第一章气体力学基础
1.1 气体力学基础
原料进料F
精 馏 塔
塔底产品W
陕西科技大学材料科学与工程学院 21
材 料 热 工 基 础 | 气 体 力 学 基 础
②稳定流动系统的能量守恒
对于稳定流动系统,单位时间内输入系统的 能量应等于输出系统的能量,即能量守恒。
反证法:若输入系统的能量不等于输出系统的能 量,则在系统中指定的某一截面上、直接反映流 体能量状态的物理参数(如速度、温度、压强等) 就不可能均为常数,也即系统不是稳定系统。 能量衡算与物料衡算相类似,也需要规定衡 算基准和衡算范围。通常用单位时间为基准(如 J/s),也可用单位质量为基准(J/kg)。
(2)连续介质假设给分析问题带来的方便
①不考虑复杂的微观分子运动,只考虑在外力
作用下的宏观机械运动。 ②能运用数学分析的连续函数工具。
陕西科技大学材料科学与工程学院 15
材 料 热 工 基 础 | 气 体 力 学 基 础
1.6 稳定与不稳定的概念
(1)稳定流动系统与不稳定流动系统
系 统——研究的对象。 流动系统——系统中的流体处于流动状态 时称为流动系统。
i 1 i j 1
n
m
j
陕西科技大学材料科学与工程学院 23
材 料 热 工 基 础 | 气 体 力 学 基 础
1.7 可压缩气体与不可压缩气体
不可压缩气体——气体在流动过程中,气 体的密度不随压强的变化而变化,这样的 气体称为不可压缩气体。 可压缩气体——气体在流动过程中,气体 的密度随压强的变化而变化,这样的气体 称为可压缩气体。
(C)紊流:质点间相互碰撞相互混杂,运动轨迹错综复杂
陕西科技大学材料科学与工程学院 27
材 料 热 工 基 础 | 气 体 力 学 基 础
气体动力学基础PPT课件
气体动力学基础_1
23
第二章 一维定常流的基本方程
§2.1 应知的流体力学基本概念
• 无限多个连续分布的流体微团 组成的连续介质的假设(
Euler明确,1752)。而非分子论。适用于l/L<1/100,例
如100公里以下的大气与飞行器
• 一维定常流 1-D Steady flow,流线 Streamline,
3
第一章 绪论
§1.1 气体动力学的涵义
气体动力学是
➢ 流体力学的一个分支,在连续介质假设下,研
究与热力学现象有关的气体的运动规律及其与
相对运动物体之间的相互作用。
➢ 气体在低速流动时属不可压缩流动,其热力状
态的变化可以不考虑;但在高速流动时,气体
的压缩效应不能忽略,其热力状态也发生明显
的变化,气体运动既要满足流体力学的定律,
学科名 Discipline 流体力学 Fluid Dynamics 空气动力学 Aerodynamics 气体动力学 Gas Dynamics
主要研究范围 Primary Scope
不可压缩流体动力学 Incompressible Fluid Flow
不可压缩+可压缩流体动力学 Incom-+Com-pressibleLeabharlann 解析解,螺旋桨理论,飞机设计
1904-20年代,普朗特Prandtl(德)的普朗特-迈耶流动理论,(超音
速膨胀波和弱压缩波),风洞技术,边界层理论,机翼举力线、举
力面理论,湍流理论,接合理论流体与实验流体,奠定了现代流体
力学气体动力学研究的基础
1910年瑞利和泰勒研究得出了激波的不可逆性
1933年泰勒和马科尔提出了圆锥激波的数值解
气体动力学基础_1
空气动力学01第1章绪论及基础知识-航院
教材:1.2.3.4.参考书:空气与气体动力学的任务、研究方法及发展流体静力学水力学理论流体动力学润滑理论基本任务:航空、航天、天气预报、船舶、体育运动、22v p constρ+=理想不可压流体伯努利方程空气流过飞行器外部时运动规律y L V ρ∞∞=Γ库塔儒可夫-儒科夫斯基定理假设实际黏性附面层旋涡/涡量Stokes 定理ndA Ω⋅=Γ∫y 翼梢小翼下洗速度诱导阻力有效迎角↓下洗角翼尖尾涡升力↓当地升力等效来流来流实际升力尾涡后掠机翼平直机翼n V 是产生升力/激波的有效速度后掠翼可提高产生激波的Ma cr边条涡边条翼:下表面压力>上表面压力气流旋转涡旋转涡心p 低而V 高流经部位压力低注入机翼表面气流能量推迟分离激波1V a >21V V <()120sh D mV V =−> 激波阻力7发动机气体动力学y 压气机/风扇:气体增压涡轮:气体膨胀8y 音障/音爆/音爆云正激波及阻力弱压缩波斜激波y 音障楔型体超音速运动激波及激波阻力阻力系数↑消耗3/4功率y 活塞发动机高速时螺旋桨效率低、桨尖易产生激波⇒喷气发动机y 降低波阻的超音速气动布局如后掠翼、面积率→蜂腰机身等y 音爆激波面上声学能量高度集中,这些能量让人感受到短暂而极其强烈的爆炸声。
