无碳小车传动方案课程设计
无碳小车传动方案设计5
传动设计方案
姓名
学号
3140301142
专业班级
机械1404
1、设计思路
驱动部分:通过绕线轮上的绕线带动主传动轴(即大齿轮所在轴)转动,小车的行程可通过后续的微调部分来调节,如:连杆长度的变化,前轮支架前后位置的变化等。
转动部分:转向机构主要由图中连杆部分组成(实际上连杆与前轮导杆部分为球形铰链连接,图中作简略表示),前轮机架可固定在小车底盘上。通过该机构,可使转向轮周期性改变方向,即实现S形路线。齿轮啮合部分主要作用是改变前轮转角变化快慢,改变传动比可得到想要的转动角速度。
组长
指导教师
2、小车传动机构运动简图(初稿)
3、关键参数及运动简要说明
1度
3)传动比:4:1
4)运动简要说明:绕线通过绕线轮带动大齿轮轴转动,与其啮合的小齿轮也跟着一起转动,进而带动后轮转动。同时,大齿轮轴的转动能带动连杆,连杆与导杆连接,从而前轮跟随者前轮支架一起摆动。
组别
机械设计无碳小车课程设计说明书
目录一、设计任务书 (1)二、总体结构设计 (1)三、总传动比的设计与分配 (2)四、转向轮轴运动参数的计算 (2)五、对轴进行结构设计与校核 (2)七、润滑剂的选择 (2)八、工艺设计方案 (2)九、成本分析方案 (2)十、工程管理方案 (4)十一、徽标设计 (5)十二、参考文献 (6)十三、心得体会 (6)一、设计任务书命题:以重力势能驱动的具有方向控制功能的自行小车功能设计要求:给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置。
该自行小车在前行时能够自动避开赛道上设置的障碍物(每间隔1米,放置一个直径20mm、高200mm的弹性障碍圆棒)。
以小车前行距离的远近、以及避开障碍的多少来综合评定成绩。
给定重力势能为5焦耳(取g=10m/s2),竞赛时统一用质量为1Kg 的重块(¢50×65 mm,普通碳钢)铅垂下降来获得,落差500±2mm,重块落下后,须被小车承载并同小车一起运动,不允许掉落。
要求小车前行过程中完成的所有动作所需的能量均由此能量转换获得,不可使用任何其他的能量形式。
小车要求采用三轮结构(1个转向轮,2个驱动轮),具体结构造型以及材料选用均由参赛者自主设计完成。
要求满足:①小车上面要装载一件外形尺寸为¢60×20 mm的实心圆柱型钢制质量块作为载荷,其质量应不小于400克;在小车行走过程中,载荷不允许掉落。
②转向轮最大外径应不小于¢30mm。
二、总体结构设计根据本届大赛命题要求,我们首先确定如下设计思路:1.驱动机构根据能量守恒定律,要尽可能多的利用重物的重力势能,就必须简化结构,因此该系统不设储能装置,直接由重物通过细绳拉动后轴驱动。
2.转向机构控制转向是该小车的核心问题之一,普通凸轮只能控制转向轮规则摆动,在不需要转向的时候小车仍会转向,因此我们在此处将凸轮机构进行了进一步的优化,通过引入“太空豆”控制转向信号,使得前轮在我们需要的时候转向,并以此实现小车的预编程功能。
无碳小车方案设计
辅助机构
为了保证小车的正常 运行,避免中途停车,在 设计时必须对传动比取一 定的安全系数,这样就造 成小车的速度会越来越快 。这就存在小车因速度过 快而发生运动精确度降低 的危险。所以就需要一种 小车限速装置。
由于计算精度、加工精 度、场地限制等诸多因素的 影响,小车在成型后必须有 一套完善且尽可能简单的调 整辅助机构。
偏心线轮 非圆齿轮 偏心轮同步带
如何实现两个驱动轮的
几种非匀速比传动机构
偏心线轮 非圆齿轮 偏心轮同步带
如何实现两个驱动轮的
几种非匀速比传动机构
偏心线轮 非圆齿轮 偏心轮同步带
如何实现两个驱动轮的
如何解决同步带松动问题
1 装配间隙利用
2
弹簧张紧
3 偏心轮(凸轮)张紧
装配间隙利用
弹簧张紧
先设轨迹为一条类似正弦 曲线的平滑周期函数曲线
车体转动加速度 (其中的K表示车轮半径)
设初始位置小车中轴 线与轨迹图象x轴夹角 θ0,小车经过时间t 后转过角度Δθ,小 车驱动轴中点速度v。
行驶轨迹计算
积分方程组
∫Ωdt=Δθ
Vx=v cosθ Vy=v sinθ
X=∫Vxdt Y=∫Vydt θ0=dy/dx│t=0
偏心轮(凸轮)张紧
最终确定方案-------弹簧张紧
非匀速比传动相关计算
传动比的计算
传动比的计算
设轴距为L,偏心轮半径R,从动轮 半径r,偏心轮偏心距e、转速为ω ;时间t=0时两轮圆心距最大,偏心 轮顺时针转动。 则从动轮转速ω'=
转速比函数图象
小车行驶轨迹计算
设轴中点转弯半径R转,轮距d,左侧轮速度vl,右侧轮速 度vr。则有R转=
以离心离合器刹车和各个 调整机构为辅助
a型无碳小车课程设计
a型无碳小车课程设计一、课程目标知识目标:1. 学生理解无碳小车的基本原理和设计理念,掌握相关物理知识,如能量转换、简单机械结构等。
2. 学生了解并掌握无碳能源的特点和应用,如太阳能、风能等。
3. 学生掌握基本的电路知识,能够分析并理解无碳小车电路的组成和原理。
