山西省长治二中2019届高三数学上学期质量检测考试试题理

合集下载

山西省四校2019届高三上学期第二次联考数学理试题

山西省四校2019届高三上学期第二次联考数学理试题

2019届高三年级第二次四校联考数学试题(理)命题: 康杰中学 忻州一中 临汾一中 长治二中(满分150分,考试时间120分)一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题卡上对应题目的答案标号)1.设全集U =R ,集合{|24},{3,4},()U A x x B A C B =<≤=⋂则= A. (2,3)B. (2,4]C. (2,3)∪(3,4)D. (2,3) ∪(3,4]2.复数2(1)1i i+-=A. 1i +B. 1i -C. 1i --D. 1i -+3.已知等差数列{}n a 各项都不相等,214832a a a a d =+==且,则A. 0B.12C. 2D. 0或124.阅读如图所示的程序框图,则输出的S =A .14B .20C .30D .555.从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为A .6B .12C .18D .246.设12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在双曲线右支上存在一点P ,满足2122||||,PF F F F =且到直线1PF 的距离等于双曲线的实轴长,则双曲线离心率为 A.45B.54C.35D.537.已知向量,||1,||7a b a a b =+=满足,3π=,则b ||=A. 2B. 3C.D. 48.若椭圆2222+1x y a b=过抛物线28y x =的焦点,且与双曲线221x y -=有相同的焦点,则该椭圆的方程为A.22+142x y = B. 22+13x y = C. 22+124x y = D. 22+13y x = 9.将函数sin()()6y x x R π=+∈的图象上所有的点向左平移4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为A.5sin(2)()12y x x R π=+∈B.5sin()()212x y x R π=+∈ C.sin()()212x y x R π=-∈ D.5sin()()224x y x R π=+∈ 10.函数xx y ||log 2=的图象大致是A. B. C. D.11.已知在平面直角坐标系xOy 中,O (0, 0), A (1,-2), B (1,1), C (2,-1),动点M (x ,y ) 满足条件⎩⎪⎨⎪⎧-2≤−→OM ·−→OA ≤21≤−→OM ·−→OB ≤2,则−→OM ·−→OC 的最大值为 A.1 B.-1 C.4 D.-4 12.已知定义域为R 上的函数)(,2),2()2()(x f x x f x f x f 时当满足<--=+单调递增,如果)()(,0)2)(2(,4212121x f x f x x x x +<--<+则且的值A .可能为0B .恒大于0C .恒小于0D .可正可负二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置上) 13.已知 则实数k 的取值范围为 . 62)21(x x -的展开式中,x 5的系数为 .14.在15.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c ) cos A =a cos C ,则cos A =________.16.已知()x f 是定义在[]2,2-上的函数,且对任意实数)(,2121x x x x ≠,恒有1212()()0f x f x x x -<-,且()x f 的最大值为1,则满足()1log 2<x f 的解集为 .三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答题卡的相应位置上) 17.(本小题满分10分)已知函数R x x x x f ∈--=,21cos 2sin 23)(2. (Ⅰ)求函数)(x f 的对称轴方程和最小正周期; (Ⅱ)求函数⎥⎦⎤⎢⎣⎡-4,4ππ上的最大值和最小值.18.(本小题满分12分)已知数列{}n a 的各项均为正数,前n 项和为n S ,且*(1)()2n n n a a S n N +=∈ (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设121,...2n n n nb T b b b S ==+++,求n T .19.(本小题满分12分)高二年级某班学生在数学校本课程选课过程中,已知第一小组与第二小组各有六位同学.每位同学都只选了一个科目,第一小组选《数学运算》的有1人,选《数学解题思想与方法》的有5人,第二小组选《数学运算》的有2人,选《数学解题思想与方法》的有4人,现从第一、第二两小组各任选2人分析选课情况.(Ⅰ)求选出的4 人均选《数学解题思想与方法》的概率;(Ⅱ)设ξ为选出的4个人中选《数学运算》的人数,求ξ的分布列和数学期望.20.(本小题满分12分)已知函数1()ln(1)f x a x x=++. (Ⅰ)当2a =时,求()f x 的单调区间和极值;(Ⅱ)若()f x 在[2,4]上为增函数,求实数a 的取值范围.21.(本小题满分12分)已知椭圆)0(1:2222>>=+b a by a x C 上的任意一点到它的两个焦点)0,(1c F -,)0,(2c F )0(>c 的距离之和为22,且其焦距为2. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知直线0=+-m y x 与椭圆C 交于不同的两点A,B.问是否存在以A,B为直径的圆过椭圆的右焦点2F .若存在,求出m 的值;不存在,说明理由.22.(本小题满分12分)已知函数()ln()x f x e a =+(a 为常数,e 是自然对数的底数)是实数集R 上的奇函数,函数x x f x g sin )()(+=λ是区间[-1,1]上的减函数.(Ⅰ)求a 的值;(Ⅱ)若2()1g x t t λ≤++在[1,1]x ∈-及λ所在的取值范围上恒成立,求t 的取值范围; (Ⅲ)试讨论函数m ex x x f xx h -+-=2)(ln )(2的零点的个数.⎥⎦⎤⎝⎛4,412019届高三年级第二次四校联考数学参考答案(理)一、1—5 CDBCD 6—10 DAABA 11—12 CC二、13.[1,3] 14. -16015.16 . 三、17. 解 :(Ⅰ)1)62sin(2122cos 12sin 23)(--=-+-=πx x x x f (3分) 则)(x f 的对称轴是,k ∈Z,最小正周期是是ππ==22T . (5分)(Ⅱ)⎥⎦⎤⎢⎣⎡-∈4,4ππx ⎥⎦⎤⎢⎣⎡-∈-∴3,3262πππx (8分)⎥⎦⎤⎢⎣⎡-∈-23,1)62sin(πx ,所以最大值为123-,最小值为-2.(10分) 18. 解:(Ⅰ)∵(1)2n n n a a S +=,∴22n n n S a a =+ ① 21112(2)n n n S a a a ---=+≥ ②由①-②得:22112n n n n n a a a a a --=-+- (2分) 11()(1)0n n n n a a a a --+--=,∵0n a > ∴11(2)n n a a n --=≥,又∵1111(1)2a a a S +==,∴11a = ∴1(1)(2)n a a n d nn =+-=≥ ---------------(5分)当1n =时,11a =,符合题意. n a n =----------(6分) (Ⅱ)∵(1)(1)22n n n a a n n S ++== ∴111(1)1n b n n n n ==-++-----(10分) 则11111111223111n n T n n n n =-+-+⋅⋅⋅+-=-=+++---------(12分) 19.解:(Ⅰ)设“从第一小组选出的2人选《数学解题思想与方法》”为事件A ,“从第二小组选κπ π + = 3 x 2出的2人选《数学解题思想与方法》”为事件B.由于事 件A 、B 相互独立,且25262()3C p A C ==, 24262()5C P B C ==. …………………4分所以选出的4人均考《数学解题思想与方法》的概率为224()()()3515P A B P A P B ⋅=⋅=⨯= …………………………… 6分(Ⅱ)设ξ可能的取值为0,1,2,3.得4(0)15P ξ==, 21112552442222666622(1)45C C C C C P C C C C ξ===+=, 15226611(3).45c p c c ξ===2(2)1(0)(1)(3)9p p p p ξξξξ==-=-=-==…………… 9分 ξ的分布列为∴ ξ的数学期望 012311545945E ξ=⨯+⨯+⨯+⨯= ………12分 20. 解:(1)由010()(1,0)(0,)x x f x≠+>-⋃+∞且得函数的定义域为,(2分)又22221121(1)(21)()1(1)(1)x x x x f x x x x x x x ---+'=-+==+++,由()f x '>0得 ,所以()f x 的单调增区间为1(1,)(1,)2--+∞和,单调递减区间为1(0)(01)2-,和,.(4分) ()f x 和()f x '随x 的变化情况如下表:由表知()f x 的极大值为极小值为(1)12ln 2f =+.--(6分)(Ⅱ)221()(1)ax x f x x x --'=+,若()f x 在区间[2,4]上为增函数,则当[2,4]x ∈时,()0f x '≥恒成立,即2210(1)ax x x x --≥+,----------------------------------------(8分)21.解:(Ⅰ)依题意可知⎩⎨⎧==22222c a又∵222c a b -=,解得⎩⎨⎧==12b a ———————————————(2分)则椭圆方程为1222=+y x .—————————————————————(4分) (Ⅱ)联立方程⎪⎩⎪⎨⎧=+-=+,0,1222m y x y x 消去y 整理得:0224322=-++m mx x (6分)则0)3(8)22(1216222>+-=--=∆m m m解得 33<<-m ①————————————————————(7分)372±-=m 372±-=m解得 ——————————————(11分)检验都满足①,∴————————————(12分) 22. 解:(Ⅰ))ln()(a e x f x +=是奇函数,则)ln()ln(a e a e x x+-=+-恒成立.∴()() 1.x x ea e a -++= 即211,x x ae ae a -+++=∴()0,0.xxa e e a a -++=∴=……………4分(Ⅱ)由(I )知(),f x x =∴()sin g x x x λ=+ ∴'()c o s g x xλ=+ 又)(x g 在[-1,1]上单调递减,0)(≤'x g 在[-1,1]上恒成立。

