模电设计-电流镜负载的差分放大器..

合集下载

CMOS集成电路电流源负责的差分放大器

CMOS集成电路电流源负责的差分放大器

目录必做项目:与非门电路的设计一设计目的与指导二设计及过程分析三结果分析四体会五任务分工选做项目:电流镜负载的差分放大器设计一设计目的与要求二设计及过程分析三结果分析四体会五任务分工必做项目:与非门电路的设计一、设计目的与指导本项目要求基于csmc 0.35um 工艺,完成一个二输入与非门(2NAND)的电路设计。

设计要求如下:1、为了给顶层设计留出更多的布线资源,版图中只能使用金属1 和多晶硅作为互连线,输入,输出和电源、地线等pin 脚必须使用金属12、版图满足设计规则要求,并通过LVS 检查3、设计分析分析二输入与非门(2NAND)的电路,确定器件的宽长比。

设置华大九天环境启动 Aether建立自己的设计库用 Schematic Editor 画电路原理图形成符号图在 MDE 中进行电路仿真分析仿真结果,是否满足要求,若不满足要求,修正电路的参数,重新仿真。

4、版图设计用 Layout Editer 画版图利用 Aeolus 工具进行版图验证和提取DRC 规则检测LVS 检查5、Tape out增加焊盘等外围电路输出 GDSII 版图结果。

二设计及过程分析(一)电路原理图设计电路原理图由两个NMOS和两个PMOS组成。

两个PMOS并联,两个NMOS串联,然后将两个NMOS和两个PMOS串联起来。

最后加上相应的引脚(包括input、output、inputoutput),原理图如下图所示:在给5V电压时,对V0与V1进行直流仿真分析直到VOUT斜率变化最大值在2.5V左右。

不断调节管子宽长比,直至其满足要求,测得NMOS的W/L=0.8/0.5,PMOS的W/L=2/0.5.仿真图如下图所示(二)生成符号图在schematic editor工作界面,创建symbol view,生成符号图。

符号图如下图所示:符号图创建完成后,重新建立一个schematic editor,调用刚刚创建的符号图,并加上相应的输入信号,然后进行仿真,查看波形。

模电设计-电流镜负载的差分放大器

模电设计-电流镜负载的差分放大器

模拟集成电路课程设计报告电流镜负载的差分放大器摘要:差分放大器是最重要的电路发明之一,它可以追溯到真空管时代。

有于差动放大具有很多有用的特性,像对差模输入信号的放大作用和对共模输入信号的抑制作用,所以它已经成为当代高性能模拟电路和混合信号电路的主要选择。

电流源在差分放大器中广泛应用,电流源起一个大电阻的作用,但不消耗过多的电压余度。

在模拟电路中,电流源的设计是基于对基准电流的“复制”,稳定的基准电流则由一个相对复杂的电路来产生。

在电流镜中,只需调整MOS管的W/L就能获得不同的、精确的复制电流。

在本课程设计中,将根据典型电流镜负载差动对中,增益、带宽与MOS管W/L之间的关系,获得满足要求的放大器。

一.设计目标 ................................................................................................................................ - 1 - 二.单个MOS管的的特性 ...................................................................................................... - 2 -2.1 、NMOS特性仿真...................................................................................................... - 2 -2.2 、PMOS特性仿真 ...................................................................................................... - 4 - 三.电路设计与参数推导.......................................................................................................... - 6 -3.1电路设计:.................................................................................................................... - 6 -3.2手工推导参数................................................................................................................ - 7 - 四.差分放大器仿真 ................................................................................................................. - 9 -4.1、HSPICE仿真:......................................................................................................... - 9 -4.2、器件参数修改........................................................................................................... - 10 -4.3 仿真波形..................................................................................................................... - 12 -4.2、共模电平的范围:................................................................................................... - 13 -4.3 数据对比..................................................................................................................... - 16 -五.总结 ...................................................................................................................................... - 17 -一.设计目标设计一款差分放大器,要求满足性能指标:● 负载电容pF C L 1=● V VDD 5=● 对管的m 取4的倍数● 低频开环增益>100● GBW(增益带宽积)>30MHz● 输入共模范围>3V● 功耗、面积尽量小参考电路图:二.单个MOS管的的特性MOS管是金属(metal)—氧化物(oxid)—半导体(semiconductor)你场效应晶体管,或者称是金属—绝缘体(insulator)—半导体。

模拟电子技术模电之差分放大电路电流源课件

模拟电子技术模电之差分放大电路电流源课件
22多级放大电路的动态分析33差分放大电路34互补输出级35直接耦合多级放大电路读图33差分放大电路34互补输出级35直接耦合多级放大电路读图31多级放大电路的耦合方式一直接耦合二阻容耦合三变压器耦合合二阻容耦合三变压器耦合一直接耦合既是第一级的集电极电阻又是第二级的基极电阻既是第一级的集电极电阻又是第二级的基极电阻能够放大变化缓慢的信号便于集成化能够放大变化缓慢的信号便于集成化q点相互影响存在零点漂移现象
有零点漂移吗?
Q点相互独立。不能放大变化缓慢的信号,低频 特性差,不能集成化。
三、变压器耦合
可能是实际的负载,也 可能是下级放大电路
理想变压器情 况下,负载上获 得的功率等于原 边消耗的功率。
从变压器原 边看到的等 效电阻
P1

P2, I
2 c
RL'

I
2 l
RL
RL'

I
2 l
I
2 c
RL

1. 电路组成及工作原理
动态 仅输入差模信号,vi1 和 vi2大小相等,相位相反。 vO1 和 vO2大小相等, 相位相反。 vo vO1 vO2 0 ,
信号被放大。
1. 电路组成及工作原理
动态 仅输入共模信号, vo vO1 vO2 0 ,
同时输入差模和共模,仅差模信号被放大。
VCC VBE (VEE ) VCC VEE
R
R
Ic2是基准电流的镜像
代表符号
6.1.1 BJT电流源电路
1. 镜像电流源
动态电阻(小信号)
ro
( iC2 )1 vCE2
IB2
rce
一般ro在几百千欧以上 ,