技能目标:1. 学生能够运用所学知识,设计并制作一个简单的a型无碳小车。
2. 学生通过实践操作,培养动手能力、团队协作能力和问题解决能力。
3. 学生能够运用科学方法进行实验,收集和处理数据,优化无碳小车的设计。
情感态度价值观目标:1. 学生培养对科学技术的兴趣,增强环保意识,认识到无碳能源的重要性。
2. 学生在学习过程中,培养积极探究、勇于创新的精神,提高自信心和成就感。
3. 学生通过团队合作,培养集体荣誉感,学会尊重他人,提高沟通能力。
课程性质:本课程为科学实践活动,结合物理、能源等学科知识,注重实践操作和团队合作。
学生特点:六年级学生具有一定的物理知识基础,动手能力强,对新鲜事物充满好奇。
教学要求:教师需引导学生将理论知识与实践相结合,关注学生在活动中的参与度和合作精神,以提高学生的综合能力。
通过分解课程目标为具体的学习成果,使学生在实践中掌握知识,培养技能和情感态度价值观。
二、教学内容1. 引入无碳能源概念:通过课本相关章节,介绍无碳能源的定义、分类及其在生活中的应用,让学生了解无碳能源的重要性和发展趋势。
- 教材章节:《能源》单元,无碳能源章节2. 学习无碳小车原理:结合物理知识,讲解无碳小车的工作原理,包括能量转换、简单机械结构等。
- 教材章节:《物理》单元,能量转换、简单机械章节3. 设计与制作无碳小车:引导学生运用所学知识,进行无碳小车的设计与制作,注重实践操作和团队协作。
- 教材章节:《科学实践活动》单元,设计与制作项目4. 实验与优化:组织学生进行无碳小车的实验,收集数据,分析问题,对小车设计进行优化。
- 教材章节:《科学实践活动》单元,实验与探究章节5. 成果展示与评价:安排学生展示自己的无碳小车,进行自评、互评和教师评价,总结经验教训。
S型无碳小车设计
3 构造设计及参数选择
完毕多种零件旳装配后得到了无碳小车旳完整装配图
3 构造设计及参数选择
完毕多种零件旳装配后得到了无碳小车旳完整装配图
4 仿真成果
在完毕整体装配图旳环境下,单击左下角旳运动算例,把动画模拟时间轴拉到20秒旳位置。 在无碳小车装配体中,单击虚拟马达,弹出马达类型对话窗,选择旋转马达,然后单击绳轮 面,为绳轮轴添加一种虚拟马达。虚拟马达模拟重锤下落时牵动绳子带动绳索转动旳情况, 设定虚拟马达旳转速为30r/min。 然后按下从头播放动画,观察小车齿轮、车轮、凹槽轮、拨杆运动情况。输出动画成果,对 成果进行分析。 对于建立旳无碳小车,在没有考虑其他摩擦力、阻力、能量损失旳情况下,加人虚拟马达模 拟运动时,绳轮能带动轴旳转动,引起齿轮2旳转动,齿轮2又带动齿轮1、齿轮3旳转动。当 车轮转过1.5圈时,凹槽轮刚好转过0.5圈,阐明齿轮1、齿轮2、齿轮3在齿数设计上符合拟定 旳运动轨迹转向要求。 对于转向机构旳设计,凹槽轮转动时,拨杆球面与凹槽面相切运动,伴随凹槽旳变化,拨杆 也能伴随凹槽途径变化,引起转向轴旳变化,带动前轮转动。阐明设计旳这种转向机构有一 定旳实用性,能够带动小车有规律旳转向。同理能够经过边凹槽轮上旳凹槽途径,设定出特 定规律旳途径,让无碳小车沿不同特定规律路线行走。例如走“8”字型、“0”路线。
谢谢观看
无碳小车
12/8/2023 023-12-8
课题内容
1
整体设计思绪
2
目录
4
仿真成果
3
构造设计及 参数选择
1 课题内容
本课题围绕主题:基于SolidWorks下无碳小车旳设计及模拟仿真,设计一种无碳小 车,根据能量转换原理,驱动小车运动旳能量是给定重力旳重锤下落旳势能转换来旳 机械能让其行走及转向旳。给定重力势能为4焦耳(取g=10m/s2),用质量为1Kg旳 重块(¢50×65 mm,一般碳钢)铅锤下降来取得,落差400±2mm,重块落下后, 能和小车一起运动并被小车承载,防止铅垂从小车上掉落。图1-1为小车示意图。
无碳小车 设计方案
设计方案说明书
一、能量转换设计方案
将给定的重力势能通过滑轮组合等转化为小车所需要的能量。
首先,通过滑轮的配合保证小车的动力来源以及速度的稳定。
重物与定滑轮1连接,通过定滑轮2与皮带轮3连接(绳缠绕在皮带轮上),皮带轮3固定在小车车轴上。
当重物下落时,重力势能通过滑轮组带动皮带轮运动,从而使车轮转动,具体情况如下图所示:
图一小车能量转换示意图
二、运动方向设计方案
利用凸轮机构来控制小车的前进方向,以躲避障碍物。
在小车前进过程中,为躲避障碍物需走S型路线,这就需要在小车行走过程中,在特定的位置改变小车的前进方向,通过一组凸轮机构即可实现小车的转弯。
车轴带动凸轮1转动,然后将运动轨迹通过导杆2 传递给滑块3,滑块3带动车轴4运动(车轴4做周期性摆动),从而达到小车改变方向的目的。
图二小车运动方向改变示意图。
八字形无碳小车课程设计
八字形无碳小车课程设计一、教学目标本课程旨在让学生了解八字形无碳小车的基本概念、设计原理和制作方法,通过实践活动提高学生的科学探究能力、动手能力和团队协作能力。
具体目标如下:1.知识目标:(1)了解八字形无碳小车的结构特点和运动原理。
