小学数学奥数基础教程(六年级)--18

合集下载

小学奥数教案-第18讲-重叠问题(教)

小学奥数教案-第18讲-重叠问题(教)

教师辅导讲义 学员编:年 级:四年级 课 时 数:3 学员姓名:辅导科目:数学 教师: 授课主题第18讲-重叠问题 授课类型T 同步课堂 P 实战演练 S 归纳总结 教学目标① 了解容斥原理二量重叠和三量重叠的内容 ② 掌握容斥原理在组合计数等各个方面的应用 授课日期及时段T (Textbook-Based )——同步课堂一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数, 用式子可表示成:A B A B A B =+-,则称这一公式为包含与排除原理,简称容斥原理. 图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:AB ,即阴影面积. 图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:AB ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类知识梳理1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.考点一:两量重叠问题例1、实验小学四年级二班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加.这个班有多少人参加了语文或数学兴趣小组? C BA【解析】如图所示,A 圆表示参加语文兴趣小组的人,B 圆表示参加数学兴趣小组的人,A 与B 重合的部分C (阴影部分)表示同时参加两个小组的人.图中A 圆不含阴影的部分表示只参加语文兴趣小组未参加数学兴趣小组的人,有281216-=(人);图中B 圆不含阴影的部分表示只参加数学兴趣小组未参加语文兴趣小组的人,有291217-=(人).方法一:由此得到参加语文或数学兴趣小组的有:16121745++=(人).方法二:根据包含排除法,直接可得:参加语文或数学兴趣小组的人=参加语文兴趣小组的人+参加数学兴趣小组的人-两个小典例分析图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++重叠部分A B 、B C 、C A 重叠了2次,多加了1次.2.再排除:A B C A B B C A C ++---重叠部分A B C 重叠了3次,但是在进行A B C ++-A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.A B【解析】如图,用长方形表示1~100的全部自然数,圆表示1~100中3的倍数,B圆表示1~100中5的倍数,长方形内两圆外的部分表示既不是3的倍数也不是5的倍数的数.由1003331÷=可知,1~100中3的倍数有33个;由100520÷=可知,1~100中5的倍数有20个;由10035610()可知,1~100既是3的倍数又是5的倍数的数有6个.÷⨯=由包含排除法,3或5的倍数有:3320647+-=(个).从而不是3的倍数也不是5的倍数的数有1004753-=(个).考点五:容斥原理中的最值问题例1、将1~13这13个数字分别填入如图所示的由四个大小相同的圆分割成的13个区域中,然后把每个圆内的7个数相加,最后把四个圆的和相加,问:和最大是多少?【解析】越是中间,被重复计算的越多,最中心的区域被重复计算四次,将数字按从大到小依次填写于被重复计算多的区格中,最大和为:13×4+(12+11+10+9)×3+(8+7+6+5)×2+(4+3+2+1)=240.P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、芳草地小学四年级有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?AC B【解析】如图,A圆表示学画画的人,B圆表示学钢琴的人,C表示既学钢琴又学画画的人,图中A圆不含阴影的部分表示只学画画的人,有:43376-=(人),图中B圆不含阴影的部分表示只学钢琴的人,有:583721-=(人).2、科技活动小组有55人.在一次制作飞机模型和制作舰艇模型的定时科技活动比赛中,老师到时清点发现:制作好一架飞机模型的同学有40人,制作好一艘舰艇的同学有32人.每个同学都至少完成了一项制作.问两项制作都完成的同学有多少人?AC B【解析】因为403272>,所以必有人两项制作都完成了.+=,7255由于每个同学都至少完成了一项制作,根据包含排除法可知:全组人数4032=+-完成了两项制作的人数,即5572=-完成了两项制作的人数.所以,完成了两项制作的人数为:725517-=(人).3、五年级一班共有36人,每人参加一个兴趣小组,共有A、B、C、D、E五个小组,若参加A组的有15人,参加B组的人数仅次于A组,参加C组、D组的人数相同,参加E组的人数最少,只有4人.那么,参331,100610.根据包含排除法,能被中任一个整除的数有3320+、如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于张板盖住的总面积是张纸板重叠部分的面积是多少平方厘米?5、四年级科技活动组共有63人.在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人.每个同学都至少完成了一项活动.问:同时完成这两项活动的同学有多少人?【解析】因423476+=,7663>,所以必有人同时完成了这两项活动.由于每个同学都至少完成了一项活动,根据包含排除法知,4234+-(完成了两项活动的人数)=全组人数,即76-(完成了两项活动的人数)63=.由减法运算法则知,完成两项活动的人数为766313-=(人).(也可画图分析)1、(第二届小学迎春杯数学竞赛)有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,83人懂俄语.问既懂英语又懂俄语的有多少人?【解析】方法一:在100人中懂英语或俄语的有:1001090-=(人).又因为有75人懂英语,所以只懂俄语的有:907515-=(人).从83位懂俄语的旅客中除去只懂俄语的人,剩下的8315- 68=(人)就是既懂英语又懂俄语的旅客.方法二:学会把公式进行适当的变换,由包含与排除原理,得:75839068A B A B A B =+-=+-=(人).(Summary-Embedded)——归纳总结容斥原理的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。

