函数模型的应用实例
函数模型的应用实例 课件
即前六个月所获纯利润 y 关于月投资 A 种商品的金额 x 的函数关系式是 y=-0.15(x-4)2+2;前六个月所获纯利润 y 关于月投资 B 种商品的金额 x 的函数关系式是 y=0.25x.
根据函数自身的种类,常见函数模型可分为:
(1)直线模型:即一次函数模型,现实生活中很多事例可以用直线模型表示,例如匀速直线运动的时 间和位移的关系,弹簧的伸长与拉力的关系等,直线模型的增长特点是直线上升(x的系数k>1), 通过画图可以很直观地认识它.
(2)指数函数模型:能用指数型函数表达的函数模型叫做指数函数模型.指数函数增长的特点是随着 自变量的增大,函数值增大的速度越来越快(底数a>1),常形象地称之为“指数爆炸”.通过细胞 分裂增长实例以及函数图象的变化都可以清楚地看到“爆炸”的威力.
2.面临实际问题,自己建立函数模型的步骤 ( 1 ) _收_ _集_ _数_ _据_ ; ( 2 ) _ _描_ _点_ _ ; ( 3 ) _ _ _选_ _择_ _函_ 数_ _模_ _型_ ; ( 4 ) _求_ _函_ _数_ _模_ 型_ _ ; ( 5 ) _ _检_ 验_ _ ; ( 6 ) _用_ _函_ _数_ _模_ _型_ _解_ _决_实_ _际_ _问_ _题_ .
1.利用我们所得到的函数模型有什么用途?
【答案】利用所得函数模型可解释有关现象,对某些发展趋 势进行预测.
函数模型的应用实例 课件
【分析】 可用待定系数法求出a,b,c的值,确定函数 后,再研究x=4时,哪个函数值更接近1.37.
【解】 当f(x(a≠0),
则 ff12= =11, .2, f3=1.3,
即 a4+ a+b+ 2bc+=c1=,1.2, 9a+3b+c=1.3,
规律技巧 (1)认真阅读,理解应用问题的实际背景,将 实际问题转化为纯数学问题.
(2)在解决数学问题时,要注意自变量取值应有实际意 义.
二 自建函数模型的应用题
【例2】 医学上为研究传染病传播中病毒细胞的发展规 律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检 测,病毒细胞的增长数与天数的关系记录如下表,已知该种病 毒细胞在小白鼠体内的个数超过108的时候小白鼠将死亡.但 注射某种药物,将可杀死其体内该病毒细胞的98%.
【正解】 不妨设去年1月份的产值为b, 则2月份的产值为b(1+a), 3月份的产值为b(1+a)(1+a)=b(1+a)2,以此类推,到今 年1月份是去年1月份的第12个月. 故今年1月份的产值是b(1+a)12.
由增长率的概念知,这两年内的第二年某月的产值比第一 年相应月的增长率为b1+ab12-b=(1+a)12-1.
函数模型的应用实例
常用的函数模型 1.直线型:y=kx+b(k≠0); 2.抛物线型:y=ax2+bx+c(a≠0); 3.指数函数型:y=a·bx+c(a≠0); 4.对数函数型:y=mlogax+n(m≠0,a>0,且 a≠1); 5.幂函数型:y=a·xn(a≠0);
6.分段函数型:y=fx gx
天数t 1 2 3 4 5 6 7 … 病毒细胞
1 2 4 8 16 32 64 … 总数y (1)为了使小白鼠在实验过程中不死亡,第一次最迟应在 何时注射该种药物?(精确到天) (2)第二次最迟应在何时注射该种药物,才能维持小白鼠 的生命?(精确到天)(已知:lg2=0.3010)
函数模型的应用实例 课件
解:由题意,知将产量随时间变化的离散量分别抽 象为 A(1,1),B(2,1.2),C(3,1.3),D(4,1.37)这 4 个 数据.
(1)设模拟函数为 y=ax+b 时,将 B,C 两点的坐标 代入函数式,得32aa+ +bb= =11..32, ,解得ab==01..1,
所以有关系式 y=0.1x+1. 由此可得结论为:在不增加工人和设备的条件下, 产量会每月上升 1 000 双,这是不太可能的.
过筛选,以指数函数模型为最佳,一是误差小,二是由于 厂房新建,随着工人技术和管理效益逐渐提高,一段时间 内产量会明显上升,但经过一段时间之后,如果不更新设 备,产量必然趋于稳定,而该指数函数模拟恰好反映了这 种趋势.因此选用指数函数 y=-0.8×0.5x+1.4 比较接近 客观实际.
类型 3 建立拟合函数解决实际问题(规范解答) [典例 3] (本小题满分 12 分)某个体经营者把开始六 个月试销 A、B 两种商品的逐月投资金额与所获纯利润列 成下表:
(3)设模拟函数为 y=abx+c 时,
将 A,B,C 三点的坐标代入函数式,
得aabb2++cc==11,.2,
① ②
ab3+c=1.3. ③
由①,得 ab=1-c,代入②③,
得bb2((11--cc))++cc==11.2.3,.
