 典型的 D/A转换电路 1.权电阻网络 D/A转换器 图8.2.2是四位权电阻网络 D/A 转换器的原理图,它由权
电阻网络、模拟开关S0~S3和 I/U 转换电路组成。权电阻网 络中每一个电阻的阻值与对应位的位权成反比。图中模拟开 关 S0~S3由输入数码D0~D3控制,当Di=0时,模拟开关Si接地;当 Di=1时,模拟开关Si将电阻接到UREF上。这样流过每个电阻的 电流就和对应位的位权成正比,再将这些电流相 加,其结果就 会与输入的数字量成正比。
拟量电压或者电流输出。当采 用电压输出时,其输入、输出 关系可表示为
数/模与模/数转换电路
数/模与模/数转换电路
基于上述基本思想,一个 D/A 转换器应该由数码寄存器、 模拟电子开关、解码网络、求 和电路及基准电压等部分组 成,如图8.2.1所示。进行 D/A 转换时,先将数字量存于数码寄 存器中,由寄存器输出的数码驱动对应数位的模拟电子开关, 使解码网络获得相应数位的权 值,再送入求和电路,将各位的 权值叠加,从而得到与数字量对应的模拟量输出。
考虑到 D/A 转换器的工作原理比 A/D 转换器的工作原 理简单,而且在有些 A/D 转换 器中需要用 D/A 转换器作为内 部的反馈电路,所以本章我们先讨论 D/A 转换器,再介绍 A/D 转换器。
数/模与模/数转换电路
8.2 数/模转换电路
8.2.1 数/模转换的基本原理 数/模转换是将输入的数字量(如二进制数 NB)转换为模
数/模与模/数转换电路
数/模与模/数转换电路
图8.2.7 3位 D/A 转换器的比例系数误差
数/模与模/数转换电路
失调误差是由运算放大器的零点漂移所引起的,图8.2.8 是3位 D/A 转换器的失调误 差,由于运算放大器零点漂移的 影响会使输出电压的转移特性曲线发生平移,从而在输出端 产生误差电压 ΔuO2。失调误差电压 ΔuO2的大小与输入数字 量无关。
数模与模数转换电路基础知识讲解
I1
寄存器
代码转换器
D2 (MSB) D1 D 0 (LSB)
并行比较型A/D转换器真值表
输入模拟电压
vI
(0
~
1 15
)VREF
(
1 15
~
3 15
)VREF
(
3 15
~
5 15
)VREF
(
5 15
~
7 15
)VREF
(
7 15
~
9 15
)VREF
(
9 15
~
11 15
)VREF
(
11 15
T2
TC
2n VREF
VI
上式表明,计数器中所计得的数λ(λ=Qn-1…Q1Q0),与在取样时间T1内输 入电压的平均值VI成正比。只要VI<VREF,转换器就能将输入电压转换为数 字量。
六. A/D转换器的主要技术指标
1. 转换精度
(1)分辨率——说明A/D转换器对输入信号的分辨能力。 一般以输出二进制(或十进制)数的位数表示。因为,在最大输入电压一定时, 输出位数愈多,量化单位愈小,分辨率愈高。
100
0 0 11 111
101
0 1 11 111 1 1 11 111
110 111
四. 逐次比较型A/D转换器 1. 转换原理:
v 设:
9
16VREF<
I
<
10
16VREF
v 设:
9
16VREF<
I
<
10
16VREF
vI
vO
D0
2. 逻辑电路
D/A 转换器
D1
D2
数模和模数转换电路精品PPT课件
模拟量。若三个DAC0832芯片的DAC寄存器处于直通状态,就
无法控制三路模拟信号的同步输出。
14.3 DAC0832与单片机的接口及应用
• 图中为采用单缓冲工作方式的一路D/A输出与8051单片机的连接 图。图中采用将芯片两级寄存器的控制信号并接的方式,即将 DAC0832的/WR1和/WR2并接后与805l的/WR信号线相连,/CS 和/XFER并接后与P2.7相连,并将ILE接高电平。在这种工作方式 下,输入数据在控制信号的作用下,送入DAC寄存器,再经D/A 转换输出一个与输入数据对应的模拟量。