山西省长治市2019-2020学年高考数学二模考试卷含解析

山西省长治市2019-2020学年高考数学二模考试卷含解析

山西省长治市2019-2020学年高考数学二模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.821x y x ⎛⎫++ ⎪⎝⎭的展开式中12x y -的系数是( ) A .160 B .240C .280D .320【答案】C 【解析】 【分析】首先把1x x +看作为一个整体,进而利用二项展开式求得2y 的系数,再求71x x ⎛⎫+ ⎪⎝⎭的展开式中1x -的系数,二者相乘即可求解. 【详解】由二项展开式的通项公式可得821x y x ⎛⎫++ ⎪⎝⎭的第1r +项为82181rr r r T C x y x -+⎛⎫=+ ⎪⎝⎭,令1r =,则712281T C x y x ⎛⎫=+ ⎪⎝⎭,又71x x ⎛⎫+ ⎪⎝⎭的第1r +为7271771rr r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令3r =,则3735C =,所以12x y -的系数是358280⨯=. 故选:C 【点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题. 2.高三珠海一模中,经抽样分析,全市理科数学成绩X 近似服从正态分布()285,N σ,且(6085)0.3P X <≤=.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( ) A .40 B .60C .80D .100【答案】D 【解析】 【分析】由正态分布的性质,根据题意,得到(110)(60)P X P X ≥=≤,求出概率,再由题中数据,即可求出结果. 【详解】由题意,成绩X 近似服从正态分布()285,N σ,则正态分布曲线的对称轴为85x =,根据正态分布曲线的对称性,求得(110)(60)0.50.30.2P X P X ≥=≤=-=, 所以该市某校有500人中,估计该校数学成绩不低于110分的人数为5000.2100⨯=人, 故选:D . 【点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易. 3.设n S 是等差数列{}n a 的前n 项和,且443S a =+,则2a =( ) A .2- B .1-C .1D .2【答案】C 【解析】 【分析】利用等差数列的性质化简已知条件,求得2a 的值. 【详解】由于等差数列{}n a 满足443S a =+,所以123443a a a a a +++=+,1233a a a ++=,2233,1a a ==. 故选:C 【点睛】本小题主要考查等差数列的性质,属于基础题.4.已知等差数列{}n a 中,若5732a a =,则此数列中一定为0的是( ) A .1a B .3aC .8aD .10a【答案】A 【解析】 【分析】将已知条件转化为1,a d 的形式,由此确定数列为0的项. 【详解】由于等差数列{}n a 中5732a a =,所以()()113426a d a d +=+,化简得10a=,所以1a 为0.故选:A 【点睛】本小题主要考查等差数列的基本量计算,属于基础题. 5.设ln 2m =,lg 2n =,则( ) A .m n mn m n ->>+B .m n m n mn ->+>C .m n mn m n +>>-D .m n m n mn +>->【答案】D 【解析】 【分析】由不等式的性质及换底公式即可得解. 【详解】解:因为ln 2m =,lg 2n =,则m n >,且(),0,1m n ∈, 所以m n mn +>,m n m n +>-, 又2222111110log 10log log log 21lg 2ln 2e n m e-=-=-=>=, 即1m nmn->,则m n mn ->, 即m n m n mn +>->,故选:D. 【点睛】本题考查了不等式的性质及换底公式,属基础题. 6.要得到函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象( ) A .向右平移6π个单位 B .向右平移3π个单位 C .向左平移3π个单位 D .向左平移6π个单位 【答案】D 【解析】 【分析】直接根据三角函数的图象平移规则得出正确的结论即可; 【详解】解:函数sin 2sin 236y x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴要得到函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象向左平移6π个单位. 故选:D . 【点睛】本题考查三角函数图象平移的应用问题,属于基础题.7.已知平面α,β,直线l 满足l α⊂,则“l β⊥”是“αβ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .即不充分也不必要条件【答案】A 【解析】 【分析】α,β是相交平面,直线l ⊂平面α,则“l β⊥” ⇒ “αβ⊥”,反之αβ⊥,直线l 满足l α⊂,则l β⊥或l //β或l ⊂平面β,即可判断出结论. 【详解】解:已知直线l ⊂平面α,则“l β⊥” ⇒ “αβ⊥”,反之αβ⊥,直线l 满足l α⊂,则l β⊥或l //β或l ⊂平面β,∴ “l β⊥”是“αβ⊥”的充分不必要条件.故选:A. 【点睛】本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力. 8.