(六年级)小学数学奥数基础教程-30讲全-2

(六年级)小学数学奥数基础教程-30讲全-2

小学奥数基础教程(六年级)第1讲比较分数的大小……………………………………2-3 第2讲巧求分数……………………………………4-7第3讲分数运算的技巧……………………………………第4讲循环小数与分数……………………………………第5讲工程问题(一)……………………………………第6讲工程问题(二)……………………………………第7讲巧用单位“1”……………………………………第8讲比和比例……………………………………第9讲百分数……………………………………第10讲商业中的数学……………………………………第11讲圆与扇形……………………………………第12讲圆柱与圆锥……………………………………第13讲立体图形(一)……………………………………第14讲立体图形(二)……………………………………第15讲棋盘的覆盖……………………………………第16讲找规律……………………………………第17讲操作问题……………………………………第18讲取整计算……………………………………第19讲近似值与估算……………………………………第20讲数值代入法……………………………………第21讲枚举法……………………………………第22讲列表法……………………………………第23讲图解法……………………………………第24讲时钟问题……………………………………第25讲时间问题……………………………………第26讲牛吃草问题……………………………………第27讲运筹学初步(一)……………………………………第28讲运筹学初步(二)……………………………………第29讲运筹学初步(三)……………………………………第30讲趣题巧解……………………………………第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

小学六年级数学上册奥数题100道及答案

小学六年级数学上册奥数题100道及答案

小学六年级数学上册奥数题100道及答案1. 甲、乙两数的和是120,甲数是乙数的3 倍,求甲、乙两数各是多少?答案:乙数= 120÷(3 + 1) = 30,甲数= 3×30 = 902. 某工厂有三个车间,第一车间人数是第二、三车间人数和的1/2,第二车间人数是第一、三车间人数和的1/3,第三车间有105 人,求该厂总人数。

答案:第一车间人数占总人数的1/(1 + 2) = 1/3,第二车间人数占总人数的1/(1 + 3) = 1/4,所以第三车间人数占总人数的1 - 1/3 - 1/4 = 5/12,总人数= 105÷5/12 = 252 人3. 一筐苹果,连筐重56 千克,先卖出苹果的一半,再卖出剩下苹果的一半,这时连筐重17 千克,原来这筐苹果重多少千克?答案:一共卖出的苹果占总苹果的1/2 + 1/2×1/2 = 3/4,卖出的苹果重56 - 17 = 39 千克,原来苹果重39÷3/4 = 52 千克4. 修一条路,第一天修了全长的1/3,第二天修了余下的1/3,还剩180 米没修,这条路全长多少米?答案:第二天修了全长的(1 - 1/3)×1/3 = 2/9,剩下的占全长的1 - 1/3 - 2/9 = 4/9,全长= 180÷4/9 = 405 米5. 有一堆煤,第一天运走全部的1/4,第二天运走剩下的1/3,第三天运走50 吨,正好运完,这堆煤有多少吨?答案:第二天运走全部的(1 - 1/4)×1/3 = 1/4,所以第三天运走全部的1 - 1/4 - 1/4 = 1/2,这堆煤有50÷1/2 = 100 吨6. 三个连续奇数的和是15,它们的积是多少?答案:中间的奇数= 15÷3 = 5,这三个奇数是3、5、7,它们的积是3×5×7 = 1057. 一个数除以8 余5,除以7 也余5,这个数最小是多少?答案:这个数减去5 能同时被8 和7 整除,8 和7 的最小公倍数是56,所以这个数最小是56 + 5 = 618. 一个长方形的周长是48 厘米,长是宽的3 倍,求这个长方形的面积。