45纳米工艺下的有源电流镜的差分放大器设计

45纳米工艺下的有源电流镜的差分放大器设计

45纳米工艺下的有源电流镜的差分放大器设计在45纳米工艺下设计差分放大器常常是信息电子学设计者面临的挑战之一。

差分放大器是电路设计中的重要组成部分,它能够在输入信号中提取出差分信号,从而实现信号放大和滤波的功能。

这篇文章将从差分放大器的结构、工作原理、设计步骤以及45纳米工艺下的优化方案等方面进行介绍,旨在给读者提供一些指导意义。

差分放大器的基本结构包括两个输入端(非反相输入端和反相输入端),一个输出端和一对工作在共模模式下的有源负载电流镜。

有源电流镜的作用在于提供一个稳定的工作电流,确保差分放大器的稳定性和线性度。

在45纳米工艺下,由于工艺缩减,发生器负载电阻的功耗限制也有一定挑战。

差分放大器的工作原理是利用差分对输入信号进行放大。

当输入信号的差分模式信号增大时,差分对的两个晶体管的电流将以不同的幅度变化,从而使输出信号增大。

而当输入信号的共模模式信号变化时,差分对的两个晶体管的电流将以相同的幅度变化,从而抵消掉输出信号的变化。

通过这种方式,差分放大器能够提取出输入信号中的差分信号,实现信号放大。

在45纳米工艺下设计差分放大器,需要考虑的因素相对较多。

首先,由于纳米级工艺的缩减,晶体管的尺寸变小,因此需要对晶体管进行精确的模型参数提取,以确保设计的准确性。

其次,由于工艺缩减,电路中的线性度、功耗和噪声都会受到一定的限制。

因此,在设计差分放大器时需要平衡这些参数,以实现最佳性能。

在实际的设计过程中,可以采用一些优化方案来改善差分放大器的性能。

例如,可以采用主动偏置电路来提高电路的线性度和稳定性;可以使用级联放大器来增加放大器的增益和带宽;还可以采用反馈电路来降低放大器的噪声水平。

这些优化方案可以根据具体的设计要求和工艺条件来选取。

综上所述,差分放大器在45纳米工艺下的设计是一个具有挑战性的任务。

通过合理地选择和优化电路结构,提取模型参数,平衡各种性能指标等方法,可以实现一款稳定、线性、低功耗的差分放大器。

电流镜负载的差分放大器设计

电流镜负载的差分放大器设计

《IC课程设计》报告电流镜负载的差分放大器设计摘要在对单极放大器与差动放大器的电路中,电流源起一个大电阻的作用,但不消耗过多的电压余度。

而且,工作在包河区的MOS器件可以当作一个电流源。

在模拟电路中,电流源的设计是基于对基准电流的“复制”,前提是已经存在一个精确的电流源可以利用。

但是,这一方法可能引起一个无休止的循环。

一个相对比较复杂的电路被用来产生一个稳定的基准电流,这个基准电流再被复制,从而得到系统中很多电流源。

而电流镜的作用就是精确地复制电流而不收工艺和温度的影响。

在典型的电流镜中差动对的尾电流源通过一个NMOS镜像来偏置,负载电流源通过一个PMOS镜像来偏置。

电流镜中的所有晶体管通常都采用相同的栅长,以减小由于边缘扩散所产生的误差。

而且,短沟器件的阈值电压对沟道长度有一定的依赖性。

因此,电流值之比只能通过调节晶体管的宽度来实现。

而本题就是利用这一原理来实现的。

目录1设计目标 (1)2相关背景知识 (2)3设计过程 (6)3.1 电路结构设计 (6)3.2 主要电路参数的手工推导 (6)3.3 参数验证(手工推导) (7)4 电路仿真 (9)4.1 用于仿真的电路图 (9)NMOS: (9)PMOS (9)整体电路图 (10)4.2 仿真网表(注意加上注释) (10)4.3 仿真波形 (13)5 讨论 (17)6 收获和建议 (17)参考文献 (19)1设计目标设计一个电流镜负载的差分放大器,参考电路图如下:工艺ICC网站的0.35um CMOS工艺电源电压5V增益带宽积25MHz低频开环增益100负载电容2pF输入共模范围3V功耗、面积尽量小2相关背景知识据题目所述,电流镜负载的差分放大器的制作为0.35um CMOS 工艺,要求在5v 的电源电压下,负载电容为2pF 时,增益带宽积大于25MHz ,低频开环增益大于100,同时功耗和面积越小表示性能越优。

我们首先根据0.35um CMOS 工艺大致确定单个CMOS 的性能,即在一定值的W/L 下确定MOS 管在小信号模型中的等效输出电阻和栅跨导,然后记下得到的参数并将其带入到整体电路中计算,推导电流镜负载的差分放大器电路中的器件参数,例如,小信号模型的增益、带宽、功耗等,再分析是否满足题目中的各项指标的要求。