(2)掌握无碳小车制作的材料选择、设计和组装方法。
(3)了解无碳小车在环保领域的应用和意义。
2.技能目标:(1)能够运用科学知识分析和解决无碳小车制作过程中遇到的问题。
(2)具备动手实践能力,独立完成无碳小车的制作。
(3)培养团队协作精神,学会与他人共同探讨和解决问题。
3.情感态度价值观目标:(1)培养学生对科学的兴趣和好奇心,提高科学素养。
(2)培养学生关爱环境、珍惜资源的意识。
(3)培养学生勇于创新、克服困难的精神。
二、教学内容本课程的教学内容主要包括八字形无碳小车的概念、设计原理、制作方法和实践操作。
具体安排如下:1.第一课时:八字形无碳小车概述(1)介绍八字形无碳小车的定义和特点。
(2)讲解无碳小车的工作原理和应用领域。
2.第二课时:无碳小车设计原理(1)讲解无碳小车的设计原则和方法。
(2)分析无碳小车的结构组成和功能。
3.第三课时:无碳小车制作方法(1)介绍无碳小车的制作材料和工具。
(2)演示无碳小车的制作过程。
4.第四课时:实践操作(1)学生分组制作无碳小车。
(2)进行无碳小车比赛,检验学习成果。
三、教学方法本课程采用讲授法、实践操作法和小组讨论法相结合的教学方法,以激发学生的学习兴趣和主动性。
1.讲授法:讲解无碳小车的相关概念、原理和制作方法。
2.实践操作法:学生动手制作无碳小车,提高实践能力。
3.小组讨论法:分组讨论制作过程中的问题和解决方案,培养团队协作能力。
四、教学资源1.教材:选用符合课程内容的八字形无碳小车教材。
2.参考书:提供相关领域的参考书籍,丰富学生知识体系。
3.多媒体资料:制作PPT、视频等资料,直观展示无碳小车的制作过程和原理。
4.实验设备:准备无碳小车制作所需的工具和材料,如剪刀、胶带、电机等。
无碳小车传动方案课程设计.
目录一任务书 (1)二方案设计分析 (2)2.1车架 (3)2.2原动机构 (4)2.3传动机构 (4)2.4转向机构 (4)2.5行走机构 (6)2.6微调机构 (7)三运动参数及构件尺寸计算 (7)3.1建立数学模型及参数确定 (7)3.1.1能耗规律模型 (8)3.1.2运动学分析模型 (9)3.1.3动力学分析模型 (13)3.1.4参数确定 (14)四设计总结 (15)五参考资料目录 (15)二设计方案分析通过对小车的功能分析小车需要完成重力势能的转换、驱动自身行走、自动避开障碍物。
为了方便设计这里根据小车所要完成的功能将小车划分为五个部分进行模块化设计(车架、原动机构、传动机构、转向机构、行走机构、微调机构)。
为了得到令人满意方案,采用扩展性思维设计每一个模块,寻求多种可行的方案和构思。
下面为我们设计图框(图一)图一在选择方案时应综合考虑功能、材料、加工、制造成本等各方面因素,同时尽量避免直接决策,减少决策时的主观因素,使得选择的方案能够综合最优。
图二2.1车架车架不用承受很大的力,精度要求低。
考虑到重量加工成本等,车架采用木材加工制作成三角底板式。
可以通过回收废木材获得,已加工。
2.2原动机构原动机构的作用是将重块的重力势能转化为小车的驱动力。
能实现这一功能的方案有多种,就效率和简洁性来看绳轮最优。
小车对原动机构还有其它的具体要求。
1.驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。
2.到达终点前重块竖直方向的速度要尽可能小,避免对小车过大的冲击。
同时使重块的动能尽可能的转化到驱动小车前进上,如果重块竖直方向的速度较大,重块本身还有较多动能未释放,能量利用率不高。
3.由于不同的场地对轮子的摩擦摩擦可能不一样,在不同的场地小车是需要的动力也不一样。
在调试时也不知道多大的驱动力恰到好处。
因此原动机构还需要能根据不同的需要调整其驱动力。
4.机构简单,效率高。
基于以上分析我们提出了输出驱动力可调的绳轮式原动机构。
越障无碳小车机械原理课程设计
机械原理课程设计题目越障无碳小车姓名学号专业班级所在学院机电与信息工程学院二○一四年九月九日一.设计题目:以重力势能驱动的具有方向控制功能的自行小车设计一种小车,驱动其行走及转向的能量是按照能量转换原理,由给定重力势能转换来的。
给定重力势能为4焦耳(取g=10m/s2),竞赛时统一用质量为1Kg的重块(¢50×65 mm,普通碳钢)铅垂下降来取得,落差400±2mm,重块落下后,须被小车承载并同小车一路运动,不允许从小车上掉落。
图1为小车示用意。
图1:无碳小车示用意要求小车行走进程中完成所有动作所需的能量均由此重力势能转换取得,不可利用任何其他的能量来源。
要求小车具有转向控制机构,且此转向控制机构具有可调节功能,以适应放有不同间距障碍物的竞赛场地。
要求竞赛小车在前行时能够自动交织绕过赛道上设置的障碍物。
障碍物为直径20mm、高200mm的多个圆棒,沿直线等距离摆放。
以小车前行的距离和成功绕障数量来综合评定成绩。
见图2。