小学数学奥数基础教程目录3-6册

小学数学奥数基础教程目录3-6册

小学数学解题思路技巧目录(一、二年级用)word文档下载地址文档贡献者:与你的缘第一章基础知识§1.1 神奇的1和0§1.2 余数的妙用§1.3 周期现象第二章填速算与技巧§2.1 加减巧算§2.2 乘法巧算§2.3 连续自然数求和第三章填数问题§3.1 用运算符号连算式§3.2 找规律填数§3.3 奇怪的算式§3.4 调整法趣谈第四章火柴棒游戏§4.1 简单的变式运算§4.2 复杂的变式游戏§4.3 图形游戏第五章图形问题§5.1 怎样数图形的个数§5.2 图形的识别与划分§5.3 怎样剪拼图形第六章简单应用题§6.1 解应用题的综合法与分析法§6.2 倍数问题§6.3 有关平均分的问题§6.4 事物推理问题§6.5 钟面上的数学问题第七章模拟试题模拟试题一模拟试题二模拟试题三模拟试题四模拟试题五模拟试题六模拟试题七小学数学奥数基础教程(三年级)目录(含答案).word文档下载地址文档贡献者:与你的缘第1讲加减法的巧算练习1第2讲横式数字谜(一)练习2第3讲竖式数字谜(一)练习3第4讲竖式数字谜(二)练习4第5讲找规律(一)练习5第6讲找规律(二)练习6第7讲加减法应用题练习7第8讲乘除法应用题练习8第9讲平均数练习9第10讲植树问题练习10第11讲巧数图形练习11第12讲巧求周长练习12第13讲火柴棍游戏(一)练习13第14讲火柴棍游戏(二)练习14第15讲趣题巧解练习15第16讲数阵图(一)练习16第17讲数阵图(二)练习17第18讲能被2,5整除的数的特征练习18第19讲能被3整除的数的特征练习19第20讲乘、除法的运算律和性质练习20第21讲乘法中的巧算练习21第22讲横式数字谜(二)练习22第23讲竖式数字谜(三)练习23第24讲和倍应用题练习24第25讲差倍应用题练习25第26讲和差应用题练习26第27讲巧用矩形面积公式练习27第28讲一笔画(一)练习28第29讲一笔画(二)练习29第30讲包含与排除练习30小学数学奥数基础教程(四年级)目录(含答案).word文档下载地址.文档贡献者:与你的缘第1讲速算与巧算(一)练习1第2讲速算与巧算(二)练习2第3讲高斯求和练习3第4讲数的整除性(一)练习4第5讲弃九法练习5第6讲数的整除性练习6第7讲找规律(一)练习7第8讲找规律(二)练习8第九讲数字迷(一)练习9第10讲数字迷(二)练习10第11讲归一问题与归总问题练习11第12讲年龄问题练习12第13讲鸡兔同笼问题与假设法练习13第14讲盈亏问题与比较法(一)练习14第15讲盈亏问题与比较法(二)练习15第16讲数阵图(一)练习16第17讲数阵图(二)练习17第18讲数阵图(三)练习18第19讲乘法原理练习19第20讲加法原理(一)练习20第21讲加法原理(二)练习21第22讲还原问题(一)练习22第23讲还原问题(二)练习23第24讲页码问题练习24第25讲智取火柴练习25第26讲逻辑问题(一)练习26第27讲逻辑问题(二)练习27第28讲逻辑问题(二)练习28第29讲抽屉原理(一)练习29第30讲抽屉原理(二)练习30小学数学奥数基础教程(五年级)目录(含答案)word文档下载地址文档贡献者:与你的缘第1讲数字迷(一)练习1第2讲数字谜(二)练习2第3讲定义新运算(一)练习3第4讲定义新运算(二)练习4第5讲数的整除性(一)练习5第6讲数的整除性(二)练习6第7讲奇偶性(一)练习7第8讲奇偶性(二)练习8第9讲奇偶性(三)练习9第10讲质数与合数练习10第11讲分解质因数练习11第12讲最大公约数与最小公倍数(一)练习12第13讲最大公约数与最小公倍数(二)练习13第14讲余数问题练习14第15讲孙子问题与逐步约束法练习15第16讲巧算24练习16第17讲位置原则练习17第18讲最大最小练习18第19讲图形的分割与拼接练习19第20讲多边形的面积练习20第21讲用等量代换求面积第22 用割补法求面积练习22第23讲列方程解应用题练习23第24讲行程问题(一)练习24第25讲行程问题(二)练习25第26讲行程问题(三)练习26第27讲逻辑问题(一)练习27第28讲逻辑问题(二)练习28第29讲抽屉原理(一)练习29第30讲抽屉原理(二)练习30小学数学奥数基础教程(六年级)目录(含答案)word文档下载地址文档贡献者:与你的缘第1讲比较分数的大小练习1第2讲巧求分数练习2第3讲分数运算的技巧练习3第4讲循环小数与分数练习4第5讲工程问题(一)练习5第6讲工程问题(二)练习6第7讲巧用单位“1”练习7第8讲比和比例练习8第9讲百分数练习9第10讲商业中的数学第11讲圆与扇形练习11第12讲圆柱与圆锥练习12第13讲立体图形(一)练习13第14讲立体图形(二)练习14第15讲棋盘的覆盖练习15第16讲找规律练习16第17讲操作问题练习17第18讲取整计算练习18第19讲近似值与估算练习19练习第20讲数值代入法练习20第21讲枚举法练习21第22讲列表法练习22第23讲图解法练习23第24讲时钟问题练习24第25讲时间问题练习25第26讲牛吃草问题练习26第27讲运筹学初步(一)练习27第28讲运筹学初步(二)练习28第29讲运筹学初步(三)练习29第30讲趣题巧解练习30。

