高二数学上学期第一次月考试题 文

合集下载

人教版高二上学期数学第一次月考文试题(解析版)

人教版高二上学期数学第一次月考文试题(解析版)
【详解】解:(1)由题意得, ,
因为 ,所以解得 ,
所以 的方程为 ,
(2)由题意可得直线方程为 ,设直线与椭圆交于 ,
将 代入椭圆方程得, ,即 ,
所以 ,
所以
【点睛】此题考查求椭圆的标准方程,考查直线与椭圆的位置关系,考查弦长公式的应用,考查计算能力,属于基础题
22.已知椭圆的焦点是F1(0,-1),F2(0,1),离心率e= .
(1)求椭圆的标准方程;
(2)设P在这个椭圆上且|PF1|-|PF2|=1,求∠F1PF2的余弦值.
【答案】(1) ,(2)
【解析】
【分析】
(1)根据题意可得: ,解得 ,从而可得椭圆的方程;
(2)由椭圆 定义得: ,结合题意可得: ,再根据余弦定理可求得结果
【详解】解:(1)由已知设椭圆方程为 ,
【详解】由不等式 的解集为 ,得 无解,即对 , 恒成立,①当 时,显然满足题意,②当 时,有 ,解得: ,综上,
故答案为:
【点睛】本题结合二次函数得性质,考查命题的真假,属于容易题.
三、解答题(本大题共6小题,满分70分)
17.当c<0时,若ac>bc,则a<b.请写出该命题的逆命题、否命题、逆否命题,并分别判断真假.
考点:本小题主要考查椭圆的标准方程,考查学生的推理能力.
点评:解决本小题时,不要忘记 ,否则就表示圆了.
15.若椭圆 的离心率为 ,则 的短轴长为___________.
【答案】
【解析】
【分析】
判断出椭圆的焦点在 轴上,得出 的值,根据离心率的概念可得 ,解出 的值可得短轴长.
【详解】由椭圆 得焦点在 轴上, , , ,
10.已知△ABC的顶点B、C在椭圆 +y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是( )

四川省成都市郫都区高二数学上学期第一次月考试题 文-人教版高二全册数学试题

四川省成都市郫都区高二数学上学期第一次月考试题 文-人教版高二全册数学试题

某某省某某市郫都区2017-2018学年高二数学上学期第一次月考试题 文一、选择题:本大题共12小题,每小题5分,共60分 1.命题“若α=π4,则tan α=1”的逆否命题是A .若α≠π4,则tan α≠1 B.若tan α≠1,则α≠π4C .若α=π4,则tan α≠1 D.若tan α≠1,则α=π42.已知命题p :∃n ∈N ,2n >1000,则¬p 为A .∃n ∈N,2n ≤1000B .∀n ∈N,2n>1000C .∀n ∈N,2n ≤1000D .∃n ∈N,2n <1000 3.过两点A (4,y ),B (2,-3)的直线的倾斜角是135°,则y 等于A .1B .-1C .-5D .5 4.下列命题是真命题的是A .若1=2x ,则1=xB .若yx 1=1,则y x = C .若y x =,则y x =D .若y x <,则22<y x5.设a ∈R ,则“a =1”是“直线l 1:ax +2y —1=0与直线l 2:x +(a +1)y +4=0平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 6.若方程x 2+(2a +3)y 2+2ax +a =0表示圆,则a 的值为A .2B .-1C .-1或2D .不存在 7.若命题p :x ∈A ∩B ,则﹁p 为A .x ∈A 且x ∉B B .x ∉A 且x ∉BC .x ∉A 或x ∉BD .x ∈A ∪B 8.圆x 2+y 2=50与圆x 2+y 2-12x -6y +40=0的公共弦长为A ..C .D .9.设变量x ,y 满足约束条件,,,0≤30≤20≥6+3y y xy x 则目标函数z =y -2x 的最小值为A .-7B .-4C .1D .210.已知圆C :x 2+y 2-4x -5=0,则过点P (1,2)的最短弦所在直线l 的方程是A .3x +2y -7=0B .x -2y +3=0C .x -2y -3=0D .2x +y -4=011.设点A (2,-3),B (-3,-2),直线过P (1,1)且与线段AB 相交,则l 的斜率k 的取值X 围是A .43≥k 或4≤k B .43≤≤4kC .4≤≤43k D .43≥k 或4≤k 12.直线y =x +b与曲线x b 的取值X 围是A .|b |=B .-1≤b <1且b= C .-1≤b <1 D .-1<b ≤1或b=- 二、填空题:本大题共4小题,每小题5分,共20分13.已知点A (x,1,2)和点B (2,3,4),且|AB |=x 的值是.14.已知直线024=-+y mx 与052=+-n y x 互相垂直,垂足为),(a 1,则=a . 15.若命题“0932,0200<+-∈∃ax x R x ”为假命题,则实数a 的取值X 围是.16.已知实数x ,y满足y ,则m =y +3x +1的取值X 围是. 三、解答题:解答应写出文字说明,证明过程或演算步骤,共70分 17.(本小题满分10分)已知三角形的三个顶点是A (4,0),B (6,6),C (0,2). (1)求AB 边上的高所在直线的方程; (2)求AC 边上的中线所在直线的方程.18.(本小题满分12分)已知△ABC 的三个顶点为A (1,4),B (-2,3),C (4,-5). (1)求△ABC 的外接圆方程、圆心坐标和外接圆半径; (2)求直线l :2x -y +2=0被圆C 所截得的弦长.19.(本小题满分12分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足.0>82+,0≤622x x x x(1)若a =1,且p ∧q 为真,某某数x 的取值X 围; (2)若﹁q 是﹁p 的必要不充分条件,某某数a 的取值X 围.20.(本小题满分12分)已知定圆的方程为(x +1)2+y 2=4,点A (1,0)为定圆上的一个点,点C 为定圆上的一个动点,M 为动弦AC 的中点,求点M 的轨迹方程.21.(本小题满分12分)已知圆C :x 2+y 2+2x -4y +3=0.(1)若圆C 的切线在x 轴和y 轴上的截距相等,求此切线的方程; (2)若点P 在直线0=3+42y x 上,过该点作圆C 的切线,切点为M ,求使得|PM |取得最小值时点P 的坐标.22.(本小题满分12分)已知圆C 过坐标原点O ,且与x 轴,y 轴分别交于点A ,B ,圆心坐标为C 2,t t ⎛⎫ ⎪⎝⎭ (t ∈R,t ≠0).(1)求证:△AOB 的面积为定值;(2)直线2x +y -4=0与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程; (3)在(2)的条件下,设点P ,Q 分别是直线l :x +y +2=0和圆C 上的动点,求|PB |+|PQ |的最小值及此时点P 的坐标.郫都一中2017-2018学年高二上期10月月考试题答案数 学(文科) 一.选择题 (每小题5分,共60分)BCC BAB CCA BAD 二.填空题(每小题5分,共20分)13. 6或-2 , 14. -2 , 15.[2 2 ,-22], 16.t ≤-32或t ≥34三.解答题:解答应写出文字说明,证明过程或演算步骤(共70分) 17.(本小题满分10分)解:(1)∵A (4,0),B (6,6),C (0,2), ∴kAB ==3,∴AB 边上的高所在直线的斜率k =,∴AB 边上的高所在直线的方程为y -2=,整理得x +3y -6=0. (2)∵AC 边的中点为(2,1), ∴AC 边上的中线所在的直线方程为,整理得5x -4y -6=0. 18.(本小题满分12分) 解(1)设△ABC 的外接圆方程为x 2+y 2+Dx +Ey +F =0,∵A ,B ,C 在圆上, ∴⎩⎪⎨⎪⎧1+16+D +4E +F =0,4+9-2D +3E +F =0,16+25+4D -5E +F =0,∴⎩⎪⎨⎪⎧D =-2,E =2,F =-23,∴△ABC 的外接圆方程为x 2+y 2-2x +2y -23=0, 即(x -1)2+(y +1)2=25.∴圆心坐标为(1,-1),外接圆半径为5.(2)圆心(1,-1)到直线l :2x -y+2=0的距离为d=5,则弦长为l =4 519.(本小题满分12分)解 (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0. 又a >0,所以a <x <3a , 当a =1时,1<x <3,即p 为真命题时,实数x 的取值X 围是1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,解得⎩⎪⎨⎪⎧-2≤x ≤3,x <-4或x >2.即2<x ≤3.所以q 为真时,实数x 的取值X 围是2<x ≤3.若p ∧q 为真,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3⇔2<x <3,所以实数x 的取值X 围是(2,3).(2)﹁q 是﹁ p 的必要不充分条件,即﹁p ⇒﹁q 且﹁q ⇒﹁p . 设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3}, 则A 真包含于B .所以0<a ≤2且3a >3,即1<a ≤2. 所以实数a 的取值X 围是(1,2]. 20.(本小题满分12分) 解:设点M (x ,y ),点C (x 0,y 0),因为M 是动弦AC 的中点,所以由中点坐标公式可得⎩⎪⎨⎪⎧x =x 0+12,y =y2,即⎩⎪⎨⎪⎧x 0=2x -1,y 0=2y .①因为点C 与点A 不重合,所以x 0≠1,即x ≠1. 又因为点C (x 0,y 0)在圆(x +1)2+y 2=4上, 所以(x 0+1)2+y 20=4(x 0≠1),②将①代入②,得(2x -1+1)2+(2y )2=4(x ≠1), 即x 2+y 2=1(x ≠1).因此,动点M 的轨迹方程为x 2+y 2=1(x ≠1). 21.(本小题满分12分)解:(1)将圆C 整理,得(x +1)2+(y -2)2=2.①当切线在两坐标轴上的截距为0时,设切线方程为y =kx ,∴圆心到切线的距离为|-k -2|k 2+1=2,即k 2-4k -2=0,解得k =2±6.∴切线方程为y =(2±6)x .②当切线在两坐标轴上的截距不为0时,设切线方程为x +y -a =0,∴圆心到切线的距离为|-1+2-a |2=2,即|a -1|=2,解得a =3或-1.∴切线方程为x +y +1=0或x +y -3=0.综上所述,所求切线方程为y =(2±6)x 或x +y +1=0或x +y -3=0.(2)∵|PO |=|PM |,∴x 21+y 21=(x 1+1)2+(y 1-2)2-2,即2x 1-4y 1+3=0,即点P 在直线l :2x -4y +3=0上.当|PM |取最小值时,|OP |取得最小值,此时直线OP ⊥l ,∴直线OP 的方程为2x +y =0.联立方程组⎩⎪⎨⎪⎧2x +y =0,2x -4y +3=0,解得⎩⎪⎨⎪⎧x =-310,y =35,∴点P 的坐标为⎝ ⎛⎭⎪⎫-310,35.22.(本小题满分12分)解:(1)证明:由题意知,圆C 的标准方程为(x -t )2+⎝⎛⎭⎪⎫y -2t 2=t 2+4t2,化简得x 2-2tx +y 2-4ty =0.当y =0时,x =0或x =2t ,则A (2t,0); 当x =0时,y =0或y =4t,则B ⎝ ⎛⎭⎪⎫0,4t .∴S △AOB =12|OA |·|OB |=12|2t |·|4t |=4,为定值.(2)∵|OM |=|ON |,∴原点O 在MN 的中垂线上.设MN 的中点为H ,则CH ⊥MN ,∴C ,H ,O 三点共线,且直线OC 的斜率与直线MN 的斜率的乘积为-1,即直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2,∴圆心为C (2,1)或C (-2,-1),∴圆C 的标准方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5.检验:当圆的方程为(x +2)2+(y +1)2=5时,圆心到直线2x +y -4=0的距离d >r ,此时直线与圆相离,故舍去.故圆C 的方程为(x -2)2+(y -1)2=5.(3)易求得点B (0,2)关于直线x +y +2=0的对称点B ′(-4,-2), 则|PB |+|PQ |=|PB ′|+|PQ |≥|B ′Q |, 又∵B ′到圆上点Q 的最短距离为 |B ′C |-r =-62+-32-5=35-5=25,∴|PB |+|PQ |的最小值为25,又直线B ′C 的方程为y =12x ,联立⎩⎪⎨⎪⎧y =12x ,x +y +2=0,解得⎩⎪⎨⎪⎧x =-43,y =-23,故|PB |+|PQ |取得最小值时点P 的坐标为⎝ ⎛⎭⎪⎫-43,-23,最小值为2 5.。

2021-2022学年河南省驻马店市第二高级中学高二上学期第一次月考(文、理)数学试题(解析版)

2021-2022学年河南省驻马店市第二高级中学高二上学期第一次月考(文、理)数学试题(解析版)

2021-2022学年河南省驻马店市第二高级中学高二上学期第一次月考(文、理)数学试题一、单选题1.已知a ,b ∈R ,且a b >,则下列各式中一定成立的是( ) A .11a b <B .33a b >C .2ab b >D .22a b >【答案】B【分析】利用特殊值判断A 、C 、D ,根据幂函数的性质判断B ; 【详解】解:因为a ,b ∈R ,且a b >, 对于A :若1a =,1b,显然11a b>,故A 错误; 对于B :因为函数3y x =在定义域R 上单调递增,所以33a b >,故B 正确; 对于C :若0b =,则20ab b ==,故C 错误; 对于D :若1a =,1b ,则22a b =,故D 错误;故选:B2…,则 )项. A .6 B .7C .9D .11【答案】D【分析】根据前几项写出数列的通项公式,由此可判断.【详解】,…,由此可归纳数列的通项为:n a,所以11n =,所以11项, 故选:D.3.若数列{an }满足:a 1=19,an +1=an -3,则数列{an }的前n 项和数值最大时,n 的值为 A .6 B .7 C .8 D .9【答案】B【分析】先判断数列{an }为等差数列,写出通项公式,若前k 项和数值最大,利用10,0,k k a a +≥⎧⎨≤⎩,解出k .【详解】∵a 1=19,an +1-an =-3,∴数列{an }是以19为首项,-3为公差的等差数列, ∴an =19+(n -1)×(-3)=22-3n ,则an 是递减数列.设{an }的前k 项和数值最大,则有10,0,k k a a +≥⎧⎨≤⎩ 即()2230,22310,k k -≥⎧⎨-+≤⎩∴193≤k ≤223, ∵k ∈N *,∴k =7. ∴满足条件的n 的值为7. 故选:B【点睛】求等差数列前n 项的最大(小)的方法: (1)由2122n d d S n a n ⎛⎫=+- ⎪⎝⎭用二次函数的对称轴求得最值及取得最值时的n 的值; (2)利用an 的符号①当a 1>0,d <0时,数列前面有若干项为正,此时所有正项的和为Sn 的最大值,其n 的值由an ≥0且an+1≤0求得;②当a 1<0,d >0时,数列前面有若干项为负,此时所有负项的和为Sn 的最小值,其n 的值由an ≤0且an+1≥0求得.4.在等差数列{}n a 中,若38137a a a ++=,2111414a a a ++=,则8a 和9a 的等比中项为( ) A.BC.D【答案】A【解析】根据等差数列的性质计算出89,a a ,再根据等比中项的定义即可求出答案 【详解】由题意得:3813837a a a a ++==,所以873a =,211149314a a a a ++==,所以9143a =.89989a a ⋅=,所以8a 和9a的等比中项为故选A.【点睛】本题主要考查了等差数列的性质(若m n p q +=+则m n p q a a a a +=+),以及等比中项,属于基础题。