3.1模拟集成电路设计-差分放大器电路设计

3.1模拟集成电路设计-差分放大器电路设计

集成电路设计实习Integrated Circuits Design LabsI t t d Ci it D i L b单元实验三(第一次课)模拟电路单元实验-差分放大器电路设计2007-2008 Institute of Microelectronics Peking University实验内容、实验目的、时间安排z实验内容:z设计差分放大器z对电路进行直流、交流、瞬态分析z目的:z掌握模拟集成电路单元模块的设计分析方法z时间安排:z一次课完成差分放大器的电路设计Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page1实验要求z设计图示差分放大器z尺寸需调整z放大器性能指标要求z负载电容C=2pFLz VDD=5Vz放大管的Vdsat=200±30mVz对管的m取4的倍数z低频开环增益>100z GBW>25MHzz PM>60z共模输入范围>3Vz功耗、面积尽量小Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page2实验结果记录z请记录如下数据z各晶体管尺寸(m、W、L)z各晶体管的Vdsatz低频开环增益、GBW、PMz直流功耗、瞬态功耗平均值及对应跳变频率z转换速率(上升、下降分别记录)z单位缓冲接法,输入1V跳变时,输出端的信号建立时间(20μV)z上升、下降分别记录z实验方法,参见P5~P32Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page3创建放大器的电路(按下列尺寸设置)z M0、M1的尺寸z M=4, W/L=2/2z M2的尺寸z M2, W/L2/2M=2W/L=2/2z M5的尺寸M1W/L2/2z M=1, W/L=2/2z M3、M4的尺寸z M=4, W/L=2/2z vp:正输入端z vn:负输入端Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page4创建放大器的SymbolInstitute of Microelectronics, Peking University集成电路设计实习-单元实验三Page5创建Power的电路图z如图创建Power的电路z创建Power的Symbol Viewz仅供仿真时调用!!!Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page6创建放大器的仿真电路(DC/AC仿真)z正输入端vp,加激励信号,DC=2.5,AC magnitude=1V负输入端,大电阻()、大电容()反馈z vn1G1FInstitute of Microelectronics, Peking University集成电路设计实习-单元实验三Page7放大器的仿真电路:z I3:提供电流源z C2:放大器的负载z R0:1Gz C0:1Fz I0:调用PowerInstitute of Microelectronics, Peking University集成电路设计实习-单元实验三Page8常用Analyses设置z Tran:瞬态z DC:直流z AC:交流设置完毕后运行Simulation,然后可以查看Simulation Results Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page9直流/交流分析设置z直流分析:直流工作点z交流分析:起止频率设置Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page10z Results->Print->DC Operating Points->鼠标点击元件->弹出对话框Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page11βr的倒数该元件的功耗Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page12z Results->Direct Plot->AC Gains & Phase->进入Schematic ViewInstitute of Microelectronics, Peking University集成电路设计实习-单元实验三Page13z View的左下角显示:Select first point然后鼠标左键点击(p为输出结点)z vout First pointInstitute of Microelectronics, Peking University集成电路设计实习-单元实验三Page14z first point选定后,View的左下角显示:Select second point然后鼠标左键点击p(p为输入结点)z vp Second pointInstitute of Microelectronics, Peking University集成电路设计实习-单元实验三Page15z弹出图示窗口:两条曲线表示幅频特性与相频特性Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page16z低频增益测量:在较低频率处测量幅频特性曲线的纵坐标值如图测得的低频增益为z41.1898dBInstitute of Microelectronics, Peking University集成电路设计实习-单元实验三Page17z增益带宽积测量:幅频特性曲线幅度为0dB时对应的频率注意:标尺很难完全定位到0dB,所以允许误差在正负50m dB以内z注意:标尺很难完全定位到0dB,所以允许误差在正负50m dB以内z测得增益带宽积为6.31193MHz增益带宽积Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page18z相位裕度测量:使用B标尺在增益带宽积频率处,测相移z PM (Phase Margin)=180+Phase88o(g),图中相位裕度约Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page19Results: Circuit Conditionsz查看电路元件的工作状态:Results->Circuit Conditionsz放大管、负载管、电流镜等均应工作于饱和区z开关管工作于线性区z线性区:红色显示1、选项设置2、图中显示Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page20单位增益接法的放大器电路:输入为阶跃脉冲信号Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page21瞬态仿真设置z Analysis->Choose ,弹出窗口选择精度设置Conservative :精度高Moderate :中等精度Liberal Institute of Microelectronics, Peking University 集成电路设计实习-单元实验三Page 22:仿真速度快z第一步:将标尺A放置于平台区靠右的区域第二步:将标尺从点往左移动,直到||μz B A|Delta Y|≈20Vz第三步:将标尺A移动到跳变起始点,测Delta X,即为建立时间Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page23z Delta X,即为建立时间测得的建立时间为z414.419nsInstitute of Microelectronics, Peking University集成电路设计实习-单元实验三Page24转换速率测试z A点:跳变点右侧;B点:远离斜率变化区域测得转换速率为z10.3043MV/secInstitute of Microelectronics, Peking University集成电路设计实习-单元实验三Page25功率测试(保存Power信号的设置)z Outputs->Save All…->弹出Save Options窗口->如下设置Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page26z Tools->Results Browser->弹出窗口中点击OK在中z Results Browserz Schematic->psf->Run1->tran-tran->I8->pwr->双击鼠标I8单元的功耗Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page27z双击鼠标后弹出Calculator窗口选择p g,然后点击z Special Functions->Average Printz平均功耗为:111.944μWInstitute of Microelectronics, Peking University集成电路设计实习-单元实验三Page28功率测试(直流功耗)z在Results Browser中z Schematic->psf->Run1->dcOp-dc->I8->pwrInstitute of Microelectronics, Peking University集成电路设计实习-单元实验三Page29z Analyses->Choose->dc->Component Parameterz Select Component Schematic 点击p ,然后在中选择扫描源z Component NameParameter Namez Parameter Name 扫描源的起止Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page 30扫描源的起z输出电压随直流量的变化Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page31。

模电课设-差分放大器

模电课设-差分放大器

实验差分放大电路一:设计题目:长尾式差分放大电路二:设计指标:双端输出时,差模电压放大倍数:|A d|=20~30,共模电压放大倍数:|A c|~0;单端输出时,A d1=,A d2=,|A c1|=|A c2|=0~1;输出电阻:R o=40~50KΩ。

三:实验目的:(1)加深对差动放大器的性能和特点的理解。

(2)学习差动放大器的主要性能指的标标的测试方法。

(3)了解电路产生零漂的原因和抑制方法。

(4)学会调节差分放大电路的静态工作点。

(5)掌握差分放大电路的双端输入,单端输出的共模电压放大倍数和共模抑制比的测试方法。

(6)掌握差分放大电路在不同输入,输出模式时差模电压放大倍数的测试方式四:实验仪器与器件(1)计算机。

(2)Multism仿真软件。

(4)数字电压表。

(5)双踪示波器。

(6)交流毫伏表。

(7)12V的直流电源。

(8)函数信号发生器。

(9)晶体三极管,电阻,电容等五:预习要求:1.根据直流稳压电源的技术指标要求,按照教材中介绍的方法,设计出满足技术指标要求的稳压电源。

根据设计与计算的结果,写出设计报告。

2.制定出实验方案,选择实验用的仪器设备,:六、设计原理:为了充分利用集成电路内部元件参数匹配较好、易于补偿的优点,输入级大都采用差分放大电路形式。

1、将两个电路结构、参数均相等的单管放大电路组合在一起,就成为差分放大电路的基本形式,如图(a),输入电压u I1和u I2分别在两管的基极,输出电压等于两管的集电极电压之差。