超音速低压气流局部正激波斜激波局部亚音气流超音/亚音气流超音速气流膨胀加速压缩减速尾激波压缩减速y 音爆云激波后气体急剧膨胀降压降温潮湿天气气温低于露点水汽凝结水珠云雾y 亚燃冲压发动机进气道及扩压段斜激波及正激波拉伐尔喷管气流增压至亚音速燃烧室燃烧气流超音速喷出推力超燃冲压发动机进气道/斜激波气流增压且超音速气流超音速喷出航天空气动力学y 可压缩性黏性摩擦生热气流带走加热飞行器表面Ma=2⇒温度≈120侦察机Ma=3⇒温度y 热障结构强度↓刚度↓热能热辐射热传导气动热力学常温常压2000K<T<4000K 9000K<T 分子密度低11空气y 扑动速度均匀来流合速度合力升力推力机动性强举升/推进/悬停/快速变向等动作集于一个扑翼系统大升力利用非定常机制,其升力远高于常规飞行器,能够在低雷诺数条件下飞行。
气体力学在窑炉中的应用
dV Vn dT 1 n
T
1 dv v dT
T
V n1 V n1 1 (1-3a) n 1 1 n TV 1 n 1 n T
TV n1
视为不可压缩气体:窑炉中的低压空气和烟气的压强近似等于外界大气压,流速远 低于当地音速,流动过程中的压强变化不超过 0.5%,虽然温度变化较大,但若分段处 理, 每段温度变化不大, 气体密度变化不超过 20%, 可简化计算过程, 结果亦符合要求。 可压缩气体:气体的流速在 100m/s 以上或压强和温度变化较大,如高压气体外射 流动等。 初始状态 p0、T0、V0、ρ0 平均流速 ω0 终了状态 p、T、V、ρ 平均流速 ω
V0Tt
T0
t
=1000×(273+250)/273=1916 m3
t 0T0 T =1.293×273/(273+250)=0.67 kg/m3
由此可知,空气经过加热后体积明显增加,密度明显下降,因此在窑炉的热工计算 中,不能忽略气体体积和气体密度随温度的变化。 (二)气体的膨胀性和压缩性 体积膨胀系数
μ0×10 (Pa·s)
1.72 1.66 1.87 1.37 1.66 0.84 1.20 0.96 0.96 1.17 0.82 ~1.48 ~1.47
6
C 122 118 138 239.7 118 71.7 198 225.9 377 416 673 ~150 ~186 -21~302 15~100 -21~302 17~100 -21~302 15~184 18~100 - - -
(1-2)
1
【例 1】将 1000m3,0℃空气送入加热器中加热,标况下空气密度为 1.293kg/m3,求加 热至 250℃时气体的体积和密度。 解:
基础知识气体动力学
2 可逆过程与不可逆过程
热力学基本概念与基础知识
热力学系统从一个平衡状态出发,经过一系列中间状态而变化到另一个平衡状态,它所经历的全部状态的综合称为热力过程,简称过程。 如果在过程中系统所经历的一系列状态都无限接近于平衡状态,则这种过程称为“准平衡过程”或“准静态过程”-它是一种无限缓慢的过程。 当系统完成某一过程后,如果令过程逆向进行而能使过程中所涉及的一切(系统及外界)都回复到初始状态,不留下任何变化,则此过程称为可逆过程,反之即为不可逆过程。 可逆过程是消除一切不可逆因素、具有可逆性的过程,必须满足 它是准平衡过程; 过程中不存在耗散效应。 →可逆过程是没有耗散损失的准平衡过程。
热力学中规定,系统吸热时热量为正,系统放热时热量为负。
热量既然是在传递中出现的能量,其数值就必然与传递过程有关。所以,热量也是一个过程量,而不是状态参数,其数值由系统状态和过程性质决定。
热量和功虽然同为过程量,都是系统和外界间通过边界传递的能量,但两者有着本质的差别:热量是通过紊乱的分子热运动发生相互作用而传递的能量,功则是物体间通过有规则的微观运动或宏观运动发生相互作用而传递的能量。
序 言
根据分子运动论,分子总是在不断进行无规则的热运动,不同流动区域的分子所携带的能量、动量和质量是不同的。
分子可以在不同流动区域之间运动。当某分子从一个区域运动到另一个区域时,同时也就将其能量、动量和质量携带到了该区域,这种迁移特性称为流体的输运性质。
流体的输运性质主要包括:黏性、导热性、质量扩散等,本课程只介绍前两个。
热力学基本概念与基础知识
1平衡状态、状态参数与简单热力学系统
系统的热力学状态:热力学系统在某一瞬时所呈现的宏观物理状况。热力学状态用能够测量的一些物理量来描述,这样的物理量称为状态参数。 对气体组成的系统,最基本的状态参数有3个:温度、压强、密度。 根据定义,状态参数的数值仅取决于系统所处的热力学状态本身,而与系统达到该状态所经历的途径或过程无关。 在没有外界影响的条件下,如果系统的宏观状态不随时间而改变,则系统所处的这种状态称为热力学平衡状态,简称状态。平衡状态是一个理想概念,此时,系统内必然是热平衡、力平衡、化学平衡。 实验和理论均证明,对于由气体组成的系统,其平衡状态只需要两个独立的状态参数来描述,只要确定两个独立状态参数的数值,其余的状态参数就随之确定,系统的状态即可确定。这种只需要两个独立状态参数描述的热力学系统称为简单热力学系统。 对气体组成的简单热力学系统,3个基本状态参数的关系可表示成 称为状态方程。