则cc==1111..32- ---bbbb22,,解得bc==10..45., 则 a=1-b c=-0.8. 所以有关系式 y=-0.8×0.5x+1.4. 结论为:当把 x=4 代入得 y=-0.8×0.54+1.4=1.35. 比较上述三个模拟函数的优劣,既要考虑到误差最 小,又要考虑生产的实际,如:增产的趋势和可能性.经
设 y=kx+b,取点(1,0.30)和(4,1.20)代入, 得01..32= =k4+ k+b, b,解得kb==00..3,所以 y=0.3x.(8 分) 设第 7 个月投入 A,B 两种商品的资金分别为 x 万元、 (12-x)万元,总利润为 W 万元, 那么 W=yA+yB=-0.15(x-4)2+2+0.3(12-x). 所以 W=-0.15(x-3)2+0.15×9+3.2.(10 分) 当 x=3 时,W 取最大值,约为 4.55 万元,此时 B 商品的投资为 9 万元.(11 分)
函数模型的应用实例 课件
24x-9.6 x>34.
(2)由于 y=f(x)在各段区间上均单调递增, 所以当 x∈0,45时,y≤f45<26.40; 当 x∈45,43时,y≤f43<26.40; 当 x∈43,+∞时,令 24x-9.6=26.40, 得 x=1.5.∴甲用户用水量为 5x=7.5(吨), 付费 y1=4×1.80+3.5×3.00=17.70(元). 乙用户用水量为 3x=4.5(吨), 付费 y2=4×1.80+0.5×3.00=8.70(元).
(3)设该班每年购买纯净水的费用为 P 元,则 P=xy=x(-40x+720)=-40(x-9)2+3 240, ∴当 x=9 时,Pmax=3 240. 要使饮用桶装纯净水的年总费用一定比该班全体学生购买 饮料的年总费用少, 则 51a≥Pmax+228,解得 a≥68,故 a 至少为 68 元时全班 饮用桶装纯净水的年总费用一定比该班全体学生购买饮料的年 总费用少.
图 3-2-7
(1)求 y 关于 x 的函数关系式; (2)当 a=120 时,若该班每年需要纯净水 380 桶,请你根据 提供的信息比较,该班全体学生改饮桶装纯净水的年总费用与 该班全体学生购买饮料的年总费用,哪一种更少?说明你的理 由; (3)当 a 至少为多少时,该班学生集体改饮桶装纯净水的年 总费用一定比该班全体学生购买饮料的年总费用少? 【思路探究】 用待定系数法求(1)→分别计算全体学生饮 用纯净水的年总费用与购买饮料的总费用并比较大小→建立函 数模型→利用函数最值求解.
1.建立分段函数模型的关键是确定分段的各个边界点,即 明确自变量的取值区间,对每一区间进行分类讨论,从而写出 函数的解析式.
2.本题在求解过程中,个别同学常因不理解“超过部分” 而导致运算出错.
3.2.2函数模型应用实例
60266
61456
62828
64563
65994
67207
y y0e
n (1)如果以各年人口增长平均值l作为我国这一时期的人口增长 率(精确到0.0001),用马尔萨斯人口增长模型建立我国在 这一时期具体人口增长模型,并检验所得模型与实际人口数 据是否相符;
解:设1951~1959年的人口增长率分别为 r1 ,r 2 ,......,r 9 . 由
y 其中t表示经过的时间,y0表示t=0时的人口数, r表示人口 的年平均增长率。
0
y y0e
n
表3是1950~1959年我国的人口数据资料:
年份
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
人数/ 万人55196 Nhomakorabea56300
57482
58796
3.2.2 函数模型的应用实例
一辆汽车在某段路中的行驶速率与时间的关系 如图1所示,
(1)求图1中阴影部 分的面积,并说明所 求面积的实际含义; (2)假设这辆汽车的 里程表在汽车行行驶 这段路程前的读数为 2004km,试建立行 驶这段路程时汽车里 程表读数s km与时间t h的函数解析式,并作 出相应的图象。
由图4可以看出,所 得模型与 1950~1959年的实 际人口数据基本吻 合.
(2)如果按表3的增长趋势,大约在哪一年我国 的人口达到13亿?
将y=130000代入 y 55196e0.0221t .t N.
由计算可得
t 38.76
所以,如果按表3的增长趋势,那么大约在1950 年后的第39年(即1989年)我国的人口就已达到 13亿.由此可以看到,如果不实行计划生育,而是让 人口自然增长,今天我国将面临难以承受的人口压 力.
