正弦定理和余弦定理详解

合集下载

正余弦定理公式大全

正余弦定理公式大全

正余弦定理公式大全正弦定理和余弦定理是解三角形的两个重要定理,它们在三角形的边和角之间建立了重要的关系,对于解决三角形的边和角问题有着重要的作用。

下面将详细介绍正弦定理和余弦定理的公式以及它们的应用。

1. 正弦定理公式。

在△ABC中,a、b、c分别为三角形的边长,A、B、C分别为三角形的内角,则正弦定理公式可以表示为:a/sinA = b/sinB = c/sinC = 2R。

其中,R为三角形外接圆半径。

正弦定理的应用非常广泛,可以用来求解三角形的边长或者角度。

通过正弦定理,我们可以很容易地求解出三角形的各个边长或者角度大小,是解决三角形问题的重要工具之一。

2. 余弦定理公式。

在△ABC中,a、b、c分别为三角形的边长,A、B、C分别为三角形的内角,则余弦定理公式可以表示为:a² = b² + c² 2bccosA。

b² = a² + c² 2accosB。

c² = a² + b² 2abcosC。

余弦定理的应用也非常广泛,可以用来求解三角形的边长或者角度。

与正弦定理相比,余弦定理在某些情况下更加方便和实用,尤其是当我们已知三角形的三边长时,可以直接使用余弦定理来求解三角形的各个角度大小。

3. 正余弦定理的综合应用。

正弦定理和余弦定理是解决三角形问题的重要工具,它们可以相互结合,应用于各种不同的三角形问题中。

通过灵活运用正弦定理和余弦定理,我们可以解决各种不同类型的三角形问题,包括求解三角形的边长、角度大小,以及判断三角形的形状等。

在实际问题中,正弦定理和余弦定理常常需要结合其他几何知识和技巧来解决问题,因此在运用正弦定理和余弦定理时,需要灵活运用,结合具体问题来选择合适的方法和步骤,以便更加高效地解决问题。

总结。

正弦定理和余弦定理是解决三角形问题的重要工具,它们建立了三角形的边和角之间的重要关系,可以帮助我们求解各种不同类型的三角形问题。

(完整版)解三角形之正弦定理与余弦定理解析

(完整版)解三角形之正弦定理与余弦定理解析

正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形。

正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形。

知识点清单一.正弦定理:1。

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即R CcB b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2。

变形:1)sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=;;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin caC A = 5)化角为边: RcC R b B R a A 2sin ,2sin ,2sin ===3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a,解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin C B c b = ;sin sin CAc a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。

例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理CA c a sin sin =求出c 边4。

△ABC 中,已知锐角A ,边b,则①A b a sin <时,B 无解;②A b a sin =或b a ≥时,B 有一个解; ③b a A b <<sin 时,B 有两个解。

正弦定理和余弦定理考点解读

正弦定理和余弦定理考点解读

基础梳理1.正弦定理:a sin A =b sin B =c sin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R等形式,以解决不同的三角形问题. 2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab. 3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r . 4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角 A 为钝角或直角图形续表关系 式 a <b sin A a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的 个数 无解 一解 两解 一解 一解 无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教B 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ).A .5 2B .10 2C.1063D .5 6 解析 由A +B +C =180°,知C =45°,由正弦定理得:a sin A =c sin C, 即1032=c 22.∴c =1063. 答案 C2.在△ABC 中,若sin A a =cos B b,则B 的值为( ). A .30° B .45° C .60° D .90°解析 由正弦定理知:sin A sin A =cos B sin B,∴sin B =cos B ,∴B =45°. 答案 B3.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ).A .30°B .45°C .60°D .75°解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°. 答案 C4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ). A .3 3 B .2 3 C .4 3 D. 3解析 ∵cos C =13,0<C <π, ∴sin C =223, ∴S △ABC =12ab sin C =12×32×23×223=4 3. 答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab ,∴cos C =a 2+b 2-c 22ab =-32, 故C =150°为三角形的最大内角.答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°, ∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =6-22. (1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角,且sin A cos A=2,sin 2A +cos 2A =1, 联立解得sin A =255, 再由正弦定理得a sin A =b sin B, 代入数据解得a =210.答案 255210 考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b 2a +c. (1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.[审题视点] 由cos B cos C =-b 2a +c,利用余弦定理转化为边的关系求解. 解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac, cos C =a 2+b 2-c 22ab. 将上式代入cos B cos C =-b 2a +c得: a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c, 整理得:a 2+c 2-b 2=-ac .∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12. ∵B 为三角形的内角,∴B =23π. (2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac -2ac cos B ,∴13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3.∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.【训练2】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A 2+cos A =0. (1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.解 (1)由2cos 2 A 2+cos A =0,得1+cos A +cos A =0,即cos A =-12, ∵0<A <π,∴A =2π3. (2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3, 则a 2=(b +c )2-bc ,又a =23,b +c =4,有12=42-bc ,则bc =4,故S △ABC =12bc sin A = 3. 考向三 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2. (2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A ,即sin B cos A =2sin A cos A .当cos A =0,即A =π2时,B =π6, a =433,b =233; 当cos A ≠0时,得sin B =2sin A ,由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a , 解得⎩⎨⎧ a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题.【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2. (1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值.解 (1)因为cos B =45,所以sin B =35. 由正弦定理a sin A =b sin B ,可得a sin 30°=103, 所以a =53. (2)因为△ABC 的面积S =12ac ·sin B ,sin B =35, 所以310ac =3,ac =10. 由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20. 所以(a +c )2-2ac =20,(a +c )2=40.所以a +c =210.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】 考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.【防范措施】 解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.错因 忽视三角形中“大边对大角”的定理,产生了增根.实录 由1+2cos(B +C )=0,知cos A =12,∴A =π3, 根据正弦定理a sin A =b sin B得: sin B =b sin A a =22,∴B =π4或3π4. 以下解答过程略.正解 ∵在△ABC 中,cos(B +C )=-cos A ,∴1+2cos(B +C )=1-2cos A =0,∴A =π3. 在△ABC 中,根据正弦定理a sin A =b sin B, ∴sin B =b sin A a =22.∵a >b ,∴B =π4,∴C =π-(A +B )=512π. ∴sin C =sin(B +A )=sin B cos A +cos B sin A =22×12+22×32=6+24. ∴BC 边上的高为b sin C =2×6+24=3+12. 【试一试】 (2011·辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2 A =2a .(1)求b a; (2)若c 2=b 2+3a 2,求B .[尝试解答] (1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A .故sin B =2sin A ,所以b a= 2. (2)由余弦定理和c 2=b 2+3a 2,得cos B =(1+3)a 2c. 由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.。

三角形的余弦定理和正弦定理

三角形的余弦定理和正弦定理

三角形的余弦定理和正弦定理三角形是几何学中最基本的形状之一,它由三个边和三个角组成。

在研究三角形的性质和关系时,余弦定理和正弦定理是常用的定理。

它们可以帮助我们计算三角形的边长和角度,以及解决与三角形相关的各种问题。

一、余弦定理余弦定理是用于计算三角形中一个边对应的角的定理,它给出了边长和角度之间的关系。

设三角形的三边分别为a、b、c,对应的角分别为A、B、C。

那么余弦定理可以表示为:c² = a² + b² - 2abcosC其中,c是三角形的边c的长度,a和b是另外两个边的长度,C是边c对应的角的大小。

通过余弦定理,我们可以计算三角形的任意边对应的角的大小。

例如,已知三角形的边长为3、4、5,则可以使用余弦定理计算角C的大小:c² = a² + b² - 2abcosC5² = 3² + 4² - 2 * 3 * 4 * cosC25 = 9 + 16 - 24cosC24cosC = 25 - 9 - 16cosC = 0C = arccos(0)C ≈ 90°二、正弦定理正弦定理是用于计算三角形的边与角度之间的关系,它是根据三角形的边和角的正弦比例关系而得出的。