最新小学数学奥数基础教程(六年级)目30讲全[1]

最新小学数学奥数基础教程(六年级)目30讲全[1]

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

小学六年级奥数专题之相遇问题

小学六年级奥数专题之相遇问题

小学六年级奥数专题之相遇问题一、基本练习(1)甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?(2)两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过2.5小时两车相遇。

两个车站之间的铁路长多少千米?(3)甲、乙两列火车同时从相距988千米的两地相向而行,经过5.2小时两车相遇。

甲列车每小时行93千米,乙列车每小时行多少千米?二、综合练习(1)师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?(2)甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?(3)甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。

已知乙船每小时行42千米,甲船每小时行多少千米?(4)一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。

已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?(5)两地相距270千米,甲、乙两列火车同时从两地相对开出,经过4小时相遇。

已知甲车的速度是乙车的1.5倍,求甲、乙两列火车每小时各行多少千米?(6)甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?(7)甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。

乙车每小时行多少千米?(8)A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?(9)甲、乙两列汽车同时从两地出发,相向而行。

已知甲车每小时行45千米,乙车每小时行32千米,相遇时甲车比乙车多行52千米。

小学数学奥数方法讲义之-图解法_通用版

小学数学奥数方法讲义之-图解法_通用版

小学数学奥数方法讲义之-图解法_通用版第十八讲图解法图形是数学研究的对象,也是数学思维和表达的工具。

在解答应用题时,如果用图形把题意表达出来,题中的数量关系就会具体而形象。

图形可起到启发思维、支持思维、唤起记忆的作用,有利于尽快找到解题思路。

有时,作出了图形,答案便在图形中。

(一)示意图示意图是为了说明事物的原理或具体轮廓而绘成的略图。

小学数学中的示意图简单、直观、形象,使人容易理解图中的数量关系。

例1 妈妈给兄弟二人每人10个苹果,哥哥吃了8个,弟弟吃了5个。

谁剩下的苹果多?多几个?(适于四年级程度)解:作图18-1。

哥哥吃了8个后,剩下苹果:10-8=2(个)弟弟吃了5个后,剩下苹果:10-5=5(个)弟弟剩下的苹果比哥哥的多:5-2=3(个)答:弟弟剩下的苹果多,比哥哥的多3个。