3-2-2 函数模型的应用实例
一、选择题1.某地区植被被破坏,土地沙漠化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y公顷关于年数x的函数关系较为近似的是()A.y=0.2x B.y=110(x2+2x)C.y=2x10D.y=0.2+log16x[答案] C[解析]当x=1时,否定B,当x=2时,否定D,当x=3时,否定A,故选C.2.某工厂生产甲、乙两种成本不同的产品,原来按成本价出售,由于市场销售发生变化,甲产品连续两次提价,每次提价都是20%;同时乙产品连续两次降价,每次降价都是20%,结果都以92.16元出售,此时厂家同时出售甲、乙产品各一件,盈亏的情况是() A.不亏不盈B.赚23.68元C.赚47.32元D.亏23.68元[答案] D[解析]设甲、乙产品原来每件分别为x元、y元,则x(1+20%)2=92.16,y(1-20%)2=92.16,∴x=64,y=144,64+144-92.16×2=23.68.3.用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是()A.3 B.4C.5 D.6 [答案] B[解析]设至少需要清洗n次,由已知得(1-34)n≤1%即14n≤1100.∴4n≥100∴n≥4,故选B.4.某种产品市场销量情况如图所示,其中:l1表示产品各年产量的变化规律;l2表示产品各年的销售情况,下列叙述:①产品产量、销量均以直线上升,仍可按原生产计划进行;②产品已经出现了供大于求的情况,价格将下跌;③产品的库存积压将越来越严重,应压缩产量或扩大销量;④产品的产量、销量均以一定的年增长率增加.你认为较合理的是()A.①②③B.①③④C.②④D.②③[答案] D5.已知A、B两地相距150 km,某人开汽车以60 km/h的速度从A地到达B地,在B地停留一小时后再以50 km/h的速度返回A 地,把汽车离开A地的距离x表示为时间t的函数,表达式是() A.x=60tB .x =60t +50C .x =⎩⎪⎨⎪⎧60t (0≤t ≤2.5)150-50t (t >2.5) D .x =⎩⎪⎨⎪⎧ 150(2.5<t ≤3.5)150-50(t -3.5)(3.5<t ≤6.5)60t (0≤t ≤2.5)[答案] D [解析] 从A 地到B 地的来回时间分别为:15060=2.5,15050=3,x =⎩⎪⎨⎪⎧ 60t (0≤t ≤2.5)150 (2.5<x ≤3.5)150-50(t -3.5) (3.5<t ≤6.5) 故选D.6.“依法纳税是每个公民应尽的义务”,国家征收个人所得税是分段计算的,总收入不超过800元,免征个人所得税,超过800元部分需征税,设全月纳税所得额为x ,x =全月总收入-800元,税率见下表:( )A .800~900元B .900~1 200元C .1 200~1 500元D .1 500~2 600元[答案] C [解析] 解法1:(估算法)由500×5%=25元,100×10%=10元,故某人当月工资应在1 300~1 400元之间,故选C.解法2:(逆推验证法)设某人当月工资为1 200元或1 500元,则其应纳税款分别为400×5%=20元,500×5%+200×10%=45元.可排除A ,B ,D ,故选C.7.某店从水果批发市场购得椰子两筐,连同运费总共花了300元,回来后发现有12个是坏的,不能将它们出售,余下的椰子按高出成本价1元/个售出,售完后共赚78元.则这两筐椰子原来的总个数为( )A .180B .160C .140D .120 [答案] D[解析] 设原来两筐椰子的总个数为x ,成本价为a 元/个,则⎩⎪⎨⎪⎧ ax =300(a +1)(x -12)=300+78,解得⎩⎪⎨⎪⎧x =120a =2.5,故这两筐椰子原来共有120个.8.在股票买卖过程中,经常用两种曲线来描述价格变化情况,一种是即时价格曲线y =f (x ),另一种是平均价格曲线y =g (x ),如f (2)=3表示股票开始买卖后2小时的即时价格为3元;g (2)=3表示2小时内的平均价格为3元,下面给出了四个图象,实线表示y =f (x ),虚线表示y =g (x ),其中正确的是( )[答案] C[解析] 即时价格若一直下跌,则平均价格也应该一直下跌,故排除A 、D ;即时价格若一路上升,则平均价格也应一直上升,排除B.(也可以由x 从0开始增大时,f (x )与g (x )应在y 轴上有相同起点,排除A 、D),故选C.二、填空题9.现测得(x ,y )的两组值为(1,2),(2,5),现有两个拟合模型,甲:y =x 2+1,乙:y =3x -1,若又测得(x ,y )的一组对应值为(3,10.2),则应选用________作为拟合模型较好.[答案] 甲[解析] 代入x =3,可得甲y =10,乙,y =8.显然选用甲作为拟合模型较好.10.长为4、宽为3的矩形,当长增加x ,且宽减少x 2时面积最大,此时x =________,最大面积S =________.[答案] 1 252[解析] S =(4+x )⎝ ⎛⎭⎪⎫3-x 2=-x 22+x +12 =252-12(x -1)2,当x =1时,S max =252.11.某养鱼场,第一年鱼的重量增长率为200%,以后每年鱼的重量增长率都是前一年的一半,问经过四年鱼的重量是原来的________倍.[答案]45 4[解析]设原来鱼重a,四年后鱼重为a(1+200%)(1+100%)(1+50%)(1+25%)=454a,454aa=454.12.为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t的函数关系为y=(116)t-a(a为常数)其图象如图.根据图中提供的信息,回答问题:(1)从药物释放开始,每立方米空气中的含药量y(mg)与时间t(h)之间的关系式为________.(2)据测定,当空气中每立方米的含药量降到0.25mg以下时,学生才可进入教室,那么从药物释放开始至少经过______小时,学生才能回到教室.[答案](1)y=(2)0.6[解析](1)设0≤t≤110时,y=kt,将(0.1,1)代入得k=10,又将(0.1,1)代入y=(116)t-a中,得a=110,∴y=.(2)令(116)t-110≤0.25得t≥0.6,∴t的最小值为0.6.三、解答题13.为了保护学生的视力,课桌椅的高度都是按一定的关系配套设计的.研究表明:假设课桌的高度为y cm,椅子的高度为x cm,则y应是x的一次函数,下表列出了两套符合条件的课桌椅的高度:(2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们是否配套?为什么?[解析](1)根据题意,课桌高度y是椅子高度x的一次函数,故可设函数关系式为y=kx+b.将符合条件的两套课桌椅的高度代入上述函数关系式,得⎩⎪⎨⎪⎧ 40k +b =75,37k +b =70.2,∴⎩⎪⎨⎪⎧k =1.6,b =11. ∴y 与x 的函数关系式是y =1.6x +11.