第五章 数理统计的基本概念n

合集下载

第五章《概率论与数理统计教程》课件

第五章《概率论与数理统计教程》课件

试决定常数 3.
X ,Y
C
使得随机变量 cY 服从分布

2
分布。
相互独立,都与 N ( 0 , 9 ) 有相同分布, X 分别是来自总体
X ,Y
1
, X 2 , , X 9和
Y1 ,Y 2 , ,Y 9
的样本,

Z
9
X
i
i1
6 - 23
Y
i1
9
则Z 服从—— ,自由度为——。
2 i
4.
X1, X 2, X 3, X 4
是来自总体
X ~ N ( , )
2
的样本,则随机变
量 Y
X3 X4
服从——分布,其自由度为———。
2
(X i )
i1
2
5.

X 1 , X 2 , , X 10
是来自总体 X
~ N ( ,4 )
2
的样本, ( S 2 P
a ) 0 .1
一. 单个正态总体的统计量的分布
X 1 , X 2 , X n是来自正态总体 ~ N ( , 2 )的样本, X
X , S 分别是样本均值和样本 方差
2
定理1
X
n
1
n
X i ~ N ( ,

n
2
);
i1
定理2 U
1
X
/
~ N ( 0 ,1 );
n
定理3
6 - 18
定理7
当 1
2
2 2
2 2 时, 令 S w
( n1 1) S 1 ( n 2 1) S 2
2

数理统计的基本概念

数理统计的基本概念

样本k阶原点矩 样本 阶原点矩 样本k阶中心矩 样本 阶中心矩
河南理工大学精品课程
1 Ak = n 1 Bk = n
∑ ∑
n
n
i =1
X ik ( k = 1, 2 , L )
i =1
( X i − X ) k ( k = 1, 2 , L )
概率论与数理统计
说明 (修正 样本方差还可表示为 修正)样本方差还可表示为 修正
n 1 S2 = [ ∑ X i2 − n X 2 ] n − 1 i =1
1 n 推导】 【推导】 S 2 = ( X i − X )2 ∑ n − 1 i =1 = = = =
河南理工大学精品课程
1 n ( X i2 − 2 X i X + X 2 ) ∑ n − 1 i =1 n n n 1 [ ∑ X i2 − 2 X ∑ X i + ∑ X 2 ] n − 1 i =1 i =1 i =1 n 1 [ ∑ X i2 − 2 n X 2 + n X 2 ] n − 1 i =1 n 1 [ ∑ X i2 −n X 2 ] n − 1 i =1
河南理工大学精品课程 概率论与数理统计
做法
从总体中随机地抽取若干个体(灯泡、 从总体中随机地抽取若干个体(灯泡、工大男
生),测试其所需数据(寿命、身高),最后对所得数据通过 ),测试其所需数据 寿命、身高), 测试其所需数据( ),最后对所得数据通过 整理加工和分析来推断总体(这批灯泡寿命、 整理加工和分析来推断总体(这批灯泡寿命、工大男生身 高)的分布情况,从而了解整体情况. 的分布情况,从而了解整体情况. 一般,我们所研究的总体的某项数量指标X 一般,我们所研究的总体的某项数量指标X是一个随 机变量,其取值在客观上有一定的分布.因此, 机变量,其取值在客观上有一定的分布.因此,对总体的研 究,就是对相应的随机变量X的研究。 就是对相应的随机变量X的研究。 今后,我们称X 今后,我们称X的分布函数和数字特征分别为总体的 分布函数和数字特征, 分布函数和数字特征,并不再区分总体与相应的随机变量 X.对总体的称呼 总体,总体X 总体F X.对总体的称呼:总体,总体X与总体F. 对总体的称呼:

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第五章

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第五章

第五章数理统计的基础知识5.1 数理统计的基本概念习题1已知总体X服从[0,λ]上的均匀分布(λ未知),X1,X2,⋯,Xn为X的样本,则().(A)1n∑i=1nXi-λ2是一个统计量;(B)1n∑i=1nXi-E(X)是一个统计量;(C)X1+X2是一个统计量;(D)1n∑i=1nXi2-D(X)是一个统计量.解答:应选(C).由统计量的定义:样本的任一不含总体分布未知参数的函数称为该样本的统计量.(A)(B)(D)中均含未知参数.习题2观察一个连续型随机变量,抽到100株“豫农一号”玉米的穗位(单位:cm),得到如下表中所列的数据. 按区间[70,80),[80,90),⋯,[150,160),将100个数据分成9个组,列出分组数据计表(包括频率和累积频率),并画出频率累积的直方图.解答:分组数据统计表解答:由X∼B(10,3100),得E(X)=10×3100=310,D(X)=10×3100×97100=2911000,所以E(X¯)=E(X)=310,E(S2)=n-1nD(X)=291(n-1)1000n.习题6设某商店100天销售电视机的情况有如下统计资料f(2)(x)=2F(x)f(x)={2λe-λx(1-e-λx),x>00,其它,又X(1)的概率密度为f(1)(x)=2[1-F(x)]f(x)={2λe-2λx,x>00,其它.习题9设电子元件的寿命时间X(单位:h)服从参数λ=0.0015的指数分布,今独立测试n=6元件,记录它们的失效时间,求:(1)没有元件在800h之前失效的概率;(2)没有元件最后超过3000h的概率.解答:(1)总体X的概率密度f(x)={(0.0015)e-0.0015x,x>00,其它,分布函数F(x)={1-e-0.0015x,x>00,其它,{没有元件在800h前失效}={最小顺序统计量X(1)>800},有P{X(1)>800}=[P{X>800}]6=[1-F(800)]6=exp(-0.0015×800×6)=exp(-7.2)≈0.000747.(2){没有元件最后超过3000h}={最大顺序统计量X(6)<3000}P{X(6)<3000}=[P{X<3000}]6=[F(3000)]6=[1-exp{-0.0015×3000}]6=[1-exp{-4.5}]6≈0.93517.习题10设总体X任意,期望为μ,方差为σ2,若至少要以95%的概率保证∣X¯-μ∣<0.1σ,问样本容量n应取多大?解答:因当n很大时,X¯-N(μ,σ2n),于是P{∣X¯-μ∣<0.1σ}=P{μ-0.1σ<X¯<μ+0.1σ}≈Φ(0.1σσ/n)-Φ(-0.1σσ/n)=2Φ(0.1n)-1≥0.95,则Φ(0.1n)≥0.975,查表得Φ(1.96)=0.975,因Φ(x)非减,故0.1n≥1.96,n≥384.16,故样本容量至少取385才能满足要求.5.2 常用统计分布习题1对于给定的正数a(0<a<1),设za,χa2(n),ta(n),Fa(n1,n2)分别是标准正态分布,χ2(n),t(n),F(n1,n2)分布的上a分位点,则下面的结论中不正确的是().(A)z1-a(n)=-za(n);(B)χ1-a2(n)=-χa2(n);(C)t1-a(n)=-ta(n);(D)F1-a(n1,n2)=1Fa(n2,n1).解答:应选(B).因为标准正态分布和t分布的密度函数图形都有是关于y轴对称的,而χ2分布的密度大于等于零,所以(A)和(C)是对的.(B)是错的. 对于F分布,若F∼F(n1,n2),则1-a=P{F>F1-a(n1,n2)}=P{1F<1F1-a(n1,n2)=1-P{1F>1F1-a(n1,n2)由于1F∼F(n2,n1),所以P{1F>1F1-a(n1,n2)=P{1F>Fa(n2,n1)=a,即F1-a(n1,n2)=1Fa(n2,n1). 故(D)也是对的.习题2(1)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (1)X1-X2X32+X42;解答:因为Xi∼N(0,1),i=1,2,⋯,n,所以:X1-X2∼N(0,2),X1-X22∼N(0,1),X32+X42∼χ2(2),故X1-X2X32+X42=(X1-X2)/2X32+X422∼t(2).习题2(2)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (2)n-1X1X22+X32+⋯+Xn2;解答:因为Xi∼N(0,1),∑i=2nXi2∼χ2(n-1),所以n-1X1X22+X32+⋯+Xn2=X1∑i=2nXi2/(n-1)∼t(n-1).习题2(3)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布?(3)(n3-1)∑i=13Xi2/∑i=4nXi2.解答:因为∑i=13Xi2∼χ2(3),∑i=4nXi2∼χ2(n-3),所以:(n3-1)∑i=13Xi2/∑i=4nXi2=∑i=13Xi2/3∑i=4nXi2/(n-3)∼F(3,n-3).习题3设X1,X2,X3,X4是取自正态总体X∼N(0,22)的简单随机样本,且Y=a(X1-2X2)2+b(3X3-4X4)2,则a=?,b=?时,统计量Y服从χ2分布,其自由度是多少?解答:解法一Y=[a(X1-2X2)]2+[b(3X3-4X4)]2,令Y1=a(X1-2X2),Y2=b(3X3-4X4),则Y=Y12+Y22,为使Y∼χ2(2),必有Y1∼N(0,1),Y2∼N(0,1),因而E(Y1)=0,D(Y1)=1,E(Y2)=0,D(Y2)=1,注意到D(X1)=D(X2)=D(X3)=D(X4)=4,由D(Y1)=D[a(X1-2X2)]=aD(X1-X2)=a(D(X1)+22D(X2))=a(4+4×4)=20a=1,D(Y2)=D[b(3X3-4X4)]=bD(3X3-4X4)=b(9D(X3)+16D(X4))=b(4×9+16×4)=100b=1,分别得a=120,b=1100.这时Y∼χ2(2),自由度为n=2.解法二因Xi∼N(0,22)且相互独立,知X1-2X2=X1+(-2)X2∼N(0,20),3X3-4X4=3X3+(-4)X4∼N(0,100),故X1-2X220∼N(0,1),3X3-4X4100∼N(0,1),为使Y=(X1-2X21/a)2+(3X3-4X41/b)2∼χ2(2),必有X1-2X21/a∼N(0,1),3X3-4X41/b∼N(0,1),与上面两个服从标准正态分布的随机变量比较即是1a=20,1b=100,即a=120,b=1100.习题4设随机变量X和Y相互独立且都服从正态分布N(0,32).X1,X2,⋯,X9和Y1,Y2,⋯,Y9是分别取自总体X和Y的简单随机样本,试证统计量T=X1+X2+⋯+X9Y12+Y22+⋯+Y92服从自由度为9的t分布.解答:首先将Xi,Yi分别除以3,使之化为标准正态.令X′i=Xi3,Y′i=Yi3,i=1,2,⋯,9,则X′i∼N(0,1),Y′i∼N(0,1);再令X′=X′1+X′2+⋯+X′9,则X′∼N(0,9),X′3∼N(0,1),Y′2=Y′12+Y′22+⋯+Y′92,Y′2∼χ2(9).因此T=X1+X2+⋯+X9Y12+Y22+⋯+Y92=X1′+X2′+⋯+X9′Y′12+Y′22+⋯+Y′92=X′Y′2=X′/3Y′2/9∼t(9),注意到X′,Y′2相互独立.习题5设总体X∼N(0,4),而X1,X2,⋯,X15为取自该总体的样本,问随机变量Y=X12+X22+⋯+X1022(X112+X122+⋯+X152)服从什么分布?参数为多少?解答:因为Xi2∼N(0,1),故Xi24∼χ2(1),i=1,2,⋯,15,而X1,X2,⋯,X15独立,故X12+X22+⋯+X1024∼χ2(10),X112+X122+⋯+X1524∼χ2(5),所以X12+X22+⋯+X1024/10X112+X122+⋯+X1524/5=X12+X22+⋯+X1022(X112+X122+⋯+X152)=Y习题6证明:若随机变量X服从F(n1,n2)的分布,则(1)Y=1X服从F(n2,n1)分布;(2)并由此证明F1-α(n1,n2)=1Fα(n2,n1).解答:(1)因随机变量X服从F(n1,n2),故可设X=U/n1V/n2,其中U服从χ2(n1),V服从χ2(n2),且U与V相互独立,设1X=V/n2U/n1,由F分布之定义知Y=1x=V/n2U/n1,服从F(n2,n1).(2)由上侧α分位数和定义知P{X≥F1-α(n1,n2)}=1-α,P{1X≤1F1-α(n1,n2)=1-α,即P{Y≤1F1-α(n1,n2)=1-α,1-P{Y>1F1-α(n1,n2)=1-α,故P{Y>1F1-α(n1,n2)=α,而P{Y≥Fα(n2,n1)}=α.又Y为连续型随机变量,故P{Y≥1F1-α(n1,n2)=α,从而Fα(n2,n1)=1F1-α(n1,n2),即F1-α(n1,n2)=1Fα(n2,n1).习题7查表求标准正态分布的上侧分位数:u0.4,u0.2,u0.1与u0.05.解答:u0.4=0.253,u0.2=0.8416,u0.1=1.28,u0.05=1.65.习题8查表求χ2分布的上侧分位数:χ0.952(5),χ0.052(5),χ0.992(10)与χ0.012(10).解答:1.145,11.071,2.558,23.209.习题9查表求F分布的上侧分位数:F0.95(4,6),F0.975(3,7)与F0.99(5,5).解答:0.1623,0.0684,0.0912.习题10查表求t分布的下侧分位数:t0.05(3),t0.01(5),t0.10(7)与t0.005(10).解答:2.353,3.365,1.415,3.169.(2)P{X¯>4.5}=P{Z>4.5-42/9=1-P{Z≤2.25}≈1-Φ(2.25)=1-0.9878=0.0122.习题2设总体X服从正态分布N(10,32),X1,X2,⋯,X6是它的一组样本,设X¯=16∑i=16Xi.(1)写出X¯所服从的分布;(2)求X¯>11的概率.解答:(1)X¯∼N(10,326),即X¯∼N(10,32).(2)P{X¯>11}=1-P{X¯≤11}=1-Φ(11-1032)≈1-Φ(0,8165)≈1-Φ(0.82)=0.2061.习题3设X1,X2,⋯,Xn是总体X的样本,X¯=1n∑i=1nXi,分别按总体服从下列指定分布求E(X¯),D(X¯).(1)X服从0-1分布b(1,p);(2)*X服从二项分布b(m,p);(3)X服从泊松分布P(λ);(4)X服从均匀分布U[a,b];(5)X服从指数分布e(λ).解答:(1)由题意,X的分布律为:P{X=k}=Pk(1-P)1-k(k=0,1).E(X)=p,D(X)=p(1-p).所以E(X¯)=E(1n∑i=1nXi)=1n∑i=1nE(Xi)=1n⋅np=p,D(X¯)=D(1n∑i=1nXi)=1n2∑i=1nD(X1)=1n2⋅np(1-p)=1np(1-p). (2)由题意,X的分布律为:P{X=k}=CmkPk(1-p)m-k(k=0,1,2,⋯,m).同(1)可得E(X¯)=mp,D(X¯)=1nmp(1-p).(3)由题意,X的分布律为:P{X=k}=λkk!e-λ(λ>0,k=0,1,2,⋯).E(X)=λ,D(X)=λ.同(1)可得E(X¯)=λ,D(X¯)=1nλ.(4)由E(X)=a+b2,D(X)=(b-a)212,同(1)可得E(X¯)=a+b2,D(X¯)=(b-a)212n.(5)由E(X)=1λ,D(X)=1λ2,同(1)可得D(X¯)=1λ,D(X¯)=1nλ2.习题4某厂生产的搅拌机平均寿命为5年,标准差为1年,假设这些搅拌机的寿命近似服从正态分布,求:(1)容量为9的随机样本平均寿命落在4.4年和5.2年之间的概率;(2)容量为9的随机样本平均寿命小于6年的概率。