设三角形的三边分别为a、b、c,对应的角分别为A、B、C。

那么正弦定理可以表示为:a / sinA =b / sinB =c / sinC通过正弦定理,我们可以计算三角形的边与角度之间的关系。

例如,已知三角形的两边分别为3、4,夹角为60°,则可以使用正弦定理计算第三边的长度:a / sinA =b / sinB =c / sinC3 / sin60° =4 / sinB = c / sinC3 / √3 / 2 =4 / s inB = c / sinC2 = 4 / sinB = c / sinCsinB = 4 / 2sinB = 2B = arcsin(2)B ≈ 90°三、应用示例余弦定理和正弦定理在实际问题中具有广泛的应用。

三角函数正余弦定理公式大全

三角函数正余弦定理公式大全

三角函数正余弦定理公式大全三角函数是数学中的一项重要内容,其常用到的公式有正弦定理和余弦定理。

这两个定理在解决三角形问题时起着非常关键的作用,可以帮助我们求解三角形的各个边长和角度。

下面将详细介绍三角函数的正弦定理和余弦定理的公式及其应用。

1.正弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C,则有以下公式成立:sinA / a = sinB / b = sinC / c其中,a,b,c为三角形ABC的边长,A,B,C为对应的角度。

正弦定理可以用来求解三角形的边长或角度,只要已知任意两个角或边长即可。

应用1:已知三角形两边和夹角的情况下,可以利用正弦定理求解第三边的长度。

例如:已知三角形ABC中,边AB = 5 cm,边AC = 7 cm,∠BAC = 60°,求边BC的长度。

解:根据正弦定理可得:sin∠BAC / 5 = sin∠ABC / BC将∠BAC=60°代入,可得:sin60° / 5 = sin∠ABC / BC√3 / 2 / 5 = sin∠ABC / BC√3 / 10 = sin∠ABC / BC再将sin∠ABC的值代入,求得BC的值。

2.余弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C,则有以下公式成立:c^2 = a^2 + b^2 - 2ab * cosC其中,a,b,c为三角形ABC的边长,A,B,C为对应的角度。

余弦定理可以用来求解三角形的边长或角度,只要已知任意一个角的两边长度即可。

应用2:已知三角形两边和夹角的情况下,可以利用余弦定理求解第三边的长度。

例如:已知三角形ABC中,边AB = 5 cm,边AC = 7 cm,∠BAC = 60°,求边BC的长度。

解:根据余弦定理可得:BC^2 = AB^2 + AC^2 - 2 * AB * AC * cos∠BAC将已知数值代入,可得:BC^2 = 5^2 + 7^2 - 2 * 5 * 7 * cos60°BC^2=25+49-70*0.5BC^2=25+49-35BC^2=39BC=√39求得边BC的长度。

余弦定理与正弦定理

余弦定理与正弦定理

余弦定理与正弦定理余弦定理和正弦定理是三角函数中重要的定理,它们在解决三角形相关问题时有着广泛的应用。

本文将介绍余弦定理和正弦定理的数学表达、推导方法以及在实际问题中的应用。

一、余弦定理余弦定理是解决三角形边长和内角之间关系的定理。

它的数学表达式如下:c² = a² + b² - 2abcosC其中,a、b和c分别表示三角形的三条边的长度,C表示夹角C的度数,cosC表示夹角C的余弦值。

为了更好地理解余弦定理,我们可以通过一个实例来说明。

假设有一个三角形,其两边分别为a=4,b=6,夹角C=60°,我们可以利用余弦定理计算第三边c的长度。

根据余弦定理,代入a、b和C的值:c² = 4² + 6² - 2×4×6×cos60°= 16 + 36 - 48×0.5= 16 + 36 - 24= 28通过开方运算我们可以得知c的长度为√28≈5.29。

二、正弦定理正弦定理也是解决三角形边长和内角之间关系的定理。

它的数学表达式如下:a / sinA =b / sinB =c / sinC其中,a、b、c分别表示三角形的三条边的长度,A、B、C分别表示三角形的三个内角的度数,sinA、sinB、sinC分别表示三个内角的正弦值。

同样以一个实例来说明正弦定理的应用。

假设有一个三角形,两边分别为a=4,b=6,夹角C=60°,我们可以利用正弦定理计算第三边c的长度。

根据正弦定理,代入a、b、C的值:4 / sinA = 6 / sinB = c / sin60°通过推导我们可以得到:c = 4 × sin60° / sinA= 6 × sin60° / sinB接下来,我们需要使用正弦函数的性质求出sinA和sinB的值。

假设A为夹角A的度数,则夹角B的度数为180° - A - C = 180° - A - 60°,根据三角函数关系得到:sinA / sin(180° - A - 60°) = a / b通过求解以上方程可以得到sinA和sinB的值。

余弦定理正弦定理公式

余弦定理正弦定理公式

余弦定理正弦定理公式在几何学中,余弦定理和正弦定理是两个重要的公式。

它们在解决三角形和向量的问题时非常有用。

下面,我们来详细了解一下这两个公式。

一、余弦定理余弦定理是用来计算三角形边长和角度之间关系的公式。

具体来讲,它用于计算一个三角形的某个角度的余弦值。

用符号表示,余弦定理的表达式如下:c² = a² + b² - 2ab cos(C)其中,a、b和c是一个三角形的三条边的长度,C是它们之间的夹角,cos是余弦函数。

通过余弦定理,我们可以计算出一个三角形的缺失部分。

例如,当我们已知三角形的两条边和它们之间的夹角时,可以使用余弦定理来计算第三条边的长度。

同样地,如果我们已知三角形的三条边长度,可以使用余弦定理来计算出一个角度的大小。

二、正弦定理正弦定理也是用来计算三角形边长和角度之间关系的公式。

但它和余弦定理不同,它用于计算三角形内一个角的正弦值或计算三角形边长之间的比例关系。

具体来讲,正弦定理的表达式如下:a / sin(A) =b / sin(B) =c / sin(C)其中,a、b和c是一个三角形的三条边的长度,A、B和C是分别位于它们对应边的顶点处的角度。

正弦定理可以帮助我们计算三角形内角度或边长之间的比例关系。

例如,当我们已知一个角的大小和它对应的边长时,我们可以使用正弦定理来计算出另外两条边的长度。

同样地,如果我们已知三角形内三个角的大小,也可以使用正弦定理来计算出三条边的长度比例关系。

通过掌握余弦定理和正弦定理,我们可以在解决三角形和向量问题时更加得心应手。

同时,这两个公式也对我们理解和应用数学和物理学知识有着极大的指导意义。

三角函数中的正弦定理与余弦定理

三角函数中的正弦定理与余弦定理

三角函数中的正弦定理与余弦定理三角函数是数学中常用的一种函数,在几何学中也起着重要的作用。

本文将探讨三角函数中的两个关键定理:正弦定理和余弦定理。

这两个定理在解决各种三角形问题时非常有用,通过它们可以计算出未知的边长和角度。

一、正弦定理正弦定理是一个关于三角形边长和角度之间关系的定理,它适用于所有的三角形。

正弦定理表达的是三角形中一个角的正弦值与其对边的比例关系。

设三角形的三边分别为a、b、c,相应的角为A、B、C,那么正弦定理可以表示为:a/sinA = b/sinB = c/sinC这个定理的一种形式是:a/sinA = 2R其中,R是三角形外接圆的半径。