已知函数()()4,2x f x x g x a x =+=+,若[]121,3,2,32x x ⎡⎤∀∈∃∈⎢⎥⎣⎦,使得()()12f x g x ≥,则实数a 的取值范围是( ) A .1a ≤ B .1a ≥ C .0a ≤ D .0a ≥【答案】C 【解析】试题分析:由题意知,当11,32x ⎡⎤∈⎢⎥⎣⎦时,由()44f x x x =+≥=,当且仅当4x x =时,即2x =等号是成立,所以函数()f x 的最小值为4,当[]22,3x ∈时,()2xg x a =+为单调递增函数,所以()()min 24g x g a ==+,又因为[]121,3,2,32x x ⎡⎤∀∈∃∈⎢⎥⎣⎦,使得()()12f x g x ≥,即()f x 在1,32x ⎡⎤∈⎢⎥⎣⎦的最小值不小于()g x 在[]2,3x ∈上的最小值,即44a +≤,解得0a ≤,故选C . 考点:函数的综合问题.【方法点晴】本题主要考查了函数的综合问题,其中解答中涉及到基本不等式求最值、函数的单调性及其应用、全称命题与存在命题的应用等知识点的综合考查,试题思维量大,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,其中解答中转化为()f x 在1,32x ⎡⎤∈⎢⎥⎣⎦的最小值不小于()g x 在[]2,3x ∈上的最小值是解答的关键.9.一辆邮车从A 地往B 地运送邮件,沿途共有n 地,依次记为1A ,2A ,…n A (1A 为A 地,n A 为B 地).从1A 地出发时,装上发往后面1n -地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达1A ,2A ,…n A 各地装卸完毕后剩余的邮件数记为(1,2,,)k a k n =….则k a 的表达式为( ).A .(1)k n k -+B .(1)k n k --C .()n n k -D .()k n k -【答案】D 【解析】 【分析】根据题意,分析该邮车到第k 站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案. 【详解】解:根据题意,该邮车到第k 站时,一共装上了(21)(1)(2)()2n k kn n n k --⨯-+-+⋯⋯-=件邮件,需要卸下(1)123(1)2k k k ⨯-+++⋯⋯-=件邮件, 则(21)(1)()22k n k k k k a k n k --⨯⨯-=-=-,故选:D . 【点睛】本题主要考查数列递推公式的应用,属于中档题.10.已知函数()(0xf x m m m =->,且1)m ≠的图象经过第一、二、四象限,则||a f =,384b f ⎛⎫= ⎪⎝⎭,|(0)|c f =的大小关系为( )A .c b a <<B .c a b <<C .a b c <<D .b a c <<【答案】C 【解析】 【分析】根据题意,得01m <<,(1)0f =,则()f x 为减函数,从而得出函数|()|f x 的单调性,可比较a 和b ,而|(0)|1c f m ==-,比较()()0,2f f ,即可比较,,a b c .【详解】因为()(0xf x m m m =->,且1)m ≠的图象经过第一、二、四象限, 所以01m <<,(1)0f =,所以函数()f x 为减函数,函数|()|f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增, 又因为31382412422<=<=<,所以a b <,又|(0)|1c f m ==-,2|(2)|f m m =-,则|2|(2)||(0)|10f f m -=-<, 即|(2)||(0)|f f <, 所以a b c <<. 故选:C. 【点睛】本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.11.在ABC ∆中,,A B C ∠∠∠所对的边分别是,,a b c ,若3,4,120a b C ︒==∠=,则c =( )A .37B .13C D【答案】D 【解析】 【分析】直接根据余弦定理求解即可. 【详解】解:∵3,4,120a b C ︒==∠=,∴2222cos 9161237c a b ab C =+-=++=,∴c = 故选:D . 【点睛】本题主要考查余弦定理解三角形,属于基础题.12.对于任意x ∈R ,函数()f x 满足(2)()f x f x -=-,且当1x …时,函数()f x =若111,,223⎛⎫⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭a fb fc f ,则,,a b c 大小关系是( )A .b c a <<B .b a c <<C .c a b <<D .c b a <<【答案】A 【解析】 【分析】由已知可得[1,)+∞的单调性,再由(2)()f x f x -=-可得()f x 对称性,可求出()f x 在(,1)-∞单调性,即可求出结论. 【详解】对于任意x ∈R ,函数()f x 满足(2)()f x f x -=-, 因为函数()f x 关于点(1,0)对称,当1x ≥时,()f x =所以()f x 在定义域R 上是单调增函数. 因为111232-<-<,所以111232⎛⎫⎛⎫⎛⎫-<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f f , b c a <<.故选:A. 【点睛】本题考查利用函数性质比较函数值的大小,解题的关键要掌握函数对称性的代数形式,属于中档题.. 二、填空题:本题共4小题,每小题5分,共20分。