《概率论与数理统计》习题第五章数理统计的基本概念

《概率论与数理统计》习题第五章数理统计的基本概念

第五章 数理统计的基本概念一. 填空题1. 设X 1, X 2, …, X n 为来自总体N(0, 2), 且随机变量)1(~)(221χ∑==ni iX C Y , 则常数C=___.解.∑=ni iX1~ N(0, n 2),)1,0(~1N n Xni iσ∑=所以21,1σσn c n c ==.2. 设X 1, X 2, X 3, X 4来自正态总体N(0, 22)的样本, 且243221)43()2(X X b X X a Y -+-=,则a = ______, b = ______时, Y 服从2分布, 自由度为______. 解. X 1-2X 2~N(0, 20), 3X 3-4X 4~N(0, 100))1,0(~20221N X X -, )1,0(~1004343N X X -201,201==a a ; 1001,1001==b b . Y 为自由度2的2分布.3. 设X 1, X 2, …, X n 来自总体2(n)的分布,则._____)(______,)(==X D X E解. 因为X 1, X 2, …, X n 来自总体2(n), 所以E(X i ) = n, D(X i ) = 2n (i = 1, 2, …, n),)(n X E = 22)()(221=⋅==∑=nnn nX D X D ni i二. 单项选择题1. 设X 1, X 2, …, X n 为来自总体N(0, 2)的样本,则样本二阶原点矩∑==n i i X n A 1221的方差为 (A)2 (B) n 2σ (C) n 42σ (D) n4σ 解. X 1, X 2, …, X n 来自总体N(0, 2), 所以,1)(),1(~)(222=σχσiiX E X 2)(2=σiX Dnn nn X D nX D A D ni ini i4242214212222))(()()(σσσσ=⋅===∑∑==. (C)是答案.2. 设X 1, X 2为来自正态总体N(,2)的样本, 则X 1 + X 2与X 1-X 2必 (A) 线性相关 (B) 不相关 (C) 相关但非线性相关 (D) 不独立 解. 假设 Y 1 = X 1 + X 2, Y 2 = X 1-X 2 所以 E(Y 2) = E(X 1)-E(X 2) = 0.cov(Y 1, Y 2) = E(Y 1Y 2)-E(Y 1)E(Y 2) = E(0)()()22212221=-=-X E X E X X . (B)是答案.3. 设X 服从正态分布N(0, 22), 而X 1, X 2, …, X 15为来自总体X 的简单随机样本, 则随机变量)(221521121021X X X X Y ++=所服从的分布为 (A) 2(15) (B) t(14) (C) F(10, 5) (D) F(1, 1)解.)10(~4221021χX X +, )5(~42215211χX X + 所以 )5,10(~204021521121021F X X X X ++++ , 即 )5,10(~)(221521121021F X X X X Y ++= (C)是答案.三. 计算题1. 设X 1, X 2, …, X 10为总体N(0, 0.32)的一个样本,求∑=>1012)44.1(i iXP .解. 因为X 1, X 2, …, X 10为总体N(0, 0.32)的一个样本, 所以)10(~3.0101222∑=i i X χ ()44.1(1012P X P i i=>∑=1.0)16)10(()09.044.13.0101222=>=>∑=i i P X χ 2. 从一正态总体中抽取容量为10的一个样本, 若有2的样本均值与总体均值之差的绝对值在4以上, 试求总体的标准差. 解. 因为总体X 服从N(,2),所以)1,0(~10/N X σμ-. 由02.0)4|(|=>-μX P 知 02.0)104|10/(|=>-σσμX P即 99.0)104(,01.0)104(=Φ=-Φσσ查表得.43.533.2104,33.2104===σσ3. 设总体X ~N(72, 100), 为使样本均值大于70的概率不小于0.95 , 问样本容量至少应取多大?解. 假设样本容量为n, 则)1,0(~1072),100,72(~N nX nN X -由 95.0)70(≥>X P 得P(n X 1072->95.0)107270≥-n 所以 0625.68,65.15,95.0)5(≥≥≤Φn nn.4. 设总体X 服从N(, 4), 样本(X 1, X 2, …, X n )来自X, X 为样本均值. 问样本容量至少应取多大才能使i. 1.0)|(|2≤-μX E ii. 95.0)1.0|(|2≥≤-μX P解. i. 1.04)(1)()|(|2≤===-nX D n X D X E μ 所以 n ≥ 40. ii. )1,0(~2),4,(~N nX nN X μμ-. 所以 P X P =≤-)1.0|(|μ(95.0)21.0|2|≥≤-nnX μ975.0)201(≥Φn , 查表得 ,96.1201≥n n ≥ 1537 5. 设∑==ni i X n X 11, 证明:i.∑=-ni iX12)(μ=∑=---ni i X n X X 122)()(μ;ii.∑∑==-=-ni ni i iX n X X X12122)()(.解. i.=-∑=ni iX12)(μ∑=-+-ni iX X X12)(μ=2)(12+-∑=ni iX X∑=+--ni i X X X 1))((μ∑=-ni X 12)(μ=2)(12+-∑=ni iX X∑=+--ni i X n X X 1))((μ2)(μ-X n=∑=---ni iX n X X122)()(μii.=-∑=ni i X X 12)(21121222)2(X n X X X X X X X ni i ni ini i i+-=+-∑∑∑====22122X n X n Xni i+-∑==212)(X n X ni i ∑=-。

数理统计基本概念

数理统计基本概念
2 ( n1 1) S12 ( n2 1) S2 n1 n2 2
1 1 n1 n2
~ t ( n1 n2 2)
定理 5 (两总体样本方差比的分布)
且X与Y独立, 设X ~ N ( 1, ), Y ~ N ( 2 , ), X1, X2,…, X n1是取自X的样本, Y1,Y2,…, Yn2 是
样本是联系二者的桥梁 总体分布决定了样本取值的概率规律, 也就是样本取到样本值的规律,因而可以由 样本值去推断总体.
二、统计量和抽样分布 1. 统计量 由样本值去推断总体情况,需要对样本 值进行“加工”,这就要构造一些样本的 函数,它把样本中所含的(某一方面)的 信息集中起来.
这种不含任何未知参数的样本的函数 称为统计量. 它是完全由样本决定的量.
2. 独立性: X1,X2,…,Xn是相互独立的随机 变量.
由简单随机抽样得到的样本称为简单 随机样本,它可以用与总体独立同分布的 n个相互独立的随机变量X1,X2,…,Xn表示.
若总体的分布函数为F(x),则其简单随机 样本的联合分布函数为 F(x1) F(x2) … F(xn) 简单随机样本是应用中最常见的情 形,今后,当说到“X1,X2,…,Xn是取自某 总体的样本”时,若不特别说明,就指简 单随机样本.
数理统计的基本概 念
一、总体和样本
1.总体
一个统计问题总有它明确的研究对象.
研究对象的全体称为总体(母体), 总体中每个成员称为个体.
总体

研究某批灯泡的质量
然而在统计研究中,人们关心总体仅仅 是关心其每个个体的一项(或几项)数量指标 和该数量指标在总体中的分布情况. 这时, 每个个体具有的数量指标的全体就是总体.
统计中,总体这个概念 的要旨是:总体就是一个 概率分布.