a.差分放大电路的基本形式在理想情况下,电路中左右两部分三极管的特性和电阻有参数均完全相等,则当输入电压等于零时,U CQ1=U CQ2,故输出电压U O=0。

如果温度升高使I CQ1增大,U CQ1减小,则I CQ2也将增大,U CQ2也将减小,而且两管变化的幅度相等,结果VT1的VT2输出端的零点漂移将互相抵消。

2、为了进一步减小每个管子输出端的温漂,设计了长尾式差分放大电路。

模拟集成电路课程设计差分放大器设计报告

模拟集成电路课程设计差分放大器设计报告

模拟集成电路课程设计--差分放大器设计报告设计报告姓名:徐彭飞学号:201221030137 姓名:杨萍学号:201250300004差分放大器设计报告设计内容:设计一个差分放大器的模拟集成电路模块,给出电路原理图,对电路进行直流、交流、瞬态分析并给出仿真结果,给出简单的集成电路版图。

差分放大器的性能指标:1、负载电容CL=2pF2、VDD=5V3、放大管的Vdsat=200±30mV4、对管的m取4的倍数5、低频开环增益>1006、GBW>25MHz7、PM>608、共模输入范围模输入范围>3V一、电路原理图:器件尺寸:M0、M1的尺寸:M=4, W/L=2/2 M2的尺寸:M=2W, /L=W/L2/22/2 M5的尺寸:M1=1W, /L2=/22/2 M3、M4的尺寸:M=4, W/L=2/2 vp:正输入端 vn:负输入端二、电路原理图符号:三、仿真时的Power电路:四、差分放大器的DC/AC仿真(一)放大器的DC/AC仿真电路原理图:正输入端vp:加激励信号,DC=2.5,AC magnitude=1V 负输入端vn:大电阻(1G)、大电容(1F)反馈I3:提供电流源C2:放大器的负载大器的负载R0:1GC0:1FI0:调用Power(二)MOSFET的直流工作点:(三)交流分析得到的带宽、增益、相位裕度:五、单位增益接法的放大器电路的瞬态仿真(一)单位增益接法的放大器电路原理图:输入为阶跃脉冲信号(二)瞬态仿真输出波形(三)直流扫描(输出电压随直流量的变化)六、简单的电路版图。

电流镜负载的差分放大器设计

电流镜负载的差分放大器设计

《IC课程设计》报告——模拟部分电流镜负载的差分放大器设计摘要在对单极放大器与差动放大器的电路中,电流源起一个大电阻的作用,但不消耗过多的电压余度。

而且,工作在包河区的MOS器件可以当作一个电流源。

在模拟电路中,电流源的设计是基于对基准电流的“复制”,前提是已经存在一个精确的电流源可以利用。

但是,这一方法可能引起一个无休止的循环。

一个相对比较复杂的电路被用来产生一个稳定的基准电流,这个基准电流再被复制,从而得到系统中很多电流源。

而电流镜的作用就是精确地复制电流而不收工艺和温度的影响。

在典型的电流镜中差动对的尾电流源通过一个NMOS镜像来偏置,负载电流源通过一个PMOS镜像来偏置。

电流镜中的所有晶体管通常都采用相同的栅长,以减小由于边缘扩散所产生的误差。

而且,短沟器件的阈值电压对沟道长度有一定的依赖性。

因此,电流值之比只能通过调节晶体管的宽度来实现。

而本题就是利用这一原理来实现的。

目录1设计目标 (1)2相关背景知识 (2)3设计过程 (6)3.1 电路结构设计 (6)3.2 主要电路参数的手工推导 (6)3.3 参数验证(手工推导) (7)4 电路仿真 (9)4.1 用于仿真的电路图 (9)NMOS: (9)PMOS (9)整体电路图 (10)4.2 仿真网表(注意加上注释) (10)4.3 仿真波形 (13)5 讨论 (17)6 收获和建议 (17)参考文献 (19)1设计目标设计一个电流镜负载的差分放大器,参考电路图如下:2相关背景知识据题目所述,电流镜负载的差分放大器的制作为0.35um CMOS 工艺,要求在5v 的电源电压下,负载电容为2pF 时,增益带宽积大于25MHz ,低频开环增益大于100,同时功耗和面积越小表示性能越优。

我们首先根据0.35um CMOS 工艺大致确定单个CMOS 的性能,即在一定值的W/L 下确定MOS 管在小信号模型中的等效输出电阻和栅跨导,然后记下得到的参数并将其带入到整体电路中计算,推导电流镜负载的差分放大器电路中的器件参数,例如,小信号模型的增益、带宽、功耗等,再分析是否满足题目中的各项指标的要求。

复旦微电子-模拟集成电路设计-差分放大器-PPT精品文档

复旦微电子-模拟集成电路设计-差分放大器-PPT精品文档

如图是小信号等效电
g V V m 1 in P
V V V in in 1 in 2
V V V V V p in 1 GS 1 in 2 GS 2
V V V V V in in 1 in 2 GS 1 GS 2
V V V TH 1 TH 2 in
2 I D 1


2 I D 2

( 1 )

差动信号增大了可得到的电压摆幅 。
输出摆幅:
VDD Veff
(单端)
V V V DD ef f
(差分) 2 V V DD eff
V V V DD eff
单端和差分工作的特点
差动放大器的偏置电路更简单。 一路尾电流源可以确定差动放大器的偏置。 差动信号具有更高的线性度 差动电路具有“奇对称”的输入输出特性,故由差 动信号驱动的差动电路没有偶次(二次)谐波。呈 现的失真比单端电路小的多。 差动电路的面积较大 差动电路采用对管代替单管以得到和单端相同的增 益。因此,电路的面积增加了。但要达到同样的性 能,如线性度、抑制非理想的影响,使用单端设计 得到的面积可能更大。
单端和差分工作的特点
差动工作相当于单端工作的优点:

对环境噪声具有更强的抗干扰能力 例如:相邻的时钟线对信号线的干扰 。
差分工作
单端工作
L1对L2和L3的干扰幅度大小相等,方向相同。差分信号没有改变。
单端和差分工作的特点
例如:对电源噪声同样具有更强的抗干扰能力 。
电源对Vx和Vy的干扰幅度大小相等,方向相同。差分信号没有改变。
??????????????????????????????????????????????????????????????1112121212121sstsssstssssttgsgsosiviiviivvvvv??xx211121??????????????????????4212sstsstosivivv基本差动对的定量分析llwwlwcoxn????????????假定不变

最新东南大学模电实验四-差分放大器

最新东南大学模电实验四-差分放大器

东南大学模电实验四-差分放大器........................................实验四差分放大器实验目的:1. 掌握差分放大器偏置电路的分析和设计方法;2. 掌握差分放大器差模增益和共模增益特性,熟悉共模抑制概念;3. 掌握差分放大器差模传输特性。

实验内容:一、实验预习根据图 4-1 所示电路,计算该电路的性能参数。

已知晶体管的导通电压V BE(on)=0.55, β=500,|V A|=150 V,试求该电路中晶体管的静态电流I CQ,节点 1 和 2 的直流电压V1、V2,晶体管跨导g m,差模输入阻抗R id,差模电压增益A v d,共模电压增益A v c和共模抑制比K CMR,请写出详细的计算过程,并完成表4-1。

表图 4-1. 差分放大器实验电路4-1:二、仿真实验1. 在Multisim 中设计差分放大器,电路结构和参数如图4-1 所示,进行直流工作点分析(DC 分析),得到电路的工作点电流和电压,完成表4-2,并与计算结果对照。

表4-2:I CQ(mA)V1(V)V2(V)V3(V)V5(V)V6(V)1.001252.99750 2.99750 1.0034 1.57651 1.55492仿真设置:Simulate → Analyses → DC Operating Point,设置需要输出的电压或者电流。

2. 在图4-1 所示电路中,固定输入信号频率为2kHz,输入不同信号幅度时,测量电路的差模增益。

采用Agilent 示波器(Agilent Oscilloscope)观察输出波形,测量输出电压的峰峰值(peak-peak),通过“差模输出电压峰峰值/差模输入电压峰峰值”计算差模增益A v d,用频谱仪器观测节点1 的基波功率和谐波功率,并完成表4-3。

表4-3:输入信号单端幅度1 10 20(mV)A v d -72.95-70.00-63-28.015-8.265-3.160基波功率P1(dBm)-97.239-57.378-46.000二次谐波功率P2(dBm)-103.321-43.025-26.382三次谐波功率P3(dBm)仿真设置:Simulate →Run,也可以直接在Multisim 控制界面上选择运行。

CMOS 模拟集成电路课件-差分放大器

CMOS 模拟集成电路课件-差分放大器

21
• 6.5.3 采用MOS电流镜负载的差分对
• 大信号分析
– 当vD足够负,M1关断,没有电流流经晶体管M1,因此M3 关断,M4也关断。由于没有电流流经M4,M2和M5都工 作在深线性区,vDS2 ≈ 0,vDS5≈ 0,因此,vOUT ≈ 0;
– 当vIN1变化到与vIN2接近时,M1管导通,使得尾电流源的 电流ID5一部分流经M3,并且使M4开启,vOUT开始上升.
vIN1 (单位V)
vIN,CM=1.5V
vIN,CM=2V
2020/5/6
偏置电流和输出电平受VIN,CM影响!
6
• “差分对”
6.3 基本差分对
ID1+ID2独立于VIN,CM 如果vIN1=vIN2, ID1=ID2=ISS/2, 输出共模电平为VDD-RISS/2
2020/5/6
7
6.3 基本差分对
iD1
ISS 2
4
vD
4ISS
vD2
nCox (W / L)
iD2
ISS 2
4
vD
4ISS
vD2
可以得到最大差分电压范围,
| vD |≤
2ISS
| vD |≤
2
2iD1,2
2VOD1,2
当vIN1=vIN2,
gm
(iD1 iD2 ) vD
vD 0
则差分增益
ISS
2nCox
W L
ISS 2
• 当vD为正时,流经M1管的电流大于流经M2管的电流,vOUT1
将小于vOUT2。对于足够正的vD,所有ISS都流经M1,此时,
2020/5/6
vOUT1 = VDD – RiD1 = VDD – RISS,而vOUT2 = VDD.

《模拟集成电路设计》实验指导

《模拟集成电路设计》实验指导

尺寸 W/L
2um/0.7um=2.86 0.35um/2um=0.175 1um/0.7um=1.43 1um/1.4um=0.71
4、增益 AV 的估算
1 W AV g m1 ro1 / / ro3 2nCox I1 398 52dB ,符合要求。 L 1 n p I1
5、转换速率 Sr 的估算。 Sr=ISS/CL==1.2V/us 满足要求。 6、CMRR 的估算
CMRR ADM 1 1 W W g m3,4 (ro1,2 || ro3,4 )(1 2 g m1,2 RSS ) 2 pCox I3 (1 2 2nCox I 3 ) ACM L 3 n p I3 L 1 n I RSS
估算共模抑制比。 7、PSRR(电源抑制比)的估算 根据第 9 章 p275 对有源电流镜差动对的电源抑制比的计算和分析,电源抑制比的计算 公式为 PSRR gm1 ro1 / / ro3 。 8、输入共模电平和输出共模电平的确定。 根据题目要求,要求输入共模电平 Vin,CM=1.6V;Vout,CM=1.6V。 在以上的设计下,可以得到各个管子等的参数,从而确定电路参数的设计。 9、电路的总功率的估算。 电路的总功率为电压源和电流源的功率之和,即:
9、电路的总功率的估算。 电路的总功率为电压源和电流源的功率之和,即:
PD=PV+PI=VDD (ISS+IREF)-(VDD-VGS6) IREF
电压源的功率为:
Pv=VDD (ISS+IREF)=3.3V (6 3)A=29.7 W
电流源的功率为:
PI=-VI IREF=-(VDD-VGS6) IREF=-(3.3-0.9)V 3uA=-7.2uW