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。

四川省南充2024-2025学年高二上学期10月月考数学试题含答案

四川省南充2024-2025学年高二上学期10月月考数学试题含答案

南充高中高2023级上期第一次月考数学试卷(答案在最后)考试时间:120分钟满分:150分注意事项:1.答题前,务必将自己的姓名、班级、考号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,将答案书写在答题卡相应位置上,写在本试卷上无效.4.考试结束后将答题卡交回.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.“2sin 2θ=”是“π4θ=”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C 【解析】【分析】判断“sin 2θ=”和“π4θ=”之间的逻辑推理关系,即可得答案.【详解】当2sin 2θ=时,π2π,Z 4k k θ=+∈或3π2π,Z 4k k θ=+∈,推不出π4θ=;当π4θ=时,必有2sin 2θ=,故“sin 2θ=”是“π4θ=”的必要不充分条件,故选:C2.设l ,m 是两条不同的直线,α,β,γ是三个不同的平面,下列说法正确的是()A.若//l α,//m α,则//l mB.若//l α,//l β,则//αβC.若l α⊥,m α⊥,则//l mD.若αγ⊥,βγ⊥,则//αβ【答案】C【分析】根据直线与直线的位置关系、直线与平面的位置关系和平面与平面的位置关系依次判断选项即可.【详解】对选项A ,若//l α,//m α,则l 与m 的位置关系是平行,相交和异面,故A 错误.对选项B ,若//l α,//l β,则α与β的位置关系是平行和相交,故B 错误.对选项C ,若l α⊥,m α⊥,则根据线面垂直的性质得l 与m 的位置关系是平行,故C 正确.对选项D ,若αγ⊥,βγ⊥,则α与β的位置关系是平行和相交,故D 错误.故选:C3.若sin 2αα-+=,则tan(π)α-=()A. B.C.3D.3-【答案】C 【解析】【分析】由sin 2αα-+=两边同时平方,从而利用sin tan cos =aa a可以实现角α的弦切互化,【详解】由sin 2αα-+=两边同时平方,可得22sin cos 3cos 4αααα-+=,∴222222sin cos 3cos tan 34sin cos tan 1ααααααααα-+-+==++,解得tan 3α=-.()tan tan 3παα∴-=-=.故选:C.4.如图,在正方体1111ABCD A B C D -中,,M N 分别为11,DB A C 的中点,则直线1A M 和BN 夹角的余弦值为()A.23B.33C.23D.13【解析】【分析】以1,,DA DC DD 所在直线为,,x y z 轴,建立空间直角坐标系,根据向量夹角的余弦公式求解即可.【详解】分别以1,,DA DC DD 所在直线为,,x y z轴,建立如图所示空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则()1(2,0,2),(1,1,0),(2,2,0),1,1,2A M B N ,所以()1(1,1,2),1,1,2MA BN =-=--设向量1MA 与BN的夹角为θ,则1142cos 63MA BN MA BNθ⋅===⋅,所以直线1A M 和BN 夹角的余弦值为23,故选:C .5.在三棱锥S ABC -中,()()20SC SA BS SC SA ++⋅-=,则ABC V 是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】C 【解析】【分析】由向量的线性运算得到2,SC SA BS BC BA SC SA BC BA ++=+-=- ,从而说明22BC BA = ,即可求解.【详解】()()22,SC SA BS SC SA SB SC SB SA SB BC BA SC SA AC BC BA ++=+-=-+-=+-==- ,()()()()2220SC SA SB SC SA BC BA BC BA BC BA ∴+-⋅-=+⋅-=-= ,BC BA ∴=,即BC BA =,所以ABC V 是等腰三角形.故选:C6.杭州亚运会的三个吉祥物分别取名“琮琮”“宸宸”“莲莲”,如图,现将三张分别印有“琮踪”“宸宸”“莲莲”图案的卡片(卡片的形状、大小和质地完全相同)放入盒子中.若从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是()A.38B.29C.59D.34【答案】B 【解析】【分析】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,用列举法即可求解.【详解】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,(),x y 代表依次摸出的卡片,{},,,x y A B C ∈,则基本事件分别为:()()()()()()()()(),,,,,,,,,,,,,,,,,A A A B A C B A B B B C C A C B C C ,其中一张为“琮琮”,一张为“宸宸”的共有两种情况:()(),,,A B B A ,所以从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是29.故选:B.7.已知函数()3f x x =,若正实数a ,b 满足()()490f a f b +-=,则11a b+的最小值为()A.1B.3C.6D.9【答案】A 【解析】【分析】根据函数的奇偶性可得49a b +=,再结合基本不等式“1”的代换可得解.【详解】由已知()3f x x =,定义域为R ,且()()()33f x x x f x -=-=-=-,则()f x 是R 上的奇函数,且函数()3f x x =在R 上单调递增,又()()490f a f b +-=,即()()()499f a f b f b =--=-,则49a b =-,即49a b +=,且0a >,0b >,所以()1111114144415999a b a b a b a b a b b a b a ⎛⎫⎛⎫⎛⎫+=++=+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又44a b b a +≥=,即()11141554199a b a b b a ⎛⎫+=++≥+= ⎪⎝⎭,当且仅当4a b b a =,即32a =,3b =时,等号成立,即11a b+的最小值为1.故选:A.8.已知正三棱锥P ABC -的六条棱长均为6,S 是ABC V 及其内部的点构成的集合.设集合{}5T Q S PQ =∈=,则集合T 所表示的曲线长度为()A.5πB.2πC.3D.π【答案】B 【解析】【分析】求出以P 为球心,5为半径的球与底面ABC 的截面圆的半径后即可求解.【详解】设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且23632BO =⨯⨯=,故PO ==因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,集合T 所表示的曲线长度为2π故选:B二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部份分分,有选错的得0分.)9.函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则()A.2ω=B.π6ϕ=C.()f x 的图象关于点π,012⎛⎫⎪⎝⎭对称D.()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增【答案】ACD 【解析】【分析】根据三角函数的图象,先求得ω,然后求得ϕ,根据三角函数的对称性、单调性确定正确答案.【详解】()()5ππ2ππ,π,2,sin 22632T T f x x ωϕω=-=∴==∴==+,π2sin π133f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ2π7π,22636ϕϕ-<<<+<,所以2πππ,326ϕϕ+==-,所以A 选项正确,B 选项错误.()ππππsin 2,2π,,66122k f x x x k x k ⎛⎫=--==+∈ ⎪⎝⎭Z ,当0k =时,得π12x =,所以()f x 关于π,012⎛⎫⎪⎝⎭对称,C 选项正确,11111πππππ2π22π,ππ,26263k x k k x k k -+<-<+-+<<+∈Z ,当11k =时,得()f x 在54π,π63⎛⎫ ⎪⎝⎭上递增,则()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增,所以D 选项正确.故选:ACD10.对于随机事件A 和事件B ,()0.3P A =,()0.4P B =,则下列说法正确的是()A.若A 与B 互斥,则()0.3P AB =B.若A 与B 互斥,则()0.7P A B ⋃=C.若A 与B 相互独立,则()0.12P AB =D.若A 与B 相互独立,则()0.7P A B ⋃=【答案】BC 【解析】【分析】根据互斥事件、相互独立事件的概率公式计算可得.【详解】对于A :若A 与B 互斥,则()0P AB =,故A 错误;对于B :若A 与B 互斥,则()()()0.7P A B P A P B =+= ,故B 正确;对于C :若A 与B 相互独立,则()()()0.12P AB P A P B ==,故C 正确;对于D :若A 与B 相互独立,则()()()()0.30.40.30.40.58P A B P A P B P AB ⋃=+-=+-⨯=,故D 错误.故选:BC11.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 在平面互相垂直,动点,M N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<,则下列结论中正确的有()A.(a ∃∈,使12MN CE=B.线段MN 存在最小值,最小值为23C.直线MN 与平面ABEF 所成的角恒为45°D.(a ∀∈,都存在过MN 且与平面BEC 平行的平面【分析】利用向量的线性运算可得()1MN a BC aBE =-+,结合向量的模的计算可判断B 的正误,结合向量夹角的计算可判断C 的正误,结合共面向量可判断D 的正误.【详解】因为四边形ABCD 正方形,故CB AB ⊥,而平面ABCD ⊥平面ABEF ,平面ABCD 平面ABEF AB =,CB ⊂平面ABCD ,故CB ⊥平面ABEF ,而BE ⊂平面ABEF ,故CB BE ⊥.设MC AC λ=,则= BN BF λ,其中()0,1λ=,由题设可得MN MC CB BN AC CB BF λλ=++=++,()()()1BC BA CB BA BE BC BE λλλλ=-+++=-+,对于A ,当12λ=即2a =时,111222MN BC BE CE =-+= ,故A 正确;对于B ,()22222111221222MN λλλλλ⎛⎫=-+=-+=-+ ⎪⎝⎭ ,故22MN ≥,当且仅当12λ=即2a =时等号成立,故min 22MN =,故B 错误;对于C ,由B 的分析可得()1MN BC BE λλ=-+,而平面ABEF 的法向量为BC 且()211MN BC BC λλ⋅=-=-,故cos ,MN BC =,此值不是常数,故直线MN 与平面ABEF 所成的角不恒为定值,故C 错误;对于D ,由B 的分析可得()1MN BC BE λλ=-+ ,故,,MN BC BE为共面向量,而MN ⊄平面BCE ,故//MN 平面BCE ,故D 正确;故选:AD三、填空题(本题共3小题,每小题5分,共15分.)12.复数2i12iz +=-的共轭复数z =______.【分析】根据复数的除法运算及共轭复数的概念可求解.【详解】因为2i 12i z +=-()()()()2i 12i 12i 12i ++=-+5i i 5==,所以z =i -.故答案为:i-13.已知向量()2,1,1a =- ,()1,,1b x = ,()1,2,1c =-- ,当a b ⊥ 时,向量b 在向量c上的投影向量为________.(用坐标表示)【答案】()1,2,1-【解析】【分析】先根据向量垂直得到方程,求出3x =,再利用投影向量公式求出答案.【详解】因为a b ⊥ ,所以210a b x ⋅=-+=,所以3x =.因为()1,3,1b = ,所以b 在c 上的投影向量为()1,2,1||||b c cc c c ⋅⋅=-=-.故答案为:()1,2,1-14.已知在ABC V 中,满足)34AB AC AB ACAB AC AB AC++=+,点M 为线段AB 上的一个动点,若MA MC ⋅ 取最小值3-时,则BC 边的中线长为______.【答案】1112【解析】【分析】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,根据题意可推得||3,||4AD AN == ,2π3ADE ∠=,进一步根据MA MC ⋅ 取最小值3-时,求得对应的AC =AB =,由此即可得解.【详解】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,则//,//AD EN AN DE ,四边形ADEN为平行四边形,||||3||3,||4,||4||||AB AD AD AN AE AC AN =====,22343712πcos 23423ADE ADE +-∴∠==-⇒∠=⨯⨯,又四边形ADEN 为平行四边形,3πBAC ∴∠=,设,,0,0MA AD AC AN λμλμ==≤≥,()()296MA MC MA MA AC AD AD AN λλμλλμ⋅=⋅+=⋅+=+,由题意2963λλμ+≥-即29630λλμ++≥恒成立,且存在,R λμ∈使得29630λλμ++=成立,其次29630λλμ++=当且仅当2296303Δ361080λλλμμμ⎧⎧=-++=⎪⇔⎨⎨=-=⎩⎪=⎩,此时AC ==AB ==所以BC边的中线长为122AB AC +===.故答案为:2.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.如图,四边形ABCD 为矩形,且2AD =,1AB =,PA ⊥平面ABCD ,1PA =,E 为BC 的中点.(1)求证:PE DE ⊥;(2)求四棱锥P ABCD -的外接球体积.【答案】(1)证明见解析(2【解析】【分析】(1)连接AE ,由线面垂直得到PA DE ⊥,再由线面垂直的判定定理得到DE ⊥平面PAE ,即可证明;(2)由底面为矩形利用长方体的性质可得四棱锥外接球的半径,再由体积公式计算体积.【小问1详解】连结,AE E 为BC 的中点,1EC CD ==,∴DCE △为等腰直角三角形,则45DEC ∠=︒,同理可得45AEB ∠=︒,∴90AED ∠=︒,∴DE AE ⊥,又PA ⊥平面ABCD ,且DE ⊂平面ABCD ,∴PA DE ⊥,又∵AE PA A = ,,AE PA ⊂平面PAE ,∴DE ⊥平面PAE ,又PE ⊂平面PAE ,∴DE PE ⊥.【小问2详解】∵PA ⊥平面ABCD ,且四边形ABCD 为矩形,∴P ABCD -的外接球直径2R =∴2R =,故:3344ππ332V R ⎛⎫=== ⎪ ⎪⎝⎭,∴四棱锥P ABCD -.16.ABC V 的内角,,A B C 的对边分别为,,a b c ,已知cos cos a B b A b c -=+.(1)求角A 的值;(2)若a ABC = ,求,b c .【答案】(1)2π3(2)2,2【解析】【分析】(1)由正弦定理及三角恒等变换化简即可得解;(2)由三角形面积公式及余弦定理求解即可.【小问1详解】cos cos a B b A b c -=+ ,由正弦定理可得:sin cos sin cos sin sin A B B A B C -=+,sin sin()sin cos cos sin C A B A B A B =+=+ ,sin cos sin cos sin sin cos cos sin A B B A B A B A B ∴-=++,即2sin cos sin B A B -=,sin 0B ≠ ,1cos 2A ∴=-,(0,π)A ∈ ,2π3A ∴=.【小问2详解】由题意,1sin 24ABC S bc A bc ===△,所以4bc =,由222222cos a b c bc A b c bc =+-=++,得()2216b c a bc +=+=,所以4b c +=,解得:2b c ==.17.全国执业医师证考试分实践技能考试与医学综合笔试两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则执业医师考试“合格”,并颁发执业医师证书.甲、乙、丙三人在医学综合笔试中“合格”的概率依次为45,34,23,在实践技能考试中“合格”的概率依次为12,23,23,所有考试是否合格互不影响.(1)求甲没有获得执业医师证书的概率;(2)这三人进行实践技能考试与医学综合理论考试两项考试后,求恰有两人获得执业医师证书的概率.【答案】(1)35(2)13【解析】【分析】(1)先根据对立事件的概率公式结合独立事件概率乘积公式计算;(2)先应用对立事件的概率公式及独立事件概率乘积公式应用互斥事件求和计算;【小问1详解】记甲,乙,丙三人在医学综合笔试中合格依次为事件1A ,1B ,1C ,在实践考试中合格依次为2A ,2B ,2C ,设甲没有获得执业医师证书的概率为P124131()1525P P A A =-=-⨯=.【小问2详解】甲、乙、丙获得执业医师证书依次为12A A ,12B B ,12C C ,并且1A 与2A ,1B 与2B ,1C 与2C 相互独立,则()12412525P A A =⨯=,()12321432P B B =⨯=,()12224339P C C =⨯=,由于事件12A A ,12B B ,12C C 彼此相互独立,“恰有两人获得执业医师证书”即为事件:()()()()()()()()()121212121212121212A A B B C C A A B B C C A A B B C C ++,概率为212142141(1)(1)(1)52952952934P =⨯⨯-+⨯-⨯+-⨯⨯=.18.为深入学习贯彻习近平总书记关于禁毒工作重要指示精神,切实落实国家禁毒委员会《关于加强新时代全民禁毒宣传教育工作的指导意见》,巩固青少年毒品预防教育成果,大力推进防范青少年滥用涉麻精药品等成瘾性物质宣传教育活动,进一步增强青少年学生识毒防毒拒毒意识和能力,某市每年定期组织同学们进行禁毒知识竞赛活动,为了解同学们对禁毒知识的掌握情况,现从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50,50,60,…,90,100得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值;(2)求样本成绩的第75百分位数;(3)已知落在50,60的平均成绩是56,方差是7,落在60,70的平均成绩为65,方差是4,求两组成绩的总平均数z 和总方差2s .【答案】(1)0.030(2)84(3)平均数为62;方差为23【解析】【分析】(1)根据频率之和为1即可求解,(2)根据百分位数的计算公式即可求解,(3)根据平均数的计算公式可求得两组成绩的总平均数;再由样本方差计算总体方差公式可求得两组成绩的总方差,即可求解.【小问1详解】由每组小矩形的面积之和为1得,0.050.10.2100.250.11a +++++=,解得0.030a =.【小问2详解】成绩落在[)40,80内的频率为0.050.10.20.30.65+++=,落在[)40,90内的频率为0.050.10.20.30.250.9++++=,显然第75百分位数[)80,90m ∈,由()0.65800.0250.75m +-⨯=,解得84m =,所以第75百分位数为84;【小问3详解】由频率分布直方图知,成绩在[)50,60的市民人数为1000.110⨯=,成绩在[)60,70的市民人数为1000.220⨯=,所以10562065621020z ⨯+⨯==+;由样本方差计算总体方差公式,得总方差为()(){}222110756622046562231020s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦+.19.如图,三棱柱111ABC A B C -中,2AB =,且ABC V 与1ABA △均为等腰直角三角形,1π2ACB AA B ∠=∠=.(1)若1A BC 为等边三角形,证明:平面1AAB ⊥平面ABC ;(2)若二面角1A AB C --的平面角为π3,求以下各值:①求点1B 到平面1A CB 的距离;②求平面11B A C 与平面1A CB 所成角的余弦值.【答案】(1)证明见解析(2)①2217,②277【解析】【分析】(1)根据等腰直角三角形及等边三角形的性质可得各边长,再根据勾股定理证明线线垂直,根据线线垂直可证线面垂直,进而可证面面垂直;(2)根据二面角的定义可值1CEA 为等边三角形,①利用等体积转化法可得点到平面距离;②根据二面角的定义可得两平面夹角.【小问1详解】设AB 的中点为E ,连接CE ,1A E ,如图所示,因为ABC V 与1ABA △均为等腰直角三角形,1π2ACB A AB ∠=∠=,故1cos 452BC A B AB ==⋅︒=CE AB ⊥,且112CE AB ==,1112A E AB ==,因为1A BC 为等边三角形,故12==AC BC ,故22211A C CE A E =+,即1CE A E ⊥,又AB ,1A E ⊂平面1AA B ,1A E AB E ⋂=,故CE ⊥平面1AA B ,且CE ⊂平面ABC ,故平面1AA B ⊥平面ABC ;【小问2详解】①由(1)知,CE AB ⊥,1A E AB ⊥,且平面1AA B ⋂平面ABC AB =,故1CEA ∠即二面角1A AB C --的平面角,即1π3CEA ∠=,故1CEA 为等边三角形,则111CA CE A E ===,因为CE AB ⊥,1A E AB ⊥,1A E CE E ⋂=,且CE ,1A E ⊂平面1CEA ,所以AB ⊥平面1CEA ,设线段1A E 中点为F ,则1CF A E ⊥,AB CF ⊥,又AB ,1A E ⊂平面11ABB A ,1AB A E E = ,CF ∴⊥平面11ABB A ,又在三角形1CEA中易知:2CF =,∴11111112133226C A BB A BB V CF S -=⋅=⨯⨯⨯⨯= ,又在三角形1A BC 中,由11AC =,1BC A B ==则22211113cos 24BC A B A CA BC BC AB +-∠==⋅,1sin 4A BC ∠=,则11117sin 24A BC S AB BC A BC =⋅⋅∠= ,设点1B 到平面1A CB 的距离为d ,又由1111113C A BB B A BC A BC V V S d --==⋅⋅△,可得7d =,即求点1B 到平面1A CB 的距离为2217;②由①知,AB ⊥平面1CEA ,而11//AB A B ,故11A B ⊥平面1CEA ,且1A C ⊂平面1CEA ,故111A B AC ⊥,则2211115B C A B AC =+=,设1AC 和1B C 的中点分别为M ,N ,连接MN ,BN ,BM,则11//MN A B ,11112MN A B ==,1MN AC ⊥,又因为12BC A B ==1BM A C ⊥,且MN ⊂平面11A B C ,BM ⊂平面1A BC ,故BMN ∠即二面角11B A C B --的平面角,且222211722BM BC CM BC A C ⎛⎫=-=-= ⎪⎝⎭,因为112BB AA BC ===,故1BN B C ⊥,则222211322BN BC CN BC B C ⎛⎫=-=-= ⎪⎝⎭,所以222731744cos 277212BM MN BN BMN BM MN +-+-∠==⋅⨯⨯,故平面11B A C 与平面1A CB 所成角的余弦值为277.。