数理统计的基本概念

数理统计的基本概念

证明:设F~F(n1,n2),则
P{F F1 (n1 , n2 )} 1
1 1 P{ } 1 F F1 (n1 , n2 ) 1 1 P{ } F F1 (n1 , n2 )
得证!
1 P{ F (n2 , n1 )} F
5.1.4 统计量及抽样分布
2. F分布的分位点 对于:0<<1,
若存在F(n1, n2)>0,
满足
P{FF(n1, n2)}=, 则
称F(n1, n2)为 F(n1, n2)的 上侧分位点;
F (n1 , n2 )
注:
1 F1 (n1 , n2 ) F (n2 , n1 )
1 ~ F ( n2 , n1 ) F
列出其频数频率分布表。
组序 分组区间 组中值 1 (147,157] 152 2 (157,167] 162 3 (167,177] 172 4 (177,187] 182 5 (187,197] 192 合计
频数 4 8 5 2 1 20
频率 累计频率(%) 0.20 20 0.40 60 0.25 85 0.10 95 0.05 100 1
1、设X 1 , X 2 ,
, X n (n 2)为来自总体N (0,1)的简单随机样本, (n 1) X 12
2 X i i 2 n
X 为样本均值,S 2为样本方差,则统计量

从 __________ 分布。 (05—06二)
2、设 X 1 , X 2 , X 3是来自正态分布 N (0, 2 )总 体的简单随机样本,则 统计量 2 服从 ________ 分布。(05—06三) X1 X X
3.总体、样本、样本观察值的关系 总体

第五章 数理统计的基本概念

第五章  数理统计的基本概念

线性无偏估计量
定义:如果总体参数的 点估计 满足 ( 1 ) 是样本的线性函数; (2)E
最小方差线性无偏估计量
定义:如果总体参数的 点估计 满足 ( 1 ) 是样本的线性函数; (2)对 的一切线性无偏估计量 0,D D 0
定理 (R-C不等式)
设总体X具有分布密度f ( x; )。抽取样本( x1 ,..., xn ), 设g ( )为 的一个可估函数,T T ( x1 ,..., xn )为g ( ) 的一个无偏估计量,且 满足正则条件
• 若12, 22已知
(X Y) ( 1 2 ) U ~ N (0,1)
2 1
n

2 2
m
• 若12, 22未知,但是12= 22
T (X Y) ( 1 2 ) ~ t (m n 2)
12
m

2 2
n

mS12
12

2 nS2 2 2
T
(X Y) (1 2 ) 1 1 2 mS12 nS2 /(m n 2) m n
~ t (m n 2)
推论:设( X 1 ,..., X n )和(Y1 ,..., Ym )分别为来自
2 2 正态总体N ( 1 , 1 )和N ( 2 , 2 )的两个相互
独立的样本,则随机变量
F
2 若 1 2 2
2 2 Sm / 1 2 Sn 2 / 2
~ F (m 1, n 1)
F
2 Sm 2 Sn
~ F (m 1, n 1)
第六章 参数估计
第一节 点估计
• 定义:设为总体分布中的未知参数,从X 中抽取样本 (x1,…,xn) ,构造适当的统计量 (x1,…,xn), 估计 (以的值作为的近似), 这种方法称为参数的点估计。 • 统计量称为的点估计量; • 对于一组样本观测值 (x1,…,xn) ,该统计量 相应的值(x1,…,xn)称为的点估计值 • 的点估计量和点估计值简称为的点估计。

第五章数理统计的基础知识

第五章数理统计的基础知识

第五章数理统计的基础知识在前四章的概率论部分中,我们讨论了概率论的基本概念、思想和方法。

知道随机变量的统计规律性是通过随机变量的概率分布来全面描述的。

在概率论的许多问题中,概率分布通常是已知的或假设为已知的,在这一前提下我们去研究它的性质、特点和规律性,即讨论我们关心的某些概率、数字特征的计算以及对某些问题的判断、推理等。

但在许多实际问题中,所涉及到的某个随机变量服从什么分布我们可能完全不知道,或有时我们能够根据某些事实推断出分布的类型,但却不知道其分布函数中的某些参数。

例如:1、某种电子元件的寿命服从什么分布是完全不知道的。

2、检测一批灯泡是否合格,则每个灯泡可能合格,也可能不合格,则服从(0—1)分布,但其中的参数p 未知。

对这类问题要深入研究,就必须知道与之相应的分布或分布中的参数.数理统计要解决的首要问题就是:确定一个随机变量的分布或分布中的参数.数理统计学是研究随机现象规律性的一门学科,它以概率论为理论基础,研究如何以有效的方式收集、整理和分析受到随机因素影响的数据,并对所考察的问题作出推理和预测,直至为采取某种决策提供依据和建议。

数理统计研究的内容非常广泛,可分为两大类:一是:怎样有效地收集、整理有限的数据资料.二是:怎样对所得的数据资料进行分析和研究,从而对所考察对象的某些性质作出尽可能精确可靠的判断—本书中参数估计和假设检验。

第一节数理统计的基本概念一、总体与总体的分布在数理统计中,我们将研究对象的全体称为总体或母体,而把组成总体的每个元素称为个体。

总体中所包含的个体的个数称为总体的容量. 容量为有限的总体称为有限总体;容量为无限的总体称为无限总体. 总体和个体之间的关系就是集合与元素之间的关系。

在实际问题中,研究对象往往是很具体的事物或现象,而我们所关心的不是每一个个体的种种具体的特征,而是其中某项或某几项数量指标,记为X .例如:研究一批灯泡的平均寿命时,该批灯泡的全体构成了研究的总体,其中每个灯泡就是个体.但在实际问题中,我们仅仅关心灯泡的使用寿命(记X 表示该批灯泡的寿命)。

数理统计的基本概念

数理统计的基本概念
一类是如何科学地安排试验,以获取有效的随机数据。 此部分内容称为描述统计学如:试验设计、抽样方法。
另一类是研究如何分析所获得的随机数据,对所研究 的问题进行科学的、合理的估计和推断,尽可能地为 采取一定的决策提供依据,作出精确而可靠的结论. 这部分的内容称为推断统计学,如:参数估计、假设 检验等。
我们主要讨论有关推断统计学中几个最基本的 问题。
在数理统计中总体X的分布永远是未知的,即使 有足够的理由可以认为总体X服从某种类型的分布, 但这个分布的参数还是未知的。
例如本市家庭的月收入X是个随机变量,X服从什么
分布事先是不清楚的,根据资料可确信 X ~ N , 2 .
但 , 2 究竟取什么值还是未知的,
由于总体X的分布是未知的,因此X的数字特征如 均值、方差等往往也是一个未知的值。对于这些未知
不过在统计研究中,人们关心总体仅仅是关心
其每个个体的一项(或几项)数量指标和该数量指标在总体中的分布
情况. 这时,每个个体具有的数量指标的全体就是总体.
称总体中所含个体的数目为总体容量, 总体容量有限的称为有 限总体, 总体容量无限的称为无限总体.
当个体个数很大时通常把有限总体看作无限总体。
从另一方面看: 统计的任务,是根据从总体中抽取的样本, 去推断总体的性质. 由于我们关心的是总体中的个体的某项指标(如人的身高、体重, 灯泡的寿命,汽车的耗油量…), 所谓总体的性质,无非就是这 些指标值集体的性质. 概率分布是刻划这种集体性质最适当的工具. 因此在理论上可 以把总体与概率分布等同起来. 如研究某批灯泡的寿命时, 关心的数量指标就是寿命, 那么, 此 总体就可用描述其寿命的随机变量 X 或用其分布函数 F(x)表示.
一个统计量.
ex1.设 X1, X 2, X3 是取自正态总体 X ~( , 2) 的一个样本,

