部分数学建模习题解答[1]

合集下载

数学建模试题(带答案)四

数学建模试题(带答案)四

数学建模部分课后习题解答1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解:模型假设(1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。

这个假设相当于给出了椅子能放稳的必要条件(3) 椅子在任何位置至少有三只脚同时着地。

为了保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的。

因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。

模型建立在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。

首先,引入合适的变量来表示椅子位置的挪动。

生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。

然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。

于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。

注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。

把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。

于是,旋转角度θ这一变量就表示了椅子的位置。

为此,在平面上建立直角坐标系来解决问题。

设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。

椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。

其次,把椅脚是否着地用数学形式表示出来。

当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。

由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。

由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。

数学建模竞赛参考答案

数学建模竞赛参考答案

数学建模竞赛参考答案数学建模竞赛参考答案数学建模竞赛是一项旨在培养学生综合运用数学知识和解决实际问题能力的竞赛活动。

参赛者需要通过分析问题、建立数学模型、求解问题等环节,最终给出合理的答案和解决方案。

在这篇文章中,我们将为大家提供一些数学建模竞赛的参考答案,希望能够给参赛者们提供一些启示和帮助。

第一题:某公司的销售额预测问题描述:某公司希望通过过去几年的销售数据,预测未来一年的销售额。

请根据给定的销售数据,建立合适的数学模型,并给出未来一年的销售额预测值。

解答思路:根据问题描述,我们可以将销售额看作是时间的函数,即销售额随时间变化。

可以使用回归分析的方法来建立数学模型。

首先,我们将销售额作为因变量,时间作为自变量,通过拟合曲线来预测未来一年的销售额。

我们可以选择多项式回归模型来拟合曲线。

通过将时间作为自变量,销售额作为因变量,进行多项式回归分析,可以得到一个多项式函数,该函数可以描述销售额随时间变化的趋势。

然后,我们可以使用该多项式函数来预测未来一年的销售额。

将未来一年的时间代入多项式函数中,即可得到未来一年的销售额预测值。

第二题:城市交通流量优化问题描述:某城市的交通流量问题日益突出,如何优化交通流量成为了当地政府亟待解决的难题。

请根据给定的交通数据和道路拓扑结构,建立合适的数学模型,并给出交通流量优化的方案。

解答思路:根据问题描述,我们可以将城市的交通流量看作是网络中的流量分配问题。

可以使用网络流模型来建立数学模型。

首先,我们需要将城市的道路网络抽象成一个有向图,节点表示交叉口,边表示道路,边上的权值表示道路的容量。

然后,我们可以使用最小费用最大流算法来求解交通流量优化的方案。

该算法可以通过调整道路上的流量分配,使得整个网络中的流量达到最大,同时满足道路容量的限制。

通过计算最小费用最大流,可以得到交通流量优化的方案。

最后,我们可以根据最小费用最大流算法的结果,对交通流量进行合理调控。

例如,可以调整信号灯的时长,优化交通信号控制系统,减少交通拥堵现象,提高交通效率。

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。

A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。

当矩形的面积最大时,求矩形的长和宽。

A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。

求该直线的方程。

A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。

A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。

假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。

求两辆车首次相遇的时间。

A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。

答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。

答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。

数学建模基础练习一及参考答案

数学建模基础练习一及参考答案

数学建模基础练习一及参考答案数学建模基础练习一及参考答案练习1matlab练习一、矩阵及数组操作:1.利用基本矩阵产生3×3和15×8的单位矩阵、全1矩阵、全0矩阵、均匀分布随机矩阵([-1,1]之间)、正态分布矩阵(均值为1,方差为4),然后将正态分布矩阵中大于1的元素变为1,将小于1的元素变为0。

2.利用fix及rand函数生成[0,10]上的均匀分布的10×10的整数随机矩阵a,然后统计a中大于等于5的元素个数。

3.在给定的矩阵中删除含有整行内容全为0的行,删除整列内容全为0的列。

4.随机生成10阶的矩阵,要求元素值介于0~1000之间,并统计元素中奇数的个数、素数的个数。

二、绘图:5.在同一图形窗口画出下列两条曲线图像,要求改变线型和标记:y1=2x+5;y2=x^2-3x+1,并且用legend标注。

6.画出下列函数的曲面及等高线:z=sinxcosyexp(-sqrt(x^2+y^2)).7.在同一个图形中绘制一行三列的子图,分别画出向量x=[158101253]的三维饼图、柱状图、条形图。

三、程序设计:8.编写程序计算(x在[-8,8],间隔0.5)先新建的,在那上输好,保存,在命令窗口代数;9.用两种方法求数列:前15项的和。

10.编写程序产生20个两位随机整数,输出其中小于平均数的偶数。

11.试找出100以内的所有素数。

12.当时,四、数据处理与拟合初步:13.随机产生由10个两位随机数的行向量A,将A中元素按降序排列为B,再将B重排为A。

14.通过测量得到一组数据:t12345678910y4.8424.3623.7543.3683.1693.0383.0343.0163.0123.005分别采用y=c1+c2e^(-t)和y=d1+d2te^(-t)进行拟合,并画出散点及两条拟合曲线对比拟合效果。

15.计算下列定积分:16.(1)微分方程组当t=0时,x1(0)=1,x2(0)=-0.5,求微分方程t在[0,25]上的解,并画出相空间轨道图像。

数学建模题目及答案

数学建模题目及答案

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。

试作合理的假设并建立数学模型说明这个现象。

(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。

当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。

由假设(1),()f θ,()g θ均为θ的连续函数。

又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。

不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。

作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。

数学建模试题(带答案)

数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。

试构造模型并求解。

答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。

f 和g 都是连续函数。

椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。

不妨设0)0(,0)0(g >=f 。

当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。

这样,改变椅子的位置使四只脚同时着地。

就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。

证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。

根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。

建模习题答案

建模习题答案

田佳王伊陈鹏《数学建模入门》练习题练习题1:发现新大陆!发现新大陆!人人都能做到,可是最终哥伦布做到了。

为什么哥伦布能做到呢?(参考答案:有兴趣、能想到、去做了、坚持到底。

)答: 1)从其主观条件分析:他具有一个优秀水手的素质:对大海的热爱,具有宝贵的航海经验,接触过航海所必不可少的宇宙学和数学,并且学会了绘制地图和使用各种航海工具。

更为重要的事,在航海强国葡萄牙,哥伦布在思想上为远航做好了准备。

他阅读了《马可·波罗游记》,对东方的富饶遐想无限,使他产生了到东方区的想法;他接触了学者托斯勘内里,接受了“地圆学说”,坚定了从海上到达东方的信念。

2)从客观条件分析:出于共同的对黄金的追求,哥伦布与西班牙王室达成了一致(签订《圣塔菲协定》),西班牙为其提供了自己的船队、自己的船员。

当时中国的指南针也已传到航海界,这一发明对其也有及其重要的作用练习题2:棋盘问题有一种棋盘有64个方格,去掉对角的两个格后剩下62个格(如下图),给你31块骨牌,每块是两个格的大小。

问能否用这些骨牌盖住这62个方格?答:这个问题涉及到数学上的一个典型排列:完美覆盖31张不重叠的多米诺牌则盖住31个白方格和31个黑方格。

因此,这副被剪过的棋盘没有完美覆盖,上述推理可总结为:31黑白 32黑+30白更一般地.可以将棋盘上的方格交替徐成黑色和自色,切除一些方格,得到一块切过的棋盘什么时候能有一个完美覆盖?为使完美覆盖存在,这块被切过的棋盘必须又有相等的黑方格数和白方格数但是,这个条件却不是充分的,最后是不能够用这些骨牌盖住其余方格的练习题3:硬币游戏如果你和你的对手准备依次轮流地将硬币放在一个长方形桌子上,使得这些硬币不重叠。

最后放上硬币的人为胜者,在开始时你有权决定先放还是后放。

为了能赢得这场比赛,你决定先放还是后放呢?答:决定先放。

首先将硬币放在长方形桌子的中心,然后根据对手所放的硬币,找一桌子中心为对称中心的位置,直至对手没有地方放硬币为止,由于长方形的对称性,只有中心不存在对称位置,故先放者赢。

[VIP专享]部分数学建模习题解答[1]