长治市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案(1)

长治市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案(1)

长治市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.2. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 3. cos80cos130sin100sin130︒︒-︒︒等于( ) A .3 B .12 C .12- D .3- 4. 方程()2111x y -=-+表示的曲线是( )A .一个圆B . 两个半圆C .两个圆D .半圆 5. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( ) A .3 B .72 C .23 D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.6. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系如图,那么水瓶的形状是图中的( )A .B .C .D .7. 已知AC ⊥BC ,AC=BC ,D 满足=t +(1﹣t ),若∠ACD=60°,则t 的值为( )A .B .﹣C .﹣1D .8. 在等差数列{}n a 中,11a =,公差0d ≠,n S 为{}n a 的前n 项和.若向量13(,)m a a u r =,133(,)n a a r=-, 且0m n u r r ?,则2163n n S a ++的最小值为( )A .4B .3C .232-D .92【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力. 9. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x x f e e =C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.10.已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 11.某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,4 12.阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .120二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1cos 2c B a b ⋅=+,ABC ∆的面积3S =,则边c 的最小值为_______.【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.14.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111] 15.下列四个命题:①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面其中正确命题的序号是 .16.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________.三、解答题(本大共6小题,共70分。

山西省长治市高考数学二模试卷(理科)

山西省长治市高考数学二模试卷(理科)

山西省长治市高考数学二模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019高一上·嘉兴期中) 已知集合,那么()A .B .C .D .2. (2分)(2017·枣庄模拟) 若复数为纯虚数,其中i为虚数单位,则a=()A . 2B .C . ﹣2D .3. (2分)(2017·黑龙江模拟) 在拍毕业照时,六个同学排成一排照相,要求其中一对好友甲和乙相邻,且同学丙不能和甲相邻的概率为()A .B .C .D .4. (2分)下列命题中,真命题是()A . ∃x0∈R,≤0B . ∀x∈R,2x>x2C . 双曲线的离心率为D . 双曲线的渐近线方程为5. (2分)(2017·渝中模拟) 下图为某一函数的求值程序框图,根据框图,如果输出的y的值为3,那么应输入x=()A . 1B . 2C . 3D . 66. (2分) (2019高二上·延吉期中) 已知首项为1的等比数列{an}是摆动数列,Sn是{an}的前n项和,且,则数列{ }的前5项和为()A . 31B .C .D . 117. (2分)(2018·绵阳模拟) 在中,分别为所对的边,若函数有极值点,则的最小值是()A . 0B .C .D . -18. (2分)已知实数x,y满足约束条件则z=2x-y的取值范围()A . [l,2]B . [1,3]C . [0,2]D . [0,1]9. (2分)如图,正方体ABCD-A1B1C1D1中,AB的中点为M,DD1的中点为N,则异面直线B1M与CN所成的角是()A . 0度B . 45度C . 60度D . 90度10. (2分) (2016高二下·沈阳开学考) 某同学从家里骑车一路匀速行驶到学校,只是在途中遇到一次交通堵塞,耽搁了一些时间,下列函数的图像最能符合上述情况的是()A .B .C .D .11. (2分)在△ABC中,AB=BC,cosB=﹣,若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=()A .B .C .D .12. (2分)一几何体的三视图如图所示,则它的体积为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)已知向量 =(4,3), =(﹣2,1),如果向量+λ与垂直,则λ的值为________.14. (1分) (2016高三上·金山期中) 在()16的二项展开式的17个项中,整式的个数是________.15. (1分) (2017高一下·庐江期末) 已知数列{an}中,a1=2,an=an﹣1﹣(n≥2),则数列{an}的前12项和为________.16. (1分) (2019高三上·镇江期中) 已知函数的定义城为,对于任意,当时,的最小值为________.三、解答题 (共7题;共70分)17. (10分)(2016·福建模拟) 如图,在△ABC中,AB=2,cosB= ,点D在线段BC上.(1)若∠ADC= π,求AD的长;(2)若BD=2DC,△ABC的面积为,求的值.18. (10分)(2017·泸州模拟) 如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,Q为AD的中点,M是棱PC的中点,PA=PD=PC,BC= AD=2,CD=4(1)求证:直线PA∥平面QMB;(2)若二面角P﹣AD﹣C为60°,求直线PB与平面QMB所成角的余弦值.19. (10分)(2018·绵阳模拟) 十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在,,,,,(单位:克)中,其频率分布直方图如图所示.(1)按分层抽样的方法从质量落在,的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;(2)以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:A.所有蜜柚均以40元/千克收购;B.低于2250克的蜜柚以60元/个收购,高于或等于2250克的以80元/个收购.请你通过计算为该村选择收益最好的方案.20. (10分)(2017·息县模拟) 已知椭圆的离心率为,以椭圆的四个顶点为顶点的四边形的面积为8.(1)求椭圆C的方程;(2)如图,斜率为的直线l与椭圆C交于A,B两点,点P(2,1)在直线l的上方,若∠APB=90°,且直线PA,PB分别与y轴交于点M,N,求线段MN的长度.21. (10分) (2016高二下·福建期末) 设函数f(x)=ex﹣(e为自然对数的底数).(1)求函数y=f(x)在点(1,f(1))处的切线方程;(2)当x∈(﹣1,+∞)时,证明:f(x)>0.22. (10分)(2017·临川模拟) 以直角坐标系原点O为极点,x轴正方向为极轴,已知曲线C1的参数方程为(t为参数),C2的极坐标方程为ρ2(1+sin2θ)=8,C3的极坐标方程为θ=α,α∈[0,π),ρ∈R,(1)若C1与C3的一个公共点为A(异于O点),且|OA|= ,求α;(2)若C1与C3的一个公共点为A(异于O点),C2与C3的一个公共点为B,求|OA|•|OB|的取值范围.23. (10分)已知函数f(x)=|x﹣2|+|x+1|.(1)求不等式f(x)>7的解集;(2)若实数m,n>0,且f(x)的最小值为m+n,求m2+n2的最小值,并指出此时m,n的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。