D/A转换器的基 准电压VREF由稳 压管上的电压分 压后提供。图中 运算放大器的作 用将D/A转换器 输出电流转换成 电压输出。
图中的接法是采用线选法把DAC0832当作8031扩展的一个并行I/ O口,当P2.7=0时,则信号/CS和/XFER有效,若设其它无关的地 址位为“1”,则DAC0832的口地址为7FFFH。将一个8位数据送 入DAC0832完成转换的指令如下: MOV DPTR,#7FFFH ;指向0832的口地址 MOV A,#data ;待转换的数据送A MOVX @DPTR,A ;写入0832,即实现一次转换并输出
D/A转换程 序设计
(1) 锯齿波
(1)产生锯齿波 利用D/MAO转V换,DP可T方R,便#编7F程F输FH出各;种指不向同08的32程的控口电地压址波形。以下 几个程序M实O例V 可A在,图#0中0H的运放输出;端将产最生小不数同字的量电0压0H输送出A波形:
LOOP:MOVX @DPTR,A ;A中数据送0832转换,输出对应
• DAC0832是一典型的8位并行D/A转换器。为20引脚的双列直插 式封装
数字逻辑:数模与模数转换电路ppt课件
9 a10
8 a9 ……
1
0
a2
a1
Vi
If -
Vo
Ii
A +
7
频率数字控制
R3
R4
D2
VCC
a1 a2 an-1an
Io
VREF
Io
T1
T2
D1
C
R2
-
R1 B
+
+
-
υo1
υo2
8
模/数转换电路
模/数(A/D)转换是把模拟电压或电流转换成与之成 正比的数字量。一般A/D转换需经采样、保持、量 化、编码四个步骤。
C
s0
a1
RF
R
i0
iC
2R
D
s0 Ii
-
If
+ a0
2R
IR /16
I f
VREF 24 R
3
ai • 2i
i0
4
应用实例
【例】已知倒T型电阻网络DAC的RF=R,VREF=10V,试 分别求出四位和八位DAC的最小(只有数字信号最低位
为1时)输出电压Vomin。
解:根据 0 I f • RF
9
采样定理
采样定理:
采样定理的内容是:只有当采样频率大于模拟信号最高频率 分量的2倍时,所采集的信号样值才能不失真地反映原来模 拟信号的变化规律。
10
采样保持电路
T υi
υs
-A + C
υo υi R1
R2 C
T
- A υo
+
υs
基本采样-保持电路 高输入阻抗的采样-保持电路
T
(完整版)AD、DA转换原理数模、模数转换
2. 工作原理
由于集成运算放大器的电流求和点Σ为虚地, 所以每个2R电阻的上端都相当于接地,从网络的A、 B、C点分别向右看的对地电阻都是2R。
2020/7/25
9
因此流过四个2R电阻的电流分别为I/2、I/4、 I/8、I/16。电流是流入地,还是流入运算放大器, 由输入的数字量Di通过控制电子开关Si来决定。故 流入运算放大器的总电流为:
1 分辨率 = 2n 1
位数越多,能够分辨的最小输出电压变化量就
越小,分辨率就越高。也可用位数n来表示分辨率。
2020/7/25
16
2. 转换速度
D/A转换器从输入数字量到转换成稳定的模拟 输出电压所需要的时间称为转换速度。
不同的DAC其转换速度也是不相同的,一般约 在几微秒到几十微秒的范围内。
2020/7/25
精度由电阻的精度定,而此电路中阻值差别大,对集成不利
2020/7/25
7
倒T形电阻网络DAC
双向模拟开关 DD1电= =.源10电时时组电路接接成路组运 地。由成放解码网络、模拟开关、求和放求 算大放和器大集和器成基运准