[VIP专享]部分数学建模习题解答[1]

int level(BinTreeNodlesevt}r*Beutsl,icnBt(rtrTuiontrcaoTetgtert,_eyapNnpetg)oy;oeN_pddinoeeodtd;fde*esreafc*ttrphsB*au{l)ti;cilrn/duh/tT;ciB/lr/tdo1eiTt;u1ea//NcnrNgoto_loiu(fdn(dtnbe*oetpivdlt{(roe(e}TbidpEititrcfrl(ero!-pbmu>tintrTvritgaey-l(>hlpbulteeie,rtrf=xdt)e,=apr{xkextta,)rt;ru{;k,kr)sd+n;tra+;u1t;ac}0txyBpieTNxv},ooidi{ndet&m*lkac)hi}nil(de)}l;s/e/ js+tr}+uj;cBf+BtoB.+Bid.r.L(;+adikTe+taanN=;t[agojB]e[tdkh=l.se+L+eA1e*+]nr.i;dfc=g(d.-[d;{aiB]1a/it;f/a.;t(dkaA[}ia[]>.kBtdB<}=a];aii.T[BLjt+;aNke.+d[Loni;-]aed-g>t)netahg,B[jt*]+h.)wBd+]{avhi;T=otilareiAedi[n(Be.i{dtm;.<Laive=etAoarngi.0[dLgie],e;jt2Ch=n(o{Sg-0ut9q1h,n/kAL])/t)/iL/[;2s1/e1AtA…aABBmf"…,.S(h+Bq"mniLT6m+irsnet8]e&mhBTen),amidn+dtn&a2Ot*acx(7o10u)n+t)0x{11*ixf=0( nT+o1)d*{ex2i_1f c(+(o!uT2/xn/-*10>tx+l2+cxh=1il;+dnx)o&2/d/h&e=tt_(pn!c:To0o//-duw>1enrw*_c2t/wchx-oi0.1ldu;xon)/)1c*t;cinx6o42.1ucleonfmtt+d/+5ap;t-a5//r7iLg9Cihs4ot8lNuet5nmof9ttdreLp4iegme.=h*ap3tMfAmBol(a[aTrTlit]ex(-;(><i2)nAlccetl[ha0i]}ise=l=ds1,0}A…Tc;[yoine2pu<-nT6ein=-yH>12tp)(]Te;v;enn[Co1-A-ti1o3m1d[u]nA)pHin-[/;in(tv-kL21]ene;]1reyais=A+)nef=[+(t-nm(k1Ta])eAT-p){y>nyA;r-p%c2eh…1iAld3e[2,1]3c,2e1oi20Vn0(u3e=bt×n4i{)n3t1a5)B0);,5b20A}{7,B(2ce[2a150,(l0)ds0cn(a20e,a)]×ie[13j1)1cnr2,a17Af2e0A4,i58g2jtB]b1u(B03}(a5r4,21[En)]06a1B;=07A51([}{0]b937S<A/3)56/HaL([06C0c,sT1b3)]uo[A.>81A0c5u,493]cBn<B0.]=taC5H[L8(0,A1De(4g]k/,Aa5>2EBef0,[)Fy,<]*4C[G)G]b[=2B1,,DHk)g+[]e>,I1AEJy,/[<(,81%C1c]-[8,a5bD1)]C>3C]B,D1<[D1]2Bd62,GFc3E>=41A,V5</1I5EdH475,Gf1231>01+0*J5,91<420G4+0e*30G241,7W1d+*787>13P031,4*9<1L74=41f=0+,515a24953>**/546,17<5+15=0g37413,2*0c5572>/4+517,5<6451*g524,0d+3>956,*5<0315f9+2,3e5W12>14P,12*<3L157g+=56,52f13053>105*693}64*1,{73+80217+9596510*77046873+1*71249264+*9503182+79012*176208590=*2092+8123169831731237*793}W2+531P352L5*0313173+s3T3125158*,21T2052=5,2…915W063…303P5,LTS Tini k1i(2i={a1b,2c,d…e…fg}S0)1,1k10in1i011k11k10n+1kk1Pn21>r+0ikm…00…11+1k0s1=0n11+n21K…ru…snkas1l ns,s=nk,nk a11a121a02K1)aru2s2kaa=2l203*:9(a1i+03/1jA2-03aB(3a131+Aa12=3B+42[…0+]3A…+a3aij1+n3inn149-+iH10-41au+jnfi84+fnm4+16a5B8n+58F1544):52=5706305306.986,2T76:0150,D811:00148110683171,F10ST6:06D413S024H515,1H12:007412101402H*1291u60+22f{f7m4*63a2+n58307*71836+21102*72306+722774*0674128+493}*()4+86*312=513219 5:13/5671(130+7822+6261+p03a1+341352+401143,41)p0=83,21a.8425,913,,p66331:121,0A1a24B13G,,CP4pJ9AD3KG21EHD12AFDaJ3GBH,EPaDHKBApGIBM3J2HEKIF1AJMCKCAEFCMFIIM

数学建模答案与解析

数学建模答案与解析

数学建模答案与解析第一章第四题1.4.1 问题分析该题是一个销售问题,目标是求最大利润。

因此该题的关键是做出合理假设并设出未知参数并写出利润表达式。

然后根据限制条件,列出约束方程。

再利用Matlab 软件,解出该题最优解即可。

1.4.2 问题假设① 在设备有效台时范围内,满负载费用平均分配给时间数,记为平均小时费用;② 每个设备在生产过程中不会出错,不产生维修;③ 生产出的所有产品都会全部卖出去; 1.4.3 符号规定①z 表示该厂的利润;②ij x 表示第i 种设备生产第j 种产品的产品数;③i f 表示第i 种设备的平均小时费用;④i m 表示第i 、k 种设备有效台时;⑤ij t 表示第i 种设备生产j 种单位产品所需时间;⑥ j p 表示生产第种产品,除去原料费之后的单位毛盈利。

1.4.4 模型的建立每种产品要求必须通过A 、B 两道工序,得5141311211x x x x x ++=+ 322212x x x =+ 4323x x =每种设备不能超过其有效台时,因此得i j ij ijm t x≤∑=3*( i =1、2、3、4、5)由于每个产品必须由A 、B 两道工序才能完成,因此经过任一工序的所有产品数与总的产品数相同。

因此,在计算总收入时,就用某一工序加工产品总数即可。

这里选用A 工序。

故所得的最大利润为max j i j ijp xz *2131∑∑===-ii i j ij ijf t x∑∑==5131**因此,模型的简化如下:5143413231232221121165.00696.15526.015.1625.09148.13611.17753.0 15.175.0max x x x x x x x x x x z +++++++++=5141311211x x x x x ++=+ 322212x x x =+ 4323x x =i j ij ijm t x≤∑=31* ( i =1 2 3 4 5)0≥ij x1.4.5 利用Matlab 解得结果如下,源程序见附件一..t s 51732458850003245002300120051434132312322211211=== =======x x x x x x x x x x总的利润为1147元 1.4.6 问题改进在该题做的过程中,超负荷费用安排的不合理。

数学建模基础问题与答案!(有答案).

数学建模基础问题与答案!(有答案).

‘牡丹江师范学院期末考试试题库科目:数学模型与数学实验年级:2006 学期:2008-2009-2 考核方式:开卷命题教师:数学模型与数学实验课程组一、解答题:(每小题30分)x=[0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.2 0.21 0.23]';n=length(x)X=[ones(n,1) x];Y=[42 43.5 45 45.5 45 47.5 49 53 50 55 55 60]';[b,bint,r,rint,stats]=regress(Y,X);b,bint,stats% 预测y=b(1)+b(2)*x%E误差平方和E=sum((Y-y).^2)参考结果:回归直线:ˆ28.4928130.8348=+y x误差平方和:17.4096是否重点:重点难易程度:中知识点所在章节:第十六章第一节检查数据中有无异常点、由x的取值对y作出预测。

解:参考程序(t2.m):x=[0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.2 0.21 0.23]';Y=[42.0 41.5 45.0 45.0 45 47.5 49.0 55.0 50.0 55.0 55.5 60.5]'; scatter(x,Y);n=length(x)X=[ones(n,1) x];b,bint,stats %残差图 rcoplot(r,rint) % 预测y=b(1)+b(2)*x%剔除异常点重新建模 X(8,:)=[]; Y(8)=[];[b,bint,r,rint,stats]=regress(Y,X); b,bint,stats,rcoplot(r,rint) 结果和图:b =27.0269 140.6194 bint =22.3226 31.7313 111.7842 169.4546 stats =0.9219 118.0670 0.0000结果分析:由20.9226,119.2528,P =0.0000R F ==知,2R 接近1,10.5(1,10)F F ->,0.05P <,故x 对y 的影响显著,回归模型可用。

数学建模例题和答案

数学建模例题和答案

数学建模例题和答案
题目:
一个汽车公司拥有两个工厂,分别生产两种型号的汽车,A型和B型,每种型号的汽车都有一定的销售价格。

现在,该公司需要在两个工厂中生产A型和B型汽车,使得总收入最大。

答案:
1、建立数学模型
设A型汽车在第一个工厂生产的数量为x,在第二个工厂生产的数量为y,A型汽车的销售价格为a,B型汽车的销售价格为b,则该公司的总收入可以表示为:
总收入=ax+by
2、确定目标函数
由于题目要求使得总收入最大,因此可以将总收入作为目标函数,即:
最大化Z=ax+by
3、确定约束条件
由于两个工厂的生产能力有限,因此可以设置约束条件:
x+y≤M,其中M为两个工厂的总生产能力
4、求解
将上述模型转化为标准的数学规划模型:
最大化Z=ax+by
s.t. x+y≤M
x≥0,y≥0
由于该模型是一个线性规划模型,可以使用数学软件进行求解,得到最优解:
x=M,y=0
即在第一个工厂生产M件A型汽车,在第二个工厂不生产B型汽车,此时该公司的总收入最大,为Ma。