正弦定理的应用非常广泛,例如可以通过已知两边和一个角度,求解未知边长或者角度。

同时,它也常用于解决三角形的面积问题。

二、余弦定理余弦定理是另一个与三角形边长和角度之间关系的定理,与正弦定理相比,余弦定理更加灵活,适用于各种类型的三角形。

余弦定理表达的是三角形中一个角的余弦值与其对边的平方和其他两边的乘积之间的关系。

设三角形的三边分别为a、b、c,相应的角为A、B、C,那么余弦定理可以表示为:a^2 = b^2 + c^2 - 2bc*cosAb^2 = a^2 + c^2 - 2ac*cosBc^2 = a^2 + b^2 - 2ab*cosC余弦定理的应用非常广泛,可以通过已知三边求解未知角度或者通过已知两边和一个夹角求解未知边长。

三、正弦定理与余弦定理的关系正弦定理和余弦定理在解决三角形问题时可以互相补充使用。

根据正弦定理,我们可以求解任意一个角的正弦值,通过求解余弦,我们可以得知其他两个角的余弦值。

进而,我们可以通过余弦定理求解三角形的边长。

例如,在解决三角形的边长问题时,我们可以首先使用正弦定理求解一个角的正弦值,然后使用余弦定理求解其他两个角的余弦值。

通过已知角度的余弦值,我们可以应用余弦定理求解未知边长。

在实际应用中,我们常常需要通过这两个定理来解决与三角形相关的问题。

正弦定理余弦定理

正弦定理余弦定理

03
正弦定理与余弦定理的关 联
正弦定理与余弦定理的相似之处
01
两者都是关于三角形边角关系的定理,是三角学中 的基本定理之一。
02
它们都可以用来解决与三角形相关的问题,如求角 度、边长等。
03
正弦定理和余弦定理在形式上具有一定的对称性, 反映了三角形的内在规律。
正弦定理与余弦定理的不同之处
01
02
03
正弦定理主要应用于求解三角形 的角度,特别是当已知两边及其 夹角时;而余弦定理则更常用于 求解三角形的边长,特别是当已 知两角及一边时。
正弦定理中的角度是通过正弦函 数来表达的,而余弦定理中的角 度则是通过余弦函数来表达的。
正弦定理和余弦定理在应用上有 一定的互补性,可以根据具体问 题选择使用。
总结词
余弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角余弦值之间的关系。
详细描述
余弦定理是三角学的基本定理之一,它指出在任意三角形ABC中,任意一边的平方等于其他两边的平 方和减去两倍的另一边的长度与相邻两边的乘积。数学公式表示为:a^2 = b^2 + c^2 - 2bc cos(A) 。
交流电
交流电的电压和电流是时间的正 弦函数,这使得正弦定理在电力 系统中有着广泛的应用。
声学
声音的传播和反射可以用正弦和 余弦函数来描述,这使得余弦定 理在声学中有重要应用。
三角函数在工程中的应用
1 2
结构设计
在建筑和机械设计中,正弦和余弦定理常被用来 计算角度、长度等参数,以确保结构的稳定性和 安全性。
余弦定理的应用
总结词
余弦定理在解决三角形问题中具有广泛 的应用,包括求解角度、判断三角形的 形状以及解决实际问题等。

直角三角形的正弦定理与余弦定理

直角三角形的正弦定理与余弦定理

直角三角形的正弦定理与余弦定理直角三角形是指其中一个角度为90度的三角形。

在直角三角形中,有两个特殊的角度,一个是直角角度,即90度角;另一个角度则是锐角或钝角。

正弦定理和余弦定理是用于计算三角形中任意一边和角度之间的关系的数学定理。

在直角三角形中,正弦定理和余弦定理可以简化为更常用的形式。

1. 正弦定理:正弦定理表示三角形的边与其对应的角度之间的关系。

对于任意三角形ABC,其中C为直角角度,a、b、c分别为对应的边长。

正弦定理的公式表达为:sin(A) / a = sin(B) / b = sin(C) / c其中sin(A)表示角A的正弦值,同理sin(B)和sin(C)表示角B和角C的正弦值。

根据正弦定理,我们可以计算直角三角形中任意一边的长度。

2. 余弦定理:余弦定理表示三角形的边与其对应的角度之间的关系。

对于任意三角形ABC,其中C为直角角度,a、b、c分别为对应的边长。

余弦定理的公式表达为:c^2 = a^2 + b^2 - 2ab * cos(C)其中cos(C)表示角C的余弦值。

根据余弦定理,我们可以计算直角三角形中任意一边的长度。

通过正弦定理和余弦定理,我们可以解决一些与直角三角形相关的计算问题,比如已知两边长度和一个角度,求解其他角度或边长。

举个例子,如果我们已知一个直角三角形的直角边长为3,斜边长为5,我们可以通过计算求得另一直角边的长度。

首先,我们可以使用正弦定理计算斜边对应的角度sin(C) = c / a = 5 / 3,通过反正弦函数求得角C的值为35.26度。

然后,我们可以使用余弦定理计算另一直角边的长度c^2 = a^2 + b^2 - 2ab * cos(C),代入已知的值计算得到c^2 = 9 + b^2 - 2 * 3b * cos(35.26),进一步简化为b^2 - 6b * cos(35.26) + 4 = 0。

然后解一元二次方程得到b的值,从而求得另一直角边的长度。

正余弦定理公式大全

正余弦定理公式大全

正余弦定理公式大全正弦定理和余弦定理是解三角形问题时经常用到的重要公式。

它们可以帮助我们求解三角形的各种边长和角度,是初中数学和高中数学中不可或缺的知识点。

下面将详细介绍正弦定理和余弦定理的公式及应用。

1. 正弦定理。

正弦定理是指在任意三角形ABC中,有以下公式成立:$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$。

其中,a、b、c分别为三角形ABC的三条边的长度,A、B、C分别为对应的三个内角的大小,R为三角形外接圆的半径。

正弦定理的应用,利用正弦定理可以求解三角形的各种边长和角度,尤其适用于已知两边和夹角的情况。

2. 余弦定理。

余弦定理是指在任意三角形ABC中,有以下公式成立:$a^2 = b^2 + c^2 2bc\cos A$。

$b^2 = a^2 + c^2 2ac\cos B$。

$c^2 = a^2 + b^2 2ab\cos C$。

其中,a、b、c分别为三角形ABC的三条边的长度,A、B、C分别为对应的三个内角的大小。

余弦定理的应用,利用余弦定理可以求解三角形的各种边长和角度,尤其适用于已知三边或两边一角的情况。

3. 正弦定理和余弦定理的关系。

正弦定理和余弦定理是解三角形问题的重要工具,它们之间有着密切的联系。

在一些特殊情况下,正弦定理和余弦定理可以相互转化,从而更灵活地应用于解题过程中。

4. 举例说明。

接下来通过具体的例题来说明正弦定理和余弦定理的应用。

例题1,已知三角形ABC中,AB=5,AC=7,BC=8,求∠A、∠B、∠C的大小。

解:利用余弦定理可得:$\cos A = \frac{b^2 + c^2 a^2}{2bc} = \frac{7^2 + 8^2 5^2}{2 \times 7 \times 8} = \frac{33}{56}$。