高二数学上学期第一次月考试题实验班文试题

高二数学上学期第一次月考试题实验班文试题

育才2021-2021学年度上学期第一次月考卷高二实验班数学〔文科〕一、选择题 (一共12小题,每一小题5分,一共60分)1.,l m 表示两条不同的直线, ,αβ表示两个不同的平面,那么以下说法正确的选项是〔 〕A. 假设l ∥m , m α⊂,那么l ∥αB. 假设αβ⊥, l α⊥,那么l ∥βC. 假设l m ⊥, m α⊥,那么l ∥αD. 假设l α⊥, l ∥β,那么αβ⊥ 2.如图是一个几何体的三视图,在该几何体的各条棱中最长的棱是的长度是〔 〕A. 42B. 25C. 6D. 8 3.三棱锥外接球的外表积为32 ,,三棱锥的三视图如下图,那么其侧视图的面积的最大值为〔 〕B.D.4.如图,正方体1111ABCD A B C D -中,以下结论不正确的选项是.......〔 〕.A. 111C D B C ⊥B. 1BD AC ⊥C. 11BD B CD. 160ACB ∠=︒5.设正方体1111ABCD A B C D -的棱长为2,那么点1D 到平面1A BD 的间隔 是〔 〕A.233 B. 22 C. 223D. 326.如图,三棱锥中,,,点分别是中点,那么异面直线,所成的角的余弦值为〔 〕A. B. C. D.7.如图,在四棱锥P ABCD -中, PA ⊥平面ABCD ,底面是梯形ABCD ,//,AD BC AC BD ⊥,且PA AD =,那么以下判断错误的选项是〔 〕A. //BC 平面PADB. PD 与平面ABCD 所成的角为045C. AC PD ⊥D. 平面PAC ⊥平面PBD 8.是球的球面上两点,,为该球面上的动点,假设三棱锥体积的最大值为36,那么球的外表积为〔 〕 A. B. C.D.9.如图,正方体1111ABCD A B C D -的棱长为2,动点E 、F 在棱11A B 上,动点P , Q 分别在棱AD , CD 上,假设1EF =, 1A E x =, DQ y =, (,,0)DP z x y z =>,那么四面体PEFQ 的体积〔 〕.A. 与z 有关,与x , y 无关B. 与x 有关,与y , z 无关C. 与y 有关,与x , z 无关D. 与x , y , z 都有关10.以下命题中, ,m n 表示两条不同的直线, α、β、γ表示三个不同的平面. ①假设m α⊥, //n α,那么m n ⊥; ②假设αγ⊥, βγ⊥,那么//αβ; ③假设//m α, //n α,那么//m n ; ④假设//αβ, //βγ, m α⊥,那么m γ⊥.正确的命题是〔 〕A. ①③B. ②③C. ①④D. ②④11.在正三棱柱111ABC A B C -中,点D 为AC 的中点,点M 是线段1AB 上的动点,那么关于点M 到平面1C BD 的间隔 说法正确的选项是〔 〕A. 点M 运动到点A 时间隔 最小B. 点M 运动到线段1AB 的中点时间隔 最大C. 点M 运动到点1B 时间隔 最大D. 点M 到平面1C BD 的间隔 为定值12.如图,在四面体D ABC -中,假设AB BC =, AD CD =, E 是AC 的中点,那么以下正确的选项是〔 〕A. 平面ABC ⊥平面ABDB. 平面ABD ⊥平面BDCC. 平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED. 平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE 二、填空题(一共4小题,每一小题5分,一共20分) 13.矩形 ,沿对角线将它折成三棱椎,假设三棱椎外接球的体积为,那么该矩形的面积最大值为 .14.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是CD 、CC 1的中点,那么异面直线A 1M 与DN 所成的角的大小是_____.15.如图,三棱柱111ABC A B C -的侧棱长和底面边长均为2,且侧棱1AA ⊥底面ABC ,其正〔主〕视图是边长为2的正方形,那么此三棱柱侧〔左〕视图的面积为__________.16.如图,在三棱锥P ABC -中, PA ⊥底面ABC , 90BAC ∠=︒, F 是AC 的中点, E 是PC 上的点,且EF BC ⊥,那么PEEC=__________.三、解答题(一共6小题,一共70分) 17. (10分) 如图1所示,在直角梯形中, , ,,,,.将沿折起,使得点 在平面的正投影 恰好落在边上,得到几何体,如图2所示.〔1〕求证: ; 〔2〕求点 到平面的间隔 .18. (12分)五边形11ANB C C 是由一个梯形1ANB B 与一个矩形11BB C C 组成的,如图甲所示,B 为AC 的中点, 128AC CC AN ===. 先沿着虚线1BB 将五边形11ANB C C 折成直二面角1A BB C --,如图乙所示.〔Ⅰ〕求证:平面BNC ⊥平面11C B N ; 〔Ⅱ〕求图乙中的多面体的体积. 19. (12分)如下图,在四棱锥中,底面为正方形,平面,且,点 在线段上,且.〔Ⅰ〕证明:平面 平面 ;〔Ⅱ〕求四棱锥的体积.20. (12分)在如下图的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,//AB CD ,3AC =22AB BC ==,AC FB ⊥.〔1〕求证:AC ⊥平面FBC ; 〔2〕求该几何体的体积.21. (12分)如图,在四棱锥P ABCD -中, PD ⊥平面2ABCD PD DC BC ===,,2,//AB DC AB DC =,90BCD ∠=.(1)求证: PC BC ⊥; (2)求多面体A PBC -的体积.22. (12分)如图,三棱柱111ABC A B C -中,底面ABC 为正三角形, 1AA ⊥底面ABC ,且13AA AB ==, D 是BC 的中点.〔1〕求证: 1//A B 平面1ADC ; 〔2〕求证:平面1ADC ⊥平面1DCC ;〔3〕在侧棱1CC 上是否存在一点E ,使得三棱锥C ADE -的体积是98?假设存在,求出CE的长;假设不存在,说明理由.参考答案3.A 13. 14.90°. 15.23 16.1 17.〔1〕解:据题意得:,,因为,,,满足 ,所以:又,所以 ,得 ,又, ,〔2〕解:设点 到平面 的间隔 为 ,由〔1〕知:的高,且,,, ,由 ,得 ,所以:18.解:〔1〕证明:四边形11BB C C 为矩形,故111B C BB ⊥,又由于二面角1A BB C --为直二面角,故111B C BB A ⊥平面,故11B C BN ⊥,由线段128AC CC AN ===易知, 22211BB NB BN =+,即1BN NB ⊥,因此BN 11C B N ⊥平面, 所以平面BNC 11C B N ⊥平面 〔2〕解:连接CN ,过作,垂足为,,又,所以平面平面,且平面,,,∴,此几何体的体积.〔 12分〕19.解:〔Ⅰ〕证明:∵ 平面,平面,∴ .又∵底面为正方形,∴ .∵ ,∴ 平面 .∴ .设交于点,如图,在中,∵ ,,,∴由余弦定理可得 .∴ .∴ .∵ ,平面,平面,∴ 平面 .又∵ 在平面内,∴平面平面;〔Ⅱ〕由题意可得,而,为三棱锥的高,那么20.解:〔1〕因为3AC =22AB BC ==,所以222AB AC BC =+, 由勾股定理AC BC ⊥,又AC FB ⊥,所以AC ⊥平面FBC .〔2〕过D 作DM AB ⊥于M ,过C 作CN AB ⊥于N ,于是:2E AMD EDM FCN F CNB E AMD EDM FCN V V V V V V -----=++=+. 而1133133E AMD AMD V S ED -=⨯⨯==33144EDM FCN EDM V S CD -=⨯==, 所以33322443V =⨯+=.21.解: (I) PD ⊥面,ABCD BC ⊂面ABCDPD BC ∴⊥90BCD ∠=BC CD ∴⊥PD CD D ⋂=BC ∴⊥面PCD又PC ⊂面PCDPC BC ∴⊥(II)解:连接ACPD ⊥平面ABCD13A PBC ABC V S PD -∆∴=⋅⋅//,90AB DC BCD ∠=ABC ∴∆为直角三角形且ABC ∠为直角.22PD DC BC AB DC ====, 111118422332323A PBC ABC V S PD AB BC PD -∆∴=⋅⋅=⋅⋅⋅⋅=⨯⨯⨯⨯= 22.解:〔1〕如图,连接1A C 交1AC 于点O ,连OD 。

山东省临沂市兰临沂第四中学2024-2025学年高二上学期10月月考数学试题(含答案)

山东省临沂市兰临沂第四中学2024-2025学年高二上学期10月月考数学试题(含答案)

山东省临沂市兰临沂第四中学2024-2025学年高二上学期10月月考数学试题(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共58分)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知直线,若,则( )A.-1或2B.1C.1或-2D.-22.过点的直线与线段MN 相交,,则的斜率的取值范围为( )A.B.C.或D.或3.在三棱柱中,记,点满足,则( )A. B. C. D.4.已知点关于直线对称,则对称点的坐标为( )A. B. C. D.5.已知向量,若共面,则( )A.4B.2C.3D.16.点到直线的距离最大时,其最大值以及此时的直线方程分别为( )7.下列命题中正确的是( )A.点关于平面对称的点的坐标是B.若直线的方向向量为,平面的法向量为,则C.若直线的方向向量与平面的法向量的夹角为,则直线与平面所成的角为12:20,:2(1)20l ax y l x a y +-=+++=12//l l a =(3,3)P l (2,3),(3,2)M N ---l k 1665k ≤≤566k ≤≤65k ≤6k ≥16k ≤65k ≥111ABC A B C -1,,AA a AB b AC c === P 12BP PC =AP = 121333a b c -+ 212333a b c ++212333a b c +-121333a b c ++(2,1)P -10x y -+=(0,1)-(0,2)-(1,1)-(2,1)-(2,1,3),(1,4,2),(1,3,)a b c λ=-=--=,,a b c λ=(2,1)P --:(13)(1)240(R)l x y λλλλ+++--=∈310x y -+=40x y +-=250x y +-=310x y -+=(3,2,1)M yOz (3,2,1)--l (1,1,2)e =- α(6,4,1)m =-l α⊥l α120︒l α30︒D.已知为空间任意一点,四点共面,且任意三点不共线,若,则8.在空间直角坐标系中,,点在平面ABC 内,则当|OH |取最小时,点的坐标是( )A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知向量,则( )A.若,则B.若,则C.若,则D.若,则向量在向量上的投影向量10.下列说法正确的是( )A.直线的倾斜角的取值范围是B.“”是“直线与直线互相垂直”的充要条件C.过点且在轴,轴截距相等的直线方程为D.经过平面内任意相异两点的直线都可以用方程.11.已知正方体的棱长为1,E 为线段的中点,点和点分别满足,其中,则下列说法正确的是( )A.平面AECB.AP 与平面所成角的取值范围为C.D.点到直线的距离的最小值为三、填空题:本题共3小题,每小题5分,共15分.O ,,,A B C P 12OP mOA OB OC =-+12m =-O xyz -(1,0,0),(0,2,0),(0,0,2)A B C H H 211,,333⎛⎫ ⎪⎝⎭(2,1,1)(2,1,1),(1,,2)a x b y ==-1,24x y ==-ab ‖1,1x y ==a b⊥1,12x y ==cos ,a b <>= 1,12x y ==ab 112,,333c ⎛⎫=- ⎪⎝⎭sin 20x y α++=θπ3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭1a =-210a x y -+=20x ay --=(1,2)P x y 30x y +-=()()1122,,,x y x y ()()()()211211x x y y y y x x --=--表示1111ABCD A B C D -1B C F P 11111,D F D C D P D B λμ==,[0,1]λμ∈BP ⊥11BDD B 45,60︒︒⎡⎤⎣⎦PE PF +P 1B C PE =12.在直线上求一点,使它到直线的距离等于原点到的距离,则此点的坐标为________________.13.已知空间向量两两夹角为,且,则__________________.14.如图,两条异面直线a,b 所成的角为,在直线a,b 上分别取点,和点A,F,使,且.已知,则线段的长为_____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,三棱柱中,底面边长和侧棱长都等于1,.(1)设,用向量表示,(2)并求出的长度;(3)求异面直线与所成角的余弦值.16.(15分)已知点,_________________,从条件①、条件②、条件③中选择一个作为已知条件补充在横线处,并作答(1)求直线的方程;(2)求直线关于直线的对称直线的方程条件①:点关于直线的对称点的坐标为;条件②:点的坐标为,直线过点且与直线PM 平行;210x y -+=:320l x y +-=l ,,a b c 60︒||||||1a b c === |2|a b c -+= θA 'E AA a '⊥AA b '⊥,,A Em AF n EF l '===AA '111ABC A B C -1160BAA CAA ︒∠=∠=1,,AA a AB b AC c === ,,a b c1BC 1BC 1AB 1BC (1,3)P 1l 2:250l x y +-=1l P 1l 1P (1,1)-M (6,2)-1l (2,4)-条件③:点N 的坐标为,直线过点且与直线PN 垂直.注:如果选择多个条件分别解答,按第一个解答计分.17.(15分)已知直线.(1)若坐标原点到直线,求的值;(2)当时,直线过与的交点,且它在两坐标轴上的截距相反,求直线的方程.18.(17分)如图,在四棱锥中,底面ABCD ,底面ABCD 为直角梯形,,分别为线段AD,DC,PB 的中点.(1)证明:平面PEF//平面GAC ;(2)求直线GC 与平面PCD 所成角的正弦值.19.(17分)如图1所示中,分别为PA,PB 中点.将沿DC 向平面ABCD上方翻折至图2所示的位置,使得。