《数学建模》习题及参考答案 第一章 建立数学模型

《数学建模》习题及参考答案 第一章 建立数学模型

第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。

甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。

问开往甲乙两站的电车经过丙站的时刻表是如何安排的。

参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。

数学建模例题及解析

数学建模例题及解析

.例1差分方程——资金(de)时间价值问题1:抵押贷款买房——从一则广告谈起每家人家都希望有一套(甚至一栋)属于自己(de)住房,但又没有足够(de)资金一次买下,这就产生了贷款买房(de)问题.先看一下下面(de)广告(这是1991年1月1日某大城市晚报上登(de)一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心(de)是:如果一次付款买这栋房要多少钱呢银行贷款(de)利息是多少呢为什么每个月要付1200元呢是怎样算出来(de)因为人们都知道,若知道了房价(一次付款买房(de)价格),如果自己只能支付一部分款,那就要把其余(de)款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说(de)房子作出决策了.现在我们来进行数学建模.由于本问题比较简单无需太多(de)抽象和简化.a.明确变量、参数,显然下面(de)量是要考虑(de):需要借多少钱,用记;月利率(贷款通常按复利计)用R记;每月还多少钱用x记;借期记为N个月.b.建立变量之间(de)明确(de)数学关系.若用记第k个月时尚欠(de) 款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总(de)欠款为k=0,1,2,3,而一开始(de)借款为.所以我们(de)数学模型可表述如下(1)c. (1)(de)求解.由(2)这就是之间(de)显式关系.d.针对广告中(de)情形我们来看(1)和(2)中哪些量是已知(de).N=5年=60个月,已知;每月还款x=1200元,已知 A.即一次性付款购买价减去70000元后剩下(de)要另外去借(de)款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策(de)困难.然而,由(2)可知60个月后还清,即,从而得(3)A和x之间(de)关系式,如果我们已经知(3)表示N=60,x=1200给定时0A.例如,若R =0.01,则由(3)可算得道银行(de)贷款利息R,就可以算出053946元.如果该房地产公司说一次性付款(de)房价大于70000十53946=123946元(de)话,你就应自己去银行借款.事实上,利用图形计算器或Mathematica这样(de)数学软件可把(3)(de)图形画出来,从而可以进行估算决策.以下我们进一步考虑下面两个问题.注1问题1标题中“抵押贷款”(de)意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子(de)产权)作抵押,即万一你还不出钱了,就没收你(de)不动产.例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清.假设这对夫妇每月可有节余900元,是否可以去买房呢解:现在(de)问题就是要求使 (de)x,由(2)式知现=60000,R=0.01,k=300,算得x=632元,这说明这对夫妇有能力买房.例题2 恰在此时这对夫妇看到某借贷公司(de)一则广告:“若借款60000元,22年还清,只要;(i)每半个月还316元;(ii)由于文书工作多了(de)关系要你预付三个月(de)款,即316×6=1896元.这对夫妇想:提前三年还清当然是好事,每半个月还316元,那一个月不正好是还632元,只不过多跑一趟去交款罢了;要预付18%元,当然使人不高兴,但提前三年还清省下来(de)钱可是22752元哟,是1896元(de)十几倍哪这家公司是慈善机构呢还是仍然要赚我们(de)钱呢这对夫妇请教你给他们一个满意(de)回答.具体解法略.问题2:养老基金今后,当年青人参加工作后就要从其每月工资中扣除一部分作为个人 (de)养老基金,所在单位(若经济效益好(de)话)每月再投入一定数量(de)钱,再存入某种利息较高而又安全(de)“银行”(也可称为货币市场)到60岁退休时可以动用.也就是说,若退休金不足以维持一定(de)生活水平时,就可以动用自己(de)养老基金,每月取出一定(de)款项来补贴不足部分.假设月利率及=0.01不变,还允许在建立养老基金时自己可以一次性地存入A(不论多少),每月存入y元(个人和单位投入(de)总和);通常从一笔钱0三十一岁开始到六十岁就可以动用.这当然是一种简化(de)假设,但作为估算仍可作为一种考虑(de)出发点.本问题实际上有两个阶段,即退休前和退休后,其数学模型为其中x为每月要从养老基金中提出(de)款项.习题1 某大学年青教师小李从31岁开始建立自己(de)养老基金,他把已有(de)积蓄1万元也一次性地存入,已知月利率为0.01 (以复利计),每月存入300元,试问当小李60岁退休时,他(de)退休基金有多少又若,他退休后每月要从银行提取l000元,试问多少年后他(de)退休基金将用完你能否根据你了解(de)实际情况建立一个较好(de)养老基金(de)数学模型及相应(de)算法和程取软件).习题2 渔业(林业)管理问题设某养鱼池(或某海域)一开始有某种鱼条,鱼(de)平均年净繁殖率为R,每年捕捞x条,记第N年有鱼条,则池内鱼数按年(de)变化规律为注意,在实际渔业经营中并不按条数计算而是以吨记数(de).若对某海域(de)渔业作业中=100000吨,R=0.02,x=1000吨,试问会不会使得若干年后就没有鱼可捕捞了(资源枯竭了)例2比例分析法——席位分配问题:某学校有三个系联合成立学生会,(1)试确定学生会席位分配方案.(2)若甲系有100名,乙系60名,丙系40名.学生会设20个席位,分配方案如何(3)若丙系有3名学生转入甲系,3名学生转入乙系,分配方案有何变化(4)因为有20个席位(de)代表会议在表决提案时有可能出现10: 10(de)平局,会议决定下一届增加1席,若在第(3)问中将学生会席位增加一席呢(5)试确定一数量指标衡量席位分配(de)公平性,并以此检查(1)—(4).公平而又简单(de)席位分配办法是按人数(de)比例分配,若甲系有100名,乙系60名,丙系40名.学生会设20个席位,三个系分别应有10,6,4个席位.如果丙系有6名学生转入其他两系学习,各系人数如表所示系别学生人数所占比例(%)按比例分配(de)席位按惯例分配(de)席位甲10310乙636第二列所示,按比例分配席位时,出现了小数(见表中第四列).在将取得整数(de)19席分配完毕后,剩下(de)1席按照惯例分给余数最大(de)丙系,于是三个系仍分别占有10、6、4个席位.因为有20个席位(de)代表会议在表决提案时有可能出现10:10(de)平局,会议决定下一届增加1席,于是他们按照上述惯例重新分配席位,计算(de)结果令人吃惊:总席位增加1席,丙系反而减少1席,见下表.看来,要解决这个矛盾,必须重新研究所谓惯例分配方法,提出更加“公平”(de)办法.下面就介绍这样一个席位分配模型.设A、B两方人数分别是p1 和p2,分别占有n1 和n2 个席位,则两方每个席位所代表(de)人数分别是p1 /n12和p2/n2.很明显,仅当这两个数值相等时,席位(de)分配才是公平(de).但是,通常它们不会相等,这时席位分配得不公平.不公平(de)程度可以用数值来表示,它衡量(de)是“绝对不公平”.从下表所举(de)例子来看,A、B之间(de)“绝对不公平”与C、D之间是一样(de).但是从常识(de)角度看,A、B之间显然比C、D之间存在着更加严重(de)不公平.所以“绝对不公平”不是一个好(de)衡量标准.p n p/n p1/n1-p2/n2 A120101212-10=2B1001010C102010102102-100=2D100010100为了改进绝对标准,我们自然想到用相对标准.因为p/n越大,每个席位代表(de)人数越多,或者说,总人数一定时分配(de)席位越少.所以,如果p1/n13>p2/n2,则A方是吃亏(de),或者说,对A是不公平(de),由此,我们这样定义“相对不公平”:若p1/n1>p2/n2,则称为对A(de)相对不公平值,记做若p1/n1<p2/n2,则称为对B(de)相对不公平值,记做假设A、B两方已分别占有n1和n2个席位,我们利用相对不公平(de)城念来讨论,当总席位再增加1席时,应该给且A方还是B方不失一般性,可设p1/n1>p2/n2,即此时对A方不公平, ,有定义.当再分配1个席位时,关于p/n(de)不等式有以下三种可能:1)p1/(n1十1)>p2/n2,这说明即使A方增加1席,仍然对A不公平,所以这1席当然应给A方;2)p1/(n1十1)<p2/n2,说明当A方增加1席位,将对B不公平,此时应参照式,计算对B(de)相对不公平值3)说明当B方增加1席时,将对A方不公平,此时计算得对A (de)相对不公平值是(注意:在p1/n1p2/n2(de)假设下,不可能出现p1/n1<p2/(n2+1)(de)情况因为公平(de)席位分配方法应该使得相对不公平(de)数值尽量地小,所以如果则这1席应给A方;反之应给B方.根据(3)、(4)两式,(5)式等价于并且不难证明1从上述第1)种情况(de)p1/(n1十1)>p2/p2也可推出. 于是我们(de)结论是:当(6)式成立时,增加(de)1席应分配A方;反之,应分配给B方.若记,则增加(de)1席位应分配给Q值较大(de)一方.将上述方法可以推广到有m方分配席位(de)情况.下面用这个方法,重新讨论本节开始时提出(de),三个系分配21个席位(de)问题.首先每系分配1席,然后计算:甲系n1=1,乙系, n2=1,丙系,n3=1,因为最大,所以第4席应分配给甲系,继续计算:甲系n1=2,将与上面(de)相比,最大,第5席应分给乙系,继续计算.如此继续,直到第21席分配给某个系为止(详见列表).n甲系乙系丙系1(4)(5)578(9)2(6)(8)(15)3(7)(12)(21)4(10)(14)5(11)(18)6(13)7(16)8(17)9(19)10(20)11可以看出,用Q值法,丙系保住了它险些丧失(de)1席.你觉得这个方法公平吗习题:学校共1000名学生,235入住在A宿合,333人住在B宿合,432人住在C宿合.学生们要组织一个10人(de)委员会,试用下列办法分配各宿舍(de)委员数.1)惯例(de)方法,印按比例分配完整数名额后,剩下名额给余数最大者. 2)Q值方法.如果委员会从10人增至15人,分配名额将发生什么变化 ,例3 状态转移问题——常染色体遗传模型随着人类(de)进化,人们为了揭示生命(de)奥秘,越来越注重遗传学(de)研究,特别是遗传特征(de)逐代传播,引起人们(de)注意.无论是人,还是动植物都会将本身(de)特征遗传给下一代,这主要是因为后代继承了双亲(de)基因,形成自己(de)基因对,基因对将确定后代所表现(de)特征.下面,我们来研究两种类型(de)遗传:常染色体遗传和x—链遗传.根据亲体基因遗传给后代(de)方式,建立模型,利用这些模型可以逐代研究一个总体基因型(de)分布.