$\cos B = \frac{a^2 + c^2 b^2}{2ac} = \frac{5^2 + 7^2 8^2}{2 \times 5 \times 7} = \frac{9}{35}$。

三角形的正弦定理与余弦定理

三角形的正弦定理与余弦定理

三角形的正弦定理与余弦定理三角形是数学中的重要概念之一,它具有广泛的应用。

在三角形的研究中,正弦定理和余弦定理是两个基本的定理,它们能够帮助我们研究三角形的边长与角度之间的关系,解决各种与三角形相关的问题。

本文将重点介绍三角形的正弦定理与余弦定理,并通过具体例子来说明它们的应用。

一、三角形的正弦定理正弦定理是描述三角形边长与角度之间关系的定理。

对于一个任意三角形ABC,设a、b、c分别是三边AC、AB和BC的长度,角A、B、C分别为三个顶点的对应角度,则正弦定理可以表达为:a/sinA = b/sinB = c/sinC其中,sinA、sinB和sinC分别表示角A、B和C的正弦值。

通过正弦定理,我们可以推导出三个有用的结论。

1. 第一个结论是三角形内角的正弦定理:对于三角形ABC,有sinA/a = sinB/b = sinC/c。

通过该结论,我们可以根据三角形的边长计算三个内角的正弦值,或者根据三角形的内角计算三个边长的比值。

2. 第二个结论是三角形的外角的正弦定理:对于三角形ABC的外角A'、B'和C',有sinA'/a = sinB'/b = sinC'/c。

这个结论可以帮助我们计算三角形的外角与边长的关系。

3. 第三个结论是三角形的面积公式:对于三角形ABC,它的面积S 可以表示为S = (1/2) * a * b * sinC。

通过这个结论,我们可以根据三角形的两边和它们之间的夹角来计算该三角形的面积。

二、三角形的余弦定理余弦定理与正弦定理类似,也是描述三角形边长与角度之间关系的定理。

对于一个任意三角形ABC,设a、b、c分别是三边AC、AB和BC的长度,角A、B、C分别为三个顶点的对应角度,则余弦定理可以表达为:c^2 = a^2 + b^2 - 2ab * cosC其中,cosC表示角C的余弦值。

通过余弦定理,我们可以推导出三个有用的结论。

正弦定理和余弦定理直角三角形

正弦定理和余弦定理直角三角形

正弦定理和余弦定理直角三角形正弦定理和余弦定理是解决直角三角形中边长和角度关系的两个基本公式。

一、正弦定理:在任何三角形中,对于一个角度和它对应的边,正弦定理表示边长与正弦值成正比例关系。

对于一个直角三角形中的角 A,其对边长设为 a,邻边长设为 b,斜边长为 c,则正弦定理可表示为:sin A = a / c其中,sin A 表示角 A 的正弦值,a 表示角 A 对应的直角三角形的对边长,c 表示直角三角形的斜边长。

可以通过正弦定理推导出其他两个角的正弦值,从而求解三角形中的边和角度:sin B = b / csin C = c / c = 1二、余弦定理:余弦定理是另一种在直角三角形中解决边长和角度关系的基本公式。

对于一个直角三角形中的角 A,其对边长设为 a,邻边长设为 b,斜边长为 c,则余弦定理可表示为:cos A = b / c其中,cos A 表示角 A 的余弦值,b 表示角 A 对应的直角三角形的邻边长,c 表示直角三角形的斜边长。

通过余弦定理,可以求出其他两个角的余弦值:cos B = a / ccos C = 0三、比较正弦定理和余弦定理:正弦定理和余弦定理是解决直角三角形中边长和角度关系的两个基本公式。

它们都可以用于求解三角形的边和角度,但是有一些不同点:1. 适用条件不同。

正弦定理适用于任何三角形,而余弦定理无法适用于等边三角形。

2. 求解的变量不同。

正弦定理可以求解角的正弦值,而余弦定理可以求解角的余弦值。

3. 计算方式不同。

正弦定理使用正弦函数,余弦定理使用余弦函数,两者在计算推导过程中存在差异。

总之,正弦定理和余弦定理是直角三角形中解决边长和角度关系的基本公式,掌握并灵活应用这两个公式可以帮助我们更好地理解和求解三角形中的各种问题。

正弦定理和余弦定理公式

正弦定理和余弦定理公式

正弦定理和余弦定理公式设任意三角形△ABC,角A、B、C的对边分别记作a、b、c,则可得到正弦定理、余弦定理的公式及其推论如下。

正弦定理:在一个三角形中,各边和它所对的角的正弦的比相等。

一、正弦定理公式a/sinA=b/sinB=c/sinC=2R。

【注1】其中“R”为三角形△ABC外接圆半径。

下同。

【注2】正弦定理适用于所有三角形。

初中数学中,三角形内角的正弦值等于“对比斜”仅适用于直角三角形。

二、正弦定理推论公式1、(1)a=2RsinA;(2)b=2RsinB;(3)c=2RsinC。

2、(1)a:b=sinA:sinB;(2)a:c=sinA:sinC;(3)b:c=sinB:sinC;(4)a:b:c=sinA:sinB:sinC。

【注】多用于“边”、“角”间的互化。

三角板的边角关系也满足正、余弦定理3、由“a/sinA=b/sinB=c/sinC=2R”可得:(1)(a+b)/(sinA+sinB)=2R;(2)(a+c)/(sinA+sinC)=2R;(3)(b+c)/(sinB+sinC)=2R;(4)(a+b+c)/(sinA+sinB+sinC)=2R。

4、三角形ABC中,常用到的几个等价不等式。

(1)“a>b”、“A>B”、“sinA>sinB”,三者间两两等价。

(2)“a+b>c”等价于“sinA+sinB>sinC”。

(3)“a+c>b”等价于“sinA+sinC>sinB”。

(4)“b+c>a”等价于“sinB+sinC>sinA”。

5、三角形△ABC的面积S=(abc)/4R。

其中“R”为三角形△ABC的外接圆半径。

部分三角函数公式余弦定理公式及其推论余弦定理:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

一、余弦定理公式(1)a^2=b^2+c^2-2bccosA;(2)b^2=a^2+c^2-2accosB;(3)c^2=a^2+b^2-2abcosC。

三角形的余弦定理与正弦定理

三角形的余弦定理与正弦定理

三角形的余弦定理与正弦定理三角形是几何学中最基本的形状之一。

在研究三角形的性质和特征时,余弦定理和正弦定理起到了重要的作用。

它们是利用三角形的边长和角度之间的关系来解决各种三角形问题的工具。

本文将详细介绍三角形的余弦定理与正弦定理的定义、公式推导和应用。

一、余弦定理余弦定理是描述三角形边长与角度关系的定理。

对于任意三角形ABC,假设a、b、c分别表示BC、AC和AB的边长,而∠A、∠B和∠C分别表示三角形的内角A、B和C,则余弦定理可以表示为以下公式:c² = a² + b² - 2ab·cosCb² = a² + c² - 2ac·cosBa² = b² + c² - 2bc·cosA其中,cosA、cosB和cosC分别表示角A、B和C的余弦值。