(2)把x =42代入上述函数关系式中,有y =1.6×42+11=78.2.∴给出的这套桌椅是配套的.[点评] 本题是应用一次函数模型的问题,利用待定系数法正确求出k ,b 是解题的关键.14.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/102kg)与上市时间t (单位:天)的数据如下表:(1)成本Q 与上市时间t 的变化关系.Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t .(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.[解析] (1)由提供的数据知道,描述西红柿种植成本Q 与上市时间t 的变化关系的函数不可能是常数函数,从而用函数Q =at +b ,Q =a ·b t ,Q =a ·log b t 中的任意一个进行描述时都应有a ≠0,而此时上述三个函数均为单调函数,这与表格所提供的数据不吻合.所以,选取二次函数Q =at 2+bt +c 进行描述.以表格所提供的三组数据分别代入Q =at 2+bt +c 得到,⎩⎪⎨⎪⎧ 150=2 500a +50b +c ,108=12 100a +110b +c ,150=62 500a +250b +c .解得⎩⎪⎨⎪⎧ a =1200,b =-32,c =2252.所以,描述西红柿种植成本Q 与上市时间t 的变化关系的函数为Q =1200t 2-32t +2252.(2)当t =--322×(1200)=150天时,西红柿种植成本最低为Q =1200·1502-32·150+2252=100 (元/102kg). 15.某工厂现有甲种原料360 kg ,乙种原料290 kg ,计划利用这些原料生产A 、B 两种产品共50件,已知生产一件A 种产品,需用甲种原料9 kg ,乙种原料3 kg ,可获利润700元.生产一件B 种产品,需用甲种原料4 kg ,乙种原料10 kg ,可获利润1200元.(1)按要求安排A 、B 两种产品的生产件数,有哪几种方案?请设计出来.(2)设生产A 、B 两种产品获总利润为y 元,其中一种的生产件数为x ,试写出y 与x 之间的函数关系式,并利用函数性质说明(1)中哪些生产方案获总利润最大?最大利润是多少?[分析] 设生产A 种产品x 件,则生产B 种产品(50-x )件,据题意:生产两种产品所用甲种原料不超过360 kg ,所用乙种原料不超过290 kg 即可.[解析] (1)设生产A 种产品x 件,则生产B 种产品为(50-x )件,依题意得⎩⎪⎨⎪⎧9x +4(50-x )≤360,3x +10(50-x )≤290.解得30≤x ≤32. ∵x 是整数,∴只能取30,31,32.∴生产方案有三种,分别为A 种产品30件B 种产品20件;A 种产品31件B 种产品19件;A 种产品32件B 种产品18件.(2)设生产A 种产品x 件,则B 种产品(50-x )件.y =700x +1 200(50-x )=-500x +600 00,∵k =-500<0,∴y 随x 增大而减小,∴当x =30时,y 最大=-500×30+600 00=45 000.∴安排生产A 种产品30件,B 种产品20件时,获利润最大,最大利润为45 000元.[方法点拨] 此题第(1)问是利用一元一次不等式组解决,第(2)问是利用一次函数增减性解决问题,要注意第(2)问 与第(1)问相互联系.即根据实际问题建立好函数关系式后,特别要注意函数的定义域.16.某企业生产A ,B 两种产品,根据市场调查与与预测,A 产品的利润与投资成正比,其关系如图1;B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).(1)分别将A ,B 两种产品的利润表示为投资的函数关系式.(2)已知该企业已筹集到18万元资金,并将全部投入A ,B 两种产品的生产.①若平均投入生产两种产品,可获得多少利润?②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?[解析] (1)设A ,B 两种产品分别投资x 万元,x ≥0,所获利润分别为f (x )万元、g (x )万元.由题意可设f (x )=k 1x ,g (x )=k 2x .根据图象可解得f (x )=0.25x (x ≥0).g (x )=2x (x ≥0).(2)①由(1)得f (9)=2.25,g (9)=29=6.∴总利润y =8.25万元. ②设B 产品投入x 万元,A 产品投入(18-x )万元,该企业可获总利润为y 万元.则y =14(18-x )+2x ,0≤x ≤18. 令x =t ,t ∈[0,32],则y =14(-t 2+8t +18)=-14(t -4)2+172.∴当t =4时,y max =172=8.5,此时x =16,18-x =2.∴当A ,B 两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.。
函数模型的应用实例 课件
2.建立函数模型解决问题的框图表示
一次函数、二次函数模型的应用
商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标 价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效 价格为每件 300 元.现在这种羊毛衫的成本价是 100 元/件,商场以高于成本价的 价格(标价)出售.问:
分段函数模型的应用
经市场调查,某城市的一种小商品在过去的近 20 天内的销售量(件)与 价格(元)均为时间 t(天)的函数,且销售量近似满足 g(t)=80-2t(件),价格近似满
足于 f(t)=2155-+2121tt,,100≤<tt≤≤1200
(元).
(1)试写出该种商品的日销售额 y 与时间 t(0≤t≤20)的函数表达式;
函数模型的应用实例
教材整理 函数模型的应用 1.常见的函数模型
函数模型 (1)正比例函数模型 (2)反比例函数模型 (3)一次函数模型 (4)二次函数模型
函数解析式 f(x)=kx(k为常数,k≠0) f(x)=(k为常数,k≠0) f(x)=kx+b(k,b为常数,k≠0) f(x)=ax2+bx+c(a,b,c为常数,a≠0)
[探究共研型] 拟合数据构建函数模型
探究1 画函数图象的一般步骤有哪些? 【提示】 列表、描点、连线.
探究2 学校食堂要了解全校师生的午间就餐情况,以备饭菜,你能用数学 知识给予指导性说明吗?
【提示】 第一步:收集样本一周的数据,制成样本点.如(1,x1),(2,x2),…, (7,x7).
第二步:描点,对上述数据用散点图的形式,给予直观展示. 第三步:数据拟合,选择一个合适的数学模型拟合上述样本点. 第四步:验证上述模型是否合理、有效,并做出适当的调整.