图2:无碳小车在重力势能作用下自动行走示用意二机构运动简图及设计方案机构运动简图:具体设计方案:由于小车的运动轨迹为下图所示咱们利用了最简单的齿轮连杆机构设计小车的行走与转向,利用齿轮啮合传动实现小车移动;利用曲柄连杆实现前轮转向。
小车运动进程分析简图:重物下落,重力势能转化为动能,提供驱动绕绳处驱动轮旋转驱 动大齿轮与偏心轮旋大齿轮旋带动小带轮偏心轮旋转,使连杆沿一条直线前后推动摇杆被连杆推动使其在 一定范围内进行摆动小齿轮旋转驱动后轮 转轴进行旋转驱动后轮转动,使后轮旋转,带动小车能往前运动摇杆摆动使前轮左右摆动使小车左右转动前后轮协调使小车在前进过程S 形曲线绕过障碍三、基础数据(参数)重物下降速度V滑轮半径R0驱动轮半径R驱动轮角速度ω齿轮1角速度ω1齿轮1齿数z1齿轮1模数m1齿轮2齿数z2齿轮2模数m2齿轮2角速度ω2后轮角速度ω后出动比i=1/3曲柄A长度A滑动推杆B长度B摇杆C长度C四.完成设计所用方式及原理简单说明设计总图如图所示:如图示,滑轮上的绳一端连接重物,一端连接驱动轴。
无碳小车设计方案
重庆大学工程训练综合能力竞赛——无碳小车设计方案1摘要本作品是依据竞赛命题主题“无碳小车”,提出一种“无碳”方法,带动小车运行,即给定一定重力势能,根据能量转换原理,设计一种可将该重力势能转化为机械能并用来驱动小车行走的装置。
该小车通过微调装置,能够实现自动走“8”字及直线绕障。
此模型最大的特点是通过两个不完全齿轮驱动前轮摆动,进行可调整的周期性摆动,使前轮的摆动节拍具有可调性。
本文将对无碳小车的设计过程,功能结构特点等进行详细介绍。
并介绍创新点。
2引言随着社会科技的发展,人们的生活水平的提高,无碳对于人们来说,显得越来越重要,建设无碳社会,使得生活更加的环保,没有任何的污染。
节能、环保、方便、经济,是现代社会所提倡的。
现在许多发达国家都把无碳技术运用到各个领域,像交通,家具等,这也是我国当今所要求以及努力的方向。
针对目前这一现状,我们设计了无碳小车模型,用重力势能转化为机械能提供了一种全新的思路,以便更好的解决以上问题。
3目的本作品设计的目的是围绕命题主题“无碳小车”,即不利用有碳资源,根据能量转化原理,利用重力势能驱动带动具有方向控制功能的小车模型。
这种模型比较轻巧,结构相对的简单,能够成功的将重力势能转化为小车的动能,从而完成小车前行过程中的所有动作。
4工作原理和设计理论推导4.1总体结构无碳小车模型的主要机构有驱动机构、转向机构、行走机构及微调机构。
主要部件如下图的小车整体模型4.2设计理念及说明4.2.1无碳小车模块机构介绍◆驱动机构:本方案采用绳轮作为驱动力转换机构。
我们采用了梯形轮使能量转化过程中有更合适的转矩使驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。
同时做到了到达终点前重块竖直方向的速度要尽可能小,避免对小车过大的冲击,提高了能量利用率。
绳轮机构简单,传动效率高,且在针对不同场地导致的所需动力不同的情况,可通过调节绕绳位置来改变转矩,使动力改变,增强适应性。
无碳小车
四:结语 以上便是我组关于无碳小车的设 计方案,经过了一段时间的思考, 整理,实施,改进到完成。我们最 终将无碳小车从模糊的理念落实到 了现实。限于知识水平的有限,这 其中不乏一些错误,望老师予以指 导帮助,以期达到更大的进步。
参赛人:杨远来、李参、罗哲
2:要使小车自动转弯,首先需要将后 轮的运动传递给转向机构,其次需要 设计一套装置利用后轮传递过来的运 动实现前轮的偏转与还原。最后为达 到有规律的自动转弯,需进行运动参 数计算,得到行驶路线图,通过小车 行驶一个周期的距离前轮偏转两次, 设定传动比,设定转向部件尺寸与安 装位置。
3:行驶距离最大化,是需要各种 其他损失最小化。可以让小车的路 线为直线——曲线——直线,即通 过一个装置使小车在需要转向时转 向并快速回复直线行驶,以避免曲 线行驶造成的能量消耗。也可以在 小车结构尺寸设计时在满足其它条 件后尽量减小尺寸,从而减小小车 的重力和阻力。
“无碳小车” 方案书
一:设计目标: 1:重力势能最大限度的 转化为小车的动能; 2:小车能够自动的转向 绕开障碍物; 3:行驶的距离最大化;
二:设计思路: 1:小车的动力来自于重物下落的重力势能。 用皮带将重物与驱动轮轴连接,通过重物下降使皮带带 动后轮轴旋转, 从而实现小车的运动。然而重物下落不可避免的要与小 车碰撞从而造成能量损失。 为使重力势能最大限度转化为动能(重物与小车碰撞时 速度最小或为零), 则需要重物的下降过程是静止——加速——匀速——减 速——静止。 而这样的过程要通过改变主动力矩实现。具体是通过一 根大小合适的锥形轴, 改变动力线缠绕的半径。从而改变主动力矩, 使其与摩擦阻力矩之间的大小发生转变。
三:详细设计方案 •小车结构尺寸如图所示
小车动力、动力—转向、转向系统 1、小车的动力系统(如下图 )
无碳小车设计方案