四川省德阳2024-2025学年高二上学期第一次月考数学试题含答案

四川省德阳2024-2025学年高二上学期第一次月考数学试题含答案

德阳高2023级2024年秋季第一学月考试数学试题(答案在最后)考试范围:必修二第十章、选修第一册第一章;考试时间:120分钟;命题人:高二数学组注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一、单选题1.已知集合{}2,0,1,3A =-,{}0,2,3B =,则A B = ()A.{}2,1- B.{}2,1,2- C.{}0,3 D.{}2,0,1,2,3-【答案】C 【解析】【分析】运用交集性质即可得.【详解】由{}2,0,1,3A =-,{}0,2,3B =,则{}0,3A B ⋂=.故选:C.2.2(2i)4z =+-在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】将复数化为标准形式再根据复数的几何意义即可确定.【详解】2(2i)414i z =+-=-+,则z 在复平面内对应的点位于第二象限,故选:B.3.某实验中学共有职工150人,其中高级职称的职工15人,中级职称的职工45人,一般职员90人,现采用分层抽样抽取容量为30的样本,则抽取的高级职称、中级职称、一般职员的人数分别为()A.5、10、15B.3、9、18C.3、10、17D.5、9、16【答案】B 【解析】【分析】利用分层抽样的定义求出对应人数,得到答案.【详解】抽取的高级职称人数为15303150⨯=,中级职称人数为45309150⨯=,一般职员的人数为903018150⨯=,故抽取的高级职称、中级职称、一般职员的人数分别为3、9、18.故选:B4.已知一组数据:4,6,7,9,11,13,则这组数据的第50百分位数为()A .6B.7C.8D.9【答案】C 【解析】【分析】借助百分位数定义计算即可得.【详解】由60.53⨯=,故这组数据的中位数为7982+=.故选:C.5.从1,2,3,4,5中任取2个不同的数,取到的2个数之和为偶数的概率为()A.13B.23C.12D.25【答案】D 【解析】【分析】应用列举法求古典概型的概率即可.【详解】任取2个不同数可能有(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5),共10种情况,其中和为偶数的情况有(1,3)、(1,5)、(2,4)、(3,5),共4种情况,所以取到的2个数之和为偶数的概率为42105=.故选:D6.已知空间中非零向量a ,b ,且1a = ,2b = , 60a b =,,则2a b - 的值为()A.1B.C.2D.4【答案】C 【解析】【分析】根据向量的模长公式即可求解.【详解】因为2222222(2)4444cos a b a b a a b b a a b a b b -=-=-⋅+=- ,14412442=-⨯⨯⨯+=,所以22a b -= .故选:C7.已知空间向量()1,2,3m = ,空间向量n 满足//m n u r r 且7⋅=m n ,则n =()A.13,1,22⎛⎫ ⎪⎝⎭B.13,1,22⎛⎫--- ⎪⎝⎭C.31,1,22⎛⎫--- ⎪⎝⎭ D.31,1,22⎛⎫⎪⎝⎭【答案】A 【解析】【分析】由空间向量共线的坐标表示与数量积的坐标表示求解即可.【详解】∵()1,2,3m = ,且空间向量n满足//m n u r r ,∴可设(),2,3n m λλλλ==,又7⋅= m n ,∴1233147λλλλ⨯+⨯+⨯==,得12λ=.∴113,1,222n m ⎛⎫== ⎪⎝⎭,故A 正确.故选:A.8.已知四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的正方形,侧棱与底面垂直,若点C 到平面AB 1D 1的距离为5,则直线1B D 与平面11AB D 所成角的余弦值为()A.B.3710C.1010D.10【答案】A 【解析】【分析】先由等面积法求得1AA 的长,再以1A 为坐标原点,建立如图所示的空间直角坐标系1A xyz -,运用线面角的向量求解方法可得答案.【详解】如图,连接11A C 交11B D 于O 点,过点C 作CH AO ⊥于H ,则CH ⊥平面11AB D,则5CH =,设1AA a =,则AO CO AC ===,则根据三角形面积得1122AOC S AO CH AC ∆=⨯⨯=⨯,代入解得a =以1A 为坐标原点,建立如图所示的空间直角坐标系1A xyz -.则1111(2,0,0),(0,2,0),(0,2,2(2,0,A B D D AD AB =-=-,1(B D =- ,设平面11AB D 的法向量为(n x =,y ,)z ,则1100n AD n AB ⎧⋅=⎨⋅=⎩,即2020y x ⎧-=⎪⎨-=⎪⎩,令x =,得n =.11110cos ,10||||B D n B D n B D n ⋅〈〉==,所以直线1B D 与平面1111D C B A故选:A.二、多选题9.设,A B 是两个概率大于0的随机事件,则下列结论正确的是()A.若A 和B 互斥,则A 和B 一定相互独立B.若事件A B ⊆,则()()P A P B ≤C.若A 和B 相互独立,则A 和B 一定不互斥D.()()()P A B P A P B <+ 不一定成立【答案】BC 【解析】【分析】对于AC :根据互斥事件和独立事件分析判断即可;对于B :根据事件间关系分析判断即可;对于D :举反例说明即可.【详解】由题意可知:()()0,0P A P B >>,对于选项A :若A 和B 互斥,则()0P AB =,显然()()()P AB P A P B ≠,所以A 和B 一定不相互独立,故A 错误;对于选项B :若事件A B ⊆,则()()P A P B ≤,故B 正确;对于选项C :若A 和B 相互独立,则()()()0P AB P A P B =>,所以A 和B 一定不互斥,故C 正确;对于选项D :因为()()()()P A B P A P B P AB =+- ,若A 和B 互斥,则()0P AB =,则()()()P A B P A P B =+ ,故D 错误;故选:BC.10.如图,点,,,,A B C M N 是正方体的顶点或所在棱的中点,则下列各图中满足//MN 平面ABC 的是()A. B.C. D.【答案】ACD 【解析】【分析】结合题目条件,根据线面平行的判断定理,构造线线平行,证明线面平行.【详解】对A :如图:连接EF ,因为,M N 为正方体棱的中点,所以//MN EF ,又//EF AC ,所以//MN AC ,AC ⊂平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC .故A 正确;对B :如图:因为,,,,A B C M N 是正方体棱的中点,所以//MN GH ,//BC EF ,//GH EF ,所以//BC MN ,同理://AB DN ,//AM CD .所以,,,,A B C M N 5点共面,所以//MN 平面ABC 不成立.故B 错误;对C :如图:因为,B C 是正方体棱的中点,所以//BC EF ,//MN EF ,所以//BC MN .⊂BC 平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC .故C 正确;对D :如图:因为,.B C M 为正方体棱的中点,连接ME 交AC 于F ,连接BF ,则BF 为MNE 的中位线,所以//BF MN ,BF ⊂平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC .故D 正确.故选:ACD11.如图,在平行四边形ABCD 中,1AB =,2AD =,60A ∠=︒,沿对角线BD 将△ABD 折起到△PBD 的位置,使得平面PBD ⊥平面BCD ,连接PC ,下列说法正确的是()A.平面PCD ⊥平面PBDB.三棱锥P BCD -外接球的表面积为10πC.PD 与平面PBC 所成角的正弦值为34D.若点M 在线段PD 上(包含端点),则△BCM 面积的最小值为217【答案】ACD 【解析】【分析】结合线线垂直,线面垂直与面面垂直的相互转化关系检验A,根据外接球的球心位置即可结合三角形的边角关系求解半径,可判断B,结合空间直角坐标系及空间角及空间点到直线的距离公式检验CD .【详解】BCD △中,1CD =,2BC =,60A ∠=︒,所以3BD =,故222BD CD BC +=,所以BD CD ⊥,因为平面PBD ⊥平面BCD ,且平面PBD 平面BCD BD =,又BD CD ⊥,CD ⊂平面BCD 所以CD ⊥平面PBD ,CD ⊂平面PCD ,所以平面PCD ⊥平面BPD ,故A 正确;取BC 的中点为N ,PB 中点为Q ,过N 作12ON //PB,ON PB =,由平面PBD ⊥平面BCD ,且平面PBD 平面BCD BD =,又BD PB ⊥,PB ⊂平面PBD ,故PB ⊥平面BCD ,因此ON ⊥平面BCD ,由于BCD △为直角三角形,且N 为斜边中点,所以OB OC OD ==,又12ON //PB,ON PB =,所以QB ON ,BQ //ON =,因此OP OB =,因此O 为三棱锥P BCD -外接球的球心,且半径为2OB ==,故球的表面积为54π=5π4´,故B错误,以D为原点,联立如图所示的空间直角坐标系,则B 0,0),(0C ,1,0),P ,0,1),因为(0BP = ,0,1),(BC =,1,0),)01DP ,= ,设平面PBC 的法向量为(),,m x y z =,所以0000z m BP y m BC ⎧=⎧⋅=⎪⎪⇒⎨⎨+=⎪⋅=⎪⎩⎩,取x =)30m ,=所以cos ,4||||m DP m DP m DP⋅<>==,故PD 与平面PBC所成角的正弦值为4,故C 正确,因为M 在线段PD上,设M ,0,)a,则MB=,0,)a -,所以点M 到BC的距离d ==,当37a =时,d 取得最小值217,此时MBC ∆面积取得最小值12121277BC ⨯=,D 正确.故选:ACD.第Ⅱ卷(选择题)三、填空题12.如果从甲口袋中摸出一个红球的概率是14,从乙口袋中摸出一个红球的概率是13,现分别从甲乙口袋中各摸出1个球,则2个球都是红球的概率是________.【答案】112【解析】【分析】根据相互独立事件概率乘法公式求解.【详解】从甲口袋中摸出一个红球的概率是14,从乙口袋中摸出一个红球的概率是13,现分别从甲乙口袋中各摸出1个球,则2个球都是红球的概率1114312P =⨯=.故答案为:112.13.已知正方体1111ABCD A B C D -的棱长为2,点E 是11A B 的中点,则点A 到直线BE 的距离是__________.【答案】5【解析】【分析】以D 为原点,以1,,DA DC DD的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,利用点到直线的向量公式可得.【详解】以D 为原点,以1,,DA DC DD的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.则()()()2,0,0,2,2,0,2,1,2A B E ,所以()()0,2,0,0,1,2BA BE =-=-,记与BE同向的单位向量为u ,则5250,,55u ⎛=-⎝⎭,所以,点A 到直线BE 的距离455d ===.故答案为:514.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为正方形,2PA AB ==,点,E F 分别为,CD CP 的中点,点T 为PAB 内的一个动点(包括边界),若CT ∥平面AEF ,则点T 的轨迹的长度为__________.【答案】53153【解析】【分析】记AB 的中点为G ,点T 的轨迹与PB 交于点H ,则平面//CHG 平面AEF ,建立空间直角坐标系,利用CH垂直于平面AEF ,的法向量确定点H 的位置,利用向量即可得解.【详解】由题知,,,AB AD AP 两两垂直,以A 为原点,,,AB AD AP 所在直线分别为,,x y z 轴建立空间直角坐标系,记AB 的中点为G ,连接CG ,因为ABCD 为正方形,E 为CD 中点,所以//AG CE ,且AG CE =,所以AGCE 为平行四边形,所以//CG AE ,又CG ⊄平面AEF ,AE ⊂平面AEF ,所以//CG 平面AEF ,记点T 的轨迹与PB 交于点H ,由题知//CH 平面AEF ,因为,CH CG 是平面CHG 内的相交直线,所以平面//CHG 平面AEF ,所以GH 即为点T 的轨迹,因为()()()()()()0,0,0,1,2,0,1,1,1,2,2,0,0,0,2,2,0,0A E F C P B ,所以()()()()2,0,2,2,2,2,1,2,0,1,1,1PB CP AE AF =-=--== ,设PH PB λ=,则()()()2,2,22,0,222,2,22CH CP PH CP PB λλλλ=+=+=--+-=--- ,设(),,n x y z =为平面AEF 的法向量,则200AE n x y AF n x y z ⎧⋅=+=⎪⎨⋅=++=⎪⎩ ,令1y =得()2,1,1n =- ,因为CH n ⊥ ,所以()2222220λλ---+-=,解得23λ=,则22,2,33CH ⎛⎫=-- ⎪⎝⎭ ,又()1,2,0GC AE == 所以()22121,2,0,2,,0,3333GH GC CH ⎛⎫⎛⎫=+=+--= ⎪ ⎪⎝⎭⎝⎭ ,所以12145,0,33993GH ⎛⎫==+= ⎪⎝⎭.故答案为:53【点睛】关键点睛:本题关键在于利用向量垂直确定点T 的轨迹与PB 的交点位置,然后利用向量运算求解即可.四、解答题15.《中华人民共和国民法典》于2021年1月1日正式施行.某社区为了解居民对民法典的认识程度,随机抽取了一定数量的居民进行问卷测试(满分:100分),并根据测试成绩绘制了如图所示的频率分布直方图.(1)估计该组测试成绩的平均数和第57百分位数;(2)该社区在参加问卷且测试成绩位于区间[)80,90和[]90,100的居民中,采用分层随机抽样,确定了5人.若从这5人中随机抽取2人作为该社区民法典宣讲员,设事件A =“两人的测试成绩分别位于[)80,90和[]90,100”,求()P A .【答案】(1)平均数76.2;第57百分位数79;(2)()35P A =.【解析】【分析】(1)利用频率分布直方图计算平均数及百分位数;(2)根据分层抽样确定测试成绩分别位于[)80,90和[]90,100的人数,按照古典概型计算即可.【小问1详解】由频率分布直方图可知测试成绩的平均数450.04550.06650.2750.3850.24950.1676.2x =⨯+⨯+⨯+⨯+⨯+⨯=.测试成绩落在区间[)40,70的频率为()0.0040.0060.02100.3++⨯=,落在区间[)40,80的频率为()0.0040.0060.020.03100.6+++⨯=,所以设第57百分位数为a ,有()0.3700.030.57a +-⨯=,解得79a =;【小问2详解】由题知,测试分数位于区间[)80,90、[)90,100的人数之比为0.2430.162=,所以采用分层随机抽样确定的5人,在区间[)80,90中3人,用1A ,2A ,3A 表示,在区间[)90,100中2人,用1B ,2B 表示,从这5人中抽取2人的所有可能情况有:()12,A A ,()13,A A ,()11,A B ,()12,A B ,()23,A A ,()21,A B ,()22,A B ,()31A B ,()32,A B ,()12,B B ,共10种,其中“分别落在区间[)80,90和[)90,100”有6种,所以()35P A =.16.在直三棱柱ABC ­A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.(1)证明:B 1D ⊥平面ABD ;(2)证明:平面EGF ∥平面ABD .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)建立空间直角坐标系,利用向量法来证得1B D ⊥平面ABD .(2)利用向量法证得平面//EGF 平面ABD .【小问1详解】以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD .又BA ∩BD =B ,因此B 1D ⊥平面ABD .【小问2详解】由(1)知,E (0,0,3),G ,1,42a ⎛⎫ ⎪⎝⎭,F (0,1,4),则EG uuu r =,1,12a ⎛⎫ ⎪⎝⎭,EF =(0,1,1),1B D ·EG uuu r =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF .又EG ∩EF =E ,因此B 1D ⊥平面EGF .结合(1)可知平面EGF ∥平面ABD .17.已知甲射击的命中率为0.8,乙射击的命中率为0.9,甲乙两人的射击相互独立.(1)甲乙两人同时命中目标的概率;(2)甲乙两人中至少有1人命中目标的概率.【答案】(1)0.72(2)0.98【解析】【分析】(1)利用相互独立事件概率乘法公式即可求出答案.(2)利用对立事件概率计算公式和相互独立事件概率乘法公式即可求得答案.【小问1详解】因为甲射击的命中率为0.8,乙射击的命中率为0.9,甲乙两人的射击相互独立,设事件A 表示甲命中,事件B 表示乙命中,则()0.8P A =,()0.9P B =所以甲、乙两人同时命中目标的概率()()()0.80.90.72P AB P A P B ==⨯=,【小问2详解】甲乙两人中至少有1人命中目标的对立事件是甲、乙都没击中目标,甲、乙都没击中目标的概率()()()()()10.810.90.02P AB P A P B ==--=,所以甲乙两人中至少有1人命中目标的概率为:()()110.020.98P A B P AB =-=-= 18.如图,圆柱的轴截面ABCD 是正方形,点E 在底面圆周上,,AF DE F ⊥为垂足.(1)求证:AF DB ⊥.(2)当直线DE 与平面ABE 所成角的正切值为2时,①求平面EDC 与平面DCB 夹角的余弦值;②求点B 到平面CDE 的距离.【答案】(1)证明见解析(2)①41919;②25719【解析】【分析】(1)利用线面垂直得到AF ⊥平面BED ,进而证明AF DB ⊥即可.(2)①建立空间直角坐标系,利用二面角的向量求法处理即可.②利用点到平面的距离公式求解即可.【小问1详解】由题意可知DA ⊥底面,ABE BE ⊂平面ABE ,故BE DA ⊥,又,,,BE AE AE DE E AE DE ⊥⋂=⊂平面AED ,故BE ⊥平面AED ,由AF ⊂平面AED ,得AF BE ⊥,又,,,AF DE BE DE E BE DE ⊥⋂=⊂平面BED ,故AF ⊥平面BED ,由DB ⊂平面BED ,可得AF DB ⊥.【小问2详解】①由题意,以A 为原点,分别以AB ,AD 所在直线为y 轴、z 轴建立如图所示空间直角坐标系,并设AD 的长度为2,则(0,0,0),(0,2,0),(0,2,2),(0,0,2)A B C D ,因为DA ⊥平面ABE ,所以DEA ∠就是直线DE 与平面ABE 所成的角,所以tan 2DA DEA AE∠==,所以1AE =,所以31,,022E ⎛⎫ ⎪ ⎪⎝⎭由以上可得1(0,2,0),,,222DC DE ⎛⎫==- ⎪ ⎪⎝⎭ ,设平面EDC 的法向量为(,,)n x y z = ,则0,0,n DC n DE ⎧⋅=⎪⎨⋅=⎪⎩ 即20,3120,22y x y z =⎧+-=⎪⎩取4x =,得n = .又(1,0,0)m = 是平面BCD 的一个法向量,设平面EDC 与平面DCB 夹角的大小为θ,所以cos cos ,19m n m n m n θ⋅==== ,所以平面EDC 与平面DCB 夹角的余弦值为41919.②因为33,,022BE ⎛⎫=- ⎪ ⎪⎝⎭,所以点B 到平面CDE的距离19BE n d n ⋅== .19.图1是直角梯形ABCD ,AB CD ∥,90D Ð=°,四边形ABCE 是边长为4的菱形,并且60BCE ∠=︒,以BE 为折痕将BCE 折起,使点C 到达1C的位置,且1AC =,如图2.(1)求证:平面1BC E ⊥平面ABED ;(2)在棱1DC 上是否存在点P ,使得P 到平面1ABC 的距离为2155,若存在,则1DP PC 的值;(3)在(2)的前提下,求出直线EP 与平面1ABC 所成角的正弦值.【答案】(1)证明见详解(2)存在,11DP PC =(3)155【解析】【分析】(1)作出辅助线,得到AF ⊥BE ,1C F ⊥BE ,且123AF C F ==,由勾股定理逆定理求出AF ⊥1C F ,从而证明出线面垂直,面面垂直;(2)建立空间直角坐标系,求平面1ABC 的法向量,利用空间向量求解出点P 的坐标,(3)根据(2)可得31,322EP ⎛= ⎝uu r ,利用空间向量求线面夹角.【小问1详解】取BE 的中点F ,连接AF ,1C F,因为四边形ABCE 是边长为4的菱形,并且60BCE ∠=︒,所以1,ABE BEC 均为等边三角形,故AF ⊥BE ,1C F ⊥BE,且1AF C F ==,因为1AC =,所以22211AF C F AC +=,由勾股定理逆定理得:AF ⊥1C F ,又因为AF BE F ⋂=,,AF BE ⊂平面ABE ,所以1C F ⊥平面ABED ,因为1C F ⊂平面1BEC ,所以平面1BC E ⊥平面ABED ;【小问2详解】以F 为坐标原点,FA 所在直线为x 轴,FB 所在直线为y 轴,1FC 所在直线为z轴,建立空间直角坐标系,则()()()()()10,0,0,,0,2,0,0,0,,3,0,0,2,0F A B C D E --,设(),,P m n t ,1DP DC λ= ,[]0,1λ∈,即()(3,m n t λ+=,解得:,33,m n t λ==-=,故),33,P λ--,设平面1ABC 的法向量为(),,v x y z = ,则()(12,0,AB AC =-=-,则1200v AB y v AC ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令1x =,则1y z ==,故()v = ,其中1,33,C P λ=--则15C P v d v⋅=== ,解得:12λ=或32(舍去),所以否存在点P ,使得P 到平面1ABC 的距离为2155,此时11DP PC =.【小问3详解】由(2)可得:()3331,0,2,0,2222EP ⎛⎛=---= ⎝⎝ ,设直线EP 与平面1ABC 所成角为θ,则15sin cos ,5EP v EP v EP v θ⋅===⋅,所以直线EP 与平面1ABC 所成角的正弦值为5.。