推导过程:我们可以通过向三角形ABC引入高,再利用勾股定理和直角三角形的性质推导余弦定理。

设三角形ABC的高为h,起点为顶点A,终点为D,连接BD和CD,如图所示。

[图示]由于三角形ADC为直角三角形,根据勾股定理,我们可以得到:AC² = AD² + CD² ------ (1)在三角形ABD中,我们可以应用勾股定理得到:AB² = AD² + BD² ------ (2)注意到BD = BC - CD,将其代入式(2),我们可以得到:AB² = AD² + (BC - CD)²= AD² + BC² + CD² - 2BC·CD ------ (3)由于三角形ABC为平面图形,AD ⊥ BC,所以∠ADC = ∠C。

根据余弦定理,我们可以得到:CD² = AC² + AD² - 2AC·AD·cosC ------ (4)将式(1)代入式(4),我们可以得到:CD² = (AD² + CD²) + AD² - 2√(AD² + CD²)√AD·cosC= 2AD² + CD² - 2AD·CD·cosC将式(4)代入式(3),我们可以得到:AB² = 2AD² + BC² - 2BC·CD + 2AD² - 2√(AD² + CD²)√AD·cosC= 4AD² + BC² - 2BC·CD - 2√(AD² + CD²)√AD·cosC= 4AD² + BC² - 2BC·CD - 2AC·AD·cosC由于三角形为平面图形,所以CD = BC·cosA,代入上式得:AB² = 4AD² + BC² - 2BC²·cosA - 2AC·AD·cosC= 4AD² + BC² - 2BC²·cosA - 2AC²·cosC= 4AD² + BC² - 2AC²·cosC - 2BC²·cosA由几何性质可知,4AD² = c²,所以:c² = a² + b² - 2ab·cosC ------ (5)同理,可以推导出余弦定理的其他两个公式。

余弦定理与正弦定理

余弦定理与正弦定理

余弦定理与正弦定理余弦定理和正弦定理是解决三角形中边长和角度之间关系的重要定理。

它们在三角学中有着广泛的应用,能够帮助我们计算未知边长或角度。

本文将介绍余弦定理和正弦定理的定义、公式以及应用,并探讨它们的区别和联系。

一、余弦定理的定义和公式余弦定理是在三角形中,通过已知边长和夹角计算其他边长的定理。

它的定义如下:在三角形ABC中,设三条边分别为a、b、c,对应的夹角分别为A、B、C,则余弦定理的公式为:c² = a² + b² - 2abcosC其中,c为三角形对应于角C的边长,a和b为与角C相邻的两条边长,cosC为角C的余弦值。

二、正弦定理的定义和公式正弦定理是在三角形中,通过已知两个角度和一个边长计算其他边长的定理。

它的定义如下:在三角形ABC中,设三条边分别为a、b、c,对应的夹角分别为A、B、C,则正弦定理的公式为:a/sinA = b/sinB = c/sinC其中,a、b、c为三角形的边长,A、B、C为对应的角度。

三、余弦定理和正弦定理的应用1. 通过余弦定理计算未知边长或角度:- 已知两边长和夹角:可以使用余弦定理计算第三条边长,或者计算其他两个角度。

- 已知三边长:可以使用余弦定理计算其中一个角度。

2. 通过正弦定理计算未知边长或角度:- 已知两角度和一个边长:可以使用正弦定理计算其他两条边长。

- 已知一个角度和两边长:可以使用正弦定理计算另外两个角度。

四、余弦定理与正弦定理的区别和联系余弦定理和正弦定理在解决三角形问题时具有不同的应用场景。

余弦定理适用于已知边长和夹角的情况,可以求解缺失的边长或角度。

而正弦定理适用于已知两个角度和一个边长的情况,同样可以求解其他边长或角度。

此外,两个定理之间也存在一定的联系。

通过余弦定理可以推导出正弦定理,而正弦定理也可以推导出余弦定理。

在解决问题时,可以根据具体情况选择使用其中一个定理进行计算。

总结:余弦定理和正弦定理是解决三角形中边长和角度之间关系的重要定理。

三角函数的正弦定理与余弦定理

三角函数的正弦定理与余弦定理

三角函数的正弦定理与余弦定理三角函数是数学中一个重要的概念,在解决三角形相关问题时得以广泛应用。

其中,正弦定理与余弦定理是求解三角形边长和角度的重要工具。

本文将详细介绍三角函数的正弦定理和余弦定理,并举例说明它们在实际问题中的应用。

一、正弦定理正弦定理是指在任意三角形中,三条边的长度与其对应的正弦值之间存在着一定的关系。

设三角形的边长分别为a、b、c,对应的内角为A、B、C,则正弦定理可以表达为:a/sinA = b/sinB = c/sinC其中,等式两边分别为三个边长与对应内角的正弦值的比值,且比值相等。

正弦定理常用于解决无法直接通过角度计算的三角形问题。

例如,在一个三角形中已知两个边长和它们之间的夹角,可以利用正弦定理求解第三边的长度。

二、余弦定理余弦定理是指在任意三角形中,三条边的长度与其对应的余弦值之间存在着一定的关系。

设三角形的边长分别为a、b、c,对应的内角为A、B、C,则余弦定理可以表达为:c^2 = a^2 + b^2 - 2abcosC其中,等式右侧的式子表示两条边长的平方和与它们对应夹角的余弦值的乘积,等于第三边长的平方。

余弦定理常用于求解三角形的边长和角度。

例如,已知一个三角形的三个边长,可以利用余弦定理计算出其中一个内角的大小。

应用实例:例1:已知三角形ABC中,边长a=5cm,边长b=7cm,夹角C=30°,求第三边c的长度。

解:根据正弦定理可得:c/sinC = a/sinAc/sin30° = 5cm/sinAsinA = (5cm/sin30°) * sinAsinA = 2.5cm此时可以利用反正弦函数求解A的大小:A = arcsin(2.5cm) = 39.24°同理可得,B = 180° - A - C = 110.76°因此,三角形ABC中,边长c的长度约为4.33cm,角A约为39.24°,角B约为110.76°。

正弦定理和余弦定理(含解析)

正弦定理和余弦定理(含解析)