概率论数理统计基础知识第五章

概率论数理统计基础知识第五章

C
]
(A)Y ~ 2 (n). (B)Y ~ 2 (n 1). (C)Y ~ F (n,1). (D)Y ~ F (1, n).
【例】设 随机变量X和Y都服从标准正态分布,则[ C ]
(A)X+Y服从正态分布.
2 2 2
(B)X2 +Y2服从 2分布. Y
2
2 X (C)X 和Y 都服从 分布. (D)
(X ) ~ t ( n 1) S n
客、考点 10,正态总体的抽样分布
33/33
34/33
35/33
【例】设总体 X ~ N (0,1),X 1 , X 2 , X1 X 2
2 2 X3 X4
, X n 是简单随机
2 X i. i 4 n
样本 , 试问下列统计量服从什么分布? (1 ) ; (2 ) n 1X1
记:F分布是两个卡方分布的商
2. F 分布的上侧分位数
设 F ~ F (k1 , k2 ) ,对于给定的 a (0,1) ,称满足条件
P{F Fa (k1 , k2 )}

Fa ( k1 ,k2 )
f F ( x)dx a
的数 Fa (k1 , k2 ) 为F 分布的上侧a 分位数。
服从F分布.
§5.5 正态总体统计量的分布
一、单个正态总体情形 总体
X ~ N ( , 2 ) ,样本 X1 , X 2 , , Xn ,
1 n 样本均值 X X i n i 1
n 1 2 样本方差 S 2 ( X X ) i n 1 i 1
1. 定理1 若设总体X~N(μ,σ2), 则统计量
有一约束条件
(X
i 1

题解第5章数理统计基本概念

题解第5章数理统计基本概念

习题1. 为了解2010年云南省某师范学院新生的每月消费情况,调查了该校50名新生。

试问:(1)研究的总体是什么?(2)研究的样本是什么?(3)样本容量是多少?解 (1)总体为该师范学院所有新生的每月消费。

(2)样本为50名该师范学院新生的每月消费。

(3)样本容量为50。

2. 某厂生产的灯泡使用寿命X 服从参数为λ的指数分布,为了研究其平均寿命,从中抽取一个样本容量为n 的样本12(,)n X X X ,试写出该样本的密度函数。

解 因为总体的密度函数为()0,0x 0.x e x f x λλ-⎧>=⎨≤⎩,,所以,样本12(,)n X X X 的密度函数为()112121,0,,()0ni i x nn n i i e x x x f x x x f x λλ=-=⎧∑⎪>==⎨⎪⎩∏ , , 其余.3. 设某厂大量生产某种产品,其次品率p 未知,每m 件产品包装为一盒,为了检查产品的质量,任意抽取n 盒,查其中的次品数,试在这个统计问题中说明什么是总体,样本以及它们的分布。

解 总体X 表示一盒产品中的产次品数,X 服从参数是(),m p 的二项分布。

这是由于产品的批量很大,次品率为p ,从大批产品中取m 件,可以认为每件产品的取出是相互独立的,从而次品数服从二项分布。

样本1(,,)n X X 表示所抽取的n 盒产品中的次品数。

由样本的独立性与代表性得1(,,)n X X 的联合分布列为11(,...,)n n P X x X x ===11()P X x =…()n n P X x == 111(1)(1)n n n x x m x xxm x m m C p p C p p ----=1[(1)]ii i nx x m x mi Cp p -=-∏.4. 从总体ξ中抽取了一个容量为5的样本,样本值为(5,3,1,2,0)--,试求ξ的经验分布函数。

解 经验分布函数为()0,3,1,31,52,10,53,02,54,25,51, 5.n x x x F x x x x <-⎧⎪-≤<-⎪⎪-≤<⎪⎪=⎨≤<⎪⎪⎪≤<⎪≥⎪⎩5. 研究某地区小学五年级男生身高的分布,抽取了100名男生进行测量。