2 气体动力学基础
稳定流动的连续性方程
A1、A2、u1、u2、ρ1、ρ2 分别为断面1和 的面积 的面积、 分别为断面 和2的面积、 平均流速和密度。 平均流速和密度。
表达式
ΣMλ=ΣM出 A1u1ρ1=A2u2ρ2=Auρ
ρ 对不可压缩气体, 对不可压缩气体, 为常数
A1u1 = A2u2 = Au
截面为圆形的管道
压头损失
位压头
静压头
动压头
空气的密度和压力; ρa、pa——空气的密度和压力;ρ、p——热气体的密度和压力 空气的密度和压力 热气体的密度和压力
有能量输入或输出时
1 2 1 2 z1 ρg + p1 + ρu1 ± H e = z 2 ρg + p2 + ρu 2 + hl 2 2
输入或输出的能量
16
7
【例】某硅酸盐窑炉煅烧后产生的烟气量为 万m3/h,该处 例 某硅酸盐窑炉煅烧后产生的烟气量为 某硅酸盐窑炉煅烧后产生的烟气量为10万 , 压强为负100Pa,气温为800℃,经冷却后进入排风机,这时的 ,气温为 经冷却后进入排风机, 压强为负 ℃ 经冷却后进入排风机 风压为负1000Pa,气温为200℃,求这时的排风量(不计漏 ,气温为 风压为负 ℃ 求这时的排风量( 风等影响)。 风等影响)。 【解】 P1=101325-100=101225Pa 解 T1=273+800=1073K
一硅酸盐工业窑炉的供风系统,已知: 【例】 一硅酸盐工业窑炉的供风系统,已知:吸风管内径为 300mm,排风管内径为400mm,吸风管处气体静压强为负10500Pa, ,排风管内径为 ,吸风管处气体静压强为负 , 排风管气体静压强为150Pa,设1-1和2-2截面的压头损失为 , 截面的压头损失为50Pa。使 排风管气体静压强为 和 截面的压头损失为 。 温度10℃ 风量为 的气体通过整个系统, 温度 ℃,风量为9200m3 /h的气体通过整个系统,试确定需要外界输 的气体通过整个系统 入多少机械能 。
空气动力学总结
空气动力学总结第一章流体的基本属性和流体静力学基础1.连续介质假设:根据空气微团的概念,就可以把空气看做是由空气微团组成的没有间隙的连续体。
2.一般情况下,流体只承受压力,而不承受拉力,在一定的剪切力的作用下,流体会产生连续的变形,因此静止的流体不能承受剪切力。
3.空气微团:指含有很多空气分子的很微小的一团空气,它与飞行器特征尺寸大小相比微不足道的,同时它还要包含足够多的空气分子数目,要使空气密度的平均特征值有确切的含义。
4.在研究飞行器在任何高度飞行所受的空气动力时都可以应用连续介质假设。
(X)原因:只有在对流和平流层可以5.描述流体的主要物理量有密度、温度、压强密度的物理意义:反映流体的稠密程度温度的物理意义:反映分子无规则运动平均动能的大小压强的物理意义:流体单位面积上作用力的大小三者之间的关系:P=ρRT (R 为气体常数)6.理想气体状态方程:P v =RT(对1kg 气体)P V m =R m T(对1kmol 气体)(标准状态下V m =22.414)P v=mRT =nR m T(对mkg 或nkmol 气体)R m 为摩尔气体常数,不仅与气体所处的状态无关,而且还与气体种类无关,又叫通用气体常数。
R 为气体常数,大小为287.06或287,它与所处状态无关,但随气体种类的不同而不同,气体常数和通用气体常数的关系是R m =M·R(M 为物质的摩尔质量)**上述方程中应该使用绝对压力,不能使用直接测量得出的表压****上述方程中的温度应该使用绝对温度(开氏温度)****其中P 的单位是pa 而不是hpa,标准大气压是1013.25hpa**7.不同温度单位、压强单位的换算关系:T F =9/5T+32或T=5/9(T F -32)T K =T C +273.150℃100℃32(华)212(华)273.15K 373.15K **atm 指的是大气压,标准海平面时为1atm**8.流体的压缩性:我们将流体随着压强增大而体积缩小的特性。
《热工基础与设备》第01章-窑炉气体力学-120页PPT资料
05.01.2020
14
流体的基本性质和力学模型
§1.2 流体流动特征量
温度 ( ℃ ,K)
压力 (Pa ,N/m2 )
绝对压强P 相对压强Ps