基准参 考电压
2020/7/25
R-2R倒T 形电阻解 码网络
图7-2 倒T型电阻网络DAC原理图
模拟量:
uo=K(D3×23+D2×22+D1×21+D0×20)10
uo=K(1×23+1×22+0×21+1×20)10
(K为比例系数)
2020/7/25
3
组成D/A转换器的基本指导思想:将数字量按 权展开相加,即得到与数字量成正比的模拟量。
n位D/A转换器方框图
D/A转换器的种类很多,主要有: 权电阻网络DAC、 T形电阻网络DAC 倒T形电阻网络DAC、 权电流DAC
电路中的模数转换与数模转换
电路中的模数转换与数模转换在电路中,模数转换和数模转换是非常重要的概念。
它们分别指的是将模拟信号转换为数字信号和将数字信号转换为模拟信号的过程。
首先,让我们来了解一下什么是模拟信号和数字信号。
模拟信号是连续变化的信号,可以取任何值,例如声音、光线、温度等。
而数字信号是离散的信号,只能取有限个特定的值,通常用0和1表示。
数字信号常用于计算机和通信系统中,因为它们易于处理和传输。
模数转换是指将模拟信号转换为数字信号的过程。
这个过程通常由模数转换器(ADC)完成。
ADC将连续的模拟信号按照一定的采样率进行采样,并将每个采样点的模拟值转换为对应的数字值。
这些数字值可以代表模拟信号的幅度、频率等信息。
模数转换的精度取决于ADC的位数,位数越高,转换精度越高。
模数转换在很多领域中发挥着重要作用。
例如,音频系统中的模数转换用于将声音信号转换为数字信号,以便在计算机中进行音频处理和存储。
在医疗设备中,模数转换被用来测量生理信号,如心电图、血压等。
在工业控制系统中,模数转换被用来监测和控制各种物理量,如温度、湿度、压力等。
接下来,让我们来谈谈数模转换,它是将数字信号转换为模拟信号的过程。
数模转换通常由数模转换器(DAC)完成。
DAC接收一串二进制数字,并将其转换为对应的模拟值。
数模转换的精度也取决于DAC的位数,位数越高,转换精度越高。
数模转换常用于数字系统与模拟设备之间的接口。
例如,在音频系统中,数模转换器将数字音频信号转换为模拟音频信号,以便输出到扬声器中。
在图像系统中,数模转换器将数字图像信号转换为模拟图像信号,以便输出到显示屏上。
除了模数转换和数模转换,还有一些相关的概念值得一提。
一个是采样率,它表示模拟信号的采样频率。
采样率越高,可以获取到更多的模拟信号细节,但也会增加处理和存储的成本。
另一个是量化误差,它表示模拟信号与转换后的数字信号之间的差异。
量化误差取决于ADC或DAC的精度,以及信号的动态范围。
《数模和模数转换》课件
量化
将采样得到的样值进行量 化处理,将连续的模拟量 转化为离散的数字量。
编码
将量化后的数字量转换成 二进制或多进制的数字代 码。
ADC的分类
逐次逼近型ADC
逐次逼近型ADC采用逐次比较的 方法,将输入模拟信号与内部参 考电压进行比较,逐步逼近输入 信号的电压值。
并行比较型ADC
并行比较型ADC采用多个比较器 ,将输入模拟信号与多个参考电 压进行比较,以得到输入信号的 数字代码。
此外,新型封装技术的采用也将有助于减小转换器的尺寸。例如 ,采用球栅阵列封装(BGA)和晶片级封装(WLP)等新型封装技术 ,可以减小封装体积并提高集成度。
PART 05
总结
数模和模数转换的重要性和应用领域
01
重要性和应用领域
数模和模数转换是数字信号处理中的关键技术,广泛应用于通信、雷达
、音频处理、图像处理等领域。通过数模和模数转换,可以实现信号的
2023-2026
END
THANKS
感谢观看
KEEP VIEW
REPORTING
2023-2026