例2 一桶煤油,倒出40%,还剩18升。

这桶煤油原来是多少升?(适于六年级程度)解:作图18-2。

从图中可看出,倒出40%后,还剩:1-40%=60%这60%是18升所对应的百分率,所以这桶油原来的升数是:18÷60%=30(升)例2 托尔斯泰是俄罗斯伟大作家,享年82岁。

他在19世纪中度过的时间比在20世纪中度过的时间多62年。

问托尔斯泰生于哪一年?去世于哪一年?(适于四年级程度)解:作图18-5。

从图18-5可看出,他在20世纪度过的时间是:(82-62)÷2=20÷2=10(年)由此看出,他死于1910年。

他出生的时间是:1910-82=1828(年)答略。

解:作图18-6。

综合算式:答略。

(三)思路图小学数学中的许多应用题,需要用综合法或分析法分析解答。

如果把思维的过程用文字图形表示出来,就有助于正确选择已知数量,提出中间问题,理清数量关系,从而顺利解题。

这种表示思维过程的图形就是思路图。

例题参见前面的分析法和综合法。

(四)正方形图借助正方形图解应用题,就是以正方形的边长、面积表示应用题中的数量,使应用题数量之间的关系具体而明显地呈现出来,从而达到便于解题的目的。

小学数学奥数基础教程(六年级)目30讲全[1]

小学数学奥数基础教程(六年级)目30讲全[1]

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

小学数学奥数基础教程

小学数学奥数基础教程

第1讲加减法的巧算在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。

加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数,再将各组的结果求和。

这种“化零为整”的思想是加减法巧算的基础。

先讲加法的巧算。

加法具有以下两个运算律:加法交换律:两个数相加,交换加数的位置,它们的和不变。

即a+b=b+a,其中a,b各表示任意一数。

例如,5+6=6+5。

一般地,多个数相加,任意改变相加的次序,其和不变。

例如,a+b+c+d=d+b+a+c=…其中a,b,c,d各表示任意一数。

加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。

即a+b+c=(a+b)+c=a+(b+c),其中a,b,c各表示任意一数。

例如,4+9+7=(4+9)+7=4+(9+7)。

一般地,多个数(三个以上)相加,可先对其中几个数相加,再与其它数相加。

把加法交换律与加法结合律综合起来应用,就得到加法的一些巧算方法。

1.凑整法先把加在一起为整十、整百、整千……的加数加起来,然后再与其它的数相加。

例1计算:(1)23+54+18+47+82;(2)(1350+49+68)+(51+32+1650)。

解:(1)23+54+18+47+82=(23+47)+(18+82)+54=70+100+54=224;(2)(1350+49+68)+(51+32+1650)=1350+49+68+51+32+1650=(1350+1650)+(49+51)+(68+32)=3000+100+100=3200。

2.借数凑整法有些题目直观上凑整不明显,这时可“借数”凑整。

例如,计算976+85,可在85中借出24,即把85拆分成24+61,这样就可以先用976加上24,“凑”成1000,然后再加61。

例2计算:(1)57+64+238+46;(2)4993+3996+5997+848。

小学数学奥数基础教程(六年级)趣题巧解

小学数学奥数基础教程(六年级)趣题巧解

小学数学奥数基础教程(六年级)趣题巧解生活中的许多事都蕴含着数学思想,我们先看一个猜数游戏。

甲心中想一个32以内的数,乙只许问“比某数大吗?”甲只回答“是”或“不”,那么乙最多5次必可猜中。

比如甲想的是23,下面是5次提问与回答:(1)“比16大吗?”,“是”;(2)“比24大吗?”,“不”;(3)“比20大吗?”,“是”;(4)“比22大吗?”,“是”;(5)“比23大吗?”,“不”。