长治市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案

长治市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案

长治市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 在正方体1111ABCD A BC D -中,,E F 分别为1,BC BB 的中点,则下列直线中与直线EF 相交的是( )A .直线1AAB .直线11A B C. 直线11A D D .直线11B C2. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .13. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .44. 为得到函数sin 2y x =-的图象,可将函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象( )A .向左平移3π个单位B .向左平移6π个单位 C.向右平移3π个单位 D .向右平移23π个单位5. 已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2- B.1- C. 1 D. 2【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力.6. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )A.4 B.5C.6 D.77.在长方体ABCD﹣A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是()A.B.C.D.8.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为()A.80+20πB.40+20πC.60+10πD.80+10π9.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P(单位:毫克/升)与时间t(单位:小时)间的关系为0e ktP P-=(P,k均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要()小时.A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.10.已知数列{}n a 的首项为11a =,且满足11122n n n a a +=+,则此数列的第4项是( ) A .1 B .12 C. 34 D .5811.执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .204812.已知AC ⊥BC ,AC=BC ,D满足=t +(1﹣t),若∠ACD=60°,则t 的值为( )A.B.﹣C.﹣1D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.设,则14.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.15.在等差数列{}n a 中,17a =,公差为d ,前项和为n S ,当且仅当8n =时n S 取得最大值,则d 的取值范围为__________.16.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.三、解答题(本大共6小题,共70分。