ONE
KEEP VIEW
《数模和模数转换》 PPT课件
REPORTING
CATALOGUE
目 录
• 数模转换器(DAC) • 模数转换器(ADC) • 数模和模数转换的应用 • 数模和模数转换的未来发展 • 总结
PART 01
数模转换器(DAC)
DAC工作原理
数字信号输入
将数字信号输入到DAC中。
PART 03
数模和模数转换的应用
音频处理
数字音频播放
将模拟音频信号转换为数字信号,通 过数字音频播放器进行播放,可以实 现更高质量的音频输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章数/模(D/A)和模/数(A/D)转换电路教学目的:1.掌握权电阻D/A转换器和逐次逼近型A/D转换器的工作原理、特点,输入与输出之间的关系2.了解影响精度及速度的因素3.了解D/A转换器典型芯DAC0832的特点及应用。
4. 了解A/D转换器典型芯ADC0809的特点及应用教学重点:倒T型电阻网络D/A转换器的工作原理; A/D转换的一般步骤;逐次逼近型A/D转换器的工作原理。
教学难点:D/A转换器的工作原理;A/D转换器内部电路结构、工作原理教学方法:教学过程采用理论讲解方式。
学时分配:4学时教学内容:D/A转换器及A/D转换器的种类很多,本章介绍常用的权电阻网络D/A转换器,倒T 型电阻网络D/A转换器等几种类型;逐次逼近型A/D转换器,双积分型A/D转换器。
并介绍了D/A转换器和A/D转换器的技术指标及应用。
第一节数/模转换器DAC一、数/模转换器的基本概念把数字信号转换为模拟信号称为数-模转换,简称D/A(Digital to Analog)转换,实现D/A转换的电路称为D/A转换器,或写为DAC(Digital –Analog Converter)。
随着计算机技术的迅猛发展,人类从事的许多工作,从工业生产的过程控制、生物工程到企业管理、办公自动化、家用电器等等各行各业,几乎都要借助于数字计算机来完成。
但是,计算机是一种数字系统,它只能接收、处理和输出数字信号,而数字系统输出的数字量必须还原成相应的模拟量,才能实现对模拟系统的控制。
数-模转换是数字电子技术中非常重要的组成部分。
把模拟信号转换为数字信号称为模-数转换,简称A/D(Analog to Digital)转换;。
实现A/D转换的电路称为A/D转换器,或写为ADC(Analog–Digital Converter);。
D/A 及A/D转换在自动控制和自动检测等系统中应用非常广泛。
D/A转换器及A/D转换器的种类很多,这里主要介绍常用的权电阻网络D/A转换器,倒T型电阻网络D/A转换器。
权电流型D/A 转换器及权电容网络D/A 转换器等几种类型;A/D 转换器一般有直接A/D 转换器和间接A/D 转换器两大类。
二、 权电阻网络D/A 转换器1.工作原理权电阻网络D/A 转换器的基本原理图如图7.1所示。
这是一个四位权电阻网络D/A 转换器。
它由权电阻网络电子模拟开关和放大器组成。
该电阻网络的电阻值是按四位二进制数的位权大小来取值的,低位最高(23R ),高位最低(20R ),从低位到高位依次减半。
S 0、S 1、S 2和S 3为四个电子模拟开关,其状态分别受输入代码D 0、D 1、D 2和D 3四个数字信号控制。
输入代码D i 为1时开关S i 连到1端,连接到参考电压V REF 上,此时有一支路电流I i 流向放大器的A 节点。
D i 为0时开关S i 连到0端直接接地,节点A 处无电流流入。
运算放大器为一反馈求和放大器,此处我们将它近似看作是理想运放。