数理统计基本概

数理统计基本概

第五章 样本及抽样分布从本章开始, 我们将讲述数理统计的基本内容. 数理统计作为一门学科诞生于19世纪末20世纪初, 是具有广泛应用的一个数学分支, 它以概率论为基础, 根据试验或观察得到的数据, 来研究随机现象, 以便对研究对象的客观规律性作出合理的估计和判断.由于大量随机现象必然呈现出它的规律性, 故理论上只要对随机现象进行足够多次观察, 则研究对象的规律性就一定能清楚地呈现出来, 但实际上人们常常无法对所研究的对象的全体(或总体) 进行观察, 而只能抽取其中的部分(或样本) 进行观察或试验以获得有限的数据.数理统计的任务包括: 怎样有效地收集、整理有限的数据资料; 怎样对所得的数据资料进行分析、研究, 从而对研究对象的性质、特点, 作出合理的推断, 此即所谓的统计推断问题, 本课程主要讲述统计推断的基本内容.第一节 数理统计的基本概念内容分布图示★ 引言 ★ 总体与总体分布 ★ 样本与样本分布 ★ 例1★ 例2 ★ 例3 ★ 例4★ 统计推断问题简述★ 分组数据统计表和频率直方图 ★ 例5 ★ 经验分布函数 ★ 例6★ 统计量 ★ 样本的数字特征★ 例7 ★ 例8 ★ 例9 ★ 内容小结 ★ 课堂练习 ★ 习题5-1 ★ 返回内容要点:一、总体与总体分布总体是具有一定共性的研究对象的全体, 其大小与范围随具体研究与考察的目的而确定. 例如, 考察某大学一年级新生的体重情况, 则该校一年级全体新生就构成了待研究的总体. 总体确定后, 我们称总体的每一个可观察值为个体. 如前述总体(一年级新生) 中的每一个个体即为每个新生的体重. 总体中所包含的个体的个数称为总体的容量. 容量为有限的称为有限总体, 容量为无限的称为无限总体.数理统计中所关心的并非每个个体的所有性质, 而仅仅是它的某一项或某几项数量指标. 如前述总体(一年级新生)中, 我们关心的是个体的体重, 进而也可考察该总体中每个个体的身高和数学高考成绩等数量指标.总体中的每一个个体是随机试验的一个观察值, 故它是某一随机变量X 的值,于是, 一个总体对应于一个随机变量X , 对总体的研究就相当于对一个随机变量X 的研究, X 的分布就称为总体的分布函数, 今后将不区分总体与相应的随机变量, 并引入如下定义:定义 统计学中称随机变量(或向量)X 为总体, 并把随机变量(或向量)的分布称为总体分布.注(i) 有时个体的特性很难用数量指标直接描述, 但总可以将其数量化,如检验某学校全体学生的血型, 试验的结果有O 型、A 型、B 型、AB 型4种, 若分别以1,2,3,4依次记这4种血型,则试验的结果就可以用数量来表示了;(ii) 总体的分布一般来说是未知的, 有时即使知道其分布的类型(如正态分布、二项分布等),但不知这些分布中所含的参数等(如p ,,2σμ等).数理统计的任务就是根据总体中部分个体的数据资料对总体的未知分布进行统计推断.二、样本与样本分布由于作为统计研究对象的总体分布一般来说是未知的,为推断总体分布及其各种特征,一般方法是按一定规则从总体中抽取若干个体进行观察,通过观察可得到关于总体X 的一组数值),,,(21n x x x Λ,其中每一i x 是从总体中抽取的某一个体的数量指标i X 的观察值.上述抽取过程为抽样,所抽取的部分个体称为样本.样本中所含个体数目称为样本的容量.为对总体进行合理的统计推断,我们还需在相同的条件下进行多次重复的、独立的抽样观察,故样本是一个随机变量(或向量).容量为n 的样本可视为n 维随机向量),,,(21n X X X Λ,一旦具体取定一组样本,便得到样本的一次具体的观察值),,,(21n x x x Λ,称其为样本值.全体样本值组成的集合称为样本空间.为了使抽取的样本能很好地反映总体的信息, 必须考虑抽样方法,最常用的一种抽样方法称为简单随机抽样, 它要求抽取的样本满足下面两个条件:1. 代表性: n X X X ,,,21Λ与所考察的总体具有相同的分布;2. 独立性: n X X X ,,,21Λ是相互独立的随机变量.由简单随机抽样得到的样本称为简单随机样本, 它可用与总体独立同分布的n 个相互独立的随机变量n X X X ,,,21Λ表示. 显然, 简单随机样本是一种非常理想化的样本, 在实际应用中要获得严格意义下的简单随机样本并不容易.对有限总体, 若采用有放回抽样就能得到简单随机样本,但有放回抽样使用起来不方便, 故实际操作中通常采用的是无放回抽样, 当所考察的总体很大时, 无放回抽样与有放回抽样的区别很小, 此时可近似把无放回抽所得到的样本看成是一个简单随机样本. 对无限总体, 因抽取一个个体不影响它的分布, 故采用无放回抽样即可得到的一个简单随机样本.注: 今后假定所考虑的样本均为简单随机样本, 简称为样本.设总体X 的分布函数为)(x F ,则简单随机样本),,,(21n X X X Λ的联合分布函数为∏==ni i n x F x x x F 121)(),,,(Λ并称其为样本分布.特别地, 若总体X 为连续型随机变量,其概率密度为)(x f ,则样本的概率密度为∏==ni i n x f x x x f 121)(),,,(Λ分别称)(x f 与),,,(21n x x x f Λ为总体密度与样本密度.若总体X 为离散型随机变量,其概率分布为}{)(i i x X P x p ==, x 取遍X 所有可能取值, 则样本的概率分布为,)(},,,{),,,(12121∏======ni i n n x p x X x X x X p x x x p ΛΛ分别称)(i x p 与),,,(21n x x x p Λ为离散总体密度与离散样本密度.三、统计推断问题简述总体和样本是数理统计中的两个基本概念. 样本来自总体,自然带有总体的信息,从而可以从这些信息出发去研究总体的某些特征(分布或分布中的参数). 另一方面,由样本研究总体可以省时省力(特别是针对破坏性的抽样试验而言). 我们称通过总体X 的一个样本n X X X ,,,21Λ对总体X 的分布进行推断的问题为统计推断问题.总体、样本、样本值的关系:总体↙ ↖推断(个体)样本 → 样本值抽样在实际应用中, 总体的分布一般是未知的, 或虽然知道总体分布所属的类型, 但其中包含着未知参数. 统计推断就是利用样本值对总体的分布类型、未知参数进行估计和推断.为对总体进行统计推断, 还需借助样本构造一些合适的统计量, 即样本的函数, 下面将对相关统计量进行深入的讨论.四、分组数据统计表和频数直方图 通过观察或试验得到的样本值,一般是杂乱无章的,需要进行整理才能从总体上呈现其统计规律性. 分组数据统计表或频率直方图是两种常用整理方法. 1. 分组数据表:若样本值较多时,可将其分成若干组,分组的区间长度一般取成相等, 称区间的长度为组距. 分组的组数应与样本容量相适应. 分组太少,则难以反映出分布的特征,若分组太多,则由于样本取值的随机性而使分布显得杂乱. 因此,分组时,确定分组数(或组距)应以突出分布的特征并冲淡样本的随机波动性为原则. 区间所含的样本值个数陈为该区间的组频数. 组频数与总的样本容量之比称为组频率.2. 频数直方图:频率直方图能直观地表示出频数的分布,其步骤如下: 设n x x x ,,,21Λ是样本的n 个观察值.(i) 求出n x x x ,,,21Λ中的最小者)1(x 和最大者)(n x ;(ii) 选取常数a (略小于)1(x )和b (略大于)(n x ),并将区间],[b a 等分成m 个小区间(一般取m 使nm 在101左右): mab t m i t t t i i -=∆=∆+,,,2,1),,[Λ, 一般情况下,小区间不包括右端点.(iii) 求出组频数i n ,组频率i i f nn ∆=,以及),,2,1(,n i tfh i i Λ=∆=(iv) 在),[t t t i i ∆+上以i h 为高,t ∆为宽作小矩形,其面积恰为i f ,所有小矩形合在一起就构成了频率直方图五、经验分布函数样本的直方图可以形象地描述总体的概率分布的大致形态,而经验分布函数则可以用来描述总体分布函数的大致形状。

吴赣昌编_概率论与数理统计_第5章new

吴赣昌编_概率论与数理统计_第5章new

2 , 如 X ~ N ( , ) 未知,
2
(X1,X2,…,Xn)为X的一个样本
1 X Xi n i 1
X
1
n
2 X i i 1
n
均为统计量

2
2 X i
不是统计量
若μ已知,σ2未知, (X1,X2,…,X5)为X的一个样本
maxX 1 , X 2 ,, X 5
样本k阶中心矩
1 n Bk ( X i X ) k n i 1
2 X i (i 1, 2,..., n) 是X的样本,设 E( X i ) , D( X i ) ,(i 1, 2,..., n)
样本均值的期望和方差:
1 n 1 n E( X ) E( X i ) E( X i ) n i 1 n i 1
P( X 1 x1 ) P( X 2 x2 )P( X n xn )
F ( x1 ) F ( x2 ) F ( xn ) F ( xi )
i 1 n
当总体X是离散型时,其分布律为 P( X xi ) pi 样本的联合分布律为
P( X xi )
n
2
5.3 几个常用的分布和抽样分布
一、常用分布
2—分布、 t —分布和F—分布。
(一) 2—分布 1、定义:设n个相互独立的 X1,X2,…,Xn,Xi~N(0,1), i=1,2,…,n 则 n
X ~ (n) 称为自由度为n的2分布。
2 i 1 2 i 2
n个相互独立的服从标准正态分布的随机变量的平方 和服从2(n)。
2 2
的分布
~ N (0,1)
X i ~ N ( , 2 )

概率论与数理统计-第五章

概率论与数理统计-第五章

【数理统计简史】
1. 近代统计学时期
18 世纪末到 19 世纪,是近代统计学时期.这一 时期的重大成就是大数定律和概率论被引入统计 学.之后最小二乘法、误差理论和正态分布理论 等相继成为统计学的重要内容.这一时期有两大 学派:数理统计学派和社会统计学派.
【数理统计简史】 数理统计学派始于19世纪中叶,代表人物是比 利时的凯特莱( A.Quetelet , 1796-1874 ),著有 《概率论书简》《社会物理学》等,他主张用研 究自然科学的方法研究社会现象,正式把概率论 引入统计学,并最先用大数定律证明了社会生活 中随机现象的规律性,提出了误差理论.凯特莱 的贡献,使统计学的发展进入个了一个新的阶 段.
i =1 36
1 2 2 3 2 2 2 2 D( X ) = E ( X ) − E ( X ) = ( 0 + 1 + 2 + 3 ) − 4 2 5 = 4
2
二、样本与抽样 由于X1,X2,...,X36均与总体X同分布,且相互独 立,所以,Y的均值和方差分别为
E (Y ) = E ( ∑ X i ) = 36 E ( X ) = 54,
【数理统计简史】 18世纪到 19世纪初期,高斯从描述天文观测的 误差而引进正态分布,并使用最小二乘法作为估 计方法,是近代数理统计学发展初期的重大事件, 对社会发展有很大的影响.
【数理统计简史】 用正态分布描述观测数据的应用是如此普遍,以 至 在 19 世 纪 相 当 长 的 时 期 内 , 包 括 高 尔 顿 ( Galton )在内的一些学者,认为这个分布可用 于描述几乎是一切常见的数据.直到现在,有关 正态分布的统计方法,仍占据着常用统计方法中 很重要的一部分.最小二乘法方面的工作,在 20 世纪初以来,经过一些学者的发展,如今成了数 理统计学中的主要方法.