山西省长治市2019-2020学年高考数学二模试卷含解析

山西省长治市2019-2020学年高考数学二模试卷含解析

山西省长治市2019-2020学年高考数学二模试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42 C .63 D .84【答案】B 【解析】由a 1+a 3+a 5=21得242421(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2135()22142q a a a ++=⨯=,选B.2.直线0(0)ax by ab ++=>与圆221x y +=的位置关系是( ) A .相交 B .相切 C .相离 D .相交或相切【答案】D 【解析】 【分析】由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论. 【详解】解:由题意,圆221x y +=的圆心为()0,0O ,半径1r =,∵圆心到直线的距离为d =222a b ab +≥Q ,1d ∴≤,故选:D . 【点睛】本题主要考查直线与圆的位置关系,属于基础题.3.已知点2F 为双曲线222:1(0)4x y C a a -=>的右焦点,直线y kx =与双曲线交于A ,B 两点,若223AF B π∠=,则2AF B V 的面积为( )A .B .C .D .【答案】D 【解析】 【分析】设双曲线C 的左焦点为1F ,连接11,AF BF ,由对称性可知四边形12AF BF 是平行四边形,设1122,AF r AF r ==,得222121242cos3c r r r r π=+-,求出12r r 的值,即得解.【详解】设双曲线C 的左焦点为1F ,连接11,AF BF , 由对称性可知四边形12AF BF 是平行四边形, 所以122AF F AF B S S =V V ,123F AF π∠=.设1122,AF r AF r ==,则222221212121242cos 3c r r r r r r r r π=+-=+-,又122r r a -=.故212416rr b ==,所以12121sin 23AF F S r r π==V 故选:D 【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.4.已知向量a r ,b r夹角为30°,(a =r ,2b =r ,则2a b -=r r ( )A .2B .4C .D .【答案】A 【解析】 【分析】根据模长计算公式和数量积运算,即可容易求得结果. 【详解】由于2a b -===r r 2=, 故选:A. 【点睛】本题考查向量的数量积运算,模长的求解,属综合基础题.5.已知非零向量,a b r r 满足0a b ⋅=r r ,||3a =r ,且a r 与a b +r r 的夹角为4π,则||b =r ( )A .6B .C .D .3【答案】D 【解析】【分析】利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可. 【详解】解:非零向量a r ,b r 满足0a b =r r g ,可知两个向量垂直,||3a =r ,且a r 与a b +r r 的夹角为4π,说明以向量a r ,b r 为邻边,a b +r r 为对角线的平行四边形是正方形,所以则||3b =r. 故选:D . 【点睛】本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题.6.如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线段11A C 上,F 、M 分别是AD 、CD 的中点,则下列结论中错误的是( )A .11//FM AC ,B .存在点E ,使得平面//BEF 平面11CCD D C .BM ⊥平面1CC F D .三棱锥B CEF -的体积为定值【答案】B 【解析】 【分析】根据平行的传递性判断A ;根据面面平行的定义判断B ;根据线面垂直的判定定理判断C ;由三棱锥B CEF -以三角形BCF 为底,则高和底面积都为定值,判断D.【详解】在A 中,因为,F M 分别是,AD CD 中点,所以11////FM AC AC ,故A 正确;在B 中,由于直线BF 与平面11CC D D 有交点,所以不存在点E ,使得平面//BEF 平面11CC D D ,故B 错误;在C 中,由平面几何得BM CF ⊥,根据线面垂直的性质得出1BM C C ⊥,结合线面垂直的判定定理得出BM ⊥平面1CC F ,故C 正确;在D 中,三棱锥B CEF -以三角形BCF 为底,则高和底面积都为定值,即三棱锥B CEF -的体积为定值,故D 正确; 故选:B 【点睛】本题主要考查了判断面面平行,线面垂直等,属于中档题.7.已知复数z 满足()125z i ⋅+=(i 为虚数单位),则在复平面内复数z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】根据复数运算,求得z ,再求其对应点即可判断. 【详解】51212z i i==-+Q ,故其对应点的坐标为()1,2-. 其位于第四象限. 故选:D. 【点睛】本题考查复数的运算,以及复数对应点的坐标,属综合基础题.8.已知函数2()4ln f x ax ax x =--,则()f x 在(1,4)上不单调的一个充分不必要条件可以是( ) A .12a >-B .1016a <<C .116a >或102a -<< D .116a >【答案】D 【解析】 【分析】先求函数在(1,4)上不单调的充要条件,即()0f x '=在(1,4)上有解,即可得出结论. 【详解】21241()24--'=--=ax ax f x ax a x x, 若()f x 在(1,4)上不单调,令2()241=--g x ax ax ,则函数2()241=--g x ax ax 对称轴方程为1x =在区间(1,4)上有零点(可以用二分法求得).当0a =时,显然不成立;当0a ≠时,只需0(1)210(4)1610a g a g a >⎧⎪=--<⎨⎪=->⎩或0(1)210(4)1610a g a g a <⎧⎪=-->⎨⎪=-<⎩,解得116a >或12a <-.故选:D. 【点睛】本题考查含参数的函数的单调性及充分不必要条件,要注意二次函数零点的求法,属于中档题. 9.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是( ) A .甲 B .乙C .丙D .丁【答案】C 【解析】 【分析】分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案. 【详解】①假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;②假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;③假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;④假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙. 综上所述,年纪最大的是丙 故选:C. 【点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.10.已知全集U =R ,集合{}{}237,7100A x x B x x x =≤<=-+<,则()U A B ⋂ð=( )A .()(),35,-∞+∞UB .(](),35,-∞+∞UC .(][),35,-∞+∞UD .()[),35,-∞+∞U【答案】D 【解析】 【分析】先计算集合B ,再计算A B I ,最后计算()U A B ⋂ð. 【详解】解:{}27100B x x x =-+<Q {|25}B x x ∴=<<,{}37A x x =≤<Q{|35}A B x x ∴=<I „,()[)U ,35(,)A B -∞+∞∴=U I ð. 故选:D . 【点睛】本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题.11.已知函数()ln f x x =,若2()()3F x f x kx =-有2个零点,则实数k 的取值范围为( ) A .21,06e ⎛⎫-⎪⎝⎭B .1,06e ⎛⎫-⎪⎝⎭C .10,6e ⎛⎫ ⎪⎝⎭D .210,6e ⎛⎫ ⎪⎝⎭【答案】C 【解析】 【分析】令2()()30F x f x kx =-=,可得2ln 3x k x =,要使得()0F x =有两个实数解,即y k =和2ln ()3xg x x=有两个交点,结合已知,即可求得答案. 【详解】令2()()30F x f x kx =-=, 可得2ln 3xk x =, 要使得()0F x =有两个实数解,即y k =和2ln ()3xg x x =有两个交点, Q 312ln ()3xg x x -'=, 令12ln 0x -=,可得e x =,∴当(0,e)x ∈时,()0g x '>,函数()g x 在(0,e)上单调递增;当(e,)x ∈+∞时,()0g x '<,函数()g x 在(,)e +∞上单调递减.∴当e x =时,max 1()6eg x =, ∴若直线y k =和2ln ()3x g x x =有两个交点,则10,6e k ⎛⎫∈ ⎪⎝⎭. ∴实数k 的取值范围是10,6e ⎛⎫⎪⎝⎭.故选:C. 【点睛】本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.12.如图所示,正方体1111ABCD A B C D -的棱AB ,11A D 的中点分别为E ,F ,则直线EF 与平面11AA D D 所成角的正弦值为( )A 5B .30C 6 D 25【答案】C 【解析】 【分析】以D 为原点,DA ,DC ,DD 1 分别为,,x y z 轴,建立空间直角坐标系,由向量法求出直线EF 与平面AA 1D 1D 所成角的正弦值. 【详解】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,则()2,1,0E ,()1,0,2F ,()1,1,2EF =--u u u v ,取平面11AA D D 的法向量为()0,1,0n =r,设直线EF 与平面AA 1D 1D 所成角为θ,则sinθ=|6cos ,|6EF n EF n EF n ⋅==⋅u u u v ru u u v r u u u v r ,∴直线EF 与平面11AA D D 所成角的正弦值为6.故选C .【点睛】本题考查了线面角的正弦值的求法,也考查数形结合思想和向量法的应用,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。