第七节正弦定理和余弦定理[知识能否忆起]1.正弦定理 分类 内容定理a sin A =b sin B =csin C=2R (R 是△ABC 外接圆的半径)变形 公式①a =2R sin_A ,b =2R sin_B ,c =2R sin_C ,②sin A ∶sin B ∶sin C =a ∶b ∶c , ③sin A =a 2R ,sin B =b 2R ,sin C =c2R解决的 问题 ①已知两角和任一边,求其他两边和另一角, ②已知两边和其中一边的对角,求另一边的对角2.余弦定理 分类内容定理在△ABC 中,有a 2=b 2+c 2-2bc cos_A ;b 2=a 2+c 2-2ac cos_B ;c 2=a 2+b 2-2ab cos_C 变形 公式 cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab解决的 问题 ①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).[小题能否全取]1.(2012·广东高考)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 C. 3D.32解析:选B 由正弦定理得:BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=2 3.2.在△ABC 中,a =3,b =1,c =2,则A 等于( ) A .30° B .45° C .60°D .75°解析:选C ∵cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,又∵0°<A <180°,∴A =60°.3.(教材习题改编)在△ABC 中,若a =18,b =24,A =45°,则此三角形有( ) A .无解B .两解C .一解D .解的个数不确定解析:选B ∵a sin A =bsin B,∴sin B =b a sin A =2418sin 45°,∴sin B =223.又∵a <b ,∴B 有两个.4.(2012·陕西高考)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b =________. 解析:由余弦定理得b 2=a 2+c 2-2ac cos B =4+12-2×2×23×32=4,所以b =2. 答案:25.△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:设BC =x ,由余弦定理得49=25+x 2-10x cos 120°, 整理得x 2+5x -24=0,即x =3.因此S △ABC =12AB ×BC ×sin B =12×3×5×32=1534.答案:1534(1)在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .(2)在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sinAb sin A <a <ba ≥ba >b解的个数一解两解 一解 一解利用正弦、余弦定理解三角形典题导入[例1] (2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值. [自主解答] (1)由b sin A =3a cos B 及正弦定理 a sin A =bsin B,得sin B =3cos B , 所以tan B =3,所以B =π3.(2)由sin C =2sin A 及a sin A =csin C ,得c =2a .由b =3及余弦定理b 2=a 2+c 2-2ac cos B , 得9=a 2+c 2-ac . 所以a =3,c =2 3.在本例(2)的条件下,试求角A 的大小. 解:∵a sin A =bsin B, ∴sin A =a sin Bb =3·sinπ33=12.∴A =π6.由题悟法1.应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.以题试法1.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a . (1)求b a;(2)若c 2=b 2+3a 2,求B . 解:(1)由正弦定理得,sin 2A sin B +sin B cos 2A = 2sin A ,即 sinB (sin 2A +cos 2A )=2sin A . 故sinB = 2sin A ,所以b a= 2.(2)由余弦定理和c 2=b 2+3a 2,得cos B =(1+3)a 2c .由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.利用正弦、余弦定理判定三角形的形状典题导入[例2] 在△ABC 中a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.[自主解答] (1)由已知,根据正弦定理得2a 2=(2b +c )·b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A , 故cos A =-12,∵0<A <180°,∴A =120°.(2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C =34.又sin B +sin C =1, 解得sin B =sin C =12.∵0°<B <60°,0°<C <60°,故B =C , ∴△ABC 是等腰的钝角三角形.由题悟法依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.[注意] 在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.以题试法2.(2012·安徽名校模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =⎝ ⎛⎭⎪⎫cos 2A 2,cos 2A ,且m ·n =72.(1)求角A 的大小;(2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =⎝ ⎛⎭⎪⎫cos 2A2,cos 2A ,∴m ·n =4cos 2A 2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3.又∵m ·n =72,∴-2cos 2A +2cos A +3=72,解得cos A =12.∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3, ∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc .①又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b = 3,于是a =b =c = 3,即△ABC 为等边三角形.与三角形面积有关的问题典题导入[例3] (2012·新课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cosC +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .[自主解答] (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sinA sin C -sinB -sinC =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.由题悟法1.正弦定理和余弦定理并不是孤立的.解题时要根据具体题目合理选用,有时还需要交替使用.2.在解决三角形问题中,面积公式S =12ab sin C =12bc sin A =12ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理结合应用.以题试法3.(2012·江西重点中学联考)在△ABC 中,12cos 2A =cos 2A -cos A .(1)求角A 的大小;(2)若a =3,sin B =2sin C ,求S △ABC .解:(1)由已知得12(2cos 2A -1)=cos 2A -cos A ,则cos A =12.因为0<A <π,所以A =π3.(2)由b sin B =c sin C ,可得sin B sin C =bc=2,即b =2c .所以cos A =b 2+c 2-a 22bc =4c 2+c 2-94c 2=12, 解得c =3,b =23,所以S △ABC =12bc sin A =12×23×3×32=332.1.在△ABC 中,a 、b 分别是角A 、B 所对的边,条件“a <b ”是使“cos A >cos B ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C a <b ⇔A <B ⇔cos A >cos B .2.(2012·泉州模拟)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边.若A =π3,b =1,△ABC 的面积为32,则a 的值为( ) A .1 B .2 C.32D. 3解析:选D 由已知得12bc sin A =12×1×c ×sin π3=32,解得c =2,则由余弦定理可得a 2=4+1-2×2×1×cos π3=3⇒a = 3.3.(2013·“江南十校”联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =23,c =22,1+tan A tan B =2cb,则C =( ) A .30°B .45°C .45°或135°D .60°解析:选B 由1+tan A tan B =2cb 和正弦定理得cos A sin B +sin A cos B =2sin C cos A , 即sin C =2sin C cos A , 所以cos A =12,则A =60°.由正弦定理得23sin A =22sin C ,则sin C =22, 又c <a ,则C <60°,故C =45°.4.(2012·陕西高考)在△ABC 中 ,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B.22C.12D .-12解析:选C 由余弦定理得a 2+b 2-c 2=2ab cos C ,又c 2=12(a 2+b 2),得2ab cos C =12(a 2+b 2),即cos C =a 2+b 24ab ≥2ab 4ab =12.5.(2012·上海高考)在△ABC 中,若sin 2 A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解析:选C 由正弦定理得a 2+b 2<c 2,所以cos C =a 2+b 2-c 22ab <0,所以C 是钝角,故△ABC 是钝角三角形.6.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c .若b =2a sin B ,则角A 的大小为________.解析:由正弦定理得sin B =2sin A sin B ,∵sin B ≠0, ∴sin A =12,∴A =30°或A =150°.答案:30°或150°7.在△ABC 中,若a =3,b =3,A =π3,则C 的大小为________.解析:由正弦定理可知sin B =b sin A a =3sinπ33=12,所以B =π6或5π6(舍去),所以C=π-A -B =π-π3-π6=π2.答案:π28.(2012·北京西城期末)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c .若b =25,B =π4,sin C =55,则c =________;a =________.解析:根据正弦定理得b sin B =c sin C ,则c =b sin C sin B =22,再由余弦定理得b 2=a 2+c 2-2ac cos B ,即a 2-4a -12=0,(a +2)(a -6)=0,解得a =6或a =-2(舍去).答案:2 2 69.(2012·北京高考)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.解析:根据余弦定理代入b 2=4+(7-b )2-2×2×(7-b )×⎝ ⎛⎭⎪⎫-14,解得b =4.答案:410.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sinB .(1)求B ;(2)若A =75°,b =2,求a ,c .解:(1)由正弦定理得a 2+c 2-2ac =b 2.由余弦定理得b 2=a 2+c 2-2ac cos B . 故cos B =22,因此B =45°. (2)sin A =sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64. 故a =b ×sin A sin B =2+62=1+3,c =b ×sin C sin B =2×sin 60°sin 45°= 6. 11.(2013·北京朝阳统考)在锐角三角形ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足3a -2b sin A =0.(1)求角B 的大小;(2)若a +c =5,且a >c ,b =7,求AB u u u r ·AC u u ur 的值.解:(1)因为3a -2b sin A =0, 所以 3sin A -2sin B sin A =0, 因为sin A ≠0,所以sin B =32. 又B 为锐角,所以B =π3.(2)由(1)可知,B =π3.因为b = 7.根据余弦定理,得7=a 2+c 2-2ac cos π3,整理,得(a +c )2-3ac =7. 由已知a +c =5,得ac =6. 又a >c ,故a =3,c =2.于是cos A =b 2+c 2-a 22bc =7+4-947=714,所以AB u u u r ·AC u u u r =|AB u u u r|·|AC u u u r |cos A =cb cos A=2×7×714=1. 12.(2012·山东高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin B (tanA +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列; (2)若a =1,c =2,求△ABC 的面积S .解:(1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C , 所以sin B ⎝⎛⎭⎪⎫sin A cos A +sin C cos C =sin A cos A ·sin C cos C, 因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin(A +C )=sin A sin C . 又A +B +C =π, 所以sin(A +C )=sin B , 因此sin 2B =sin A sinC . 由正弦定理得b 2=ac , 即a ,b ,c 成等比数列.(2)因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34,因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74.1.(2012·湖北高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C ,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶4解析:选D 由题意可得a >b >c ,且为连续正整数,设c =n ,b =n +1,a =n +2(n >1,且n ∈N *),则由余弦定理可得3(n +1)=20(n +2)·(n +1)2+n 2-(n +2)22n (n +1),化简得7n 2-13n -60=0,n ∈N *,解得n =4,由正弦定理可得sin A ∶sin B ∶sin C =a ∶b ∶c =6∶5∶4.2.(2012·长春调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知4sin 2A +B2-cos 2C =72,且a +b =5,c =7,则△ABC 的面积为________.解析:因为4sin2A +B2-cos 2C =72, 所以2[1-cos(A +B )]-2cos 2C +1=72,2+2cos C -2cos 2C +1=72,cos 2C -cos C +14=0,解得cos C =12.根据余弦定理有cos C =12=a 2+b 2-72ab,ab =a 2+b 2-7,3ab =a 2+b 2+2ab -7=(a +b )2-7=25-7=18,ab =6,所以△ABC 的面积S △ABC =12ab sin C =12×6×32=332.答案:3323.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2b -c )cos A -a cos C =0. (1)求角A 的大小;(2)若a =3,S △ABC =334,试判断△ABC 的形状,并说明理由.解:(1)法一:由(2b -c )cos A -a cos C =0及正弦定理,得 (2sin B -sin C )cos A -sin A cos C =0, ∴2sin B cos A -sin(A +C )=0, sin B (2cos A -1)=0. ∵0<B <π,∴sin B ≠0, ∴cos A =12.∵0<A <π,∴A =π3.法二:由(2b -c )cos A -a cos C =0,及余弦定理,得(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab =0,整理,得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∵0<A <π,∴A =π3.(2)∵S △ABC =12bc sin A =334,即12bc sin π3=334, ∴bc =3,①∵a 2=b 2+c 2-2bc cos A ,a =3,A =π3,∴b 2+c 2=6,② 由①②得b =c =3, ∴△ABC 为等边三角形.1.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3,A +C =2B ,则sin C =________.解析:在△ABC 中,A +C =2B ,∴B =60°.又∵sin A =a sin B b =12,∴A =30°或150°(舍),∴C =90°,∴sin C =1.答案:12.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形解析:选A 法一:(化边为角)由正弦定理知: sin A =2sin B cos C ,又A =π-(B +C ), ∴sin A =sin(B +C )=2sin B cos C . ∴sin B cos C +cos B sin C =2sin B cos C , ∴sin B cos C -cos B sin C =0, ∴sin(B -C )=0.又∵B 、C 为三角形内角,∴B =C .法二:(化角为边)由余弦定理知cos C =a 2+b 2-c 22ab ,∴a =2b ·a 2+b 2-c 22ab =a 2+b 2-c 2a,∴a 2=a 2+b 2-c 2,∴b 2=c 2,∴b =c .3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知 cos 2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长. 解:(1)因为cos 2C =1-2sin 2C =-14,且0<C <π,所以sin C =104. (2)当a =2,2sin A =sin C 时,由正弦定理a sin A =csin C ,得c =4.由cos 2C =2cos 2C-1=-14,及0<C <π得cos C =±64.由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0,解得b =6或26, 所以⎩⎨⎧b =6,c =4或⎩⎨⎧b =26,c =4.4.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c , 且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解:(1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B , 得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.。