高二数学上学期第一次月考文试题 (2)

高二数学上学期第一次月考文试题 (2)

高中2021级高二〔上〕第一次月考数 学 试 题〔文科〕创作单位:*XXX创作时间:2022年4月12日 创作编者:聂明景考试时间是是:120分钟 试卷满分是:150分一、 选择题〔12个小题,每一小题5分,一共60分〕 1.圆x 2+y 2=1和 圆x 2+y 2-6y +5=0的位置关系是( )。

A .外切B .内切C .外离D .内含2.课题组进展城空气质量调查,按地域把24个城分成甲、乙、丙三组,对数之比为1:3:2。

假设用分层抽样抽取6个城,那么丙组中应抽取的城数为〔 〕。

A .1 B .2 C .3 D .43.假设点00(,)M x y 在圆222x y r +=内部,那么直线200x x y y r +=与该圆的位置关系是〔 〕A .相交B .相切C .相离D .不能确定 4.如以下图,正六边形ABCDEF 中,BA CD EF ++=〔 〕A .0B .BEC .AD D .CF〔4题图〕主视图左视图俯视图INPUT x IF x>=0 THENy=x ∧2 ELES〔5题图〕〔6题图〕5.一个几何体的三视图如上图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,那么该几何体的体积是〔 〕A.π334 B. π21C. π33D. π63 6.执行上面〔见6题图〕的程序,假如输出的结果是4,那么输入的只可能是( )。

A .-2或者者2B .2C .-2或者者4D .2或者者-47.圆(x -1)2+(y -1)2=2被x 轴截得的弦长等于( )。

A .1B .23C .2D .38.在等比数列{}n a 中, 假设101,a a 是方程06232=--x x 的两根,那么=⋅74a a 〔 〕A .-2B .13 C .23D .2 9.假设圆2225()3(r y x =++-)上有且仅有四个点到直线0234=--y x 的间隔 为1, 那么半径r 的取值范围是〔 〕A .0,4B .4,6C .()+∞,6D .4,6 10.数据204与5320的最大公约数为〔 〕A .4B .8C .16D .17 11.由直线1y x =+上的点向圆22321x y 引切线,那么切线长的最小值为 ( )A B ..12.过点(11,2)A 作圆22241640x y x y ++--=的弦,其中弦长为整数的一共有〔 〕A .16条B .17条C .32条D .34条 二、 填空题〔4个小题,每一小题4分,一共16分〕13.如以下图,在正方体1111ABCD A B C D -中,E 是DC 中点,F 是BB 1 的中点,那么直线D 1E 与AF 所成角的大小为 .〔13题图〕14.按照程序框图(如右图)执行,第3个输出的数是 。

福建师大附中2024-2025学年高二上学期10月月考数学试题(解析版)

福建师大附中2024-2025学年高二上学期10月月考数学试题(解析版)