因此我们可得到流入节点A 的总电流为:()()()1.82222221212121001122333302112033210D D D D RV V D R D R D R D R I I I I I i REF REFi+++=⎪⎭⎫ ⎝⎛+++==+++=∑∑ (7.1)可得结论:i ∑与输入的二进制数成正比,故而此网络可以实现从数字量到模拟量的转换。
另一方面,对通过运放的输出电压,我们有同样的结论: 运放输出为u o =-i ∑R F (7.2)将(7.1)式代入,得()()()3.82222222222120011223340011223330D D D D V D D D D R R V u R E F R E F +++-=+++⋅-= (7.3)将上述结论推广到n 位权电阻网络D/A 转换器,输出电压的公式可写成:()()4.822222001122110D D D D V u n n n n nREF ++++-=---- (7.4)权电阻网络D/A 转换器的优点是电路简单,电阻使用量少,转换原理容易掌握;缺点是所用电阻依次相差一半,当需要转换的位数越多,电阻差别就越大,在集成制造工艺上就越难以实现。
为了克服这个缺点,通常采用T 型或倒T 型电阻网络D/A 转换器。
四、 D/A 转换器的主要技术指标 1、分辨率分辨率是说明D/A 转换器输出最小电压的能力。
它是指D/A 转换器模拟输出所产生的最小输出电压U LSB (对应的输入数字量仅最低位为1)与最大输出电压U FSR (对应的输入数字式中, n 表示输入数字量的位数。
可见,分辨率与D/A 转换器的位数有关,位数n 越大,能够分辨的最小输出电压变化量就越小,即分辨最小输出电压的能力也就越强。
例如:n=8时, D/A 转换器的分辨率为而当n=10时, D/A 转换器的分辨率为很显然,10位D/A 转换器的分辨率比8位D/A 转换器的分辨率高得多。
但在实践中我们应该记住,分辨率是一个设计参数,不是测试参数。
2、转换精度转换精度是指D/A 转换器实际输出的模拟电压值与理论输出模拟电压值之间的最大误差。
显然,这个差值越小,电路的转换精度越高。
但转换精度是一个综合指标,包括零点误差、增益误差等,不仅与D/A 转换器中的元件参数的精度有关,而且还与环境温度、求和运算放大器的温度漂移以及转换器的位数有关。
故而要获得较高精度的D/A 转换结果,一定要正确选用合适的D/A 转换器的位数,同时还要选用低漂移高精度的求和运算放大器。
一般情况下要求D/A 转换器的误差小于2/LSB U 。
3、转换时间转换时间是指D/A 转换器从输入数字信号开始到输出模拟电压或电流达到稳定值时所用的时间。
即转换器的输入变化为满度值(输入由全0变为全1或由全1变为全0)时,其输出达到稳定值所需的时间为转换时间也称建立时间。
转换时间越小,工作速度就越高。
(三) 常用集成DAC 转换器简介DAC0830系列包括DAC0830、DAC0831和DAC0832,是CMOS 工艺实现的8位乘法D/A 转换器,可直接与其它微处理器接口。
该电路采用双缓冲寄存器,使它能方便地应用于多个D/A 转换器同时工作的场合。
数据输入能以双缓冲、单缓冲或直接通过三种方式工作。
0830系列各电路的原理、结构及功能都基本相同,参数指标略有不同。
现在以使用最多的DAC0832为例进行说明。
DAC0832是用CMOS 工艺制成的20只脚双列直插式单片八位D/A 转换器。
它由八位输入寄存器、八位DAC 寄存器和八位D/A 转换器三大部分组成。
它有两个分别控制的数据寄存器,可以实现两次缓冲,所以使用时有较大的灵活性,可根据需要接成不同的工作方式。
DAC0832芯片上各管脚的名称和功能说明如下: 1.引脚功能DAC0832的逻辑功能框图和引脚图如图7.2所示。