几何中的正弦定理与余弦定理

几何中的正弦定理与余弦定理

几何中的正弦定理与余弦定理几何学是一门研究空间和形状的学科,其中涉及到许多重要的定理和公式。

正弦定理和余弦定理是几何学中两个基础而重要的定理,它们在解决三角形的边长和角度方面起着至关重要的作用。

一、正弦定理正弦定理是指在一个任意三角形中,三条边与其对应的角之间的关系。

根据正弦定理,我们可以得到以下公式:a/sin A = b/sin B = c/sin C其中,a、b和c分别代表三角形的三条边的长度,A、B和C分别代表三角形的三个对应角的度数。

通过正弦定理,我们可以求解一个未知边长或未知角度,只需知道其他两条边长或角度即可。

例如,当我们知道三角形的两条边长a和b,以及它们夹角C的度数,我们可以利用正弦定理计算第三条边c的长度:c = (sin C * a) / sin B通过正弦定理,我们可以方便地解决一些与三角形相关的几何问题,比如寻找缺失的边长或角度。

二、余弦定理余弦定理是描述一个三角形中的边长和角度之间的关系。

与正弦定理类似,余弦定理也是解决三角形问题的重要工具。

根据余弦定理,我们可以得到以下公式:c^2 = a^2 + b^2 - 2abcos C其中,a、b和c分别代表三角形的三条边的长度,C代表三角形的夹角的度数。

通过余弦定理,我们可以求解一个未知边长或未知角度,只需知道其他两条边长或角度即可。

例如,当我们知道三角形的两条边长a和b,以及它们夹角C的度数,我们可以利用余弦定理计算第三条边c的长度:c = √(a^2 + b^2 - 2abcos C)除了求解边长,余弦定理也可以用来求解角度。

例如,当我们已知三角形的三条边长a、b和c时,我们可以利用余弦定理求解夹角A的余弦值:cos A = (b^2 + c^2 - a^2) / 2bc通过计算余弦值的反函数,我们可以得到夹角A的度数。

综上所述,正弦定理和余弦定理是解决几何学中三角形问题的重要工具。

它们可以帮助我们计算未知的边长和角度,解决各种与三角形相关的几何问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦定理和余弦定理详解高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合.基础知识梳理1.正弦定理:asin A=bsin B=csin C=2R,其中R是三角形外接圆的半径.由正弦定理可以变形:(1)a∶b∶c=sin_A∶sin_B∶sin_C;(2)a=2R sin_A,b=2R sin_B,c=2R sin_C;(3)sin A=a2R,sin B=b2R,sin C=c2R等形式,解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bc cos_A,b2=a2+c2-2ac cos_B,c2=a2+b2-2ab cos_C.余弦定理可以变形:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R、r.4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解 [难点正本 疑点清源]1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B ;tanA+tanB+tanC=tanA·tanB·tanC ;在锐角三角形中,cos A<sinB,cosA<sinC·2. 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.例1.已知在ABC ∆中,10c =,45A =,30C =,解三角形.思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B,最后用正弦定理求出边b . 解析:sin sin a cA C=,∴sin 10sin 45102sin sin 30c A a C ⨯===,∴ 180()105B A C =-+=,又sin sin b cB C=, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ⨯+====⨯=+.总结升华:1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.举一反三:【变式1】在∆ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。