模拟电路差分放大器

模拟电路差分放大器

模拟电路差分放大器差分放大器是模拟电路中常见的一种放大电路,它能够将输入信号放大并产生相对输出信号。

本文将介绍差分放大器的原理、结构、工作方式以及应用领域,并探讨其特点和优势。

一、差分放大器的原理差分放大器是基于差动放大器的原理设计而成的,它由两个互补的放大器组成。

一个放大器接收正输入信号,另一个放大器接收负输入信号,然后两个放大器的输出信号进行相减,得到差分放大器的输出信号。

差分放大器的输入是通过差模输入来实现的,即正输入端和负输入端之间的电压差。

当输入端电压差趋近于零时,差分放大器的增益最大,输出信号最稳定。

二、差分放大器的结构差分放大器通常由三个主要部分组成:差分输入级、差分放大级和输出级。

1. 差分输入级:差分输入级由两个输入晶体管组成,一个用于接收正输入信号,另一个用于接收负输入信号。

这两个晶体管通过共射极的方式连接,并通过电流镜电路进行偏置。

2. 差分放大级:差分放大级通常由驱动晶体管和负载电阻组成。

驱动晶体管将输入信号放大,并传递给负载电阻。

3. 输出级:输出级通常由一个共射放大器组成,它对差分放大级输出的信号进行进一步放大,并将其传递给负载电阻,最终得到输出信号。

三、差分放大器的工作方式差分放大器的工作方式可分为静态工作和动态工作两种情况。

1. 静态工作:在静态工作状态下,差分放大器会将输入信号放大,并产生相对输出信号。

此时输入信号的幅度较小,通常在毫伏级别,差分放大器的增益较大。

2. 动态工作:在动态工作状态下,差分放大器可以应对更大幅度的输入信号,通常在几伏至数十伏之间。

差分放大器能够放大差模信号,同时将共模信号抑制到最小,保持输出的稳定性。

四、差分放大器的应用领域差分放大器在模拟电路中具有广泛的应用领域,常见的包括:1. 信号放大:差分放大器可用于放大微小信号,如传感器输出的低电压信号。

2. 通信系统:差分放大器可用于实现高速数据传输和抑制噪声干扰。

3. 模拟滤波:差分放大器可用于模拟滤波器的设计,滤除不需要的频率成分。

第3章电流镜与差分放大

第3章电流镜与差分放大

3.2
基本电流镜........................................................................................................... 39
3.3
电流源与电流阱电路........................................................................................... 43
3)由于 M1 管和 M2 管满足匹配条件,即 M1 管和 M2 管的开启电压、载流子
迁移率等完全相同,因此 IOUT 与 IREF 的关系是 M2 与 M1 的几何尺寸比例关系。 以下我们分析如图 3- 3 所示的图 3- 2 电路的小信号模型[2]。将参考电流源开路,
M1 是二极管连接的 MOS 管,产生直流偏置电压 Vref。注意在图 3- 3 中,尽管画
1. 差模小信号输入分析................................................................................... 50
2. 共模小信号模型分析................................................................................... 51
3. 输入输出信号的一般表示式 ...................................................................... 52
3.4.4 共模抑制比................................................................................................... 52

模拟电路差分放大器设计

模拟电路差分放大器设计

模拟电路差分放大器设计差分放大器是模拟电路中常见的一种放大器电路,广泛应用于信号放大、抗干扰等领域。

本文将介绍差分放大器的设计原理和步骤。

1. 设计原理差分放大器是由两个共模输入端和一个差模输入端组成的放大电路。

其主要特点是可以增大差模输入信号的幅度,同时抑制共模信号的幅度。

2. 设计步骤首先,选取合适的差分放大器芯片,常用的有LM741、OPA177等。

第一步,确定电路的工作电源,通常使用正负双电源供电方式。

根据芯片的规格书,确定合适的电源电压范围。

第二步,确定输入电阻和负载电阻。

选择适当的电阻值,使得输入电阻与负载电阻满足设计要求。

第三步,确定差模输入电阻。

理想情况下,差模输入电阻应为无穷大。

但实际中会存在一定的差模输入电流,因此要根据实际情况选择合适的差模输入电阻。

第四步,确定共模电压增益。

差分放大器的关键指标是共模抑制比,通常使用分贝(dB)作为单位。

根据设计要求,确定合适的共模电压增益。

第五步,确定差模电压增益。

差模电压增益决定了放大器对差模输入信号的放大程度,根据设计要求选择合适的差模电压增益。

第六步,确定偏置电流。

偏置电流的选择直接影响差分放大器的性能,通常要使得差分放大器的工作点稳定在最佳状态。

第七步,确定频率特性。

根据应用场景,选择合适的差分放大器的频率范围。

3. 总结差分放大器是模拟电路中常用的放大器电路,通过设计合适的差分放大器电路,可以实现信号的增大和抗干扰能力的提高。

需要根据实际需求选择合适的差分放大器芯片,并按照设计步骤确定各个参数的取值,以获得满足要求的差分放大器电路。

设定好电路的工作电源、输入电阻和负载电阻、差模输入电阻、共模电压增益、差模电压增益、偏置电流和频率特性等参数,可以得到稳定而高效的差分放大器电路。

总之,差分放大器是一种功能强大的模拟电路,通过合理的设计和调整参数,可以实现对差模信号的放大和对共模信号的抑制,提高信号的质量和可靠性。

在实际应用中,需要根据实际需求选择合适的差分放大器芯片,并按照设计步骤确定各个参数的取值,以获得满足要求的差分放大器电路。

镜像电流源作偏置的差分放大器仿真报告

镜像电流源作偏置的差分放大器仿真报告

镜像电流源作偏置的差分放大器设计与仿真报告一、仿真目的1、熟悉差分放大器和镜像电流源的工作原理2、学习镜像电流源作偏置的差分放大器的设计方法3、熟悉Cadence的使用方法二、电路原理上图中,所有MOS管均采用0.35的工艺,由镜像电流源提供偏置,作为负载的镜像电流源由pMOS管组成,采用双端输入单端输出,输入信号幅度为正负0.5v。