PPa 0 正压 PPa 0 负压 PPa 0 零压
05.01.2020
15
流体的基本性质和力学模型
流速与流量
m/s,Nm /s
f
uF
d
dy
f F
分析: 阻力 耗能
d dy
阻力 耗能
d dy
** 温度对流体粘度的影响
理想流体和实际流体
u
d
dy
05.01.2020
11
粘性流体所产生的内摩擦力由牛顿粘性定律确定: τ=μdω/dy (N/m2)
式中 dω/dy:速度梯度,1/s; τ:剪切(应)力,N/m2; μ:粘度,也称动力粘度系数,N·s/m2即 Pa·s。
9
在已往的液体计算中,极少考虑大气的浮力, 而在窑炉中所存在的热气体进行计算时,务必 要考虑气体所受的浮力。
例如:在20ºC大气中对于1m3密度为 0.5kg/m3的热气体自重仅为 4.9N ,浮力则 为 11.8N ,故不能忽略。
05.01.2020
10
流体的基本性质和力学模型
流体的粘滞性及内摩擦定律(牛顿定律)
μ0和C值见表1.1。
05.01.2020
13
表1.1 各种气体的μ0和C值
气体
空气
N2 O2 CO2 CO
H2 CH4 C2H4 NH3 SO2 H2O 发生炉煤气 燃烧产物
μ0×107 (Pa·s)
1.71 1.66 1.87 1.37 1.66 0.84 1.20 0.96 0.96 1.17 0.82 ~1.45 ~1.47
空气动力学基础知识
理论分析
数值计算
我国发展概述
风筝、火箭、竹蜻蜓、气球等 1934年、航空工程系 50、60年代航空工业崛起 70年代建立门类齐全的航空工业体系 改革开放后跨越发展
第一节 空气动力学的基本知识
一、流场
定义 可流动的介质(水,油,气等)称为流体,流体所占据的 空间称为流场。 流场的描述 流体流动的速度、加速度以及密度p、压强p、温度T(流体 的状态参数)等 — 几何位置与时间的函数 (1)流体微团: 空气的小分子群,空气分子间的自由行程与飞行器相比较 太小,可忽略分子的运动 (2)流线: 流体微团流动形成的轨线, 流线不相交、流体微团不穿越流线(分子的排斥性)
分类:
低速 亚声速 跨声速 超声速(高超) 稀薄气体空气动力学、气体热化学动力学、 电磁流体力学等 工业空气动力学
研究方法:
实验研究
风洞、水洞、激波管中进行的模型试验(相似原理) 飞行试验 优点:较真实、可靠 不足:不能完全、准确模拟、测量精度、人力、物理 流动现象=》物理模型=》基本方程=》求解=》分析、判断=》修 正 揭示内在规律,受数学发展水平限制、难满足复杂问题 近似计算方法(有限元) 经费少、但有时结果可靠性差
一、流场(续)
(3)流管: 多个流线形成流管 管内气体不会流出 管外气体也不会流入,不同的截面上,流量相同 (4)定常流: 流场中各点的速度、加速度以及状态参数等只是几何位 置的函数,与时间无关 (5)流动的相对性 物体静止,空气流动 相对速度相同时,流场中 空气动力相同 物体运动,空气静止
二、连续方程
ogyg y og
第一章-气体
第一章 气体自然界中物质的聚集状态一般可分为三种:气体、液体和固体。
气体与液体均可以流动,统称为流体(fluid);液体和固体又统称为凝聚态(condense)。
无论物质处于哪一种状态,都有许多宏观性质,如压力(pressure)p 、体积(volume)V 、温度(temperature)T 、密度(density)ρ和热力学能(thermodynamic energy)U ,等等。
对于一定量的纯物质而言,p 、V 、T 是三个最基本的性质;而混合物的基本性质还应包括组成。
由一定量纯物质组成的均相流体,p 、V 、T 中任意两个量确定后,第三个量即随之确定,此时就说物质处于一定的状态。
处于一定状态的物质,各种宏观性质都有确定的值和确定的关系。
联系p 、V 、T 之间关系的方程称为状态方程。
本章着重介绍气体的状态方程。
§1-1 理想气体状态方程1.理想气体状态方程气体的物质的量n 与压力p 、体积V 与温度T 之间是有联系的。
从17世纪中叶开始 .先后经过波义尔(Boyle R,1662)、盖-吕萨克(Gay J-Lussac J,1808)及阿伏伽德罗(A Avogadro,1869)等著名科学家长达一个多世纪的研究,测定了某些气体的物质的量n 与它们的p 、V 、T 性质间的相互关系。
得出了对各种气体都普遍适用的三个经验定律(empirical law)。
在此基础上,人们归纳出一个对各种纯低压气体都适用的气体状态方程:nRT pV = (1-1-1a)上式称为理想气体状态方程(state equations of the ideal gas )。