函数模型的应用实例ppt
03
通过构建基因相互作用网络,研究基因之间的协同和拮抗关系
。
06
总结与展望
函数模型的应用前景展望
持续拓展应用领域
函数模型在各个领域的应用正在不断拓展,包括金融、 医疗、教育等。随着数据量的增长和算法的进步,函数 模型将有更多应用场景。
提升算法性能
随着计算能力的提升,函数模型的算法性能也将得到优 化,处理更大规模和更复杂的数据,提供更精确的预测 和决策支持。
2023
函数模型的应用实例ppt
目录
• 引言 • 函数模型在金融领域的应用实例 • 函数模型在医疗领域的应用实例 • 函数模型在环境科学领域的应用实例 • 函数模型在其他领域的应用实例 • 总结与展望
01
引言
函数模型的应用背景
经济领域
在经济领域中,函数模型被广泛应用于各种经济指标的分析、预测和决策中。例如,通过 构建函数模型来预测股票价格、评估货币政策效果等。
结构方程模型
综合考虑多个因素对现象的影响, 揭示因果关系。
生物信息学中的基因表达分析模型
基于统计模型的基因表达差异分析
01
通过比较基因在不同样本中的表达水平,识别出表达差异显著
的基因。
基于聚类算法的基因功能分类来自02将基因根据其表达模式进行分类,揭示不同类别的基因在生物
过程中的作用。
基于网络模型的基因相互作用分析
提高可解释性
加强函数模型的可解释性研究,提高模型的透明度和可信度,有助 于增强用户对模型的信任和使用。
THANK YOU.
融合其他技术
函数模型将与深度学习、机器学习等其他技术进一步融 合,形成更强大和智能的工具,推动各行业的智能化进 程。
未来研究方向和挑战
指数函数模型的生活中的例子
指数函数模型的生活中的例子
指数函数模型在生活中有许多应用,以下是一些常见的例子:
1.指数增长模型:人口增长是一个经常被描述为指数增长的
例子。
随着时间的推移,人口数量以指数形式增加。
这意
味着每个时间段的增长量都与当前的总人口数量成正比,
而不是与固定值相等。
类似的情况还可以用于描述病毒传
播、社交媒体用户数量等。
2.化学反应速率:在化学反应中,一些反应的速率可以用指
数函数模型来描述。
例如,放射性衰变是一个常见的指数
过程。
放射性元素的衰变速率与其当前的数量成正比,因
此可以用指数函数来建模。
3.衰减过程:指数函数模型也可以用于描述衰减过程。
例如,
放置在室外的热液体将以指数形式冷却。
温度的变化量与
当前的温度差成正比,因此可以用指数函数来描述冷却过
程。
4.资产贬值:一些资产,如汽车、电子设备等,在使用过程
中会贬值。
资产值的减少可以用指数函数模型来描述,其
中资产价值每年以固定比例减少。
5.金融利率:指数函数模型在金融领域也有应用,例如利率
的复利计算。
在复利计算中,投资本金和利率成指数关系,可以利用指数函数模型来计算投资的增长。
这些只是一些常见的例子,指数函数模型在现实生活中的应用
非常广泛,可以涵盖许多不同的领域。
4.5.3函数模型的应用实例
练习:
1.某商人将进货单价为8元的某种商品按10元一个 销售时,每天可卖出100个,现在他采用提高售价, 减少进货量的办法增加利润,已知这种商品销售 单价每涨1元,销售量就减少10个,问他将售价每 个定为多少元时,才能使每天所赚的利润最大? 并求出最大值。
基本步骤:
第一步:阅读理解,认真审题
读懂题中的文字叙述,理解叙述所反映的实际背景,领悟从背景 中概括出来的数学实质,尤其是理解叙述中的新名词、新概念, 进而把握住新信息。
第二步:引进数学符号,建立数学模型
设自变量为x,函数为y,并用x表示各相关量,然后根据问题已知 条件,运用已掌握的数学知识、物理知识及其他相关知识建立函 数关系式,将实际问题转化为一个数学问题,实现问题的数学式为___y____k_x____b_(_k____0, )其图像是一条__直__线,
当________时,一次函数在( , )上为增函数,当_______时,
一次函数在 (,)上为减函数。
2.二次函数的解析式为___y___a_x__2___b_x___c_(_a____0_), 其图像是一条 4ac b2
练习:
2.某市居民自来水收费标准如下:每户每月用水 不超过4吨时,每吨为1.80元,当用水超过4吨时, 超过部分每吨3.00元,某月甲、乙两户共交水费 y元,已知甲、乙两用户该月用水量分别为5x, 3x吨.
(1)求y关于x (2)若甲、乙两户该月共交水费26.4元,分 别求出甲、乙两户该月的用水量和水费
分段函数模型:
例2.某市出租车收费标 准如下:起步价为8元,起步里程为 3 km(不超过3 km按起步价收费);超过3 km但不超过8 km时, 超过部分按每千米2.15元收费;超过8 km时,超过的部分按每 千米2.85元收费,每次乘车还需付燃油附加费1元.
322函数模型应用举例
1.我们所学过的函数有那些? 一次函数、二次函数、指数函数、对数函数以及 幂函数共5种函数. 2.你能分别说出有关这些函数的解析式、函数图 象以及性质吗? 3.你能分别说说这些函数在实际生活中的应用吗?
函数模型应用实例
例3 一辆汽车在某段路程中的行驶速度与时间的关系如图所示: (1)求图中阴影部分的面积,并说明所求面积的实际含义; (2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为
6282 8
6456 3
6599 4
6720 7
(2)如果按上表的增长趋势,大约在哪一年我国的人口
达到13亿?