在常染色体遗传中,后代从每个亲体(de)基因对中各继承一个基因,形成自己(de)基因对,基因对也称基因型.如果我们所考虑(de)遗传特征是有两个基因A和控制(de),那么就有三种基因对,记为AA,A,.例如,金草鱼由两个遗传基因决定花(de)颜色,基因型是AA(de)金鱼草开红花,型(de)开粉红色花,而型(de)开白花.又如人类(de)眼睛(de)颜色也是提高通过常染色体遗传控制(de).基因型是(de)人,眼睛是棕色,基因型是(de)人,眼睛是兰色.这里因为都表示了同一外部特征,我们认为基因A 支配基因,也可以认为基因对于A 来说是隐性(de)农场(de)植物园中某种植物(de)基因型为AA,A 和.农场计划采用AA 型(de)植物与每种基因型植物相结合(de)方案培育植物后代.那么经过若干年后,这种植物(de)任一代(de)三种基因型分布如何 第一步:假设:令 ,2,1,0=n .(1) 设n n b a ,和n c 分别表示第n 代植物中,基因型为AA,Aa 和aa(de)植物占植物总数(de)百分率.令)(n x 为第n 代植物(de)基因型分布:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(当n=0时⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000)0(c b a x表示植物基因型(de)初始分布(即培育开始时(de)分布),显然有1000=++c b a(2) 第n 代(de)分布与第n-1代(de)分布之间(de)关系是通过上表确定(de).第二步:建模根据假设(2),先考虑第n 代中(de)AA 型.由于第n-1代(de)AA 型与AA 型结合,后代全部是AA 型;第n-1代(de)Aa 型与AA 型结合,后代是AA 型(de)可能性为1/2,第n-1代(de)aa 型与AA 型结合,后代不可能是AA 型.因此,当 ,2,1,0=n 时11102/1---•++•=n n n n c b a a即2/11--+=n n n b a a 类似可推出2/11--+=n n n b c a 0=n c将式相加,得111---++=++n n n n n n c b a c b a根据假设(1),有1000=++=++c b a c b a n n n对于式、式和式,我们采用矩阵形式简记为,2,1,)1()(==-n Mx x n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00012/1002/11M ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(式递推,得)0()2(2)1()(x M x M Mx x n n n n ====--式给出第代基因型(de)分布与初始分布(de)关系.为了计算出n M ,我们将M 对角化,即求出可逆矩阵P 和对角阵D,使1-=PDP M因而有,2,1,1==-n P PD M n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n nnn D 321321000000000λλλλλλ这里321,,λλλ是矩阵M(de)三个特征值.对于式中(de)M,易求得它(de)特征值和特征向量:0,2/1,1321===λλλ因此⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00002/10001D ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0112 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 所以[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==100210111321P通过计算1-=P P ,因此有)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=0001002101110000)21(0010100210111c b a n 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--00011)(000)2/1()2/1(0)2/1(1)2/1(11c b a c b a x n n n n n n n n ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++=--0)2/1()2/1()2/1()2/1(010010000c b c b c b a n n n n所以有⎪⎩⎪⎨⎧=+=--=--0)2/1()2/1()2/1()2/1(1010010n n n n n n n c c b b c b a当∞→n 时0)2/1(→n,所以从式得到0,1→→n n b a 和n c =0即在极限(de)情况下,培育(de)植物都是AA 型. 第三步:模型讨论若在上述问题中,不选用基因AA 型(de)植物与每一植物结合,而是将具有相同基因型植物相结合,那么后代具有三代基因型(de)概率如下表:并且)0()(x M xn n =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=14/1002/1004/11M M(de)特征值为2/1,1,1321===λλλ通过计算,可以解出与21,λλ相对应(de)两个线性无关(de)特征向量1 和2 ,及与3λ相对应(de)特征向量3 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1002 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 因此[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==111200101321P⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-02/1011102/111P)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=00002/1011102/11)2/1(0001001111200101c b a n n所以有⎪⎩⎪⎨⎧-+==++=++010000100)2/1()2/1()2/1()2/1()2/1(bb c c b b b b a a n nn n n n当∞→n 时0)2/1(→n,所以从式得到0,)2/1(00→+→n n b b a a 和00)2/1(b c c n +→因此,如果用基因型相同(de)植物培育后代,在极限情况下,后代仅具有基因AA 和aa. 例4 合作对策模型在经济或社会活动中,几个社会实体(个人、公司、党派、国家)相互合作或结成联盟,常能获得比他们单独行动更多(de)经济或社会效益.这样合理地分配这些效益是合作对策要研究(de)问题.请看下面(de)例子.问题一:经商问题甲、乙、丙三人经商,若单干,每人仅能获利1元;甲乙合作可获利7元;甲丙合作可获利5元;乙丙合作可获利4元;三人合作可获利10元,问三人合作时如何分配10元(de)收入.甲(de)收入应按照甲对各种形式(de)合作(de)贡献来确定.对于某一合作(de)贡献定义为:有甲参加时这个合作(de)收入与无甲参加时这个合作(de)收入之差.例如甲对甲乙二人合作(de)贡献是7—1=6 (因为甲乙合作获利7元,而乙单干仅获利1元).甲可以参加(de),合作有四个:甲自己(单干视为合作(de)特例)、甲乙、甲丙、甲乙丙.甲对这些合作(de)贡献分别是甲:1一0=1元;甲乙:7—1=6元;甲内:5—1=4元;甲乙丙:10—4=6元,甲应分得(de)收入是这四个贡献(de)加权平均值,加权因子将由下面(de)一般模型给出.这个问题叫做3人合作对策,是对策论(de)一部分,这里介绍它(de)一种解法.一般(de)n人合作对策模型可以叙述如下:记n人集合为I=,如果对于I中 (de)任一子集,都对应一个实值函数v(s),满足则称为定义在I上(de)特征函数.所谓合作对策是指定义了特征函数(de)I中n个人(de)合作结果,用向量值函数来表示.在实际问题中.常可把I中各种组合(de)合作获得(de)利益定义为特征函数,上式表示合作规模扩大时,获利不会减少.不难看出,如将三人经商问题中合作(de)获利定义为特征函数v,v是满足(1)、(2)(de).为了确定,Shapley在1953年首先制定了一组应该满足(de)公理,然后证明了满足这组公理(de)(de)唯一解是其中是I中包含{i}(de)所有子集,是集合s中(de)人数,是加权因子,由确定.(3)式中可看作成员{i}对合作s(de)贡献;表示对所有包含{i}(de)集合求和.称为由v定义(de)合作(de)Shapley值.我们用(3)、(4)计算三人经商问题中各个人应得到(de)收入.甲、乙、丙分别记作{1},{2},{3},包含{1}(de)集合有{1}、{1,2}、{1,3}、{1,2,3},计算结果列入下表.S{1}{1,2}{1,3}{1,2,3}V(s)17510V(s-{1})0114V(s)- V(s-{1})1 6 4 612 23 W()1/31/61/61/3W()[V(s)-V(s-{1})]1/31 2/3 2.同样可以算出乙、丙应得收入为=3.5元,=元.问题二:三城镇(de)污水处理方案沿河有三城镇1、2和3,地理位置如图4;6所示.污水需处理后才能排入河中.三城镇或者单独建立污水处理厂,或者联合建厂,用管道将污水集中处理(污水应于河流(de)上游城镇向下游城镇输送).以Q 表示污水量(吨/秒),工表示管道长度(公里).按照经验公式,建立处理厂(de)费用为712.0173Q P =,铺设管道(de)费用为LQ P 51.0266.0=.今已知三城镇(de)污水量分别为5,3,5321===Q Q Q .L(de)数值38,202312==L L .试从节约总投资(de)角度为三城镇制定污水处理方案;包括是单独还是联合建厂;如果联合,如何分担投资额等.三城镇或单干或不同形式(de)联合,共有五种方案.下面一一计算所需(de)投资.方案一 三城镇都单干.投资分别为总投资:方案二城1、2合作.这时城1、2将从节约投资(de)角度对联合还是分别建厂作出决策,所以城1、2(de)投资为:=3500C(3)=2300总投资:方案三城2、3合作.C(1)=2300总投资:方案四城1、3合作.C(2)=1600总投资:方案五三城镇合作=5560总投资:比较五个方案可知,应该选择三城合作,联合建厂(de)方案. 下面(de)问题是如何分担总额为5560(de)费用.城3(de)负责人提出,联合建厂(de)费用按三城(de)污水量之比5:3:5分担,铺设管道费应由城1、2担负.城2(de)负责人同意,并提出从城2到城3(de)管道费由城1、2按污水量之比5:3分担;从城1到城2(de)管道费理应由城1自己担负.城1(de)负责人觉得他们(de)提议似乎是合理(de),但因事关重大,他没有马上表示同意;而是先算了一笔账.联合建厂(de)费用是4530)535(73712.0=++,城2到城3(de)管道费是730,城1到城2(de)管道费是300,按上述办法分配时,城3负担(de)费用为1740,城2(de)费用为1320,域1(de)费用为2500.