山西省长治二中近年届高三数学上学期第二次月考试题文(扫描(2021年整理)

山西省长治二中近年届高三数学上学期第二次月考试题文(扫描(2021年整理)

山西省长治二中2019届高三数学上学期第二次月考试题文(扫描版)编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山西省长治二中2019届高三数学上学期第二次月考试题文(扫描版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山西省长治二中2019届高三数学上学期第二次月考试题文(扫描版)的全部内容。

山西省长治二中2019届高三数学上学期第二次月考试题文(扫描版)。

山西省长治市高三上学期理数学业质量监测试卷

山西省长治市高三上学期理数学业质量监测试卷

山西省长治市高三上学期理数学业质量监测试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知函数对任意,都有,若的图象关于直线x=1对称,且,则()A . 2B . 3C . -2D . -32. (2分)已知复数,则在复平面内对应的点位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)命题“的否定是()A .B .C .D .4. (2分)已知等比数列{an}中a2=1,则其前3项的和S3的取值范围是()A .B .C .D .5. (2分) (2017高二下·乾安期末) 下表是考生甲(600分)、乙(605分)、丙(598分)填写的第一批段3个平行志愿,而且均服从调剂,如果3人之前批次均未被录取,且3所学校天津大学、中山大学、厦门大学分别差1人、2人、2人未招满.已知平行志愿的录取规则是“分数优先,遵循志愿”,即按照分数从高到低的位次依次检索考生的院校志愿,按照下面程序框图录取.执行如图的程序框图,则考生甲、乙、丙被录取院校分别是()A . 天津大学、中山大学、中山大学B . 中山大学、天津大学、中山大学C . 天津大学、厦门大学、中山大学D . 中山大学、天津大学、厦门大学6. (2分) (2017高一下·简阳期末) 把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成三棱锥C﹣ABD的正视图与俯视图如图所示,则左视图的面积为()A .B .C .D .7. (2分) (2016高二下·马山期末) =()A .B . 2C .D .8. (2分) (2017高二下·黑龙江期末) 已知定义在上的函数满足:⑴ ,⑵, (3)在上表达式为,则函数与函数的图像在区间上的交点个数为()A . 5B . 6C . 7D . 89. (2分)已知函数f(x)=sinx+tanx。

长治市第二中学2018-2019学年上学期高三期中数学模拟题

长治市第二中学2018-2019学年上学期高三期中数学模拟题

长治市第二中学2018-2019学年上学期高三期中数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.2. 二项式(1)(N )nx n *+?的展开式中3x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.3. 已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则( )A .x y z <<B .z x y <<C .z y z <<D .y x z << 4. 已知是虚数单位,,a b R ∈,则“1a b ==-”是“2()2a bi i +=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件5. 已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则实数m 的取值范围是( )A .1-<mB .10<<mC .1>mD .1≥m【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.6. 若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥ B .若,//m m n αγ=,则//αβC .若,//m m βα⊥,则αβ⊥D .若,αγαβ⊥⊥,则βγ⊥7. 1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆的内切圆半径与外接圆半径之比为12,则该双曲线的离心率为( )C. 1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.8. 复数满足2+2z1-i =i z ,则z 等于( )A .1+iB .-1+iC .1-iD .-1-i9. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )A .4B .5C .6D .710.已知双曲线2222:1(0,0)x y C a b a b-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上的一点,圆M 为三角形12PF F 的内切圆,PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐,则双曲线C 的离心率是( ) AB .2 CD11.已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩……… 内的概率为( )A.34B.38C.14D.18【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力. 12.已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则sin :sin C A =( )A .2︰3B .4︰3C .3︰1D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形P ACB 的周长最小时,△ABC 的面积为________.14.阅读如图所示的程序框图,则输出结果S 的值为 .【命题意图】本题考查程序框图功能的识别,并且与数列的前n 项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.15.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力. 16.设全集______.三、解答题(本大共6小题,共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档