解:(2)将y=130000带入 y 55196 e0.0221t ,t N
由计算器可得:t ≈38.76.
函数模型应用过程
根据收集到的数据,作出散点图,然后通过观察 图象判断问题所适合的函数模型,利用计算器或计 算机的数据拟合功能得出具体的函数解析式,再用 得到的函数模型解决相应的问题,这是函数应用的 一个基本过程.
年份 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
人数/万 5519 5630 5748 5879 6026 6145 6282 6456 6599 6720
人
并作6 出函0数
y
2
6
55196
e0.60的221图t , t象6.N
8
3
4
7
函数模型应用实例
(4)将数学问题的解代入实际问题进行核查.舍去 不合题意的解,并作答.
函数模型应用框图 用框图表示如下:
知识小结
解决函数应用问题的基本步骤:
例4 人口问题是当今世界各国普遍关心的问题.认识人口 数量的变化规律,可以为有效控制人口增长提供依据.早在 1798年,英国经济学家马尔萨斯就提出了自然状态下的人口
函数模型在实际生活中的应用
函数模型在实际生活中的应用函数应用题涉及的题型比较多,下面谈谈函数模型在实际生活中的应用:一、一次函数模型例1 假如你计划买一部手机,而你的朋友给你推荐手机消费有三种可供选择,如下表:从经济角度考虑,哪一种手机卡更为合适?分析:这道题目的背景是消费问题,用表格的形式给出了已知条件,其中存在的数学等量关系为:月消费金额=月租费+每分钟通话费×月通话时间,从而建立月通话时间与月消费金额之间的一次函数关系式.解:设月通话总时间为x 分钟,则三种手机卡的月消费金额分别:连通卡:36.012+=y ()0≥x神州卡:x y 6.0=)0(≥x都市卡:x y 2.024+=)0(≥x 由 ⎩⎨⎧=+=x y x y 6.036.012 解得: ⎩⎨⎧==3050y x 由 ⎩⎨⎧+==x y x y 2.0246.0 解得: ⎩⎨⎧==3660y x 由 ⎩⎨⎧+=+=x y x y 36.0122.024 解得:⎩⎨⎧==3975y x 由图可知:①当500<≤x 时,选用神州行卡;② 当50=x 时,选用神州行卡或连通卡更为经济合适;③ 当7550<<x 时,选用连通卡更为经济合适;④ 当75=x 时,选用都市卡或连通卡;⑤ 当75>x 时选用都市卡更为经济合适.评注:在求解该问题时要注意找出其中数学量之间的关系,从而建立一定的函数关系式来求解.二、分段函数模型例2:某旅行社组团去风景旅游,若每团人数在30人或30人以下,飞机票每张收费900元;若每团人数多于30人,则给予优惠:每多1人,机票每张减少10元,直到每张降为450元为止.每团乘飞机,旅行社需付给航空公司包机费15000元.(1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行设可获得最大利润?分析:注意价格与人数之间的关系,从而确定函数的解析式.解:(1)设旅行团人数为x 人,由题得075x <≤飞机票价格为y 元,则90090010(30)y x ⎧=⎨--⎩0303075x x <≤<≤即900120010y x ⎧=⎨-⎩0303075x x <≤<≤ (2)设旅行社获利S 元则90015000(120010)15000x S x x -⎧=⎨--⎩0303075x x <≤<≤ 即29001500010(60)21000x S x -⎧=⎨--+⎩0303075x x <≤<≤故当60x =时,旅行设可获得最大利润. 评注:在对分段函数进行求最值时,一定要注意分析自变量的范围.三、二次函数模型二次函数是出现的比较多的函数模型,求解此类问题常常通过对其单调区间的讨论来求解.例3:某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(I )写出图一表示的市场售价与时间的函数关系P=f(t);写出图二表求援 种植成本与时间的函数关系式Q=g(t); (II )认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?注:市场售价和种植成本的单位:元/102kg ,时间单位:天)分析:这是一个分段函数与二次函数相结合的应用题,可以根据函数图象写出解析式,从而利用二次函数来确定函数的最值问题.解:(1)由图可得市场售价与时间的函数关系为: f (t )=⎩⎨⎧≤<-≤≤-;300200,3002,2000,300t t t t 由图2可得种植成本与时间的函数关系为:g (t )=2001(t -150)2+100,0≤t ≤300. (2)设t 时刻的纯收益为h (t ),则由题意得h (t )=f (t )-g (t ),即h (t )=⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-.300200,21025272001,2000,217521200122t t t t t t当0≤t ≤200时,配方整理得h (t )=-2001(t -50)2+100,所以,当t =50时,h (t )取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理得h (t )=-2001(t -350)2+100, 所以,当t =300时,h (t )取得区间(200,300]上的最大值87.5.综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.评注:求本题的最值时一定要注意先求出每一定义域中每一段上的最值,然后来加以比较.四、函数()xb ax x f +=()0,>b a 模型 这类函数的模型常常是通过均值定理或者函数的单调性求最值,此时要注意等号能否取到.例4:甲、乙两地相距120千米,汽车从甲地以速度v (千米/时)匀速行驶到乙地,速度不得超过100千米/时.