无碳小车设计方案专业车辆工程101姓名李海勃学号 1003010110无碳小车设计方案小车设计 1:工作原理先由重物长带(1)上,由于重力的作用,带向下运动,带动轮轴转动,这时候,车轮转动,同时,轮轴通过短带(2)带动轮盘(3)的转动,轮盘(3)带动导向轮(4)的右边的转向杆(5)前后摆动,实现车的转向。
2:动力装置一):传动的选择及其原理:可以利用带传动,因为带传动比较容易实现,同时也容易保证较好的传动比。
如图(2)传动:二):传动比与路程的设计计算:由于带传动的过程中,圆周走过的路程的相同的所以下面的车轮轴也走过了 S 轴圆周= S落差=500mm因为R车轮/R轴=S车/S落差,那么可以设计自己不同的轴来保证行走最远的距离。
取 R车轮/R轴=S车/S落差=8取 R轴=15mm则 R车轮=120mm。
则车可以行走距离为 S车/=500*8=4000mm 3:转向装置图(2)一):转向装置的选择:选择采用空间四杠机构来实现转向,其原理是利用曲柄摇杆机构曲柄转一圈,摇杆转动一定角度,原理如图(2):在连杆与小车导向杆之间利用球铰连接,因为要实现不同方向的转动。
二):工作原理:用车轮轴带动轮盘(1),用轮盘(1)作为四杠机构的曲柄,杠(2)是其连杆,杠(3)是摇杆,轮盘(1)转动一圈,杠(3)摆动一定的角度,通过行使的路程,计算好每个转弯的的位置,以实现转弯。
三):计算:设计轮盘(1)每转动一圈,小车穿过一个障碍物,所以小车走1m车轴转动圈数为: 1000/(3.14*120)=2.65轮轴带轮盘(1)传动比为 R轮盘(1)/R车轴=2.65:1所以带轮盘(1)直径为 R轮盘(1)=2.65*15=39.8mm 设计工艺(1) 小车的地板采用的是硬制透明的塑料,它可以减轻小车的重量,减少与地面摩擦而产生的能量损失。
(2) 皮带可以采用拉的相对比较紧些,这样就比较容易拉动周的转动。
(3) 所有转动副连接处,都采用球轴承,可以减小摩擦,同时可以保证运动的准确性。
无碳小车实验报告
机械原理课程设计报告书设计题目: 竞赛题目无碳小车的设计课程名称:《机械原理课程设计》学生姓名:学生学号:所在学院:海洋信息工程学院学习专业:机械设计制造及其自动化指导教师:宫文峰2015年12月11日目录 (2)第一章概述 (3)1.1课程设计任务与目的 (3)第一章概述机械原理课程设计是机械类各专业学生第一次课程设计,是重要的实践性教学环节,对于培养学生机械系统运动方案设计和创新设计能力、解决工程实际中机构分析和设计能力等有着十分重要意义。
本次课程设计以第五届全国大学生工程能力综合训练竞赛“无碳小车”题目为基础,进行创新设计。
设计对题目进行了从新分解,运用课程内所学知识,通过查阅资料结合前人经验,从几个方面进行方案的设计与分析选择,依据机械机构的设计理念,设计出一个完全依靠重力势能提供动力,以平面转向机构实现周期性转向自动避让障碍物的轻质小车方案。
1.1 课程设计目的与任务1.1.1课程设计目的1)综合运用机械原理课程的理论和实践知识,分析和解决与本课程有关的实际问题,促进所学理论知识的巩固、深入和归纳;2)培养学生的创新设计能力、综合设计能力与团队协作精神;3)加强学生动手能力的培养和工程实践的训练,提高学生针对实际需求进行创新思维、综合和工艺制作等实际工作能力;4)提高学生运算、绘图、表达、运用计算机、搜集和整理资料能力;5)为将来从事技术工作打基础。
1.1.2 课程设计任务结合一个简单或中等复杂程度的机械系统,让学生根据使用要求和功能分析,开拓思路,敢于创新,巧妙地构思其工作原理和选择工艺动作过程;由所选择的工作原理和工艺动作过程综合应用所学过的各类常用机构的结构组成、运动原理、工作特点及应用场合等知识,进行机构的选型、创新与组合,构思出各种可能的运动方案,并通过方案评价、优化筛选,选择最佳方案;就所选择的最佳运动方案,应用计算机辅助分析和设计方法(也可以使用图解法)进行机构尺度综合和运动分析;由运动方案和尺度综合结果绘制机构系统运动简图。
无碳小车课程设计项目说明
1. 设计命题:以重力势能驱动的具有方向控制功能的自行小车给定一定重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并以此驱动小车行走的装置。
要求小车行走过程中完成所有动作所需的能量均由此能量转换获得,不可使用任何其他的能量来源。
给定重力势能为4焦耳(取g=10m/s2),竞赛时统一用质量为1Kg的重块(¢50×65 mm,普通碳钢)铅垂下降来获得,落差400±2mm,重块落下后,须被小车承载并同小车一起运动,不允许掉落。
小车要求具有转向控制机构,且此转向控制机构具有可调节功能,以适应放有不同间距障碍物的竞赛场地。
要求小车为三轮结构。
图1:无碳小车示意图(1)直行小车竞赛小车在前行时能够自动避开赛道上设置的障碍物。
障碍物为直径20mm、高200mm的多个圆棒,沿直线等距离摆放,距离可在900mm-1100mm之间调节。