结果出乎意料之外,城3和城2(de)费用都比单独建厂时少,而城1(de)费用却比单独建厂时(de)C(1)还要多.城1(de)负责人当然不能同意这个方法,但是一时他又找不出公平合理(de)解决办法.为了促成联合(de)实现,你能为他们提供一个满意(de)分担费用(de)方案吗首先,应当指出,城3和城2负责人提出(de)办法是不合理(de):从前面(de)计算我们知道,三城联合,才能使总投资节约了640(de)效益应该分配给三城,使三城分配(de)费用都比他们单干时要少,这是为促成联合所必须制定(de)一条原则.至于如何分配,则是下面要进一步研究(de)问题. 把分担费用转化为分配效益,就不会出现城1联合建厂分担(de)费用反比单独建厂费用高(de)情况.将三城镇记为I={1,2,3},联合建厂比单独建厂节约(de)投资定义为特征函数.于是有v(φ)=0,v({1})=v({2})=v({3})=0,v({1,2})=c(1)+c(2)-c(1,2)=2300+1600-3500=400,v({2,3})=c(2)+c(3)-c(2,3)=1600+2300-3650=250,v({1,3})=0,v(I)=c(1)+c(2)+c(3)-c(1,2,3)=640.S {1} {1,2} {1,3} {1,2,3} V(s) 0 400 0 640 V(s-{1}) 0 0 0 250 V(s)- V(s-{1})0 400 0 39012 23 W()1/31/61/61/3W()[V(s)-V(s-{1})] 0 67 0 130即197)(1=v ϕ同理得321)(2=v ϕ,122)(3=v ϕ那么, 城1分担(de)费用为2300-197=2103, 城2分担(de)费用为1600-321=1279, 城3分担(de)费用为2300-122=2178,合计5560. 习题:某甲(农民)有一块土地.如果从事农业生产可年收入100元;如果将土地租给某企业家用于工业生产,可年收入200元;如果租给某旅店老板开发旅游业,可年收入300元;当旅店老板请企业家参与经营时,年收入可达400元.为实现最高收入,试问如何分配各人(de)所得才能达成协议例5动态规划模型有不少动态过程可抽象成状态转移问题,特别是多阶段决策过程(de)最优化如最短路径问题,最优分配,设备更新问题,排序、生产计划和存储等问题.动态规划是一种将复杂问题转化为一种比较简单问题(de)最优化方法,它(de)基本特征是包含多个阶段(de)决策.1951年,美国数学家贝尔曼(R.Bellman)等人,提出了解决多阶段决策问题(de)“最优化原理”,并研究了许多实际问题,从而创建了动态规划·动态规划方法(de)基本思想是:将一个复杂问题分解成若干个阶段,每一个阶段作为一个小问题进行处理,从而决定整个过程(de)决策,阶段往往可以用时间划分这就具有“动态”(de)含义,然而,一些与时间无关(de)静态规划中(de)最优化问题,也可人为地把问题分成若干阶段,作为一个多阶段决策问题来处理,计算过程单一化,便于应用计算机.求解过程分为两大步骤,①先按整体最优化思想递序地求出各个可能状态(de)最优化决策;②再顺序地求出整个题(de)最优策略和最优路线.下面,结合一个求最短路径(de)例子,来说明动态规划(de)一些基本概念.最短路径问题如图所示(de)交通网络,节点连接线路上(de)数字表示两地距离,计算从A 到E(de)最短路径及长度.1.阶段.把所要处理(de)问题,合理地划分成若干个相互联系(de)阶段,通常用k 表示阶段变量.如例中,可将问题分为4个阶段,k=1,2,3,4. 2.状态和状态变量.每一个阶段(de)起点,称为该阶段(de)状态,描述过程状态(de)变量,称为状态变量,它可以用一个数、一组数或一个向量来描述,常用k x 来表示第k 阶段(de)某一状态.如果状态为非数量表示,则可以给各个阶段(de)可能状态编号,i x i k =)(()(i k x 表示第k 个阶段(de)第i 状态).第k 阶段状态(de)集合为},,,,,{)()()2()1(T k i k k k k x x x x X =如例6中,第3阶段集合可记为}3,2,1{},,{},,{321)3(3)2(3)1(33===C C C x x x X3.决策和决策变量.决策就是在某一阶段给定初始状态(de)情况下,从该状态演变到下一阶段某状态(de)选择.即确定系统过程发展(de)方案.用一个变量来描述决策,称这个变量为决策变量.设)(k k x u 表示第k 个阶段初始状态为k x (de)决策变量.)(k k x D 表示初始状态为k x (de)允许决 策集合,有)(k k x u ∈)(k k x D ={k u }如例6中},,{)(3211B B B A D =,若先取2B ,则21)(B A u =. 4.策略和子策略.由每段(de)决策)(k k x u 组成(de)整个过程(de)决策变量序列称为策略,记为n P ,1,即n P ,1=)}(,),(),({2211n n x u x u x u从阶段k 到阶段n 依次进行(de)阶段决策构成(de)决策序列称为k 子策略,记为n k P ,即)(1,x P n k =)}(,),(),({11n n k k k k x u x u x u ++显然,k=1时(de)k 子策略就是策略.如例6,选取路径E D C B A →→→→221就是一个子策略.从允许策略集中选出(de)具有最佳效果(de)策略称为最优策略. 5.状态转移方程.系统在阶段k 处于状态k x ,执行决策)(k k x u (de)结果是系统状态(de)转移,即由阶段K(de)状态k x 转移到阶段K 十1(de)状态1+k x 适用于动态规划方法求解(de)是一类具有无后效性(de)多阶段决策过程.无后效性又称马尔科夫性,指系统从某个阶段往后(de)发展,完全由本阶段所处(de)状态以及其往后(de)决策决定,与系统以前(de)状态及决策无关,对于具有无后效性(de)多阶段过程,系统由阶段k 向阶段k+1(de)状态转移方程为))(,(1k k k k k x u x T x =+意即1+k x 只与k x ,)(k k x u 有关,而与前面状态无关.))(,(k k k k x u x T 称为变换函数或算子.分确定型和随机型,由此形成确定型动态规划和随机型动态规划. 6.指标函数和最优指标函数.在多阶段决策中,可用一个数量指标来衡量每一个阶段决策(de)效果,这个数量指标就是指标函数,为该阶段状态变量及其以后各阶段(de)决策变量(de)函数,设为n k V ,即n k x x u x V V n k k k n k n k ,,2,1),,,,(1,, ==+指标(de)含义在不同(de)问题中各不相同,可以是距离、成本、产品产 量、资源消耗等.例6中,指标(de)含义就是距离,指标函数为A 到E(de)距离,为各阶段路程(de)和.最常见(de)指标函数取各阶段效果之和(de)形式,即∑==nk j j j j n k u x V V ),(,指标函数nk V ,(de)最优值,称为相应(de)最优指标函数,记为)(k k x fnk k k optV x f ,)(=式中opt 是最优化之意,根据问题要求取max 或min . 7.动态规划最优化原理.贝尔曼指出“作为整个过程(de)最优策略具有这样(de)性质:即无论过去(de)状态和决策如何,对前面(de)决策所形成(de)状态而言,余下(de)诸决策必须构成最优策略”基于这个原理,可有如下定理:定理 若策略*,1n P 是最优策略,则对于任意(de)k(1<k<n),它(de)子策略*,n k P 对于以),(*1*11*---=k k k k u x T x 为起点(de)k 到n 子过程来说,必是最优策略. 实质上,动态规划(de)方法是从终点逐段向始点方向寻找最短路径(de)一种方法.8.动态规划(de)数学模型.利用最优化原理,可以得到动态规划(de)数学模型)}(),({)(11+++=k k k k k k k x f u x V opt x f ))(1,,1,(k k k x D u n n k ∈-=0)(11=++n n x f这是一个由后向前(de)递推方程.下面以例6(de)最短路径问题说明这种递序解法.指标函数为两点之间(de)距离,记为),(k k u x d ,例中共分4个阶段. (倒推) 第4阶段2)(),()(5114=+=E f E D d D f 3)(),()(5224=+=E f E D d D f 5)(),()(5334=+=E f E D d D f 0)(5=E f第3阶段6835)(),(624)(),(min )(2421141113=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{11*4,3E D C P =4431)(),(826)(),(min )(2422141223=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{22*4,3E D C P =6651)(),(1239)(),(min )(3433243333=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{33*4,3E D C P =第2阶段7734)(),(1367)(),(min )(2321131112=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{221*4,2E D C B P =7734)(),(826)(),(min )(2322131222=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{222*4,2E D C B P =91468)(),(945)(),(min )(3333232332=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{223*4,2E D C B P =第1阶段10111192)(),(74)(),(1073)(),(min )(323221211=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=+=+=+=+=+=B f B A d B f B A d B f B A d A f},,,,{221*4,1E D C B A P =故最短路径为E D C B A →→→→221,从A 到E(de)最短距离为10. 上述步骤可归纳为下述递推公式)}(),(m in{)(11+++=k k k k k k x f u x d x f 1,2,3,4(=k )0)(55=x f此递推关系叫做动态方程,即最短路径问题(de)动态规划模型,应用动态规划方法解决问题(de)关键是根据所给问题建立具体(de)动态规划模型,建立动态规划模型时(de)主要困难在于:如何将所遇到(de)最优化解释为合适(de)多段决策过程问题.从例6看出,划分I 阶段、定义状态、确定指标函数,是动态规划模型化时(de)主要工作,其合适性决定应用动态规划(de)成败.建模时,除将实际问题根据时间和空间恰当地划分若干阶段外,还须明确下列几点: (1)正确选择状态变量,使它既能描述过程(de)状态,又。