式中p 的单位为Pa ,V 的单位为m 3,n 的单位为mol ,T 的单位为K 。
R 是是一个对各种气体都适用的比例常数(ratioconstant),称为摩尔气体常数,在一般计算中,可取R=8.314 J ·mol -1·K -1。
1-1 气体动力学基本方程解析
u u u 0 x y z t
单位时间内通过控制 面的气体净质量 单位时间控制体 内气体质量变化
13
0 若气体是不可压缩的,ρ为常数,则有: t
几个基本概念:
稳定流动与不稳定流动
流体流动时,若任一点处的流速、压力、密度等与流动 有关的流动参数都不随时间而变化,就称这种流动为稳 定流动。反之,只要有一个流动参数随时间而变化,就 属于不稳定流动。
5
流速: 流体在流动方向上单位时间内通过的距离称为流
速,用u表示,其单位为m/s。
流量: 体积流量:流体在单位时间内通过流通截面的体积量, 用V表示,其单位为m3/s; 质量流量:流体在单位时间内通过流通截面的质量,用
的问题,所谓一维流动是指流动参数仅在一个方向上有
显著的变化,而在其它两个方向上的变化非常微小,可
忽略不计。例如在管道中流动的流体就符合这个条件。
15
稳定态
单位时间控 制体内气体 质量变化
=0
F1
F2
2
u2
u1 1
对于稳定态一元流(管流)而言,如具有一个入口断面
F1和一个出口断面F2的稳定态管流。
单位时间内通 过控制面的气 体净质量 单位时间控 制体内气体 质量变化
10
V dF
θ
n
u
+
=0
1)连续性方程的微分形式
V udF
F
m V
单位时间内通过控制体的气体净质量:
在dt时间内沿x轴、y轴和z轴方向气体净质量为:
质量流量
( u )dxdydzdt x
( u )dxdydzdt y
以便使气体仍然充满整个控制体的空间,此时净流出质量 应等于气体质量变化;
物理化学 第一章 气体
反应活性很高的O原子与O2结合形成O3: O+O2+M O3+M 臭氧自身吸收200nm~300nm的uv,而发生
分解:
O3 UV O+O2
在 STP 条 件 下 , 臭 氧 层 厚 度 仅 仅 有 3mm。本世纪七十年代中期科学家们已 关切到某些氟氯烃对臭氧层的有害影响 使用中的氟氯烃最终大多逃逸到大气中 ,然后扩散到平流层中,在175~220nm 波长的uv辐射下引起分解:
理想气体状态方程的应用
• 计算p、V、T、n中的任意物理量,
应用于低压、高温下的真实气体。 • 气体摩尔质量的计算。 • 气体密度的计算。
例:丁烷C4H10是一种易液化的气体燃 料,计算在23℃,90.6KPa下,丁烷 气体的密度。
pV=nRT= mRT/M
=m/V
=
pM RT
=2.14g·L-1
第一章 气体
气体的基本物理特性:扩散性和可压缩性。 表现为: (1)气体没有固定的体积和形状。 (2)气体是最易被压缩的一种聚集状态。 (3)不同种气体能以任意比例相互均匀混合。 (4)气体的密度比液体和固体的密度小很多。
• 1.1 理想气体状态方程 • 1.2 气体混合物 • 1.3 气体分子运动论 • 1.4 真实气体 • 1.5 大气化学
2NO(g)+O2(g) 2NO2 (g)
波长小于400nm的阳光能引起NO2的 光化学分解:
2NO2 (g)+hv NO(g)+O(g)
O(g)+O2(g)+M O3 (g)+M 继而臭氧与未燃烧的烃和其他有机化 合物反应生成过氧乙酰硝酸脂(PAN) 、醛等二次污染物。一次和二次污染物 随着每时的时间变化而变化。
空气动力学基础知识
1第一章空气动力学基础知识(总14页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第四单元飞机与飞机系统第一章空气动力学基础知识大气层和标准大气地球大气层地球表面被一层厚厚的大气层包围着。
飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。
根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。
对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。
对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。
大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。
另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。
对流层内空气的组成成分保持不变。
从对流层顶部到离地面约30公里之间称为平流层。
