积化和差 和差化积 倍角公式 半角公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.积化和差公式
证明方法:用和(差)角公式将右边展开即得公式.
积化和差公式记忆口诀
积化和差角加减,二分之一排前边
正余积化正弦和,余正积化正弦差
余弦积化余弦和,正弦积化负余差
2.和差化积公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】
和差化积公式记忆口诀
和差化积2排前,半角加减放右边
正弦和化正余积,正弦差化余正积
余弦和化余弦积,余弦差化负正积。
以上四组公式可以由积化和差公式推导得到
证明过程
sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程因为
sin(α+β)=sinαcosβ+cosαsinβ,
sin(α-β)=sinαcosβ-cosαsinβ,
将以上两式的左右两边分别相加,得
sin(α+β)+sin(α-β)=2sinαcosβ,
设α+β=θ,α-β=φ
那么
α=(θ+φ)/2,β=(θ-φ)/2
把α,β的值代入,即得
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
正切的和差化积
tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)
cotα±cotβ=sin(β±α)/(sinα·sinβ)
tanα+cotβ=cos(α-β)/(cosα·sinβ)
tanα-cotβ=-cos(α+β)/(cosα·sinβ)【注意右式前的负号】证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ
=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)
=sin(α±β)/(cosα·cosβ)=右边
∴等式成立
3.半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))