数学建模小题目及答案

数学建模小题目及答案

1.求下列积分的数值解:⎰+∞+-⋅23223x x x dxfunction y = myfun(x)y = 1./(x.*(x.^2 - 3*x + 2 ).^(1/3)); warning off allQ = quad(@myfun,2,100000) Q = quad(@myfun,2,10000000)Q = quad(@myfun,2,1000000000000000) warning on当上限为100000,10000000,1000000000时, 定积分的值为x=1.4389,1.4396,1.4396。

因此,可以将1.4396作为此定积分的值。

2.已知)s i n ()()c o s (),(2h t h t h t e h t f h t ++++=+,dt h t f h g ⎰=10),()(,画出]10,10[-∈h 时,)(h g 的图形。

syms t,syms h;f=exp(t+h)*cos(t+h)+(t+h)^2*sin(t+h); int(f,t,0,10) ans =1/2*exp(10+h)*cos(10+h)+1/2*exp(10+h)*sin(10+h)-98*cos(10+h)-20*cos(10+h)*h-cos(10+h)*h^2+20*sin(10+h)+2*sin(10+h)*h-1/2*exp(h)*cos(h)-1/2*exp(h)*sin(h)+cos(h)*h^2-2*cos(h)-2*sin(h)*hezplot('1/2*exp(10+h)*cos(10+h)+1/2*exp(10+h)*sin(10+h)-98*cos(10+h)-20*cos(10+h)*h-cos(10+h)*h^2+20*sin(10+h)+2*sin(10+h)*h-1/2*exp(h)*cos(h)-1/2*exp(h)*sin(h)+cos(h)*h^2-2*co s(h)-2*sin(h)*h',[-10,10])3.画出16)5(22=-+y x 绕x 轴一周所围成的图形,并求所产生的旋转体的体积。

数学建模习题及答案课后习题

数学建模习题及答案课后习题

数学建模习题及答案课后习题第⼀部分课后习题1.学校共1000名学⽣,235⼈住在A宿舍,333⼈住在B宿舍,432⼈住在C宿舍。

学⽣们要组织⼀个10⼈的委员会,试⽤下列办法分配各宿舍的委员数:(1)按⽐例分配取整数的名额后,剩下的名额按惯例分给⼩数部分较⼤者。

(2)节中的Q值⽅法。

(3)d’Hondt⽅法:将A,B,C各宿舍的⼈数⽤正整数n=1,2,3,…相除,其商数如下表:将所得商数从⼤到⼩取前10个(10为席位数),在数字下标以横线,表中A,B,C⾏有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

你能解释这种⽅法的道理吗。

如果委员会从10⼈增⾄15⼈,⽤以上3种⽅法再分配名额。

将3种⽅法两次分配的结果列表⽐较。

(4)你能提出其他的⽅法吗。

⽤你的⽅法分配上⾯的名额。

2.在超市购物时你注意到⼤包装商品⽐⼩包装商品便宜这种现象了吗。

⽐如洁银⽛膏50g装的每⽀元,120g装的元,⼆者单位重量的价格⽐是:1。

试⽤⽐例⽅法构造模型解释这个现象。

(1)分析商品价格C与商品重量w的关系。

价格由⽣产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正⽐,有的与表⾯积成正⽐,还有与w⽆关的因素。

(2)给出单位重量价格c与w的关系,画出它的简图,说明w越⼤c越⼩,但是随着w的增加c减少的程度变⼩。

解释实际意义是什么。

3.⼀垂钓俱乐部⿎励垂钓者将调上的鱼放⽣,打算按照放⽣的鱼的重量给予奖励,俱乐部只准备了⼀把软尺⽤于测量,请你设计按照测量的长度估计鱼的重量的⽅法。

假定鱼池中只有⼀种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼⾝的最⼤周长):⾝长(cm)重量76548211627374821389652454(g)胸围(cm)先⽤机理分析建⽴模型,再⽤数据确定参数4.⽤宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹⾓应多⼤(如图)。