福建师大附中2024-2025学年第一学期高二第一次月考数学试卷一、单选题(每小题5分,共40分)1. 若角α的终边上一点的坐标为(11)−,,则cos α=( )A. 1−B.C.D. 1【答案】C 【解析】【分析】根据任意角三角函数的定义即可求解.【详解】∵角α的终边上一点的坐标为(11)−,,它与原点的距离r=,∴cos x r α==, 故选:C.2. 下列函数中,在区间()1,2上为增函数的是 A. 1y x=B. y x =C. 21y x =−+D. 243y x x =−+【答案】B 【解析】【分析】根据基本初等函数的单调性判断出各选项中函数在区间()1,2上的单调性,可得出正确选项. 【详解】对于A 选项,函数1y x=在区间()1,2上为减函数; 对于B 选项,当()1,2x ∈时,y x =,则函数y x =在区间()1,2上为增函数;对于C 选项,函数21y x =−+在区间()1,2上为减函数; 对于D 选项,二次函数243y x x =−+在区间()1,2上为减函数. 故选B.【点睛】本题考查基本初等函数在区间上的单调性的判断,熟悉一次、二次、反比例函数的单调性是解题的关键,考查推理能力,属于基础题.3. 为了解甲、乙两个班级学生的物理学习情况,从两个班学生的物理成绩(均为整数)中各随机抽查20个,得到如图所示的数据图(用频率分布直方图估计总体平均数时,每个区间的值均取该区间的中点值),关于甲、乙两个班级的物理成绩,下列结论正确的是( )A. 甲班众数小于乙班众数B. 乙班成绩的75百分位数为79C. 甲班的中位数为74D. 甲班平均数大于乙班平均数估计值【答案】D 【解析】【分析】根据已知数据图,判断A ;根据频率分布直方图计算乙班成绩的75百分位数,判断B ;求出甲班的中位数,判断C ;求出两个班级的平均分,即可判断D.【详解】由甲、乙两个班级学生的物理成绩的数据图可知甲班众数为79, 由频率分布直方图无法准确得出乙班众数,A 错误; 对于乙班物理成绩的频率分布直方图,前三个矩形的面积之和为(0.0200.0250.030)100.75++×=, 故乙班成绩的75百分位数为80,由甲班物理成绩数据图可知,小于79分的数据有9个,79分的数据有6个, 故甲班的中位数为79,C 错误; 甲班平均数57258596768269279687882899874.820x ×++++×+×+×++×++=甲,乙班平均数估计值为10550.02650.025750.03+850.02950.00571.57= 4.8x =×+×+××+×=<乙(), 即甲班平均数大于乙班平均数估计值,D 正确, 故选:D 4.的直三棱柱111ABC A B C −中,ABC 为等边三角形,且ABC的外接圆半径为 ) A. 12π B. 8π C. 6π D. 3π【答案】A为【解析】【分析】由棱柱体积求得棱柱的高,然后求得外接球的半径,得表面积.【详解】设ABC 的边长为a ,由ABC可得2πsin3a =,故a =则ABC的面积2S.可得11S AA AA ⋅==1AA =, 设三棱柱外接球的半径为R,则2221723233AA R =+=+=, 故该三棱柱外接球的表面积为24π12πR =. 故选:A .5. 已知函数()()()sin 20f x x ϕπϕ=+−<<,将()f x 的图象向左平移3π个单位长度后所得的函数图象关于y 轴对称,则关于函数()f x ,下列命题正确的是 A. 函数()f x 在区间,63ππ−上有最小值 B. 函数()f x 的一条对称轴为12x π=C. 函数()f x 在区间,63ππ−上单调递增 D. 函数()f x 的一个对称点为,03π【答案】C 【解析】【分析】根据平移关系求出函数的解析式,结合函数的奇偶性求出φ的值,利用三角函数的性质进行判断即可.【详解】将()f x 的图象向左平移3π个单位长度后得到2[2]233y sin x sin x ππϕϕ=++=++()(),此时函数为偶函数, 则232k k Z ππϕπ+=+∈,, 即06k k Z πϕππϕ=−+∈− ,,<<,∴当0k =时,6,πϕ=−则26f x sin x π=−()(),当63x ππ−<<时22233262x x πππππ−−−,<<,<<, 则此时函数()f x 在区间,63ππ − 上单调递增,且()f x 在区间,63ππ−上没有最小值, 故C 正确, 故选C .【点睛】本题主要考查三角函数性质判断,结合三角函数的平移关系求出函数的解析式是解决本题的关键.6. 如图,在三棱锥P ABC −中,PA ⊥平面ABC ,AC BC ⊥,AC =6BC =,D ,E ,F ,G 分别为PB ,AB ,AC ,PC 的中点,Q 为DE 上一点,AQ GQ ⊥,当AQG 的面积取得最小值时,三棱锥Q AEF −外接球的表面积为( )A. 24πB. 28πC. 32πD. 36π【答案】B 【解析】【分析】连接GF ,GD ,根据中位线性质得到线线平行关系,再利用线面垂直的性质得到线线垂直,设EQ x =,DQ y =,根据222AQ GQ AG +=得到()2221697x y x y +++=++,得到12AQG S AQ GQ =⋅= ,再根据基本不等式即可求出最值,再转化为长方体外接球问题即可.【详解】连接GF ,GD ,因为D ,E ,F ,G 分别为PB ,AB ,AC ,PC 的中点,的所以2//,11,//,2GF GF PA PA DE PA PA DE ==,1//,2GD BC GD BC =,1//,2EF BC EF BC =,则//GF DE ,因为PA ⊥平面ABC , 所以GF ⊥平面ABC ,DE ⊥平面ABC ,AE ⊂ 平面ABC ,所以DE AE ⊥,所以DE GD ⊥,AF ⊂ 平面ABC ,所以GF AF ⊥.设EQ x =,DQ y =,则AQ ,GQ ,AG ==,因为AQ GQ ⊥,所以222AQ GQ AG +=,即()2221697x y x y +++=++, 整理得9xy =,所以12AQGS AQ GQ =⋅= 由基本不等式得2216924216y x xy +≥=,当且仅当43y x =,即x =y =所以当AQC S 取得最小值时,EQ =,DQ =. 因为AF EF ⊥,QE ⊥平面AEF ,所以可将三棱锥Q AEF −补形为如图所示的长方体,则三棱锥Q AEF −的外接球即该长方体的外接球,易知该长方体外接球的直径为AQ =,故三棱锥Q AEF −,故三棱锥Q AEF −外接球的表面积为4π728π×=,故选:B .【点睛】方法点睛:求解有关三棱锥外接球的问题时,常见方法有两种:一种是补形,解题时要认真分析图形,看能否把三棱锥补形成一个正方体(长方体),若能,则正方体(长方体)的顶点均在外接球的球面上,正方体(长方体)的体对角线为外接球的直径;另一种是直接法,三棱锥中过任意两个面的外接圆圆心的垂线的交点即三棱锥外接球的球心.7. 、,外接球表面积为20π,则正四棱台侧棱与底面所成角的正切值为( ) A. 1 B. 3 C. 1或3 D.12或32【答案】C 【解析】【分析】在正四棱台1111ABCD A B C D −中,取截面11AAC C ,设正方形ABCD 、1111D C B A 的中心分别为O 、1O ,分析可知球心在直线1OO 上,对球心的位置进行分类讨论,求出1OO 的长,利用线面角的定义可求得结果.【详解】在正四棱台1111ABCD A B C D −中,设其上底面为正方形ABCD ,下底面为正方形1111D C B A ,设正方形ABCD 、1111D C B A 的中心分别为O 、1O ,由正四棱台的几何性质可知,1OO ⊥平面1111D C B A ,取截面11AAC C , 则正四棱台的外接球球心E 在直线1O O 上,分以下两种情况讨论: ①E 在AC 、11A C 的同侧,如下图所示:设球E 的半径为R ,则24π20πR =,可得R =由圆的几何性质可知EO AC ⊥,111EO A C ⊥,且2AC ==,11114A C B =,所以,2OE =,11EO ,所以,11211OO EO EO =−=−=, 过点A 在平面11AAC C 内作11AF AC ⊥, 因为11//AC A C ,11AF A C ⊥,111OO A C ⊥,1//AF OO ∴,则四边形1AOO F 为矩形,且11AF OO ==,11O FAO ==,111211A F AO O F =−=−=, 因为1//AF OO ,则AF ⊥平面1111D C B A ,则1AA 与平面1111D C B A 所成角为1AA F ∠, 且11tan 1AFAA F A F∠==; ②若球心E 在线段1OO 上,如下图所示:设球E 的半径为R ,则24π20πR =,可得R =由圆的几何性质可知EO AC ⊥,111EO A C ⊥,且2AC ==,11114A C B =,所以,2OE =,11EO ,所以,11213OO EO EO =+=+=, 过点A 在平面11AAC C 内作11AF A C ⊥,因为11//AC A C ,11AF A C ⊥,111OO A C ⊥,1//AF OO ∴,则四边形1AOO F 为矩形,且13AF OO ==,11O FAO ==,111211A F AO O F =−=−=, 因为1//AF OO ,则AF ⊥平面1111D C B A ,则1AA 与平面1111D C B A 所成角为1AA F ∠, 且11tan 3AFAA F A F∠==. 综上所述,正四棱台侧棱与底面所成角的正切值为1或3. 故选:C.【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=.8. 在ΔΔΔΔΔΔΔΔ中,BC CA CA AB ⋅=⋅ ,2BA BC += ,且233B ππ≤≤,则BA BC ⋅的取值范围是A [2,1)− B. 2,13C. 22,3 −D. 22,3−【答案】D 【解析】【分析】由BC CA CA AB ⋅=⋅,可以得到()0CA BC BA ⋅+= ,利用平面向量加法的几何意义,可以构造平行四边形BCDA ,根据()0CA BC BA ⋅+=,可知平行四边形BCDA 是菱形,这样在Rt BOA ∆中,可以求出菱形的边长,求出BA BC ⋅的表达式,利用233B ππ≤≤,构造函数,最后求出BA BC ⋅的取值范围.【详解】()0()0BC CA CA AB CA BC AB CA BC BA ⋅=⋅⇒⋅−=⇒⋅+=,以,BC BA 为邻边作平行四.边形BCDA ,如下图:所以BC BA BD += ,因此0CA BD CA BD ⋅=⇒⊥,所以平行四边形BCDA 是菱形,设CA BD O ∩=,2BA BC +=,所以=21BD BO ⇒=,在Rt BOA ∆中, 1cos cos 2BO ABO AB ABC AB ∠=⇒=∠ 212cos ()cos 1cos cos 2ABCy ABC ABC AB A C C B B ∠==⋅∠=⋅∠+∠ , 设211cos [,]3322x ABC ABC x ππ=∠≤∠≤∴∈− , 所以当11[,]22x ∈− 时,'22201(1)x y y x x =⇒=>++,21x y x =+是增函数,故2[2,]3y ∈−,因此本题选D.【点睛】本题考查了平面加法的几何意义、以及平面向量数量积的取值范围问题,利用菱形的性质、余弦的升幂公式、构造函数是解题的关键.二、多选题(每小题6分,共18分)9. 一组样本数据12,,,n x x x …的平均数为()0x x ≠,标准差为s .另一组样本数据122,,,n n n x x x ++…,的平均数为3x ,标准差为s .两组数据合成一组新数据1212,,,,,,n n n x x x x x +⋅⋅⋅⋅⋅⋅,新数据的平均数为y ,标准差为s ′,则( ) A. 2y x > B. 2y x = C. s s ′> D. s s ′=【答案】BC 【解析】【分析】由平均数与标准差的定义求解判断. 【详解】由题意322nx n xyx n+⋅=, 222222121()()()nn k k ns x x x x x x x nx ==−+−++−=−∑,同理222222211(3)9nnkkk n k n ns xn x xnx=+=+=−⋅=−∑∑ 两式相加得22221210nk k ns x nx ==−∑,22222221122(2)8nnkk k k ns x n x x nx ==′=−⋅=−∑∑,所以2222ns ns ′>,s s ′>. 故选:BC .10. 在棱长为2的正方体1111ABCD A B C D −中,点E ,F 分别为棱BC 与11D C 的中点,则下列选项正确的有( )A. 1//A B 平面1AECB. EF 与1BC 所成的角为30°C. ⊥EF 平面1B ACD. 平面1AEC 截正方体1111ABCD A B C D −的截面面积为 【答案】ABD 【解析】【分析】设点M 为棱11A D 的中点,得到四边形1AEC M 为平行四边形,利用线面平行的判定定理,证得1//A B 平面1AEC ,可判定A 正确;再得到四边形1AEC M 为菱形,求得截面的面积,可判定D 正确;设1CC 的中点为N ,证得1//EN BC ,得到NEF ∠为EF 与1BC 所成的角,利用余弦定理求得cos NEF ∠,可判定B 正确;假设⊥EF 平面1B AC 正确,得到1EF B C ⊥,结合11FC B C ⊥,证得1B C ⊥平面1EFC ,得到11B C EC ⊥,进而判定C 错误.【详解】如图1所示,设点M 为棱11A D 的中点,则1MC AE ,平行且相等,所以四边形1AEC M 为平行四边形,又1//A B ME ,1⊄A B 平面1AEC ,ME ⊂平面1AEC ,所以1//A B 平面1AEC ,故A 正确; 由上可知,四边形1AEC M 为平面1AEC 截正方体1111ABCD A B C D −的截面,易得11AE EC C M MA ====,故四边形1AEC M 为菱形,又其对角线EM =,1AC =12××,故D 正确; 设1CC 的中点为N ,连接,EN FN ,因为,E N 分别为BC 与1CC 的中点,所以1//EN BC ,故NEF ∠为EF 与1BC 所成的角,又EN FN ==,EF =由余弦定理可得222cos 2EN EF NF NEF EN EF +−∠==⋅ 所以EF 与1BC 所成的角为30°,故B 正确;如图2所示,假设⊥EF 平面1B AC 正确,则1EF B C ⊥,又11FC B C ⊥,1EF FC F ∩=,所以1B C ⊥平面1EFC ,得11B C EC ⊥. 在正方形11B C CB 中,11B C EC ⊥,显然不成立,所以假设错误, 即⊥EF 平面1B AC 错误,故C 错误. 故选:ABD .11. 已知,a b 均为正数且11a b a b+=+,下列不等式正确的有( )A. 23+≥B.2+≥C. 3a +≥D.23a b a+≥ 【答案】BCD 【解析】【分析】由已知条件可得1ab =,然后逐个分析判断即可 【详解】由11a b a b+=+,得a b a b ab ++=,所以()()0ab a b a b +−+=,()(1)0a b ab +−= 因为,a b 均为正数,所以1ab =,对于A ,2≥===,即ab 时取等号,所以A 错误,对于B 2+≥=,即1a b ==时取等号,所以B 正确,对于C ,因为1ab =,所以1a b=,所以13a b +=+≥=,=,即1a b ==时取等号,所以C 正确,对于D ,因为1ab =,所以22223a a ba b b b a ab++==++≥,当且仅当2a b =,即1a b ==时取等号,所以D 正确,故选:BCD三、填空题(每小题5分,共15分)12. 已知1x >−,则41x x ++的最小值为___________. 【答案】3 【解析】【分析】由1x >−可得10x +>,将41x x ++整理为4111++−+x x ,再利用基本不等式即可求解. 【详解】因为1x >−,所以10x +>,所以441111x x x x +=++−++13≥−=, 当且仅当411x x +=+,即1x =时取等号, 所以41x x ++的最小值为3, 故答案为:3【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 13. 已知函数222log ,1()32,1x a x f x x ax a x + =++<, ①若a =1,f (x )的最小值是_____;②若f (x )恰好有2个零点,则实数a 的取值范围是_____. 【答案】 ①. ﹣14 ②. 1(1,][0,)2−−+∞ 【解析】【分析】(1)对分段函数的两段函数分别求最小值,然后比较可得; (2)结合函数性质与解方程()0f x =,可得结论.