在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。
同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下度,所以又称为同温层。
同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。
中间层从离地面30公里到80至100公里为止。
中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。
在这一层中,温度先随高度增加而上升,后来又下降。
中间层以上到离地面500公里左右就是电离层。
这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。
在这一层内空气温度从-90℃升高到1 000℃,所以又称为热层。
第一章-气体力学基础
Pa s m2 / s
温度升高,分子热运动加剧 ,动量交换增 多 ,粘度增大。
压力变化对气体分子热运动影响不大。
理想流体:流体无粘性、完全不可压缩,运 动时无抵抗剪切变形的能力。(简化)
实际流体:流体具有粘性,运动时有抵抗剪 切变形的能力。
流体按变形特点又分为牛顿流体和非牛顿流 体。
牛顿流体: 内摩擦力与速度梯度成直线关系 非牛顿流体: 内摩擦力与速度梯度成 非直线关系
可压缩流体/不可压缩流体
所以,通常把气体看成是可压缩流体,即 它的密度不能作为常数,而是随压强和温 度的变化而变化的。我们把密度随温度和 压强变化的流体称为可压缩流体。 当气体在压强和温度的变化都很小时,其 密度变化很小,可以将密度视为定值,可 作为不可压缩流体处理。 这是一种简化处理的方式
③黏性
pV
nR0T
m M
R0T
R0 —通用气体常数,8.314J·mol-1·K-1 实践证明,气体在通常的条件下,一般都 遵循状态方程的规律
气体的密度与温度、压力的关系
液体:工程上液体密度看作与温度、压力无关。
气体:密度与温度和压力有关。
理想气体: PV P0V0 P P0
T
T0
T T0 0
0
1.3 气体静力学基本方程
作用在气体上的力
①质量力:作用在流体内每一个质点上的力, 它的大小与流体的质量成正比。(重力)。
②表面力:作用在被研究流体表面上的力, 它的大小与流体的表面积成正比。
表面力可分为切向力(内摩擦力)与法向力 (压强产生的总压力)。
对于静止流体或没有粘性的理想流体,切向 表面力为零,只有法向表面力。
1.1 研究对象与研究方法
流体:液体和气体的总称。是一类受任何微 小拉力或剪力作用下都能发生变形的物体。
气体力学基础(激波)
& & 动量 程 p1A p2 A2 = mV2 mV1 方 1 即 p1 p2 = ρ V + ρ V = 常数
2 1 1 2 2 2
14
激波的基本控制方程
V V = h2 + = 常数 能量方程 h1 + 2 2 焓定义 h = u + pυ
2 1 2 2
状态方程 u = u( p, ρ)
& A( p1 p2 ) = m[(Vs V ) Vs ]
& 式中A为管道截面积,m为通过激波的气体流量
A( p1 p2 ) = Aρ1Vs[(Vs V ) Vs ]
VsV = p2 p1
& m = Aρ1Vs
应用连续方程 连续方程: 连续方程
ρ1
(a)
Aρ1Vs = Aρ2[(Vs V )]
ρ2 (k +1 p2 + (k 1 p ) ) 1 = ρ1 (k +1 p + (k 1 p2 ) 1 )
T p2 (k +1 p + (k 1 p2 ) 1 ) 2 = (k +1 p + (k 1 p T p ) 2 ) 1 1 1
不包含激波角,和坐标系无关,适用于任何一 道激波 一定压强比对应一定密度比和温度比
连续方程 ρ1V1n = ρ1V2n
切向动量方程 ρ1V1nV1t = ρ2V2nV2t
法 动 方 向 量 程 p1 + ρ1V n = p2 + ρ2V2n 1
2
2
V V 能 方 量 程 h+ 数 = h2 + =常 1 2 2 2 2 Vn V2n 1 h+ = h2 + =常 数 1 2 2
气体流体力学的基础理论及其应用
气体流体力学的基础理论及其应用引言气体流体力学是研究气体在运动和变形过程中的力学性质和规律的学科。
它是流体力学的一个分支,涉及到气体的运动、压力、速度、密度等方面的问题。
气体流体力学的基础理论是研究和描述气体流动的运动学、动力学和能量的守恒原理。
通过对气体流体力学的研究,可以获得许多实际应用的有效方法和工具,如风洞测试、航空航天、气象预测等。
1. 气体流体力学的基础概念1.1 流体的性质气体是一种流体,具有以下几个基本性质: - 无定形和无固定体积:气体具有流动性,可以自由地扩散和混合。