概率论与数理统计第五章

概率论与数理统计第五章

第 ×× 次课 2学时本次课教学重点:常用的统计量 本次课教学难点:总体,简单随机样本,统计量的概念。

本次课教学内容:第五章 数理统计的基础知识 第一节 数理统计的基本概念 教学组织: 一、引言在前五章中我们学习了概率论的基本内容,因为随机变量及其所伴随的概率分布全面描述了随机现象的统计规律性,所以在概率论的许多问题中,概率分布通常都是已知的,或者假设是已知的,而一切计算与推理都是在此基础上得出来的。

然而,实际情况往往并非如此。

一个随机现象所服从的分布概型可能完全不知道,或者只知道其概型而不知其分布函数中所含的参数。

例如,某工厂生产的灯泡的寿命服从什么分布是不知道的。

再如,某厂生产的一件产品是合格品还是不合格品,我们知道它服从两点分布,但其参数p 却不知道。

那么怎样才能知道一个随机现象的分布或其参数呢?这就是数理统计所要解决的一个首要问题。

为了获得灯泡的寿命分布,我们从所有的灯泡中抽出一部分进行观察与测试以取得相关信息,从而做出推断。

由于观察和测试是随机现象,依据有限个观察与测试对整体所做出的推断不可能绝对准确,这个不确定性我们用概率来表达。

数理统计学的基本问题就是依据观测或试验所取得的有限信息对整体做出推断,每个推断必须伴有一定的概率来表明其可靠程度。

这种伴有一定概率的推断称为统计推断。

二、总体与随机样本 1、总体在数理统计中,我们往往研究有关对象的某一数量指标(如灯泡的寿命这一数量指标)。

为此,考虑与这一数量指标相联系的随机试验,对这一数量指标进行试验或观察。

我们把研究对象的全体所构成的一个集合称为总体,总体中的每个对象称为个体。

总体中所包含的个体的个数称为总体的容量。

容量有限的总体称为有限总体,容量无限的总体称为无限总体。

例如,考察某批灯泡的质量,如这一批灯泡共有5000只,每个灯泡的寿命是一个可能的观察值,是一个个体。

所有5000只灯泡的寿命是一个有限总体。

6.1.数理统计的基本概念

6.1.数理统计的基本概念

对容量较小的样本可分为5-6组,容量100左右的可分7-10组,
容量200左右的可分9-13组,容量300左右及以上的可分12-20 组,目的是使用足够的组来表示数据的变异。本例中只有20个 数据,我们将之分为5组,即k=5。
(2) 确定每组组距:每组区间长度可以相同也可以不同,实用中 常选用长度相同的区间以便于进行比较,此时各组区间的长度 称为组距,其近似公式为:
频数fi
3
4
8
3
2
试写出此分组样本的经验分布函数。
解:由经验分布函数的定义得到
0
0.15
Fn
(
x)
0.35 0.75
0.9
1
x 37.5 37.5 x47.5 47.5 x57.5 57.5 x67.5 67.5 x77.5 x 77.5
例6 以下是一组来自标准正态分布总体的样本的观测值: -1.4462 , -0.7012 , 1.2460 , -0.6390 , 0.5774 , -0.3600 , -0.1356, -1.3493 , -1.2704 , 0.9846
13
100—110
105
16
110—120
从总体X中抽取一个个体,就是对总体X进行一次观察并记 录其结果。取样是随机的,且观察前无法预知起结果,故每 个观察结果都是随机变量,且与总体同分布。
定义 1 在相同的条件下,对总体X进行n次重复的、独立的 观察,得到n个结果 X1, X 2 , , X n ,称随机变量X1, X 2 , , X n 为来自总体X的容量n的简单随机样本,简称样本。其观测值
641 635 640 637 642 638 645 643 639 640 这是一个容量为10的样本的观测值,对应的总体为该厂生产 的瓶装啤酒的净含量。