已知汽车每小时的运输成本(单位:元)由可变部分和固定部分组成:固定部分为64元;可变部分与速度 v 的平方成正比,比例系数为0.01. (1)求汽车每小时的运输成本w(元)(2)把全程运输成本y (元)表示为速度v (千米/时)的函数,并指出函数的定义域;(3)为了使全程运输成本最小,汽车应以多大速度行驶?分析:本题可以先根据题意写出全程的运输成本,观察函数式的特点可以知道结合基本不等式来求解. 解:((1)分析可以得到6401.02+=v w ; (2)全程运输成本y (元)表示为速度v (千米/时)的函数关系式是:vv y 120)6401.0(2⋅+=,其中函数的定义域是]100,0(∈v ; (3)整理函数有)6401.0(120120)6401.0(2vv v v y +⋅=⋅+=, 根据基本不等式, 1926401.02120)6401.0(120=⋅⋅≥+⋅=v v v v y , 当且仅当]100,0(806401.0∈==v vv 即时,取等号成立, 故汽车应以80千米/时的速度行驶,全程运输成本最小为192元.评注:对基本不等式的应用要注意“一正二定三相等”的特点.当然,涉及函数的应用问题还有很多,关键是确定用哪种类型的函数.。
函数模型在实际问题中的应用
函数模型在实际问题中的应用在我们的日常生活和工作中,数学的身影无处不在,而函数作为数学中的重要概念,更是有着广泛且实用的应用。
函数模型能够帮助我们理解和解决各种各样的实际问题,从经济领域的成本与收益分析,到物理世界中的运动规律描述,从环境科学中的资源分配,到工程技术中的优化设计,都离不开函数模型的助力。
先来说说经济领域中的成本与收益问题。
假设一家工厂生产某种产品,其生产成本 C 与产量 x 之间的关系可以用函数 C(x) = ax + b 来表示,其中 a 表示单位产品的变动成本,b 是固定成本。
而产品的销售收益 R 与产量 x 的关系可以用函数 R(x) = px 来表示,其中 p 是单位产品的销售价格。
那么,工厂要想获得利润,就需要考虑收益大于成本,即R(x) >C(x),通过这样的函数关系,我们可以确定最佳的产量,使得利润最大化。
再看物理中的运动问题。
比如一个物体做自由落体运动,其下落的距离 h 与时间 t 的关系可以用函数 h = 1/2gt²来表示,其中 g 是重力加速度。
通过这个函数,我们可以计算出物体在不同时刻所处的位置,从而预测其运动轨迹。
在环境科学中,函数模型也发挥着重要作用。
例如,研究某个区域的水资源分配问题。
假设该区域的水资源总量是固定的,而不同部门的用水需求可以用函数表示。
通过建立这些函数关系,我们可以合理地规划水资源的分配,以满足各个部门的需求,同时保证水资源的可持续利用。
工程技术方面,以桥梁的设计为例。
桥梁的承重能力与桥梁的结构参数之间存在着函数关系。
工程师们需要通过建立准确的函数模型,来确定桥梁的最佳设计方案,既要保证桥梁的安全性,又要控制建设成本。
让我们通过一个具体的例子来更深入地理解函数模型的应用。
假设我们要设计一个矩形的花坛,花坛的周长为一定值 L。
我们知道矩形的周长 L = 2(x + y),其中 x 和 y 分别是矩形的长和宽。
而花坛的面积 S = xy。
函数模型的应用实
后,体积变为
4 9
a
.若一个新丸体积变为 8 a,
27
则需经过的天数为( )
A125天
B100天
C75天
D50天
练习3
将进货单价为80元的商品按90元一个售出 时,能卖出400个,已知这种商品每个涨 价1元,其销售量就减少20个,为了取得 最大利润,每个售价应定为( )
A.95元 C.105元
B.100元 D.110元
例6 某地区不同身高的未成年男性的体重平均值如表
身高 60 70 80 90 /cm
体重 6.13 7.90 9.99 12.15 /kg
100 110
15.02 17.50
120 130 140 150 160 170
20.92 26.86 31.11 38.85 47.25 55.05
(1)根据表所提供的数据,能否建立恰当的函数模型, 使它能比较近似地反映这个地区未成年男性体重y kg与身高 x cm 的函数关系?试写出这个函数模型 的解析式.
由图象可知,当x<1500件时,该公司亏损; 当x=1500件时,公司不赔不赚; 当x>1500件时,公司赢利.
练习5:某地区今年1月、2月、3月,患某种传 染病的人数分别为52,61,68,为了预测以后各 月的患病人数,甲选择了模型 乙选择了模型 (其中y是患病人数,x为月份数。a,b,c,p,q, r都是常数),结果4月,5月,6月份的患病人数 分别为74,78,83,你认为谁选择的模型较好?
55
50
45
40
35
30
25
20
15
10
5
x
60 70 80 90 100 110 120 130 140 150 160 170
函数模型及其应用实例 课件
1
400- 2 ,0 ≤ ≤ 400,
2
R(x)=
其中 x 是仪器的月产量.
80 000, > 400,
(1)将月利润表示为月产量的函数f(x).
(2)当月产量为何值时,公司所获利润最大?最大利润为多少
元?(总收益=总成本+利润)
分析:由题目可获取以下主要信息:①总成本=固定成本+100x;②
10
4
3
≤ ,解得 n≤15.
2
故今后最多还能砍伐 15 年.
1
= ,解得 m=5,
2
探究三对数函数模型的应用
【例3】 燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学
家发现,两岁燕子的飞行速度可以表示为函数 v=5log2 ,单位是
10
m/s,其中Q表示燕子的耗氧量.
(1)求燕子静止时的耗氧量是多少个单位?
(2)将耗氧量 Q=80 代入公式得 v=5log2 =5log28=15(m/s),即
10
当一只燕子的耗氧量为 80 个单位时,速度为 15 m/s.