【详解】(1)由题意22log 1,1()32,1x x f x x x x +≥ =++< , 1x ≥时,2()log 1f x x =+单调递增,min ()(1)1f x f ==, 1x <时,2231()32()24f x x x x =++=+−,min 31()()24f x f =−=−, 所以32x =−时,min 1()4f x =−;(2)若0a =,则22log ,1(),1x x f x x x ≥ = <,恰有两个零点0和1,满足题意,若0a >,则1x ≥时,2()log 0f x x a a =+≥>无零点, 但1x <时,22()32f x x ax a =++有两个零点a −和2a −,满足题意,当0a <时,则1x ≥时,2()log f x x a =+是增函数,min ()0f x a =<,有一个零点, 1x <时,由22()320f x x ax a =++=得x a =−或2x a =−,因为()f x 只有两个零点,所以121a a −< −≥,解得112a −<≤−, 综上,a 的取值范围是1(1,][0,)2−−+∞ .【点睛】本题考查求分段函数的最值,由分段函数的零点个数求参数取值范围.解题时需分类讨论,按分段函数的定义分类讨论.14. 如图所示,在△ABC 中,AB =AC =2,AD DC = ,2DE EB =,AE 的延长线交BC 边于点F ,若45AF BC ⋅=− ,则AE AC ⋅= ____.【答案】229【解析】【分析】过点D 做DG AF ,可得16EF AF =,15BF BC =,4155AF AB AC =+ 由45AF BC ⋅=− 可得2cos 3BAC ∠=,可得541()655AE ACAB AC AC ⋅=+⋅ ,代入可得答案. 【详解】解:如图,过点D 做DG AF ,易得:13EF BE DG BD ==,13EF DG =,12DG CD AF AC ==,故12DG AF =,可得:16EF AF =, 同理:12BF BE FG ED ==,11FG AD GC CD ==,可得15BF BC =, 1141()5555AF AB BF AB BC AB AC AB AB AC =+=+=+−=+ ,由45AF BC ⋅=− ,可得22411424()()555555AB AC AC AB AC AB AB AC +⋅−=−+⋅=− , 可得:14244422cos 5555BAC ×−×+××∠=−,可得:2cos 3BAC ∠=, 255412122122()2246655353369AE AC AF AC AB AC AC AB AC AC ⋅=⋅=+⋅=⋅+=×××+×= ,故答案为:229. 【点睛】本题主要考查平面向量的线性运算和平面向量的数量积,由题意作出DG AF 是解题的关键.四、解答题(共77分)15. 如图1,在平面四边形PBCD 中,已知BC PB ⊥,PD CD ⊥,6PB =,2BC =,2DP CD =,DA PB ⊥于点A .将PAD △沿AD 折起使得PA ⊥平面ABCD ,如图2,设MD PD λ=(01λ≤≤).(1)若23λ=,求证:PB //平面MAC ; (2)若直线AM 与平面PCD,求λ的值. 【答案】(1)证明见解析 (2)12λ= 【解析】【分析】(1)利用线面平行的判定定理即可证明;(2)利用空间向量的坐标表示,表示出线面夹角的余弦值即可求解. 【小问1详解】在平面四边形PBCD 中,BC PB ⊥,6PB =,2BC =,所以CP =tan BPC ∠= 又PD CD ⊥,2DP CD =,所以CD =,PD =,1tan 2DPC ∠=, 所以()1123tan tan 111123BPD BPC DPC +∠=∠+∠==−×,所以45BPD ∠=°. 所以在Rt PAD △中,易得4PA AD ==. 因为DA PB ⊥,BC PB ⊥,所以//AD BC .在四棱锥P ABCD −中,连接BD ,设BD AC F ∩=,连接MF ,因为23λ=,所以2DMMP =, 又2AD DFBC FB==,所以MF PB ∥. 因为MF ⊂平面MAC ,PB ⊄平面MAC ,所以PB ∥平面MAC .【小问2详解】由题意易知AB ,AD ,AP 两两垂直,故可建立如图所示的空间直角坐标系,则()0,0,0A ,()2,2,0C ,()0,4,0D ,()0,0,4P , 则()2,2,0CD =− ,()0,4,4PD =−.设平面PCD 法向量为(),,n x y z =,则00n CD n PD ⋅= ⋅=,即220440x y y z −+= −= , 令1x =,得11y z == ,即()1,1,1n = . 由MD PD λ=,得()0,4,4MD λλ=− , 故()0,44,4M λλ−,()0,44,4AM λλ=−.由直线AM 与平面PCD,的得cos ,AM n AM n AM n⋅==,解得12λ=. 16. 如图,直三棱柱111ABC A B C −的体积为1,AB BC ⊥,2AB =,1BC =.(1)求证:11BC A C ;(2)求二面角11B A C B −−的余弦值. 【答案】(1)证明见解析 (2【解析】【分析】(1)法一:由线面垂直证明即可;法二:用空间直角坐标系证明即可;(2)法一:过O 作1OH A C ⊥于H ,连接BH ,由已知得出BHO ∠为二面角11B A C B −−的平面角,求解即可;法二:建立空间直角坐标系求解. 【小问1详解】直三棱柱111ABC A B C −的体积为:111121122V AB BC AA AA =×⋅⋅=×××=, 则11AA BC ==,四边形11BCC B 为正方形,法一:在直棱柱111ABC A B C −中,1BB ⊥面ABC ,11AB A B ∥, 又AB ⊂平面ABC ,则1AB BB ⊥,因为AB BC ⊥,1AB BB ⊥,1BB BC B = ,1,BB BC ⊂平面11BCC B , 所以AB ⊥平面11BCC B ,又1BC⊂平面11BCC B , 所以1AB BC ⊥,因为11AB A B ∥,所以11A B ⊥1BC , 在正方形11BCC B 中,有11BC B C ⊥,因为11BC B C ⊥,11A B ⊥1B C ,1111A B B C B = ,111,A B B C ⊂平面11A CB , 所以1⊥BC 平面11A CB ,又1A C ⊂平面11A CB , 所以11BC A C .法二:直棱柱111ABC A B C −,1BB ⊥平面ABC ,又AB BC ⊥,以B 为原点,BC ,BA ,1BB 所在直线为x 轴,y 轴, z 轴,建立空间直角坐标系, 则()0,0,0B ,()10,0,1B ,()1,0,0C ,1(0,2,1)A ,1(1,0,1)C ,1(1,0,1)BC =,1(1,2,1)A C =−− ,11110(2)1(1)0BC A C ⋅=×+×−+×−=,所以11BC A C .【小问2详解】由(1)得11BC A C ,设11B C BC O = ,在11A B C 中,过O 作1OH A C ⊥于H ,连接BH ,因为1OH A C ⊥,11BC A C ,1,OH BC ⊂平面BHO ,且1OH BC O ∩=, 所以1A C ⊥平面BHO ,又BH ⊂平面BHO ,所以1AC BH ⊥,所以BHO ∠为二面角11B A C B −−的平面角, 因为11Rt Rt COH CA B ∽△△,111CA CO OH A B =,得OH = 又在Rt BOH中,BO =BH =,cos OH BHO BH ∠=, 所以二面角11B A C B −−法二:()0,0,0B ,()10,0,1B ,()C ,1(0,2,1)A ,1(1,0,1)C ,(1,0,0)BC =,1(0,2,1)BA = ,设平面1BCA 的法向量:1111(,,)n x y z = , 则111111020n BC x n BA y z ⋅== ⋅+ ,取11y =,得1(0,1,2)n =− ,1(1,0,1)B C=−,11(0,2,0)B A = ,设面11B CA 的法向量2222(,,)n x y z = , 则21222112020n B C x z n B A y ⋅=−= ⋅== ,取21x =,得2(1,0,1)n = , 设二面角11B A C B −−的大小为θ,则:121212|||cos ||cos ,|||||n n n n n n θ⋅=<>==因为θ为锐角,所以二面角11B A C B −−17. 如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD=BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.【答案】(Ⅰ)证明见解析;. 【解析】【详解】分析:(Ⅰ)由面面垂直的性质定理可得AD ⊥平面ABC ,则AD ⊥BC .(Ⅱ)取棱AC 的中点N ,连接MN ,ND .由几何关系可知∠DMN (或其补角)为异面直线BC 与MD 所成的角.计算可得12MNcos DMN DM∠==.则异面直线BC 与MD(Ⅲ)连接CM .由题意可知CM ⊥平面ABD .则∠CDM 为直线CD 与平面ABD所成的角.计算可得CMsin CDM CD∠=.即直线CD 与平面ABD. 详解:(Ⅰ)证明:由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(Ⅱ)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DMAD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN.在等腰三角形DMN 中,MN =1,可得12cos MN DMN DM ∠==. 所以,异面直线BC 与MD(Ⅲ)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CMABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角.Rt △CAD 中,CD=4.在Rt △CMD中,sin CM CDM CD ∠=. 所以,直线CD 与平面ABD点睛:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.18. 棱柱1111ABCD A B C D −的所有棱长都等于4,60ABC ∠=°,平面11AA C C ⊥平面ABCD ,160A AC ∠=°.(1)证明:1DB AA ⊥;(2)求二面角1D AA B −−的平面角的余弦值;(3)在直线1CC 上是否存在点P ,使//BP 平面11DA C ?若存在,求出点P 的位置.【答案】(1)证明见解析;(2)35;(3)点P 在1C C 的延长线上且使1C C CP =. 【解析】【分析】(1)建立空间直角坐标系,结合10AA BD ⋅=,即可证得1DB AA ⊥;在(2)分别求得平面1AA D 和平面1AA B 的一个法向量,解向量的夹角公式,即可求解;(3)设1CP CC λ= ,求得BP 的坐标和平面11DA C 的法向量,结合30n BP ⋅= ,求得1λ=−,即可得到结论.【详解】由题意,连接BD 交AC 于O ,则BD AC ⊥,连接1A O ,在1AAO 中,14AA =,2AO =,160AAO ∠=°,∴2221112cos 60AO AA AO AA AO =+−=°⋅22211AO A O AA +=, ∴1A O AO ⊥,由于平面11AA C C ⊥平面ABCD ,所以1A O ⊥底面ABCD ,所以以OB 、OC 、1OA 所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则()0,2,0A −,()B ,()0,2,0C,()D −,(10,0,A , (1)由于()BD =−,(10,2,AA =,()2,0AB = , 则10AA BD ⋅= ,∴1BD AA ⊥.(2)设平面1AA D 的法向量()2,,n x y z = ,则21200n AA n AD ⋅= ⋅=,即0y y += + ,取1x =,可得()21n =− , 同理,可得平面1AA B的法向量()11,n = , 所以1212123cos 5n n n n n n ⋅⋅==− , 又由图可知成钝角,所以二面角1D A A B −−的平面角的余弦值是35. (3)假设在直线1CC 上存在点P ,使//BP 平面11DA C ,设1CP CC λ= ,(),,P x y z ,则()(,2,0,2,x y z λ−=,得(0,22,)P λ+,(22,)BP λ−+, 设3n ⊥ 平面11DA C ,则31131n A C n DA ⊥ ⊥ ,设()3333,,n x y z = ,得到333200y = +=,不妨取()31,0,1n =− ,又因为//BP 平面11DA C ,则30n BP ⋅= 即0−=得1λ=−.即点P 在1C C 的延长线上且使1C C CP =.【点睛】本题主要考查了空间向量在线面位置关系的判定与证明中的应用,以及直线与平面所成角的求解,其中解答中熟记空间向量与线面位置关系的关系,以及线面角的求解方法是解答的关键,着重考查推理与运算能力.19. 已知非空集合A 是由一些函数组成,满足如下性质:①对任意()f x A ∈,()f x 均存在反函数1()f x −,且1()f x A −∈;②对任意()f x A ∈,方程()f x x =均有解;③对任意()f x 、()g x A ∈,若函数()g x 为定义在R 上的一次函数,则(())f g x A ∈.(1)若1()()2x f x =,()23g x x =−,均在集合A 中,求证:函数12()log (23)h x x A =−∈; (2)若函数2()1x a f x x +=+(1x ≥)在集合A 中,求实数a 的取值范围; (3)若集合A 中的函数均为定义在R 上的一次函数,求证:存在一个实数0x ,使得对一切()f x A ∈,均有00()f x x =.【答案】(1)见详解;(2)[]1,3a ∈;(3)见详解; 【解析】【分析】(1)由1()()2x f x A =∈,根据性质①可得112()log f x x A −=∈,且存在00x >,使得 1002log x x =,由()23g x x A =−∈,且为一次函数,根据性质③即可证明.(2)由性质②,方程()211x a x x x +=≥+,即a x =在[)1,x ∈+∞上有解,可得1a ≥,变形21()1211x a a f x x x x ++==++−++,[)()1,x ∈+∞.与2的关系分类讨论,利用基本不等式的性质即可求解.(3)任取()1f x ax b =+,()2f x cx d A =+∈,由性质①,0a c ≠,不妨设,1a c ≠,(若1a =,则0b =,()1f x x =), 由性质③函数()()()()12g x f f x acx ad b A ==++∈, 由性质①:()()1x bc d h x A ac −−+=∈,由性质③:()()()()()1()acx bd b bc d ad b bc d h g x x A ac ac−++−++−+===∈ 由性质②方程:()()ad b bc d x x ac+−++=,可得ad b bc d +=+,即11b d a c =−−,即可得证. 【详解】(1)由1()()2x f x A =∈,根据性质①可得112()log f x x A −=∈,且存在00x >,使得 1002log x x =,由()23g x x A =−∈,且为一次函数,根据性质③可得:()()112()log (23)hx x f g x A −=−=∈.(2)由性质②,方程()211x a x x x +=≥+,即a x =在[)1,x ∈+∞上有解,1a ∴≥, 由22111()12111x a x a a f x x x x x +−+++===++−+++[)()1,x ∈+∞,2>,3a >时,112a −>,且()112a f f − =, ∴此时()f x 没有反函数,即不满足性质①.2≤,13a ≤≤时,函数()f x 在[)1,+∞上单调递增,∴此时()f x 有反函数,即满足性质①.综上:[]1,3a ∈.(3)任取()1f x ax b =+,()2f x cx d A =+∈,由性质①,0a c ≠,不妨设,1a c ≠,(若1a =,则0b =,()1f x x =),由性质③函数()()()()12g x f f x acx ad b A ==++∈, 由性质①:()()1x bc d h x A ac −−+=∈,由性质③:()()()()()1()acx bd b bc d ad b bc d h g x x A ac ac−++−++−+===∈ 由性质②方程:()()ad b bc d x x ac+−++=, ∴ad b bc d +=+,即11b d ac =−−, ()1f x x =,可得ax b x +=,1b x a =−, ()2f x x =,可得cx d x +=,1d x c =−, 由此可知:对于任意两个函数()1f x ,()2f x ,存在相同的0x 满足:()()10020f x x f x =,∴存在一个实数0x ,使得对一切()f x A ∈,均有00()f x x =.质,难度较大.。