图2:无碳小车在重力势能作用下自动行走示意图(2)台上环绕小车小车在半张标准乒乓球台(长1525mm、宽1370mm)上,绕相距一定距离的两个障碍沿8字形轨迹绕行,绕行时不可以撞倒障碍物,不可以掉下球台。
障碍物为直径20mm、长200mm的2个圆棒,相距300mm-500mm放置在半张标准乒乓球台的中。
如下图图3:竞赛项目二所用乒乓球台及障碍设置图2. 报告要求要求提交结构设计报告,以以下标准评分:(1)完整性要求:小车装配图1幅(A4纸1页),设计说明书1-2页(A4)(2)正确性要求:传动原理与机构设计正确,选材和工艺合理;(3)创新性要求:有独立见解及创新设计思想;(4)规范性要求:图纸表达完整,标注正确;文字描述准确、清晰。
1。
无碳小车设计机械设计课程设计说明书
无碳小车设计机械设计课程设计说明书1. 引言本课程设计旨在通过机械设计的方式,设计一款无碳小车,以减少对环境的污染和消耗。
本文档将详细介绍无碳小车的设计背景、设计目标、设计原则和设计方法。
2. 设计背景随着全球环境问题的日益严重,减少碳排放已成为全球范围内的热门话题。
传统的汽车使用化石燃料,会产生大量的二氧化碳排放,对空气质量和气候变化产生不良影响。
为了减少对环境的负面影响,无碳小车设计应运而生。
3. 设计目标本课程设计的主要目标是设计一款无碳小车,具体目标包括: - 实现零碳排放,不使用化石燃料或其它能源; - 具备足够的运行时间和里程,以满足日常出行需求; - 车辆结构紧凑,便于停放和携带; - 提供舒适的乘坐体验和便捷的操作方式;- 造价低廉,易于生产和维护。
4. 设计原则在设计无碳小车时,应遵循以下原则: - 绿色环保:选择环保材料和可再生能源来实现零碳排放; - 轻量化设计:减少车辆重量,降低能耗; - 紧凑型设计:优化车辆结构,使其紧凑易携带; - 智能化设计:引入智能控制系统,提高车辆的性能和安全性; - 成本优化:设计时要兼顾制造和维护成本,降低用户购买和使用成本。
5. 设计方法无碳小车的设计可以通过以下步骤来完成:5.1 确定车辆类型和用途根据市场需求和用户需求,确定无碳小车的类型和用途,例如城市代步车、短途出行车、商务巴士等。
5.2 材料选择选择符合绿色环保要求的材料,例如轻质高强度的复合材料,可再生材料等。
5.3 车辆结构设计根据车辆类型和用途,设计合理的车身结构、底盘结构和悬挂系统,以确保车辆性能和舒适性的要求。
5.4 驱动系统设计设计无碳小车的驱动系统,可以使用电动机、太阳能电池等能源,提高车辆的效能和续航能力。
5.5 控制系统设计引入智能控制系统,通过传感器和算法优化车辆的性能和安全性,例如自动驾驶、智能节能等功能。
5.6 辅助设备设计除了核心的车辆设计,还可以设计一些辅助设备,例如充电桩、车辆定位系统等,提供便捷的使用体验。
无碳小车
参赛者
姓名班级
1 机械工程学院机械电子08-3班
2 机械工程学院机械电子08-3班
机械工程学院机械电子08-3班
3 机械工程学院机械电子08-3班
设计方案
本设计方案小车为四轮小车大致如图。
下落重物敲击在右侧斜坡,为小车提供驱动力,同时将重力势能转化为小车的动能。
下落的重物将留在小车
内,与车一同前行。
小车内部的自动转弯系统主要利用凸轮,连杆,弹簧,滑块机构。
传动部分草图如下图前轮的轴一端连一转动副,另一端和滑块连接。
连杆与滑块以转动副形式连接。
开始时,,使四轮胎彼此平行:小车得动力,后轮转动,带动凸轮一同旋转,凸轮连动连杆,使滑块向前逐渐挤压弹簧,当凸轮的远休止与连杆接触时,弹簧达到最大挤压,同时前轮左转达极限;之后回程,连杆会因弹簧的挤压使再次与凸轮相接。
凸轮的近休止与连杆接触时,前轮右转达最大值。
如此来自动控制小车的转弯。
红色(轮胎)白色(凸轮)蓝色(连杆)
无碳小车——设计说明书
一、设计结构组成:
滑轮、重物、弹簧、圆锥齿轮,凸轮机构
二、设计图
三、设计图说明
1、驱动部分:如图所示,驱动轮通过小车斜面与重物相连,重物下落驱动小车轮转动,将重物下落的重力势能转化为小车的动能。
2、转向部分:如图所示,与驱动轮同轴的锥齿轮将驱动轮在竖直平面内的圆周转动转换成水平面内的圆周运动,然后再转化成竖直平面内的圆周运动,通过凸轮机构最终实现将圆周运动转化成杆的左右摆动,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一任务书 (1)二方案设计分析 (2)2.1车架 (3)2.2原动机构 (4)2.3传动机构 (4)2.4转向机构 (4)2.5行走机构 (6)2.6微调机构 (7)三运动参数及构件尺寸计算 (7)3.1建立数学模型及参数确定 (7)3.1.1能耗规律模型 (8)3.1.2运动学分析模型 (9)3.1.3动力学分析模型 (13)3.1.4参数确定 (14)四设计总结 (15)五参考资料目录 (15)二设计方案分析通过对小车的功能分析小车需要完成重力势能的转换、驱动自身行走、 自动避开障碍物。
为了方便设计这里根据小车所要完成的功能将小车划分为 五个部分进行模块化设计(车架、原动机构、传动机构、转向机构、行 走机构、微调机构)。