作为偏置的镜像电流源两管子的尺寸均为W=5u,L=2u,差分放大器的两根管子和作为负载的电流源的两根管子的尺寸均为:W=0.7u,L=0.5u。

电源电压为3v,差分放大器的直流偏置电压为2v。

三、仿真过程1、直流仿真首先,对电路进行直流仿真,看所有管子是否都处于饱和区,如果不在饱和区,则需要调整管子的尺寸和电路参数。

下图是镜像电流源左边管子的直流参数,其它管子参数的查看方法类似:从结果可以看出,region为2,表示管子处在饱和区,由vgs>vth,vds>vgs-vth也可以看出管子处在饱和区。

其它管子通过通过同样的方法查看,都处在饱和区。

2、交流仿真对电路进行交流仿真,其幅频特性曲线如下:3、改变管子的宽长比,看其对电路的影响其它参数不变,改变差分放大器的两个管子的宽长比,通过仿真看其对增益、带宽的影响,这里将管子的宽度设置为原来的10倍,即7u,首先进行直流仿真:上图是放大器左边管子的直流参数,可以看出其处于饱和区。

其它管子仍可以通过相同的方法查看,通过仿真,发现都处于饱和区。

然后可以对其进行直流仿真,幅频特性曲线如下:由仿真结果可看出,其增益变为大约28.4dB,3dB带宽大约为0.3GHz。

可见增加管子的宽长比可以增大放大器的增益,但是同时带宽会减小。

4、保证管子原来的参数不变,改变放大器直流偏置电压将放大器的直流输入电压减小到1v,先进行直流仿真,看各个管子是否工作在饱和区,如下:上图是放大器左边管子的直流参数,可见其工作在饱和区,通过同样的方法查看其它管子的直流参数,发现都工作在饱和区。

模拟cmos集成电路设计(拉扎维)第4章差分放大器

模拟cmos集成电路设计(拉扎维)第4章差分放大器
2
⋅ RD
缺点: 直流偏置电流受输
入共模电平影响
大,从而影响跨
导、增益、输出共
模电平等
解决: 用源端耦合对(差
分对)
西电微电子学院-精董品刚课-件模拟集成电路设计
19
本讲
差分放大器简介 简单差分放大器 基本差分对放大器
大信号差分特性 大信号共模特性 小信号差分特性 小信号共模特性
MOS管做负载的基本差分对放大器 差分放大器的应用-Gilbert单元
电路仍保持为线性,则VP 的值保持不变(即为交流 地)
证明过程参看教材
重要结论:
在全差分输入的情况下,P 点为交流地
西电微电子学院-精董品刚课-件模拟集成电路设计
39
小信号差分特性-用半电路法求全差分时
差模增益
“全差分输入时P点为交流地”这一结论可简化差模增益 的推导
西电微电子学院-精董品刚课-件模拟集成电路设计
23
大信号差分特性-定量分析
思路: Vout1-Vout2=-RD(ID1-ID2);求出ID1-ID2=f(Vin1-Vin2)即可
Δ I =D 1
2
μ
n
WC L
OΔX
V
4I
in
μ nC
SS
W OXL
西电微电子学院-精董品刚课-件模拟集成电路设计
− Δ V2 in
西电微电子学院-精董品刚课-件模拟集成电路设计
20
基本差分对电路
Vout,CM =VDD−I2SS ⋅ RD
直流偏置电流由ISS决定,从而保证跨导、增益、输 出共模电平等受输入共模电平影响小
西电微电子学院-精董品刚课-件模拟集成电路设计
21
本讲

模电综合训练项目九:差动放大器

模电综合训练项目九:差动放大器

项目九:差动放大器一.单端BJT 差动放大器(开关电源由镜像电流源提供)。

1.电路设计首先,根据差动放大器的原理,搭建出最基本的由电流镜作为恒流源的差动放大器。

差动放大器单端输出时,差模增益但在这个电路的基础上,根据公式,通过长期的调试,输出最大仍然只能达到6v 。

不能达到所要求的10v 标准。

经回顾总结发现,之所以达不到所需要的输出。

主要原因是静态工作点设置的不合适。

Vce 不够大。

但若通过减小电流或增大R1电阻来Vce 。

则会减小增益。

同样不能得到较大的输出电压。

最终,通过在输入端引入负的直流电压源以降低基级点位,来增大Vce 。

()()be L c d2//r R R R A b v +±=β得到了的输出摆幅2.差模增益和差模输入电阻的测量由上图可得,差模增益Avd=105(此处电压以函数发生器的输入值为准) 差模输入电阻Rid==7283.共模增益,共模输出电阻的测量共模增益Avc=2.5v/40v=0.0625共模输入电阻Ric=1333334.共模抑制比= =16805.改变3,4的极性由图可知,差模信号的输入电阻和增益并未改变。

对比可知,共模增益也未改变。

因此,同时改变两个输入信号的极性不会影响共模增益,差模增益和共模抑制比。

二.单端BJT差动放大器(开关电源由电阻提供)。

1.电路设计考虑到篇幅,且内容类似。

之后的数据就不给出仿真以及详细过程,只在最后的总结中给出。

之后的FET差动放大器也一样。

三.单端FET差动放大器(开关电源由镜像电流源提供)四.单端FET差动放大器(开关电源由电阻提供)电阻的测量可能不准)通过该表我们可以得出:1.开关电流由镜像电流源提供或由单个电阻提供对于放大器的曾一几乎没有影响。

但会影响到到共模输入电阻。

对于BJT差放会显著增大共模输入电阻,对于FET差放来说,可能会减小共模输入电阻(由于两个共模输入电阻的值相差不大,且测量的存在较大误差,导致不确定)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟集成电路课程设计报告电流镜负载的差分放大器摘要:差分放大器是最重要的电路发明之一,它可以追溯到真空管时代。