各引脚的功能说明如下:图 7.2 DAC0832的逻辑功能框图和引脚图CS :片选信号,输入低电平有效。
ILE :输入锁存允许信号,输入高电平有效。
1WR :输入寄存器写信号,输入低电平有效。
2WR :DAC 寄存器写信号,输入低电平有效。
XFER :数据传送控制信号,输入低电平有效。
D I0~D I7:8位数据输入端,D I0为最低位,D I7为最高位。
I OUT1 :DAC 电流输出1。
此输出信号一般作为运算放大器的一个差分输入信号(通常接反相端)。
I OUT2 :DAC 电流输出2,I OUT1 + I OUT2 = 常数。
R FB :反馈电阻。
V ref :参考电压输入,可在+10V ~-10V 之间选择。
V CC :数字部分的电源输入端,可在+5V ~+15V 范围内选取,+15V 时为最佳工作状态。
AGND :模拟地。
refout2out1FB CCDGND :数字地。
2.工作方式 (1)双缓冲方式D AC0832包含输入寄存器和DAC 寄存器两个数字寄存器,因此称为双缓冲。
即数据在进入倒T 型电阻网络之前,必须经过两个独立控制的寄存器。
这对使用者是非常有利的:首先,在一个系统中,任何一个DAC 都可以同时保留两组数据,其次,双缓冲允许在系统中使用任何数目的DAC 。
(2)单缓冲与直通方式。
在不需要双缓冲的场合,为了提高数据通过率,可采用这两种方式。
例如,当,02===XRER WR CS ILE=1时,这时的DAC 寄存器就处于“透明”状态,即直通工作方式。
当11=WR 时,数据锁存,模拟输出不变,当01=WR 时,模拟输出更新。
这被称为单缓冲工作方式。
又假如1,012=====ILE WR XREF WR CS ,此时两个寄存器都处于直通状态,模拟输出能够快速反应输入数码的变化。
DAC0832的双缓冲器型、单缓冲器型和直通型工作方式如图8.3所示。
(a) 双缓冲器型 (b) 单缓冲器型(c) 直通型图 7.3 DAC0832的三种工作方式D D Ñ¡Í Ñ¡ÍDD D Ñ¡ÍÑ¡ÍDD D D第二节模/数转换器(ADC)一、ADC基本概念模数转换是将模拟信号转换为相应的数字信号,把模拟信号转换为数字信号称为模-数转换,简称A/D(Analog to Digital)转换;。
实现A/D转换的电路称为A/D转换器,或写为ADC(Analog–Digital Converter);实际应用中用到大量的连续变化的物理量,如温度、流量、压力、图像、文字等信号,需要经过传感器变成电信号,但这些电信号是模拟量,它必须变成数字量才能在数字系统中进行加工、处理。
因此,模-数转换是数字电子技术中非常重要的组成部分,在自动控制和自动检测等系统中应用非常广泛。
A/D转换器是模拟系统和数字系统之间的接口电路,A/D转换器在进行转换期间,要求输入的模拟电压保持不变,但在A/D转换器中,因为输入的模拟信号在时间上是连续的,而输出的数字信号是离散的,所以进行转换时只能在一系列选定的瞬间对输入的模拟信号进行采样,然后再把这些采样值转化为输出的数字量,一般来说,转换过程包括取样、保持、量化和编码四个步骤。
A/D转换的一般步骤如下:(一)采样和保持采样(又称抽样或取样)是对模拟信号进行周期性地获取样值的过程,即将时间上连续变化的模拟信号转换为时间上离散、幅度上等于采样时间内模拟信号大小的模拟信号,即转换为一系列等间隔的脉冲。
其采样原理如图7.4所示。
图中, u i为模拟输入信号,u s为采样脉冲,u o为取样后的输出信号。
采样电路实质上是一个受采样脉冲控制的电子开关,其工作波形如图7.4(b)所示。