- 高度可压缩性:气体能够被压缩,其体积可以随着压强的变化而变化。
- 分子之间的间距较大:气体分子之间相互之间的距离较大,分子之间主要通过碰撞传递能量。
1.2 流体力学的基本方程流体力学研究气体在运动和变形过程中的力学性质和规律,其基本方程包括:1.2.1 运动学方程流体的运动学方程描述了流体的速度、加速度和位移之间的关系。
它包括: - 运动方程:描述流体介质中的质点的运动状态,与质点的加速度和速度有关。
- 运动辅助方程:描述流体介质中的质点在流动中的加速度和速度与压力、密度和温度的关系。
1.2.2 动力学方程动力学方程描述了流体在运动和变形过程中的力学性质和规律。
它包括: - 质量守恒方程:描述了单位时间内通过单位面积的流体质量的变化与流入流出的质量流量之间的关系。
- 动量守恒方程:描述了单位时间内通过单位面积的动量的变化与流入流出的动量流量之间的关系。
- 能量守恒方程:描述了单位时间内通过单位体积的能量的变化与流入流出的能量流量之间的关系。
2. 气体流体力学的应用领域气体流体力学的基础理论不仅仅是理论研究,也被广泛应用于各个领域,为实际问题的解决提供了有效的方法和工具。
2.1 风洞测试风洞测试是利用气体流体力学的基本原理,在模拟大气环境下对飞行器、汽车等工程结构的气动性能进行测试和优化的方法。
通过风洞测试,可以获得飞行器在不同飞行状态下的气动力、气动热等参数,为飞行器的设计和优化提供重要参考。
1-1气体动力学基本方程
26
gz1 e1 p1 w12 gz2 e2 p2 w22
1 2
2 2
b)窑炉中气体流动 对整个系统而言,压强变化不大,但温度变化大,气
体密度变化也较大,属于可压缩气体流动; 若分段处理,每段气体温度变化不太大,在平均温度
下的密度ρ近似为常数(不可压缩气体), ρ1=ρ2=ρ,且气 体在平均温度下作等温流动,e1=e2 。
上式两边同除以 m1 可得单位质量气体的能量方程——
热力学第一定律:
q (gz2 e2 p2 w22 ) (gz1 e1 p1 w12 ) lm
2 2
1 2
对于稳定态一元流动,传入系统的热量等于系统
能量的增量与系统对外作的功率之和。
24
q (gz2 e2 p2 w22 ) (gz1 e1 p1 w12 ) lm
2
20
热 当系统内有加热装置、冷却装置或内热源(如化学反应) 时,流体通过时便会吸热或放热。单位时间吸收或放出的 热量(称为传热速率)用Q表示,J/s,这里规定,吸热时 Q为正,放热时Q为负。 功 单位时间内外界与系统内流体所交换的功,称为功率 (Lm)。
21
(2)稳定态一元流(管流)能量方程
8
所谓控制体是指流体流动空间中任一固定不变的体积, 流体可以自由地流经它,控制体的边界面称为 控制面,控制面是封闭的表面。 控制体通过控制面与外界可以进行质量、能量交换, 还可以受到控制体以外的物质施加的力。如果选取控 制体来研究流体流动过程,就是将着眼点放在某一固 定空间,从而可以了解流体流经空间每一点时的流体 力学性质,进而掌握整个流体的运动状况。 这种研究方法是由欧拉提出的,称为欧拉法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工业窑炉(P≈P0):
0
T0 T
T0、P0、ρ0 标态时 温度、压力、密度
②压缩性
定义:气体受压力作用时,体积缩小,密度 增大的性质。
温度一定, P ↑, V ↓
气体的压缩性很大。从热力学中可知,当 温度不变时,完全气体的体积与压强成反 比,压强增加一倍,体积减小为原来的一 半;当压强不变时,温度升高1℃体积就比 0℃时的体积膨胀1/273。
目录
1.1 研究对象与研究方法 1.2 气体的主要物理性质 1.3 气体静力学基本方程 1.4 气体动力学基本方程 1.5 压头损失 1.6 压缩性气体流动
研究对象:主要是烟气和空气。
本章要点:窑炉气体力学用来研究窑炉工作 过程中气体的宏观物理与化学行为。本章 的研究中心问题是气体流动,只有了解了 气体的特性,才能把流体力学的知识准确 地应用于窑炉系统的气体力学研究中。
化简消除A,得 即
p2A-p1A-ρgA(H1-H2)=0 p2+H2ρg=p1+H1ρg
p+Hρg =常数
因 H1-H2=H 则式可改写为
p2=p1+Hρg
流体内部绝压沿高度变化的规律称为(单 )流体静力学基本方程式。虽其是由气体 推导出来但亦适用于液体
气体内部绝压变化的规律是:
①H↓,P呈线性的减小,即上小下大 ;
温度升高,分子热运动加剧 ,动量交换增 多 ,粘度增大。
压力变化对气体分子热运动影响不大。