《数理统计基本概念》课件

《数理统计基本概念》课件

不可能事件
概率等于0的事件,表示一定 不会发生。
独立事件
两个事件的发生相互独立,一 个事件的发生不影响另一个事 件的发生。
随机变量及其分布
01
02
03
04
离散型随机变量
随机变量可以取到有限个或可 数无穷个值。
连续型随机变量
随机变量可以取到任何实数值 。
概率分布函数
描述随机变量取值概率的函数 。
概率密度函数
确定因子、提出假设、构造统计量、 进行统计分析、做出推断结论。
方差分析的应用场景
比较不同组数据的均值差异、分析多 因素对结果的影响等。
方差分析的注意事项
满足正态性和方差齐性的假设、注意 组间和组内的比较等。
04
回归分析
一元线性回归
总结词
一元线性回归是数理统计中常用的回归分析方法,用于研究一个因变量与一个自变量之间 的线性关系。
假设检验的类型
单侧检验、双侧检验、独立样本检验、配对 样本检验等。
假设检验的基本步骤
提出假设、构造检验统计量、确定临界值、 做出推断结论。
假设检验的注意事项
避免两类错误、注意样本量和分布情况等。
方差分析
方差分析的概念
方差分析是用来比较不同组数据的变 异程度和分析变异来源的一种统计方 法。
方差分析的基本步骤
详细描述
一元线性回归分析通过最小二乘法拟合一条直线,使得因变量的观测值与自变量的预测值 之间的残差平方和最小。它可以帮助我们了解自变量和因变量之间的相关性和预测因变量 的未来值。
公式
(y = ax + b) 其中,(a) 是斜率,(b) 是截距。
多元线性回归
01
总结词
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
样本( X1X 2, , X n )的联合密度函数为 f (xi )
2020/11/15
i 1
21
例:设Xk来自于参数为k的指数分布,k 1, 2, , n,
且相互独立,求(X1, X 2,
,
X
)的联合分布函数
n
解 由于Xk来自于参数为k的指数分布,
所以 FXk ( xk ) 1 ek xk , xk 0
• 依据推断形式不同,统计推断可分为估计和假设检验两 种,它们构成了统计学的基础 。
• 依据不同的理论模型,统计推断可分为许多不同的分支 学科。比如,参数和非参数、线性和非线性、方差分析、 回归分析、时间序列分析、多元统计分析等等。
• 依据对概率的不同解释,统计推断可分为频率统计和贝
叶斯统计。对某件事情发
生机会的信念
频率的稳定值
统计推断与概率论的区别
• 在概率论中,我们研究的随机变量的分布都是假设已 知的,在这一前题下去研究它的性质、特点和规律性。 例如求出它的数字特征,讨论随机变量函数的分布, 介绍常用的各种分布等。
• 统计推断以概率论为理论基础,根据试验或观察得到 的数据,来研究随机现象,对研究对象的客观规律性 作出种种合理的估计和判断。
2020/11/15
15
• 容量为 n 的样本在观察之前为一个n 维 随机向量 ( X1,X2,…,Xn),当 n 次 观察一经完成,我们就得到由一组实数
组成的 n 维向量 (x1,x2,…,xn) ,
它是n 维随机向量(X1,X2,…,Xn )的 一次实现。
2020/11/15
16
由于我们是利用样本观察来对总体的分布进行推 断,因而从总体中抽取样本进行观察时必须是随机的。 所以对于随机抽样来说,对其某一次观察结果而论, 是完全确定的一组值,但它又是随每次抽样观察而改 变的,由于我们要依据这一观察结果进行分析推断, 并研究比较各种推断方法的好坏,因而一般考虑问题 时,就不能把看为确定的数值,而应该看作为随机向 量X= (X1,X2, …,Xn) ,称它为容量是n的样本,因而 对样本也有分布可言。
2020/11/15
4
例1 • 某市场分析人员搜集一个消费者的样本,
要求样本中每个人回答对某商品的观点。 从得到的这些样本数据中,市场分析人员 必须做出这种商品有无足够需求量的决定。 若存在足够需求,分析人员还要选择包括 设计、价格及市场范围。所有这些问题都 可以从调查的样本数据所提供的信息中得 到回答。
为什么要学数理统计
数理统计是运用概率论的基础知识,更侧重于应用随 机现象本身的规律性来考虑资料的收集整理和分析,建 立有效的数学方法,从而找出相应的随机变量的分布律 或它的数字特征,对所关心的问题作出估计与检验。
概率论中的一个最基本的假设就是:研究对象的分布 已知。而在实际中,我们往往不知道随机变量,的确切 分布,这就是数理统计所讨论问题的应用背景,它需要 用已有的部分信息去推断整体情况。
(1) 代表性:X1, X2 ,, Xn中每一个与总体 X 有相同的分布. (2) 独立性:X1, X2,, Xn 是相互独立的随机变量.
则称 ( X1, X2 , , Xn ) 为n的简单随机样本.
获得简单随机样本的抽样方法称为简单随机抽样.
2020/11/15
20
• 样本的分布
定理: 设( X1, X2,, Xn)为来自总体X的样本.
例2 • 某百货公司对购买的一批电灯泡进行抽样
检验。在检验的基础上决定是否接受这批 灯泡。这种检验可能从这批灯泡中抽取15 只作为样本,检验样本的废品数和平均使 用寿命。是否接受的决定建立在观察到的 废品数和平均使用寿命上。
• 在以上两个例子中,都需要在不确定情况下对总体状 态进行预测或决策,之所以产生不确定性,是因为我 们无法拥有进行预测或决策所需的全部信息(总体数 据)。在使用不完全信息(样本数据)进行预测和决策 时,必须借助于一种叫做统计推断的统计方法。
2020/11/15
30
设( x1, x2 ,, xn )是样本( X1, X 2 ,, X n ) 的观察值 则称f ( x1, x2 ,, xn )是 f ( X1, X2,, Xn ) 的观察值
注 1统计量 f ( X1, X2,, Xn )是随机变量; 2°统计量用于统计推断,故不应含任何关
(1)若总体X的分布函数为F(x),则样本( X1X 2, , X n )
n
的分布函数为 F(xi ) i 1
(2)若X为离散型随机变量,概率分布律为P( X xk )
n
pk ,则样本( X1X 2, , X n )的联合分布律为 pki i 1
(3)若X为连续型随机变量,概率分布律为f (x),则
2020/11/15
2
• 当然统计学中研究的问题要比这个例子 复杂得多。
• 现代统计学所提供的各种统计方法,作 为在不确定情况下进行预测和决策的重 要辅助工具,被广泛地应用于所有出现 定量数据且需要对它们进行分析和解释 的问题中(称这类问题为统计问题)。
2020/11/15
3
• 在对什么是统计学做详细解释之前,我 们先考查两个需要应用统计方法的问题, 从这些问题中我们希望大家能领悟出统 计问题的基本要素。
数理统计的基本任务是:根据从总体中抽取的样本,
利用样本的信息推断总体的性质.
2020/11/15
17
总体、样本、样本值的关系
事实上我们抽样后得到的资料都是具体的、确 定的样本值。如我们从全班同学中抽取10人测 量身高,得到10个数,它们是样本值而不是样 本。我们只能观察到随机变量的取值而见不到 随机变量。
1
π3 (1 x12 )(1 x22 )(1 x32 ) , x1 , x2 , x3 R
2020/11/15
P133 例5.2 23
• 直方图与经验分布函数
2020/11/15
24
2020/11/15
25
2020/11/15
26
例 某食品厂生产听装饮料,现从生产线上随机抽取5听 饮料,称得其净重(克)为: 351 347 355 344 351
Ii
1, 0,
{Xi {Xi
xx}}不 发发 生生, 则
Fn( x)
n( x).
n
2020/11/15
28
2020/11/15
29
§5.2 统计量
由样本推断总体情况,需要对样本值进行 “加工”,这就需要构造一些样本的函数,它把样 本中所含的信息集中起来. • 统计量
来自总体X的样本X1,X2, …,Xn的函数g (X1,X2, …,Xn) ,若是连续的且不含任何未知 参数,则称为一个统计量。
• 随机样本与样本值
样本的定义: 从总体X中,随机地抽取n个个体:X1, X2,, Xn
称为总体X的一个样本,记为 ( X1, X2 , , Xn ) 样本中所包含个体的总数n称为样本容量.
样本值: 每一次抽取所得到的n个具体数值:( x1 , x2 , , xn )
称为一个样本值(观察值)。
样本与抽样分布
• 统计推断就是通过从总体中抽取一部分个体, 根据获取的数据来对总体分布得出推断的。
• 被抽出的部分个体叫做总体的一个样本。
• 显然,样本就是总体的一个有限子集。
• 若将总体定义为随机变量 X ,总体分布就是 随机变量 X的概率分布,总体数量特征就是随 机变量 X 的数字特征。
• 这时,从总体中抽取一个个体,就是对总体X 进行一次观察并记录其结果。
x 355
2020/11/15
27
注 1° k为样本中不超过x的样本的最大个数,
即在n次重复独立试验中,事件 { X x}
发生的次数. ( x(1) x(2) x(k) x,有k个样品的取值 x)
2 Fn( x)为事件{X x}的频率.
n
事实上,令 n( x) Ii,其中
i 1
( X1, X2 , X3 )的联合概率密度.
解 因为Xi自于柯西分布,所以Xi 的密度函数是
pXi
(
xi
)
1 π
1
1 xi2
,
xi (i 1,2,3)
所以
(
X1
,
X
2
,
X
3
)
的联合概率密度是:
3
p( X1,X2,X3 )( x1, x2 , x3 ) pXi ( xi )
i 1
1
• 通过上面的例子大家对统计问题应该有了初步的了解。 下面我们将介绍上面例子中涉及到的几个统计学的基 本概念,这些概念是对统计学的本质和特征的概括和 反映,是统计思维网络上的结点。掌握了这些基本概 念后,大家对统计问题会有更深刻的认识和理解。
2020/11/15
7
概括地讲,数理统计研究以有效的方式 采集、 整理和分析受到随机因素影响的数据,并对所考 察的问题做出推断和预测,直至提供依据和建议.
数理统计研究内容十分广泛,其中一类重要的问题便 是统计推断.统计推断是利用试验数据对研究对象的性质 作出推断,其中有两个重要方面:参数估计和假设检验。
2020/11/15
1
• 例如,要了解全班同学的身高情况,先 要测量并记录班上每个同学的身高,然 后用记录下来的身高数据计算全班同学 的平均身高。这里的第一步就是搜集数 据,第二步就是从搜集到的数据集中获 取信息。平均身高正是反映全班同学身 高状况的重要信息。
• 在统计推断中,我们研究的随机变量的分布是未知的, 或者是不完全知道的,人们是通过对研究的随机变量 进行重复独立的观察,得到许多观察值,对这些数据 进行分析,从而对所研究的随机变量的分布作出种种 推断。
第五章 数理统计的基本概念
总体与样本 统计量 数理统计中几个常用分布 抽样分布定理
相关文档
最新文档