【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理,00sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,00sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A【变式2】在∆ABC 中,已知075B =,060C =,5c =,求a 、A .【答案】00000180()180(7560)45A B C =-+=-+=,根据正弦定理5sin 45sin 60oo a =,∴563a =.【变式3】在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c【答案】根据正弦定理sin sin sin a b cA B C==,得::sin :sin :sin 1:2:3a b c A B C ==.例2.在3,60,1ABC b B c ∆===中,,求:a 和A ,C .思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .解析:由正弦定理得:sin sin b c B C =, ∴sin 1sin 601sin 23c B C b ⨯===,(方法一)∵0180C <<, ∴30C =或150C =,150时,210180>,(舍去)30时,90,∴22a b c =+(方法二)∵c >,60B =, 60即C 为锐角, ∴30C ,90 2c +=总结升华:AC BC AB AC -=<<,A0180ABC中的最大角是120.总结升华:中,若知道三边的长度或三边的关系<<,C0180【变式2】在ABC∆c,若::a b c=B<<,∴45;0180同理可得60A=;=--=C A B18075【变式3】在ABC ∆中,若222a b c bc=++,求角A .【答案】∵222b c a bc+-=-, ∴2221cos 22b c a A bc +-==-∵180A <<, ∴120A =类型三:正、余弦定理的综合应用 例4.在ABC ∆中,已知23=a ,62=+c ,045B =,求b及A .思路点拨: 画出示意图,由其中的边角位置关系可以先用余弦定理求边b ,然后继续用余弦定理或正弦定理求角A .解析:⑴由余弦定理得:2222cos b a c ac B =+-=220(23)(62)223(62)cos45++-⋅⋅+=212(62)43(31)++-+=8 ∴2 2.=b⑵求A 可以利用余弦定理,也可以利用正弦定理:(法一:余弦定理)∵222222(22)(62)(23)1cos 22222(62)b c a A bc +-++-===⨯⨯+,∴060.=A∵0180A <<, ∴ 30A = ; ∴由正弦定理得:()()62sin 3062sin sin 24c AC a--===.其他应用题详解一、选择题(本大题共6小题,每小题5分,共30分)1.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a kmD .2a km解析 利用余弦定理解△ABC .易知∠ACB =120°,在△ACB 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos120°=2a 2-2a 2×⎝ ⎛⎭⎪⎫-12=3a 2,∴AB =3a . 答案 B2.张晓华同学骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是( )A .2 2 kmB .3 2 kmC .3 3 kmD .2 3 km解析 如图,由条件知AB =24×1560=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,所以∠ASB =45°.由正弦定理知BS sin30°=ABsin45°,所以BS =ABsin45°sin30°=3 2.答案 B3.轮船A 和轮船B 在中午12时离开海港C ,两艘轮船航行方向的夹角为120°,轮船A 的航行速度是25海里/小时,轮船B 的航行速度是15海里/小时,下午2时两船之间的距离是( )A .35海里B .352海里C .353海里D .70海里解析 设轮船A 、B 航行到下午2时时所在的位置分别是E ,F ,则依题意有CE =25×2=50,CF =15×2=30,且∠ECF =120°,EF =CE 2+CF 2-2CE ·CF cos120° =502+302-2×50×30cos120°=70. 答案 D4.(2014·济南调研)为测量某塔AB 的高度,在一幢与塔AB 相距20 m 的楼的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,那么塔AB 的高度是( )A .20⎝ ⎛⎭⎪⎫1+33 mB .20⎝ ⎛⎭⎪⎫1+32 mC .20(1+3) mD .30 m解析 如图所示,由已知可知,四边形CBMD 为正方形,CB =20 m ,所以BM =20 m .又在Rt △AMD 中,DM =20 m ,∠ADM =30°,∴AM =DM tan30°=2033(m).∴AB =AM +MB =2033+20=20⎝ ⎛⎭⎪⎫1+33(m).答案 A5.(2013·天津卷)在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC=( )A.1010B.105C.31010D.55解析 由余弦定理AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =(2)2+32-2×2×3×22=5,所以AC =5,再由正弦定理:sin ∠BAC =sin ∠ABC AC ·BC =3×225=31010.答案 C6.(2014·滁州调研)线段AB 外有一点C ,∠ABC =60°,AB =200 km ,汽车以80 km/h 的速度由A 向B 行驶,同时摩托车以50 km/h 的速度由B 向C 行驶,则运动开始多少h 后,两车的距离最小( ) A.6943 B .1 C.7043D .2 解析 如图所示,设t h 后,汽车由A 行驶到D ,摩托车由B 行驶到E ,则AD=80t,BE=50t.因为AB=200,所以BD=200-80t,问题就是求DE最小时t的值.由余弦定理,得DE2=BD2+BE2-2BD·BE cos60°=(200-80t)2+2 500t2-(200-80t)·50t=12 900t2-42 000t+40 000.当t=7043时,DE最小.答案 C二、填空题(本大题共3小题,每小题5分,共15分)7.已知A,B两地的距离为10 km,B,C两地的距离为20 km,现测得∠ABC=120°,则A、C两地的距离为________km.解析如右图所示,由余弦定理可得:AC2=100+400-2×10×20×cos120°=700,∴AC=107(km).答案1078.如下图,一艘船上午9:30在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距82n mile.此船的航速是________n mile/h.解析设航速为v n mile/h在△ABS中,AB=12v,BS=82,∠BSA=45°,由正弦定理得:82sin30°=12vsin45°,∴v=32(n mile/h).答案329.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B 的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是________米.解析在△BCD中,CD=10,∠BDC=45°,∠BCD=15°+90°=105°,∠DBC=30°,BCsin45°=CDsin30°,BC=CD sin45°sin30°=102(米).在Rt△ABC中,tan60°=ABBC,AB=BC tan60°=106(米).答案10 6三、解答题(本大题共3小题,每小题10分,共30分)10.(2014·台州模拟)某校运动会开幕式上举行升旗仪式,旗杆正好处于坡度15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以多大的速度匀速升旗?解 在△BCD 中,∠BDC =45°,∠CBD =30°,CD =106,由正弦定理,得BC =CD sin45°sin30°=20 3.在Rt △ABC 中,AB =BC sin60°=203×32=30(米),所以升旗速度v =AB t =3050=0.6(米/秒). 11.如图,A 、B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D 点需要多长时间?解 由题意,知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理,得DB sin ∠DAB =ABsin ∠ADB ,于是DB =AB ·sin ∠DAB sin ∠ADB=5(3+3)·sin45°sin105°=5(3+3)·sin45°sin45°cos60°+cos45°sin60°=53(3+1)3+12=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =203(海里), 在△DBC 中,由余弦定理,得CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC=300+1 200-2×103×203×12=900.得CD =30(海里),故需要的时间t =3030=1(小时),即救援船到达D 点需要1小时. 12.(2013·江苏卷)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解 (1)在△ABC 中,因为cos A =1213,cos C =35,。

相关文档
最新文档