于是乙猜中甲想的23。

这里乙用的是对分法。

32的一半是16,第1次问话后,乙知道甲想的数在17~32之间; 17~32中间的数是24,第二次问话后,乙知道甲想的数在17~24之间。

依此类推,因为32=25,经5次对分,必猜中。

对分法适用于一次试验仅有两种不同结果的情形。

例1有1000箱外形完全相同的产品,其中999箱重量相同,有1箱次品重量较轻。

现有一个称(一次可称量500箱),怎样才能尽快找出这箱次品?分析与解:因为称量一次只有两种结果:等于规定重量或轻于规定重量,所以可用对分法。

先取500箱称,若等于规定重量,则次品在另500箱中;若轻于规定重量,则次品在这500箱中。

然后对有次品的500箱再对分,取其中的250箱称……因为1000<1024=210,所以经过10次称必可查出次品。

若一次试验可以有三种不同的结果,则可用三分法。

例2 现有80粒重量、外形完全相同的珍珠和1粒外形相同、但重量较轻的假珍珠,怎样才能用一台天平尽快地将这粒假珍珠挑出来?分析与解:因为天平称重有三种结果;①两边一样重,②左边重,③右边重,所以可以用三分法。

先将81粒珍珠三等分,在天平两边各放27粒珍珠,天平下还有27粒。

若两边一样重,则假珍珠在天平下的27粒中;若左边重,则假珍珠在天平右边的27粒中;若右边重,则假珍珠在天平左边的27粒中。

然后再将有假珍珠的一堆三等份,继续上面的做法。

因为81=34,所以只需要称4次就可将假珍珠挑出来。

小学数学奥数基础教程(打印版)

小学数学奥数基础教程(打印版)

- 1 -小学奥数基础教程第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

例1所用的方法叫做加法的基准数法。

这种方法适用于加数较多,而且所有的加数相差不大的情况。

作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。

由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。

在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。

同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。

例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。

小学六年级奥数教案13-18

小学六年级奥数教案13-18

小学六年级奥数教案—13立体图形我们学过的立体图形有长方体、正方体、圆柱体、圆锥体等。

这一讲将通过长方体、正方体及其组合图形,讲解有关的计数问题。

例1左下图中共有多少个面?多少条棱?例2右图是由18个边长为1厘米的小正方体拼成的,求它的表面积。

例3右图是由22个小正方体组成的立体图形,其中共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?例4有一个棱长为5厘米的正方体木块,从它的每个面看都有一个穿透的完全相同的孔(见下页左上图),求这个立体图形的表面积。

例5右图是由120块小立方体构成的4×5×6的立方体,如果将其表面涂成红色,那么其中一面、二面三面被涂成红色的小立方体各有多少块?例6 给一个立方体的每个面分别涂上红、黄、蓝三种颜色中的一种,每种颜色涂两个面,共有多少种不同涂法?(两种涂法,经过翻动能使各种颜色的位置相同,认为是相同的涂法。

)练习131.下页左上图中共有多少个面?多少条棱?2.有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色。

求被涂成红色的表面积。

3.有一个正方体,红、黄、蓝色的面各有两面。

在这个正方体中,有一些顶点是三种颜色都不同的面的交点,这种顶点最多有几个?最少有几个?4.将一个表面涂有红色的长方体分割成若干个体积为1厘米3的小正方体,其中一点红色都没有的小立方体只有3块。

求原来长方体的体积。

5.将一个5×5×5的立方体表面全部涂上红色,再将其分割成1×1×1的小立方体,取出全部至少有一个面是红色的小立方体,组成表面全部是红色的长方体。

那么,可组成的长方体的体积最大是多少?6.在边长为3分米的立方体木块的每个面的中心打一个直穿木块的洞,洞口呈边长为1分米的正方形(见左下图)。

求挖洞后木块的体积及表面积。

7.把正方体的六个表面都划分成9个相等的正方形(右上图)。

用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?小学六年级奥数教案—14立体图形二本讲主要讲长方体和立方体的展开图,各个面的相对位置,提高同学们的看图能力和空间想象能力。

六年级奥林匹克数学基础教程 18 取整计算

六年级奥林匹克数学基础教程 18 取整计算

小学数学奥数基础教程取整计算任何一个小数(或分数)都可以分成整数和纯小数(或真分数)两部分。

在数学计算中,有时会略去数字的小数部分,而只取它的整数部分。

比如,做得到正确答案是2件。

为了方便,我们引进符号[]:[a]表示不超过数a的最大整数,称为a的整数部分。

与+,-,×,÷符号一样,符号[]也是一种运算,叫取整运算。

显然,取整运算具有以下性质:对于任意的数字a,b,(1)[a]≤a;(2)a≤[a]+1;(3)[a]+[b]≤[a+b];(4)若a≤b,则[a]≤[b];( 5)若n是整数,则[ a+n]=[a]+n。