若知道管道长度,需⽤多长布条(可考虑两端的影响)。

如果管道是其他形状呢。

数学建模方法与分析部分习题解答第三版

数学建模方法与分析部分习题解答第三版

数学建模方法与分析部分习题解答第三版P38题22(a)第一步:提出问题变量:x1=蓝鲸的数量x2=长须鲸的数量r1=蓝鲸种群的内禀增长率r2=长须鲸种群的内禀增长率K1=蓝鲸的最大可生存的种群数量K2=长须鲸的最大可生存的种群数量a1=竞争对蓝鲸的影响a2=竞争对长须鲸的影响t=时间(年)Q=鲸鱼总数假设: dx1dt=r1*x1(1-x1/K1)-a1*x1*x2 dx2dt=r2*x2(1-x2/K2)-a2*x1*x2x1>=0x2>=0dx1dt>=0dx2dt>=0Q=x1+x2目标:求在满足约束条件下Q的最大值第二步:建立模型五步法和有约束的最优化模型第三步:推导模型公式设目标函数为y=f(x1, x2)=x1+x2约束条件为dx1dt=r1*x1(1-x1/K1)-a1*x1*x2>=0dx2dt=r2*x2(1-x2/K2)-a2*x1*x2>=0x1>=0x2>=0即求解y满足以上条件的最大值第四部:求解模型由y=f(x1, x2)=x1+x2得▽f=(1, 1)由g1=0.05*x1*(1-x1/150000)-10^(-8)*x1*x2g2=0.08*x2*(1-x2/400000)-10^(-8)*x1*x2得▽g1(x1, x2)=(1/20 - x2/100000000 - x1/1500000, -x1/100000000)▽g2(x1, x2)=(-x2/100000000, 2/25 - x2/2500000 - x1/100000000) 设λ1, λ2为拉格朗日乘子,则在极值点满足▽f=λ1*▽g1+λ2*▽g2带入解得Matlab求解clc;clear;syms x1x2w vg1=0.05*x1*(1-x1/150000)-10^(-8)*x1*x2g11=diff(g1,x1)g12=diff(g1,x2)g2=0.08*x2*(1-x2/400000)-10^(-8)*x1*x2g21=diff(g2,x1)g22=diff(g2,x2)s=solve(w*g11+v*g21-1,w*g12+v*g22-1,g1,g2)λ1= -20.6522λ2= -12.3567x1=138210x2=393090因此y=f(x1, x2)=x1+x2=531300第五步:回答问题由五步法和有约束的最优化模型解得当满足种群数量是可行的可持续条件时,鲸鱼总数最大的种群数量为531300,此时蓝鲸数量为138210,长须鲸数量为393090.2(b)考虑最优种群数量x1, x2对内禀增长率r1的灵敏性在模型中将此参量设为变量则有y=f(x1, x2)=x1+x2得▽f=(1, 1)此时g2=0.08*x2*(1-x2/400000)-10^(-8)*x1*x2▽f=λ1*▽g1+λ2*▽g2解得λ1= -475/(500*r1 - 2)λ2=-(2000*r1 - 3)/(157*r1)x1=(6000000000*r1 - 24000000)/(40000*r1 - 3)x2=(157*********r1)/(40000*r1 - 3)则计算出dx1/dr1=6000000000/(40000*r1-3)-(40000*(6000000000*r1-24000000))/(40000 *r1 - 3)^2dx2/dr1=157********/(40000*r1-3)-(628000000000000*r1)/(40000*r1 - 3)^2 在点x1=138210, x2=393090, r1=0.05, 有S(x1, r1)=dx1/dr1*r1/x1=236210*0.05/138210=0.0855S(x2, r1)=dx1/dr1*r1/x2=11810*0.05/393090=- 0.00152 (c)考虑最优种群数量x1, x2对环境承受力K1, K2灵敏性在模型中将此参量设为变量则有y=f(x1, x2)=x1+x2得▽f=(1, 1)此时g2=0.08*x2*(1-x2/400000)-10^(-8)*x1*x2▽f=λ1*▽g1+λ2*▽g2解得λ1= -475/23λ2=-(20*K1 - 100000000)/(K1 - 8000000)x1= - (92000000*K1)/(K 1– 100000000)x2= (5000000*K1 - 40000000000000)/(K1 - 100000000)则计算出dx1/dK1=(92000000*k1)/(k1- 100000000)^2 - 92000000/(k1 - 100000000)dx2/dK1=5000000/(k1-100000000)-(5000000*k1 - 40000000000000)/(k 1- 100000000)^2在点x1=138210, x2=393090, K1=150000, 有S(x1, K1)= dx1/dK1*K1/x1= 0.9228*150000/138210=1.0015 S(x2, K1)= dx2/dK1*K1/x2= -0.0461*150000/393090= -0.01762(d)考虑最优种群数量x1, x2对竞争强度a灵敏性在模型中将此参量设为变量则有y=f(x1, x2)=x1+x2得▽f=(1, 1)由g2=0.08*x2*(1-x2/400000)-a*x1*x2▽f=λ1*▽g1+λ2*▽g2解得λ1= -(100000000*a - 20)/(8000000*a - 1)λ2= -(75000000*a - 25)/(3750000*a - 2)x1= (1200000000000*a - 150000)/(15000000000000*a^2 - 1) x2=(750000000000*a - 400000)/(15000000000000*a^2 - 1)则计算出dx1/da=1200000000000/(15000000000000*a^2-1)-(30000000000000*a *(1200000000000*a-150000))/(15000000000000*a^2 - 1)^2dx2/da=750000000000/(15000000000000*a^2-1)-(30000000000000*a* (750000000000*a - 400000))/(15000000000000*a^2 - 1)^2在点x1=138210, x2=393090, a=10^(-8), 有S(x1, a)=dx1/da*a/x1= -0.0840S(x2, a)=dx2/da*a/x2=-0.0161当出现某一种群灭绝时,a=0,此时以上解出的种群数量不是最优解,此时最优解为X1max=150000, X2max=400000。

数学建模第四版习题答案

数学建模第四版习题答案

数学建模第四版习题答案数学建模是一门应用数学的学科,通过数学方法解决实际问题。

《数学建模(第四版)》是一本经典的教材,其中的习题是学生巩固知识和提高能力的重要练习。

本文将对《数学建模(第四版)》部分习题进行解答和讨论。

第一章是数学建模的基础知识。

习题1.1要求解释什么是数学建模,以及它在现实生活中的应用。

数学建模是将实际问题转化为数学问题,通过数学方法进行求解和分析。

它在工程、经济、环境等领域都有广泛的应用,如物流优化、金融风险评估等。

第二章是线性规划问题。

习题2.3要求利用线性规划方法解决一个生产计划问题。

假设某工厂有两种产品A和B,每种产品的生产需要不同的资源和时间。

通过建立数学模型,可以确定最佳的生产计划,以最大化利润或最小化成本。

第三章是整数规划问题。

习题3.2要求解决一个装载问题。

假设有一辆货车和若干货物,每个货物有不同的重量和体积。

货车的载重和容积有限,需要确定如何装载货物,使得装载量最大化。

通过整数规划方法,可以得到最优的装载方案。

第四章是非线性规划问题。

习题4.1要求求解一个最优化问题。

假设有一家公司要选择最佳的投资组合,以最大化收益。

通过建立数学模型,并应用非线性规划方法,可以确定最佳的投资策略。

第五章是动态规划问题。

习题5.3要求解决一个路径规划问题。

假设有一个迷宫,求从起点到终点的最短路径。

通过动态规划方法,可以逐步确定最优的路径,以及到达每个位置所需的最小代价。

第六章是图论问题。

习题6.2要求解决一个旅行商问题。

假设有若干个城市,旅行商需要依次访问每个城市,并返回起点城市。

通过建立图模型,并应用图论算法,可以确定最短的旅行路线,以及访问每个城市的顺序。

第七章是随机过程问题。

习题7.1要求求解一个排队论问题。

假设有若干个顾客到达某个服务点,服务点只能同时为一个顾客提供服务。

通过建立排队模型,并应用随机过程理论,可以确定顾客等待时间的分布,以及服务点的利用率。

总之,《数学建模(第四版)》的习题涵盖了数学建模的各个方面,从基础知识到高级应用,从线性规划到随机过程。

数学建模1例题解析

数学建模1例题解析

小王夫妇计划贷款20万元购买一套房子,他们打算用20年的时间还清贷款。

目前,银行的利率是0.6%/月。

他们采用等额还款的方式(即每月的还款额相同)偿还贷款。

(1)在上述条件下,小王夫妇每月的还款额是多少?共计付了多少利息?(2)在贷款满5年后,他们认为他们有经济能力还完余下的款额,打算提前还贷,那么他们在第6年初,应一次付给银行多少钱,才能将余下全部的贷款还清?(3)如果在第6年初,银行的贷款利率由0.6%/月调到0.8%/月,他们仍然采用等额还款的方式,在余下的15年内将贷款还清,那么在第6年后,每月的还款额应是多少?(4)某借贷公司的广告称,对于贷款期在20年以上的客户,他们帮你提前三年还清贷款。

但条件是:(i)每半个月付款一次,但付款额不增加,即一次付款额是原付给银行还款额的1/2;(ii)因为增加必要的档案、文书等管理工作,因此要预付给借贷公司贷款总额10%的佣金。

试分析,小王夫妇是否要请这家借贷公司帮助还款。

解答:(1)贷款总月数为N=20*12=240,第240个月的欠款额为0,即。

利用式子(元),即每个月还款1574.70元,共还款(元),共计付利息。

(2)贷款5年(即5*12=60个月)后的欠款额为,利用公式:,所以,(元)(3)元,即第六年初,贷款利率,所以余下的15年,每个月还款额为:(元)(4)按照借贷公司的条件(i)每半个月付款一次,但付款额不增加,即一次付款额是原付给银行还款额的,付款的时间缩短,但是前17年的付款总额不变。