有于差动放大具有很多有用的特性,像对差模输入信号的放大作用和对共模输入信号的抑制作用,所以它已经成为当代高性能模拟电路和混合信号电路的主要选择。

电流源在差分放大器中广泛应用,电流源起一个大电阻的作用,但不消耗过多的电压余度。

在模拟电路中,电流源的设计是基于对基准电流的“复制”,稳定的基准电流则由一个相对复杂的电路来产生。

在电流镜中,只需调整MOS管的W/L就能获得不同的、精确的复制电流。

在本课程设计中,将根据典型电流镜负载差动对中,增益、带宽与MOS管W/L之间的关系,获得满足要求的放大器。

一.设计目标 ................................................................................................................................ - 1 - 二.单个MOS管的的特性 ...................................................................................................... - 2 -2.1 、NMOS特性仿真...................................................................................................... - 2 -2.2 、PMOS特性仿真 ...................................................................................................... - 4 - 三.电路设计与参数推导.......................................................................................................... - 6 -3.1电路设计:.................................................................................................................... - 6 -3.2手工推导参数................................................................................................................ - 7 - 四.差分放大器仿真 ................................................................................................................. - 9 -4.1、HSPICE仿真:......................................................................................................... - 9 -4.2、器件参数修改........................................................................................................... - 10 -4.3 仿真波形..................................................................................................................... - 12 -4.2、共模电平的范围:................................................................................................... - 13 -4.3 数据对比..................................................................................................................... - 16 -五.总结 ...................................................................................................................................... - 17 -一.设计目标设计一款差分放大器,要求满足性能指标:● 负载电容pF C L 1=● V VDD 5=● 对管的m 取4的倍数● 低频开环增益>100● GBW(增益带宽积)>30MHz● 输入共模范围>3V● 功耗、面积尽量小参考电路图:二.单个MOS管的的特性MOS管是金属(metal)—氧化物(oxid)—半导体(semiconductor)你场效应晶体管,或者称是金属—绝缘体(insulator)—半导体。

MOS管的source和drain是可以对调的,他们都是在P型backgate中形成的N型区。

在多数情况下,这个两个区是一样的,即使两端对调也不会影响器件的性能。

这样的器件被认为是对称的。

2.1 、NMOS特性仿真电路图如下:HSPICE仿真:* Project NMOS* Innoveda Wirelist Created with Version 6.3.5* Inifile :* Options : -h -d -n -m -z -x -c6* Levels :*.prot.lib 'D:\ePD\05model\05model\h05hvcddtt09v01.lib' tt.lib 'D:\ePD\05model\05model\h05hvcddtt09v01.lib' res.lib 'D:\ePD\05model\05model\h05hvcddtt09v01.lib' cap.unprotM1I1 VD VB 0 0 NVN L=1U W=10U M=1 VBS VB 0 1VDS VD 0 5* DICTIONARY 1* GND = 0.options post list.dc VDS 0 5 0.1.op.print i1(M1I1).END仿真波形:仿真得出的数据:subcktelement 0:m1i1model 0:nvnregion Saturatiid 18.6184uibs -4.227e-22ibd -23.6496avgs 1.0000vds 5.0000vbs 0.vth 830.1150mvdsat 125.6460mvod 169.8850mbeta 1.4749mgam eff 894.5056mgm 192.1882ugds 1.2418ugmb 72.1958ucdtot 12.5800fcgtot 24.0149fcstot 31.6174fcbtot 34.8211fcgs 18.4311fcgd 2.8784f参数计算:2n 1()(1+)2D ox GS TH n DS W I C V V V Lμλ=-)( 12D DS I V ∂=∂2n ()(ox GS TH W C V V L μ-)n λ 由仿真结果可以算出:n λ=0.0352.2 、PMOS 特性仿真电路图如下:HSPICE仿真:* Project PMOS* Innoveda Wirelist Created with Version 6.3.5* Inifile :* Options : -h -d -n -m -z -x -c6* Levels :*.prot.lib 'D:\ePD\05model\05model\h05hvcddtt09v01.lib' tt.lib 'D:\ePD\05model\05model\h05hvcddtt09v01.lib' res.lib 'D:\ePD\05model\05model\h05hvcddtt09v01.lib' cap.unprotM1I1 VDS VGS VDD VDD NVP L=1U W=10U M=1 V1I2 VGS 0 4V1I3 VDS 0 5V1I4 VDD 0 5* DICTIONARY 1* GND = 0.options post list.dc V1I3 0 5 0.1 *V1I2 3.5 5 0.1.op.print i1(M1I1).END仿真得出的数据:subcktelement 0:m1i1model 0:nvpregion Linearid 0.ibs 0.ibd 0.vgs -1.0000vds 0.vbs 0.vth -899.3391mvdsat -136.0660mvod -100.6609mbeta 471.1383ugam eff 384.0716mgm 0.gds 46.9930ugmb 0.cdtot 29.4825fcgtot 30.8144fcstot 30.3463fcbtot 40.6913fcgs 17.7584fcgd 12.8808f参数计算:21()(1+)2D p ox GS TH p DS W I C V V V Lμλ=--)( 12D DS I V ∂=-∂2n ()(ox GS TH p W C V V L μλ-) 由仿真结果可以得出p λ=0.0729三.电路设计与参数推导3.1电路设计:3.2手工推导参数8n 0.035V 0.7231 1.1710=n TH ox t λμ-===⨯⨯-2,,, 3.830010 8p n 0.0729V 0.906 1.210=2.433424TH ox t λμ-==-=⨯⨯-2,,,10 由库文件可以得到上述除了λn 、λp 外的器件参数,λn 、λp可以由mos 管的仿真得到。

30=2.9510si ox ox C t εε-=⨯ 由性能指标低频开环增益>100,GBW(增益带宽积),CL=1pf 可得24(ro //ro )100V m A g => 324L 12(ro //ro )C dB BW π= 630102m L g GBW C π=>⨯ 求得64223010 1.884910m L g C π->⨯⨯=⨯我们设计中取42310m g -=⨯。

相关文档
最新文档