同学们可以自己举些例子来验证这五条性质。

例1计算[13÷[π]×4]。

解:[13÷[π]×4][13÷3×4]例2 1000以内有多少个数能被7整除?分析与解:同学们在三年级“包含与排除”一节中就见过这类题目,现在我们用取整运算来重新计算。

1000以内能被7整除的数,从1开始每7个数有1个,所以共有例3求1~1000中能被2或3或5整除的数的个数。

都被重复计算了,应当减去。

另外,同时能被2,3,5整除的数,开始被加了三遍,后来又被减了三遍,所以还应当补上。

例4 1000以内有多少个数既不是3也不是7的倍数?分析:在1~1000中,除去“既不是3也不是7的倍数”的数,剩下的数或者是3的倍数,或者是7的倍数。

用例3的方法可求出这部分数的个数。

1000与这部分数的个数之差即为所求。

例5求下式约简后的分母:分析与解:因为 6=2×3,所以分母中的500个6相乘,等于2500×3500。

只要我们求出分子中有多少个因子2、多少个因子3,就可以与分母中的因子2和因子3约分了。

因为分子的1000个因数中有500个偶数,所以至少有500个因子2,这样分母中的500个因子2将被全部约掉。

分子中有因子3的数,有的只有1个因子3,有的有2个因子3,等等。

年龄问题小学六年级数学奥数讲座讲含答案

年龄问题小学六年级数学奥数讲座讲含答案

小学数学奥数基础教程(六年级)年龄问题年龄问题是一些关于年龄的数学问题,是和差问题、倍数问题结合在一起的综合问题。

解答这类问题时,要抓住这类问题的特点:两人的年龄差始终是不变的。

例如:爸爸比儿子大25岁,若干年后(或若干年前),两人仍然是相差25岁。

例1、哥哥、弟弟两人的年龄和是40岁,4年后,哥哥比弟弟大4岁。

问甲、乙两人各是多少岁?分析:由“4年后,哥哥比弟弟大4岁”可知,哥哥、弟弟两人的年龄差是4岁,两人的年龄差是不变的。

假如我们给弟弟的年龄加上4岁,哥哥的岁数不变,那么两人的年龄和就变成40+4=44(岁)。

这时,44岁也就相当于两个哥哥的年龄,除以2就可求出哥哥的年龄。

解:(40+4)÷2=22(岁)22-4=18(岁)答:哥哥22岁,弟弟18岁。

例2、父亲比儿子大30岁,明年父亲的年龄是儿子的4倍,那么,今年儿子多少岁?分析:由题意可知,父亲比儿子大30岁,这个年龄差是不变的。

所以当明年父亲的年龄是儿子的4倍时,这个年龄差仍然是30岁。

由相差30岁,是儿子的4倍,可以看出30岁与(4-1)倍是对应的,其中的一份就是明年儿子的岁数。

解:①明年儿子的年龄:30÷(4-1)=10(岁)②今年儿子的年龄:10-1=9(岁)答:今年儿子9岁。

例3、妈妈今年35岁,恰好是女儿年龄的7倍。

多少年后,妈妈的年龄恰好是女儿的3倍?分析:根据“妈妈今年35岁,恰好是女儿的7倍”,可以求出今年女儿的年龄35÷7=5(岁)。

两人的年龄差是35-5=30岁。

若干年后,两人的年龄差30岁,妈妈的年龄是女儿的3倍,也就是30岁与(3-1)倍相对应,这样就可以求出若干年后女儿的年龄。

进而求出多少年后妈妈的年龄是女儿的3倍。

解:①今年女儿的年龄:35÷7=5(岁)②两人的年龄差:35-5=30岁③若干年后女儿的年龄:30÷(3-1)=15(岁)④多少年后妈妈的年龄是女儿的3倍:15-5=10(岁)综合算式:(35-35÷7)÷(3-1)-35÷7=10(岁)答:10年后妈妈的年龄是女儿的3倍。