为了得到令人满意方案,采用扩展性思维设计每一个 模块,寻求多种可行的方案和构思。
下面为我们设计图框(图一)绳轮式—|图一Ji广{三角底轍盍—|骨聚或二I无碳小车差速转向行走初构直齿轮不用附加传动饨轮武 带轮 广4凸轮诵I 杆 FX 曲病连祥聞"1国柱凸轮I普通凸熬广4「双轮同步_ 1 卜柚皱軀WI J 帧驱^ ~1在选择方案时应综合考虑功能、材料、加工、制造成本等各方面因素,同时尽量避免直接决策,减少决策时的主观因素,使得选择的方案能够综合最优部摩擦简化机构减少高副功能实现行走路程远减少转轴轴欢等亘径充分润滑避开璋碍多保证如工装配精保证零件精黄选择适当的材料减少小车重d至増大鸵干的对丿卜牟行走影响较灵敏的零部件尺寸可徽调2.1车架车架不用承受很大的力,精度要求低。
考虑到重量加工成本等,车架采用木材加工制作成三角底板式。
可以通过回收废木材获得,已加工。
2.2 原动机构原动机构的作用是将重块的重力势能转化为小车的驱动力。
能实现这一功能的方案有多种,就效率和简洁性来看绳轮最优。
小车对原动机构还有其它的具体要求。
1.驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。
2. 到达终点前重块竖直方向的速度要尽可能小,避免对小车过大的冲击。
同时使重块的动能尽可能的转化到驱动小车前进上,如果重块竖直方向的速度较大,重块本身还有较多动能未释放,能量利用率不高。
3. 由于不同的场地对轮子的摩擦摩擦可能不一样,在不同的场地小车是需要的动力也不一样。
在调试时也不知道多大的驱动力恰到好处。
因此原动机构还需要能根据不同的需要调整其驱动力。
4. 机构简单,效率高。
基于以上分析我们提出了输出驱动力可调的绳轮式原动机构。
我们可以通过改变绳子绕在绳轮上不同位置来改变其输出的动力2.3 传动机构传动机构的功能是把动力和运动传递到转向机构和驱动轮上。
要使小车行驶的更远及按设计的轨道精确地行驶,传动机构必需传递效率高、传动稳定、结构简单重量轻等。
1. 不用其它额外的传动装置,直接由动力轴驱动轮子和转向机构,此种方式效率最高、结构最简单。
在不考虑其它条件时这是最优的方式。
2. 带轮具有结构简单、传动平稳、价格低廉、缓冲吸震等特点但其效率及传动精度并不高。
不适合本小车设计。
3. 齿轮具有效率高、结构紧凑、工作可靠、传动比稳定但价格较高。
因此在第一种方式不能够满足要求的情况下优先考虑使用齿轮传动。
2.4 转向机构转向机构是本小车设计的关键部分,直接决定着小车的功能。
转向机构也同样需要尽可能的减少摩擦耗能,结构简单,零部件已获得等基本条件,同时还需要有特殊的运动特性。
能够将旋转运动转化为满足要求的来回摆动,带动转向轮左右转动从而实现拐弯避障的功能。
能实现该功能的机构有:凸轮机构+摇杆、曲柄连杆+摇杆、曲柄摇杆、差速转弯等等。
凸轮:凸轮是具有一定曲线轮廓或凹槽的构件,它运动时,通过高副接触可以使从动件获得连续或不连续的任意预期往复运动。
优点:只需设计适当的凸轮轮廓,便可使从动件得到任意的预期运动,而且结构简单、紧凑、设计方便;缺点:凸轮轮廓加工比较困难。
在本小车设计中由于:凸轮轮廓加工比较困难、尺寸不能够可逆的改变、精度也很难保证、重量较大、效率低能量损失大(滑动摩擦)因此不采用曲柄连杆+摇杆优点:运动副单位面积所受压力较小,且面接触便于润滑,故磨损减小,制造方便,已获得较高精度;两构件之间的接触是靠本身的几何封闭来维系的,它不像凸轮机构有时需利用弹簧等力封闭来保持接触。
缺点:一般情况下只能近似实现给定的运动规律或运动轨迹,且设计较为复杂;当给定的运动要求较多或较复杂时,需要的构件数和运动副数往往比较多,这样就使机构结构复杂,工作效率降低,不仅发生自锁的可能性增加,而且机构运动规律对制造、安装误差的敏感性增加;机构中做平面复杂运动和作往复运动的构件所长生的惯性力难以平衡,在高速时将引起较大的振动和动载荷,故连杆机构常用于速度较低的场合。
在本小车设计中由于小车转向频率和传递的力不大故机构可以做的比较轻,可以忽略惯性力,机构并不复杂,利用MATLA进行参数化设计并不困难,加上个链接可以利用轴承大大减小摩擦损耗提高效率。
对于安装误差的敏感性问题我们可以增加微调机构来解决。
曲柄摇杆结构较为简单,但和凸轮一样有一个滑动的摩擦副,其效率低。
其急回特性导致难以设计出较好的机构。
差速转弯差速拐是利用两个偏心轮作为驱动轮,由于两轮子的角速度一样而转动半径不一样,从而使两个轮子的速度不一样,产生了差速。
小车通过差速实现拐弯避障。
差速转弯,是理论上小车能走的最远的设计方案。
和凸轮同样,对轮子的加工精度要求很高,加工出来后也无法根据需要来调整轮子的尺寸。
(由于加工和装配的误差是不可避免的)综合上面分析我们选择曲柄连杆+摇杆作为小车转向机构的方案。
2.5行走机构行走机构即为三个轮子,轮子又厚薄之分,大小之别,材料之不同需要综合考虑。