探究四拟合函数模型的应用题
【例 4】为了估计山上积雪融化后对下游灌溉的影响,在山上建立了
一个观察站,测量最大积雪深度 x cm 与当年灌溉面积 y hm2.现有连
4
森林剩余面积为原来的 2 .
2
(1)求每年砍伐面积的百分比;
(2)到今年为止,该森林已砍伐了多少年?
(3)今后最多还能砍伐多少年?
分析:可建立指数函数模型求解.
解:(1)设每年砍伐面积的百分比为 x(0<x<1),
1
高中数学-函数模型的应用实例
y 55196e0.0221t,t N
从该图可以看出,所得模型与1950~1959 年的实际人口数据基本吻合。
y
70000 65000 60000 55000 50000
0
2
4
6
8
t
(2)将y=130 000代入
y 55196e0.0221t
(1)如果以各年人口增长率的平均值作为我国这 一时期的人口增长率(精确到0.0001),用马尔萨 斯人口增长模型建立我国在这一时期的具体人口 增长模型,并检验所得模型与实际人口数据是否 相符;
(2)如果按表中数据的增长趋势,大约在哪一年 我国的人口达到13亿?
因为 Байду номын сангаасi
ai ai 1 ,所以可以得出 ai 1
路程前的读数为2004km,试建立汽车行
驶这段路程时汽车里程表读数 s km与时
间 t h的函y数解析式,并作出相应的图像。
90 80 70
60
50
40
30
20
10
t
123 45
y
2400 2300
2200
2100
2000
x
123 45
2:人口问题是当今世界各国普遍关注 的问题。认识人口数量的变化规律,可以 为有效控制人口增长提供依据。早在1798 年,英国经济学家马尔萨斯就提出了自然 状态下的人口增长模型:
函数模型的应用实例
1:一辆汽车在某段路程中的行驶速
度与时间的关系如图:
y (Km/h)
90
90
80
80
75
70
65
60 50 50
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第30、31、32课时:
备课人:鞠清永
P例3、例4)
教学内容:§3.2.2函数模型的实际应用(
102
教学目的:①通过实例“汽车的行驶规律”理解一次函数、分段函数的应用,提高学生的阅读能力;
②在实际问题中,发展学生数学地提出、解决问题的能力,体
会数学与物理、人类社会的关系。
教学重点:分段函数、指数型函数的应用;
教学难点:函数模型的建立;
P例3
教学流程:①组织学生学习
102
②归纳解应用题的一般方法
③小结、课外作业
教学过程:
一、组织学生学习例3
例3. 一辆汽车在某段路程中的行驶速率与时间的关系如图3.2-7所示。
(1)求图3.2-7中阴影部分的面积,并说明所求面积的实际含义;
(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图像。
①阅读题目(注重阅读能力训练)
②分析解答本例
③反思
二、课堂小结与课外作业
小结:① 解答应用题的难点在建模,而建模的关键是审题;
② 解答应用题的答语是解题目的之一。
课外作业:教科书104P 课后练习 第 1、2 题
第31课
教学内容:§3.2.2函数模型的实际应用(102P 例4)
教学目的:① 通过马尔萨斯的人口增长模型使学生学会指数型函数的应
用,了解函数模型在社会生活中的广泛应用;
② 在实际问题中,发展学生数学地提出、解决问题的能力,体
会数学与物理、人类社会的关系。
教学重点:指数型函数的应用;
教学难点:函数模型的建立;
教学流程:① 组织学生学习102P 例4
② 归纳解应用题的一般方法
③ 小结、课外作业
教学过程:
一、组织学生学习例4
例4. 人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制人口增长提供依据。
早在1798年,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:0rt y y e =
其中t 表示经过时间,0y 表示0t =时的人口,r 表示人口的年平均增长率
(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率
(精确到0.0001)用马尔萨斯人口增长模型建立我国这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;
(2)如果按表3-8的增长趋势,大约在哪一年我国的人口达到13亿?
三、课堂小结与课外作业
小结:①解答应用题的难点在建模,而建模的关键是审题;
②解答应用题的答语是解题目的之一。
P习题3.2 第2、3、4 题
课外作业:教科书
107
第32课
P例5、例6)
教学内容:§3.2.2函数模型的实际应用(
104
教学目的:①使学生学会建立恰当的函数模型,并利用所得函数模型解释有关现象或对有关发展趋势进行预测;
②通过例、习题等具体实例,让学生了解函数模型的广泛应用;
③利用函数模型解决问题前,进行拟合检验,培养学生的理性
精神和负责态度。
教学重点:由实际问题建立函数模型,并用所得函数模型解决问题;
教学难点:函数模型的建立;
P例5
教学流程:①组织学生学习
104
②组织学生学习
P例6
105
③总结建模思路与方法
④小结、课外作业
教学过程:
一、复习解应用题的步骤
二、组织学生学习例5
例5. 某桶装水经营部每天的房租、人员工资等固定成本为200元,桶装水的进价为5元.销售单价与日均销售量的关系如表3-9所示.
表3-9
请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?
①阅读题目(注重阅读能力训练)
②分析解答本例
③反思
例6. 某地区不同身高的未成年男性的体重平均值如表3-10:
表3-10
(1)根据表3-10提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重y kg与身高x cm的函数关系?试写出这个函数模型的解析式;
(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么,这个地区一名身高为175cm,体重为78kg的在校男生的体重是否正常?
三、课堂小结与课外作业
小结:①解答应用题的难点在建模,而建模的关键是审题;
②解答应用题的答语是解题目的之一。
P课后练习第1题
课外作业:教科书
106
教科书
P习题3.2 A组第5、6题
107。