理想流体:流体无粘性、完全不可压缩,运 动时无抵抗剪切变形的能力。(简化)
实际流体:流体具有粘性,运动时有抵抗剪 切变形的能力。
流体按变形特点又分为牛顿流体和非牛顿流 体。
牛顿流体: 内摩擦力与速度梯度成直线关系 非牛顿流体: 内摩擦力与速度梯度成 非直线关系
把气体看作是连绵不断地充满整个空间的、 不留任何空隙的连续介质。
分子间隙
连续介质
1.2 气体的主要物理性质
①密度 ②压缩性 ③黏性
①密度
定义:单位体积气体的质量。 符号“ρ”,单位:kg/m3
均质气体: m V
常用气体的密度
ρ空气=1.293 kg/m3 ρ氧气=1.429 kg/m3
ρ氢气=0.090 kg/m3
ρCO=1.250 kg/m3
ρCO2=1.976 kg/m3
混合气体:
n
mx11x22...x.n.n. xii
i1
χi—混合气体中各种气体的体积百分比, % ρi—气体混合物中各组分的密度,kg/m3
气体的状态方程
一定量的气体在平衡状态下,其体积、压 力与温度的关系的表达式,称为气体的状 态数值方程,即:
静止气体垂直作用于单位面积上的力,称为气体 的静压强,简称压强,习惯上称为压力。单位为 Pa。 压强的表示方法:
①绝对压强:以绝对真空(绝对零压)为起算基准的 压强
②相对压强:以当地大气压为起算基准的压强
相对压强(表压)=绝对压强-大气压强
正压:绝压大于大气压时的相对压强(>0) 负压: 绝压小于大气压时的相对压强(<0) 零压:绝压等于大气压时的相对压强(=0)
pVnR0TM mR0T
R0 —通用气体常数,8.314J·mol-1·K-1 实践证明,气体在通常的条件下,一般都 遵循状态方程的规律
气体的密度与温度、压力的关系
液体:工程上液体密度看作与温度、压力无关。
气体:密度与温度和压力有关。
理想气体:
PVP0V0 T T0
TP T0P00
0
T0 P TP0
流体具有流动性 固体没有流动性
流体的连续性假设
①连续介质假设 流体看成是由大量的连续质点组成的连续的 介质,每个质点是一个含有大量分子的集团 ,质点之间没有空隙。
质点尺寸:大于分子平均自由程的100倍。 ②连续介质假设给分析问题带来的方便
不考虑复杂的微观分子运动,只考虑在外力 作用下的宏观机械运动。 能运用数学分析的连续函数工具。
流体内质点或流层间因相对运动而产生内 摩擦力以反抗相对运动的性质。 牛顿内摩擦定律: 运动流体的内摩擦力的大 小与两层流体的接触面积成正比,与两层 流体之间的速度梯度成正比。
数学表达式: F du A (N)
dy
A
udu
F
dy
Au F
动力粘度
动力粘度 绝对粘度
运动粘度
粘度↑粘性↑ 流动性↓
Pas m2 / s
1.3 气体静力学基本方程
作用在气体上的力
①质量力:作用在流体内每一个质点上的力, 它的大小与流体的质量成正比。(重力)。
②表面力:作用在被研究流体表面上的力, 它的大小与流体的表面积成正比。
表面力可分为切向力(内摩擦力)与法向力 (压强产生的总压力)。
对于静止流体或没有粘性的理想流体,切向 表面力为零,只有法向表面力。
静止气体基本方程
处于静止状态的气体,主要受静压力和自 身重力的作用,静止气体基本方程是用于 描述在重力场作用下静止流体内部压强变 化规律的数学表达式。 用于描述绝对压强变化规律的称为单气体 静力学基本方程式,简称气体静力学基本 方程式,用于气(液体);(详细介绍) 用于描述表压强变化规律的称为双流体静 力学基本方程式,多用于气体。
单流体静力学基本方程式的推导
设有一静止气体体,从其中任意划出一垂
直气柱如图所示,p1、p2 ––分别
P1A
H
G
H1 P2A H2
图 静力学基本方程的推导
垂直方向上作用于气柱上的力进行分析有:
下底面所受的向上总压力:p2 A; 上底面所受的向下总压力:p1 A; 整个气柱的重量:G=ρgA(H1-H2) 若规定向上的力为正,向下的力为负,在静止液体 中,上述三力之合力应为零,即:
1.1 研究对象与研究方法
流体:液体和气体的总称。是一类受任何微 小拉力或剪力作用下都能发生变形的物体。
流体力学 —研究流体平衡和运动规律的科学
从 研 究 液体力学 对 气体力学 象 分
从 研 究 流体静力学 内 流体动力学 容 分
从 研 究 理论流体力学 方 实验流体力学 法 分
流体 与
固体区别
可压缩流体/不可压缩流体
所以,通常把气体看成是可压缩流体,即 它的密度不能作为常数,而是随压强和温 度的变化而变化的。我们把密度随温度和 压强变化的流体称为可压缩流体。 当气体在压强和温度的变化都很小时,其 密度变化很小,可以将密度视为定值,可 作为不可压缩流体处理。 这是一种简化处理的方式
③黏性