(完整版)小学数学奥数基础教程(六年级)目30讲全

(完整版)小学数学奥数基础教程(六年级)目30讲全

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学奥数基础教程(六年级)
本教程共30讲
取整计算
任何一个小数(或分数)都可以分成整数和纯小数(或真分数)两部分。

在数学计算中,有时会略去数字的小数部分,而只取它的整数部分。

比如,做
得到正确答案是2件。

为了方便,我们引进符号[]:
[a]表示不超过数a的最大整数,称为a的整数部分。

与+,-,×,÷符号一样,符号[]也是一种运算,叫取整运算。

显然,取整运算具有以下性质:对于任意的数字a,b,
(1)[a]≤a;
(2)a≤[a]+1;
(3)[a]+[b]≤[a+b];
(4)若a≤b,则[a]≤[b];
( 5)若n是整数,则[ a+n]=[a]+n。

同学们可以自己举些例子来验证这五条性质。

例1计算[13÷[π]×4]。

解:[13÷[π]×4]
[13÷3×4]
例2 1000以内有多少个数能被7整除?
分析与解:同学们在三年级“包含与排除”一节中就见过这类题目,现在我们用取整运算来重新计算。

1000以内能被7整除的数,从1开始每7个数有1个,所以共有
例3求1~1000中能被2或3或5整除的数的个数。

都被重复计算了,应当减去。

另外,同时能被2,3,5整除的数,开始被加了三遍,后来又被减了三遍,所以还应当补上。

例4 1000以内有多少个数既不是3也不是7的倍数?
分析:在1~1000中,除去“既不是3也不是7的倍数”的数,剩下的数或者是3的倍数,或者是7的倍数。

用例3的方法可求出这部分数的个数。

1000与这部分数的个数之差即为所求。

例5求下式约简后的分母:
分析与解:因为 6=2×3,所以分母中的500个6相乘,等于2500×3500。

只要我们求出分子中有多少个因子2、多少个因子3,就可以与分母中的因子2和因子3约分了。

因为分子的1000个因数中有500个偶数,所以至少有500个因子2,这样分母中的500个因子2将被全部约掉。

分子中有因子3的数,有的只有1个因子3,有的有2个因子3,等等。

因为
36=729<1000<37=2187,所以分子的每个因数最多有6个因子3。

与分母约分后,分母还剩两个因子3。

所以,约简后的分母是9。

注意:在上面的计算中,并不需要真的这样计算。

因为式中的分子都是1000,分母依次是3,32,33,…后面一个是前面一个的3倍,所以在取整运算中,只需口算:1000除以3等于333(小数部分舍掉,下同),333除以3等于111,111除以3等于37,37除以3等于12,12除以3等于4,4除以3等于1。

于是得到
333+111+37+12+4+1=498(个)。

在上面的运算中,当得数小于3时就自然停止,事先不必求出分母最大是3的几次方。

例6 在下面的等式中,M,n都是自然数,n最大可以取几?
1×2×3×…×99×100=12n×M。

分析与解:因为12=22×3,所以只要求出等号左边有多少个因子2、多少个因子3,这些因子2和因子3能“凑”出多少个12,问题就解决了。

与例5类似,可求出等号左边因子2和因子3分别有
=50+25+12+6+3+1=97(个);
因为97个因子2与48个因子3最多可以“凑”出48个12,所以n 最大是48。

练习18
2.请给出三个数a,b,c,使满足:
[a]+[b]=[a+b],[a]+[c]<[a+c]。

3.在1000~2000中,有多少个数是8的倍数?
4.500以内有多少个数能被3或者能被5整除?
5.在 10000以内,既不是 2也不是 3也不是 5的倍数的数有多少个?
6.K是自然数,且下式是整数,求K的最大值。

7.求下式约简后的分母:
答案与提示练习18
1.55。

2.例如,a=1.4,b=1.5,c=1.6。

3.126个。

4.233个。

5.2666个。

=5000+3333+2000-1666-1000-666+333=7334,10000-7334=2666(个)。

6.215。

解:1~699中因子7的个数为
1~2000中因子7的个数为
K=330-115=215。

7.72。

解:1~100中因子2的个数为
因子3的个数为
分子中有97个因子2和48个因子3,而分母中有100个因子2和50个因子3,所以约简后的分母有3个因子2和2个因子3,是23×32=72。

相关文档
最新文档