帮忙提前三年还清需要资金数:。

对于条件(ii)佣金数:分析:因为预付佣金20000元,按照银行存款利率/月,17年的存款本息为即在第17年需要给付借贷公司的钱少于给付银行的钱。

所以建议请这家借贷公司帮助还款。

按照Newton冷却定律,温度为T的物体在温度为的环境中冷却的速度与温差成正比。

用此定律建立相应的微分方程模型。

凌晨某地发生一起凶杀案,警方于晨6时到达案发现场,测得尸温26℃,室温10℃,晨8时又测得尸温18℃。

数学建模试题(带答案)

数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。

试构造模型并求解。

答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。

f 和g 都是连续函数。

椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。

不妨设0)0(,0)0(g >=f 。

当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。

这样,改变椅子的位置使四只脚同时着地。

就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。

证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。

根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章第5题一个男孩和一个女孩分别在离家2km和1km且方向相反的两所学校里上学,每天同时放学后分别以2km/h和1km/h的速度步行回家。

一只小狗以6km/h的速度由男孩奔向女孩,又从女孩处跑向跑回男孩处,如此往返的奔跑,直至回到家中。

问小狗总共奔波了多少路程?解:由于男孩、女孩与小狗跑的时间一样,所以把时间设为t,则有2t+1t=3,得到t=1h。

所以小狗跑了6km/h*1h=6km。

第一章10题一位探险家必须穿过一片宽度为800 km的沙漠,他仅有的交通工具是一辆每升汽油可行驶10km的吉普车.吉普车的油箱可装10升汽油。

另外吉普车上可携带8个可装5升汽油的油桶,也就是说,吉普车最多可带50升汽油(最多能在沙漠中连续行驶500 km)。

现假定在探险家出发地的汽油是无限充足的.问这位保险家应怎样设计他的旅行才能通过此沙漠?他要通过沙漠所需的汽油最少是多少升?为了穿越这片800km宽的沙漠,他总共需要行驶多少公里路程。

总共要花费多少升的汽油?思路:1、若沙漠只有500公里或者更短,这时很简单,一次搞定。

2、若沙漠有550km,怎么办?需要保证的是:车到了离沙漠终点还有500km的地方,能恰恰加满油且不会有多余。

方案可为:600-550=50,从起点处加5*3(升)=15升油,开出50km,设一加油站,存下5升,剩下5升刚好使得汽车返回起点。

再在起点处加满50升油,到加油站时,只乘45升了,把存放在那儿的5升油加上。

则可跑出沙漠。

(这样共加油15+50=65,总路程为150+500=650km)3、再看2的情况,符合这种情况的沙漠的最大距离是多少呢:答案是500*(1+1/3)公里。

即在起点准备100升油,第一次装50升,跑了500/3公里后存放50*1/3升油,然后返回起点,这时车里的油也正好用完,然后再在起点处装50升,跑了550/3公里后,车内剩下(50*2/3)升油,再加上存放的50*1/3升油,恰好为50升油,则可跑出沙漠。

4。

当沙漠的距离超过了500*(1+1/3)km(但又超过得不多)又当如何?这时我们可以把前面的500*(1+1/3)km看成一段整体,需要保证的是:在距离沙漠终点500*(1+1/3)km 处恰恰有100升油(由3的分析可知)。

怎么来保证呢,我们假设沙漠的距离只比500*(1+1/3)多了1公里,因为汽车的容量是50升,所以100升油最少从起点运3次油才能满足。

除了3次装油,还有两次折回,所以往返正好有5次,这5次能保证的距离是500/5,所以这时我们又把沙漠的距离延伸到了:500*(1+1/3+1/5),起点应该储备150升油。

5。

当沙漠的距离超过了500*(1+1/3+1/5)km,要保证在距离沙漠终点500*(1+1/3+1/5)km的地方有150升油。

综上所述:总有某一个值k,使得fdis=500*(1+1/3+1/5+…+1/(2k-1))<800,但500*(1+1/3+1/5+…+1/(2k-1)+1/(2k+1))>800,应该在起点准备多少油呢?这时多了一小段出来,按情形2的分析,在起点准备的油应当是:((800 - fdis)/油耗)*往返次数+ k*50。

经计算:fdis=766.66,k=3,故应准备的油应为:((800 – 766.66)/10)*7 + 3*50=173.338。

第一章11题如果你有一个3L的桶和5L的桶,问如何才能准确地称出4L的水?如果你要的不是4L而是别的数量,你又该怎么办?解:准确称出4L水的方法:先把3L的桶装满水,倒入5L的桶中,再把3L的桶装满,又倒入5L的桶中直到倒满,此时3L的桶中还剩下1L;再将5L桶中的水倒掉,将3L桶中剩下的1L倒入5L桶中,再用3L桶装满水倒入5L桶中即可得到4L水。

y∈)表示要的任意L的水,a表示得到y L水所要用到3L桶的次数,b 设y([0,8]表示得到y L水所要用到5L桶的次数。

则可以得到如下模型:=+,a,b为整数。

35y a b例如1、y=1L时,a=2,b= -1,表示3L的桶用了两次装满,5L的桶用3L桶中的水装满一次并且倒掉。

2、y=2L时,a= -1,b=1。

3、y=3L时,a=1,b=0。

4、y=4L时,a=3,b= -1,表示3L的桶用了三次装满,5L的桶用3L桶中的水装满一次并且倒掉。

5、y=5L时,a=0,b=1。

6、y=6L时,a=2,b=0。

(注,此时5L的桶有用来中间存贮)7、y=7L时,a= -1,b=2。

8、y=8L时,a=1,b=1。

第一章第13题第二章1题第i 个前初的兔子对数为i f011,1f f ==,2012f f f =+=,3213f f f =+=,4235f f f =+= 5438f f f =+=,64513f f f =+=,76521f f f =+=,86734f f f =+=98755f f f =+=,108989f f f =+=,11109144f f f =+=(对)(理解:第i 个月的兔子=第i-1个月的兔子+第i-2个月的兔子,12i i i f f f --=+) 第二章2题这相当于一根棒的两端甲A ,乙B ,设初始位置甲A(0,0),棒长为R,乙的初始坐标为(D,0),顺时针运动,设甲的切向速度为v1,乙的径向速度为v2,则有转速w=v1/R,设x 轴正方向单位向量为i,y 正方向为j,则有乙的合速度为v1*(i*cos(wt)+j*sin(wt))+V2*(j*cos (wt )-isin(wt)),即有乙坐标的参数方程为x=D+[V1*cos(wt)-v2*sin (wt )]*t y=[V1*sin(wt)+v2*cos (wt )]*t, 这就是乙的运动路线了第二章3题 最小二乘法设y ax b =+,让总偏差最小,总偏差记为ε,()2161iii y ax b ε==-+⎡⎤⎣⎦∑,要求ε达到最小()()()161611220i i i i i i i i y ax b x y ax b x a ε==∂=-+⋅-=--+⋅=⎡⎤⎡⎤⎣⎦⎣⎦∂∑∑ ()16120i i i y ax b b ε=∂=-+=⎡⎤⎣⎦∂∑()16161611116161621111616i i i i i i i i i ii i i y x y x a x y x ======-=-∑∑∑∑∑∑,()()16161616211112161621116i i i i i i i i i i i i i x y x y x b x x ======-=⎛⎫- ⎪⎝⎭∑∑∑∑∑∑16112584123251284813377137081395014229146301488015288152991516815582158401620016728232566i ii y x==+++++++++++++++=∑()2161204492102521316216092220122500234092371624025243362464925281256002624426896378220ii x ==+++++++++++++=∑()216232566245815110.7194163782202458a ⨯-⨯==⨯-()22458232566378220151116.073245816378220b ⨯-⨯==--⨯0.719416.073y x =-数学建模2.10将一张四条腿的方桌放在不平的地面上,桌子四条腿的连线呈长方形,不允许将桌子移到别处,但允许其绕中心旋转,是否总能设法使其四条腿同时落地? 若桌子四条腿共圆,结果又如何? 解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对于问题一和问题三我们都这样假设 (1)地面为连续曲面(2)方桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

问题一现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D 的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。

当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。

由假设(1),()f θ,()g θ均为θ的连续函数。

又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。

不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。

作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。

又由于00()()0f g θθ=,故必有00()()0f g θθ==,证毕。

问题二现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以圆桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、C 的初始位置在y 轴上,而B 、D 则在y 轴上。

当方桌绕中心0旋转时,B 、D 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,我们令0'()f θ为A 、C 离地距离之和,'()g θ为B 、D 离地距离之和,它们的值由θ唯一确定。

由假设(1),0'()f θ,'()g θ均为θ的连续函数。

又由假设(3),三条腿总能同时着地, 故0'()f θ()g θ=0必成立(∀θ)。

不妨设'(0)0f =,'(0)0g >g (若'(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知0'()f θ,'()g θ均为θ的连续函数,'(0)0f =,'(0)0g >且对任意θ有00'()'()0f g θθ=,求证存在某一0θ,使00'()'()0f g θθ=。

相关文档
最新文档