有摩擦理论知道摩擦力矩与正压力的关系为M N对于相同的材料为一定值。
而滚动摩擦阻力R R ,所以轮子越大小车受到的阻力越小,因此能够走的更远。
但由于加工问题材料问题安装问题等等具体尺寸需要进一步分析确定。
由于小车是沿着曲线前进的,后轮必定会产生差速。
对于后轮可以采用双轮同步驱动,双轮差速驱动,单轮驱动。
双轮同步驱动必定有轮子会与地面打滑,由于滑动摩擦远比滚动摩擦大会损失大量能量,同时小车前进受到过多的约束,无法确定其轨迹,不能够有效避免碰到障碍。
双轮差速驱动可以避免双轮同步驱动出现的问题,可以通过差速器或单向轴承来实现差速。
差速器涉及到最小能耗原理,能较好的减少摩擦损耗,同时能够实现满足要运动。
单向轴承实现差速的原理是但其中一个轮子速度较大时便成为从动轮,速度较慢的轮子成为主动轮,这样交替变换着。
但由于单向轴承存在侧隙,在主动轮从动轮切换过程中出现误差导致运动不准确,但影响有多大会不会影响小车的功能还需进一步分析。
单轮驱动即只利用一个轮子作为驱动轮,一个为导向轮,另一个为从动轮。
就如一辆自行车外加一个车轮一样。
从动轮与驱动轮间的差速依靠与地面的运动约束确定的。
其效率比利用差速器高,但前进速度不如差速器稳定,传动精度比利用单向轴承高。
综上所述行走机构的轮子应有恰当的尺寸,可以如果有条件可以通过实验来确定实现差速的机构方案,如果规则允许可以采用单轮驱动。
2.6 微调机构一台完整的机器包括:原动机、传动机、执行机构、控制部分、辅助设备。
微调机构就属于小车的控制部分。
由于前面确定了转向采用曲柄连杆+摇杆方案,由于曲柄连杆机构对于加工误差和装配误差很敏感,因此就必须加上微调机构,对误差进行修正。
这是采用微调机构的原因之一,其二是为了调整小车的轨迹(幅值,周期,方向等),使小车走一条最优的轨迹。
由于理论分析与实际情况有差距,只能通过理论分析得出较优的方案而不能得到最优的方案。
因此我们设计了一种机构简单的小车,通过小部分的改动便可以改装成其它方案,再通过试验比较得到最优的小车。
三运动参数及构件尺寸计算技术设计阶段的目标是完成详细设计确定个零部件的的尺寸。
设计的同时综合考虑材料加工成本等各因素。
3.1 建立数学模型及参数确定3.1.1 能耗规律模型为了简化分析,先不考虑小车内部的能耗机理。
设小车内部的能耗系数为1 ,即小车能量的传递效率为。
小车轮与地面的摩阻系数为,理想情况下认为重块的重力势能都用在小车克服阻力前进上。
则有3N.*甘S i mghi 13N i m 总gi 1N i为第i个轮子对地面的压力。
R i为第i个轮子的半径。
S i为第i个轮子行走的距离m总为小车总质量为了更全面的理解小车的各个参数变化对小车前进距离的变化下面分别从1.轮子与地面的滚动摩阻系数、2.轮子的半径、3.小车的重量、4.小车能量转换效率。
四方面考虑。
通过查阅资料知道一般材料的滚动摩阻系数为0.1-0.8间。
当车轮半径分别为(222mm 70mr)i摩阻系数分别为0.3,0.4,0.5..…mm 时小车行走的距离与小车内部转换效率计算可知滚动摩阻系数对小车的运动影响非常显著,因此在设计小车时也特别注意考虑轮子的材料,轮子的刚度尽可能大,与地面的摩阻系数尽可能小。
同时可看到小车为轮子提供能量的效率提高一倍小车前进的距离也提高一倍。
因此应尽可能减少小车内部的摩擦损耗,简化机构,充分润滑。
当摩阻系数为0.5mm寸计算可知当小车的半径每增加1m1cm小车便可多前进到2m因此在设计时应考虑尽可能增大轮子的半径。
3.1.2运动学分析模型符号说明:驱动轮半径齿轮传动比驱动轮A与转向轮横向偏距-rh 驱动轮B与转向轮横向偏距驱动轴(轴2)与转向轮中心距离曲柄轴(轴1)与转向轮中心距离曲柄的旋转半径摇杆长连杆厂I轴的绳轮半径r2精品文档驱动:当重物下降dh时,驱动轴(轴2)转过的角度为d 2,则有dh「2则曲柄轴(轴1)转过的角度小车移动的距离为(以A轮为参考)ds R d精品文档转向:当转向杆与驱动轴间的夹角 为时,曲柄转过的角度为1则与1满足以下关:解上述方程可得1与的函数关系式f 1C 、小车行走轨迹只有A 轮为驱动轮,当转向轮转过角度 时,如图: 则小车转弯的曲率半径为b~a1tan小车行走ds 过程中,小车整体转过的角度d 史当小车转过的角度为 时,有dx ds sin dy ds cos小车其他轮的轨迹以轮A 为参考,则在小车的运动坐标系中,B 的坐标B a1 a2,°C 的坐标C a,dc 21 cosb c sin. 2r 1 sin 1r 12 cos 21在地面坐标系中,有X B X A(印a2) cosy y A(a1a2) sinX C X A a1 cos d siny c目A d cos a1 sin为求解方程,把上述微分方程改成差分方程求解,通过设定合理的参数的到了小车运动轨迹。
3.1.3动力学分析模型驱动如图:重物以加速度向下加速运动,绳子拉力为T,有T m(g a)产生的扭矩M 2 T r2 1,(其中1是考虑到摩擦产生的影响而设置的系数。