福建省宁德市柘荣县第一中学2024-2025学年高二上学期10月月考数学试题(含解析)

福建省宁德市柘荣县第一中学2024-2025学年高二上学期10月月考数学试题(含解析)

2024—2025学年柘荣一中第一学期第一次月考(高二数学)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等差数列中,已知,,则( )A.9B.12C.15D.182.已知数列为等比数列,,且,则的值为( )A.1或 B.1C.2或D.23.已知数列的前项和,,则( )A.20B.17C.18D.194.在等差数列中,若为其前项和,,则的值是( )A.60B.55C.50D.115.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺A.B.C.D.6.各项不为0的等差数列中,,数列是等比数列,且,则( )A.2B.4C.8D.167.在数列中,若,,则( )A. B.1C.D.2.8.高斯(Gauss )被认为是历史上最重要的数学家之一,并享有“数学王子”之称.小学进行的求和运算时,他这样算的:,,…,,共有50组,所以,这就是著名的高斯算法,课本上推导等差数列前项和的方法正是借助了高斯算法.已知正数数列是公比不等于1的等比数列,且,试根据以上提示探求:若,则( )A.2023B.4046C.2022D.4044二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.{}n a 53a =96a =13a ={}n a 12a =53a a =10a 1-2-{}n a 221n S n =+*n ∈N 5a ={}n a n S n 65a =11S 47162981545{}n a 23711220a a a -+={}n b 77b a =68b b ={}n a 11a =-()*112,N 1n n a n n a -=≥∈-10a =1-12123100++++ 1100101+=299101+=5051101+=501015050⨯=n {}n a 120231a a =24()1f x x=+()()()122023f a f a f a +++=9.(5分)已知等差数列满足,前3项和,等比数列满足,,的前项和为.则下列命题错误的是()A.的通项公式为B.等差数列的前项和为C.等比数列的公比为D.10.古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排的形状,把数分成许多类,如图1,图形中黑色小点个数:1,3,6,10,称为三角形数,如图2,图形中黑色小点个数:1,4,9,16,…称为正方形数,记三角形数为数列,正方形数为数列,则( )图(1)图(2)A. B. C. D.11.已知数列满足,,则( )A. B.数列是等差数列C. D.数列的前99项和小于三、填空题:本题共3小题,每小题5分,共15分.12.在等差数列中,,则___________.13.已知等比数列满足,且,,成等差数列,则___________.14.若数列满足(为常数),则称数列为等比和数列,为公比和.已知数列是以3为公比和的等比和数列,其中,,则___________.四、解答题:(本题共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本题13分)已知等差数列公差,且,,成等比数列,(1)求的通项公式;{}n a 32a =392S ={}n b 11b a =415b a ={}n b n n T {}n a 24n a n =-{}n a n 234n n nS +={}n b 1221n n T =-⋯{}n a {}n b 515a =520b =101045b a =+(1)2n n n a +={}n a 12a =1(1)(1)(2)2n n n na n a n n n +-+=++216a =n a n ⎧⎫⎨⎬⎩⎭10102400a =2n a n ⎧⎫⎨⎬⎩⎭2516{}n a 1359a a a ++=24a a +={}n a 4780a a -=1a 21a +3a 5a ={}n a 211n n n na a k a a ++++=k {}n a k {}n a 11a =22a =2202a ={}n a 2d =5a 6a 9a {}n a(2)设数列的前项和为,求的最小值及此时的值.16.(本题15分)设是公比为正数的等比数列,,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前项和.17.(本题15分)设是等差数列的前项和,已知,.(I )求;(II )若数列,求数列的前项和.18.(本题17分)已知数列的首项,且满足.(1)求证:数列为等比数列;(2)若,求满足条件的最大正整数.19.(本题17分)已知数列的前项和为,,数列满足,.(1)求数列,的通项公式;(2)令,求数列的前项和;(3)若,求对所有的正整数都有成立的的取值范围.{}n a n n S n S n {}n a 12a =324a a =+{}n a {}n b {}n n a b +n n S n S {}n a n 132a a +=-()*1575N S n =∈9S ()()1144n n n b a a +=++{}n b n n T {}n a 127a =()*1231n n n a a n a +=∈+N 13n a ⎧⎫-⎨⎬⎩⎭1231111100na a a a +++⋯+<n {}n a n n S ()*12N 2n n S a n =-∈{}n b 11b =120n n b b +-+={}n a {}n b n n n c a b =⋅{}n c n n T 0λ>n 222nnb k a λλ-+>k柘荣一中20242025学年第一学期第一次月考(高二数学)参考答案1. A在等差数列中,,,所以,所以,2.C设等比数列的公比为,因为,且,所以,解得,所以.故选:C.3.C因为数列的前项和,,所以.4.B因为在等差数列中,若为其前项和,,所以.故选:B.5.D设该妇子织布每天增加尺,由题意知,解得.故该女子织布每天增加尺.故选:D 6.D等差数列中,,故原式等价于解得或,各项不为0的等差数列,故得到,数列是等比数列,故.故选:D.7.A解:因为,,所以,,{}n a 53a =96a =95132a a a =+139522639a a a =-=⨯-={}n a q 12a =53a a =21q =1q =±91012a a q ==±{}n a 221n S n =+*N n ∈()()2255425124118a S S =-=⨯+-⨯+={}n a n S n 65a =()1111161111552a a S a +===d 2020192042322S d ⨯=⨯+=45d =45{}n a 31172a a a +=27740a a -=70a =74a ={}n a 774a b =={}n b 268716b b b ==11a =-()*112,N 1n n a n n a -=≥∈-2111111(1)2a a ===---321121112a a ===--,,所以数列是以3为周期的周期数列,所以.8.B解:选B 根据等比数列的下标性质由,函数,,令,则,,.9.AC【解答】解:设等差数列的公差为,因为,,所以,,解得,,所以,故A 错误;,故B 正确;设等比数列的公比为,由,,可得,解得,故C 错误;,故D 正确.故选:AC.10.ACD【详解】依题意,,,AD 正确;,,B 错误;,,C 正确.故选:ACD 11.ACD解:A 选项,中得,,故,A 正确;413111112a a a ===-=--52411111(1)2a a a ====---{}n a 1033111a a a ⨯+===-12023202411n n a a a a -⋅=⇒⋅= 24()1f x x =+222214444()41111x f x f x x x x+⎛⎫∴+=+== ⎪++⎝⎭+()()()122023T f a f a f a =+++ ()()()202320231T f a f a f a =+++ ()()()()()()120232202220231242023T f a f a f a f a f a f a ∴=++++++=⨯ 4046T ∴={}n a d 32a =392S =122a d +=9332a d +=11a =12d =1n 11(1)22n a n +=+-=211n 3n(1)224n S n n n +=+-⨯={}n b q 111b a ==4158b a ==38q =2q =n122112n n T -==--(1)12342n n n a n +=+++++=55(51)152a +==2[1(21)]1357(21)2n n n b n n +-=+++++-== 525b =1010(101)552a +==1010100554545b a ==+=+1(1)(1)(2)2n n n na n a n n n +-+=++1n =21223212a a -=⨯⨯=216a =B 选项,变形得到,故数列不是等差数列,B 错误;C 选项,,……,,上面个式子相加得,设①,则②,式子①-②得,则,故,所以,故,C 正确;D 选项,由C 选项知,,则,所以为公比为2的等比数列,的前99项和为,D 正确.12.【详解】在等差数列中,,解得,所以.13.【解答】解:设等比数列的公比为,由,可得,解得,由,,成等差数列,可得,即为,解得,所以,故答案为:32.11(1)2(2)2(1)(2)1n n n n n n na n a a an n n n n n++-+=⇒-=+⋅+++n a n ⎧⎫⎨⎬⎩⎭2321232,422132a a a a -=⨯-=⨯11(1)21n n n a a n n n ---=+⋅-(1)n -2113242(1)21n n a a n n --=⨯+⨯+++⋅ 213242(1)2n n T n -=⨯+⨯+++⋅ 2323242(1)2n n T n =⨯+⨯+++⋅ 231426222(1)26(1)22212nn nn n n T n n n ---=++++-+⋅=+-+⋅=-⋅- 22n n T n =⋅-222n na n n-=⋅-22n n a n =⋅210101021001024102400a =⋅=⨯=22nn a n =122(1)2n n a n a n ++=2n a n ⎧⎫⎨⎬⎩⎭2n a n ⎧⎫⎨⎬⎩⎭()1002512991001004252222222221612-+++==-<==- {}n a 313539a a a a =++=33a =24326a a a +=={}n a q 4780a a -=3748a q a ==2q =1a 21a +3a ()21321a a a +=+()1122141aa a a +=+12a =5232as ==14.【分析】令,先利用等比和数列的定义得到①,又②,两式相减得,然后由求得,求出,再利用累乘法求出.【解答】解:令,则①,又②,由②-①得,即,,,,故答案为:.【点评】本题主要考查数列新定义、数列通项公式的求法及累乘法在求数列通项公式中的应用,属于中档题.15.【答案】(1)(2)最小值为,.【小问1详解】由知为等差数列,设的公差为,则,,,成等比数列,所以,即,解得,又,所以的通项公式为;【小问2详解】由(1)得,所以当时,取得最小值,最小值为.16.【分析】(1)设为等比数列的公比,由已知可得关于的一元二次方程,求解可得值,则数列的通项可求;(2)由已知可得,然后分组,再由等差数列与等比数列的前项和公式求解.【解答】解:(1)设为等比数列的公比,则由,得,1n n na b a +=13n n b b ++=123n n b b +++=2n n b b +=1b 2b n b 2020a n 1nn a b a +=13n n b b ++=123n n b b +++=20n n b b +-=2n n b b +=2112a b a == 2131b b ∴=-=*1*1,2,N 2,21,Nn n n a n k k b a n k k +⎧=∈∴==⎨=-∈⎩101032019202022020112201820191212122a a a a a a a a a a ∴=⨯⨯⨯⋯⨯⨯=⨯⨯⨯⨯⋯⨯⨯=1010229n a n =-16-4n =12n n a a +-={}n a {}n a d 2d =5a 6a 9a 2659a a a =()()()211110816a a a +=++17a =-2d ={}n a 29n a n =-22(729)8(4)162n n n S n n n -+-==-=--4n =n S 16-q {}n a q q {}n a 12(1)21n b n n =+-=-n q {}n a 12a =324a a =+2224q q =+即,解得或(舍去),因此,的通项为;(2)由已知可得,,,【点评】本题考查等比数列的通项公式,考查等差数列与等比数列前项和的求法,是中档题.17.【解答】解:(I )设等差数列的公差为,则由,,得,解得.;(II )由(I )知,,,.【点评】本题考查等差数列的通项公式,考查了利用裂项相消法求数列的前n 项和,是中档题.18.(1)由已知递推公式得,由此可得证;(2)由(1)得,根据等比数列的求和公式可求得,再令,得函数的单调性和,可得答案.(1)解:,,,,又,,220q q --=2q =1q =-2q ={}n a ∴n 1n 222n a -=⨯=12(1)21n b n n =+-=-2(21)n n n a b n ∴+=+-()12212(1)222122n n n n n S n n +-+∴=+⨯-=+--n {}n a d 132a a +=-1575S =112221510575a d a d +=-⎧⎨+=⎩121a d =-⎧⎨=⎩9989(2)1182S ⨯∴=⨯-+⨯=21(1)3n a n n =-+⨯-=-()()1111144(1)(2)12n n n b a a n n n n +∴===-++++++123111111112334122224n n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫∴=+++⋯+=-+-++-=-= ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭ 1111332n n a a +⎛⎫-=- ⎪⎝⎭1132nn a ⎛⎫=+ ⎪⎝⎭1231111na a a a +++⋯+1()3992xf x x ⎛⎫=-- ⎪⎝⎭()f x (33)0f <(34)0f >1231n n n a a a +=+ 13112n n na a a ++∴=111322n n a a +∴=+1111332n n a a +⎛⎫∴-=- ⎪⎝⎭127a =1171322a ∴=-=数列是以为首项,为公比的等比数列.(2)解:由(1)可知,,,,若,则,,令,所以在上单调递增,且,,所以满足条件的最大正整数.19.【解答】解:(1)数列的前项和为①,当时,解得.当时,②,①-②得,整理得,所以(常数),所以数列是以为首项,2为公比的等比数列;所以.数列满足,点在直线上.所以(常数),所以.(2),所以①,②,①-②得,整理得.∴13n a ⎧⎫-⎨⎬⎩⎭1212111113222n n n a -⎛⎫⎛⎫∴-== ⎪ ⎪⎝⎭⎝⎭1132nn a ⎛⎫∴=+ ⎪⎝⎭2123111111113132222nnn n n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫∴++++=++++=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1231111100n a a a a ++++< 1131002nn ⎛⎫-+< ⎪⎝⎭13992nn ⎛⎫∴-< ⎪⎝⎭1()3992xf x x ⎛⎫=-- ⎪⎝⎭()f x R 331(33)999902f ⎛⎫=--< ⎪⎝⎭341(34)1029902f ⎛⎫=--> ⎪⎝⎭33n ={}n a n ()*1,22n n n S S a n =-∈N 1n =112a =2n ≥11122n n S a --=-1122n n n n n a S S a a --=-=-12n n a a -=12n n a a -={}n a 1222n n a -={}n b 11b =()1,n n P b b +20x y -+=12n n b b +-=21n b n =-2(21)2n n n n c a b n -==-⋅21113252(21)2n n T n -=⨯+⨯+⨯++⋅- 1211232(21)n n T n -=⨯+⨯++⋅- ()2211212222(21)2n n n T n ---=+++++-- 13(23)22n n T n -=+-⋅(3)由(1)得,所以,所以数列为单调递减数列,所以,所以的最大值为1,对所有的正整数都有都成立,故,可得,所以恒成立,只需满足,故,故的取值范围为.【点评】本题考查的知识要点:数列的递推关系式,数列的通项公式的求法及应用,错位相减法在数列求和中的应用,数列的单调性,恒成立问题,基本不等式,主要考查学生的运算能力,属于中档题.2222(21)n nnb n a -=⋅-222212(1)22(21)2(21)2(56)0n n n n nn nb b n n n a a ---++=⋅+-⋅-=-<2n n b a ⎧⎫⎨⎬⎩⎭1221n n b b a a ≤=2n n b a n 222nnb k a λλ-+>221k λλ-+>21k λλ<+1k λλ<+min12k λλ⎛⎫<+= ⎪⎝⎭2k <k (,2)-∞。

临川一中高二数学第一次月考试卷(文)

临川一中高二数学第一次月考试卷(文)

临川一中2019—2020学年度上学期第一次月考高二数学试卷(文科)卷面满分:150分 考试时间:120分钟 命题人:聂建群 审题人:付建华一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。

1.抛物线x y 42=的焦点坐标是 ( ))0,2.()2,0.()0,1.()1,0.(D C B A 2.下列说法正确的是 ( )A.若 为真命题,则 , 均为假命题;B.命题 若 则 的逆否命题为真命题;C.等比数列 的前 项和为 ,若“ ”则“ ”的否命题为真命题;D.“平面向量 与 的夹角为钝角”的充要条件是“0<⋅b a”.3.命题“[]2,3∀∈x ,220-≥x a ”为真命题的一个必要不充分条件是 ( ) A .0≤a B .1≤aC .2≤aD .3≤a4.设)2,0(πθ∈,方程1cos sin 22=+θθy x 表示焦点在y 轴上的椭圆,则θ的取值范围是 ( )A . )4,0(πB .)36(ππ, C .)34(ππ, D .)24(ππ,5.命题p :函数21y x ax =-+在()∞+,2上是增函数. 命题q :直线+0-=x y a 在y 轴上的截距小于0. 若∨p q 为假命题,则实数a 的取值范围是 ( ) A .4>a B .0≥aC .04≤<aD .04<≤a6.设P 为椭圆221259x y +=上一点,1F .2F 为左右焦点,若1260F PF ∠=︒,则P 点的纵坐标为 ( )A.433 B.433± C. 439 D. 439±7.AB 是过抛物线y x =2的焦点的弦,且4=AB ,则AB 的中点到直线01=+y 的距离是 ( )A. 25B. 2C.411D.38.我们把由半椭圆()222210x y x a b +=≥与半椭圆22221(0)y x x b c +=<合成的曲线称作“果圆”(其中222,a b c =+ 0a b c >>>).如图,设点012,,F F F 是相应椭圆的焦点, 12,A A 和12,B B 是“果圆”与,x y 轴的交点,若012F F F ∆是腰长为1的等腰直角三角形,则,a b 的值分别为( )A B .12, C 1 D .5,4 9.已知点P 是抛物线x y 22=上的动点,点P 在y 轴上的射影是M ,点A 的坐标是)4,27(,则PMPA +的最小值为 ( )A .29B .4C .27D .510.椭圆22143+=x y 上有n 个不同的点123,,,,n P P P P L ,椭圆右焦点F ,数列{}n P F 是公差大于12019的等差数列,则n 的最大值为( ) A .4036 B .4037 C .4038 D .403911.已知抛物线)0(2:2>=p px y C 的焦点F 为椭圆)49(1942222<=+b b y x 的右顶点,直线l 是抛物线C 的准线,点A 在抛物线C 上,过A 作l AB ⊥,垂足为B ,若直线BF 的斜率3-=BF k ,则AFB ∆的面积为 ( )A .310B .39C . 38D .3712.在平面直角坐标系 中,点 为椭圆 :12222=+bx a y 的下顶点, , 在椭圆上,若四边形 为平行四边形, 为直线 的倾斜角,若⎪⎭⎫⎝⎛∈6543ππα,,则椭圆 的离心率的取值范围为( )A .⎪⎪⎭⎫⎝⎛136, B .⎪⎪⎭⎫ ⎝⎛2336, C .⎪⎪⎭⎫ ⎝⎛230, D .⎪⎪⎭⎫⎝⎛360, 二、填空题(本大题共4小题,每小题5分,共20分) 13.抛物线2ax y =的准线方程是321=y ,则a 的值是________.14.给定两个命题,p :对任意实数x 都有210ax ax ++>恒成立; q :方程19122=-+-ay a x 表示椭圆。

湖南省长沙市2024-2025学年高二上学期10月月考数学试题含答案

湖南省长沙市2024-2025学年高二上学期10月月考数学试题含答案

湖南2024—2025学年意高二第一学期第一次大徐习数学(答案在最后)时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z=,则z=()A.1i33-B.1i33+ C.12i33- D.12i33+【答案】A【解析】【分析】根据复数的除法运算,即可求出答案.【详解】由题意得11i333z-===-,故选:A2.设集合{}(){}212,ln1A x xB y y x=+≤==+,则A B=()A.[]0,1B.[]3,0- C.[)3,∞-+ D.[)0,+∞【答案】C【解析】【分析】由绝对值不等式解出集合A,再由对数的单调性得到集合B,最后求并集即可;【详解】由题意可得21231x x-≤+≤⇒-≤≤,所以{}3|1A x x=-≤≤,因为211x+≥,所以()2ln10y x=+≥,所以{}|0B y y=≥,所以[)3,A B=-+∞,故选:C.3.)A.2π B.3πC. D.【答案】B【解析】【分析】设圆锥的底面半径为r,根据轴截面面积求出r,结合圆锥侧面积公式,即可求得答案.【详解】设圆锥的底面半径为r,,母线长为2r,1212r r⨯=∴=,则该圆锥的表面积为2π1π123π⨯+⨯⨯=,故选:B4.若角α满足ππcos()2cos()36αα+=-,则πcos(23α-=()A.45- B.35- C.45 D.35【答案】B【解析】【分析】根据给定条件,利用诱导公式求出t n(aπ6α-,再利用二倍角的余弦公式,结合齐次式法求值.【详解】由ππcos()2cos()36αα+=-,得πππcos[()]2cos()266αα+-=-,即ππsin(2cos()66αα--=-,则πtan(26α-=-所以2222ππcos()sin()ππ66cos(2)cos2()ππ36cos()sin()66αααααα----=-=-+-2222π1tan()1(2)36π1(2)51tan()6αα----===-+-+-.故选:B5.已知平面上三个单位向量,,a b c满足()2ac b=+,则a c⋅=()A.12B.2C.14D.34【答案】C【解析】【分析】将()2ac b=+平方后求出78a b⋅=-,再根据数量积的运算律,即可求得答案.【详解】由题意知平面上三个单位向量,,a b c满足()2ac b=+,则()2214a bc==+,即22148488a a b b a b +⋅=++=⋅ ,则78a b ⋅=- ,故()2712222284a c a ab a a b =⋅=⋅++⋅=-⨯=,故选:C6.若函数()f x 在定义域[],a b 上的值域为()(),f a f b ⎡⎤⎣⎦,则称()f x 为“Ω函数”.已知函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”,则实数m 的取值范围是()A.[]4,10 B.[]4,14 C.[]10,14 D.[)10,+∞【答案】C 【解析】【分析】根据“Ω函数”的定义确定()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩的值域为[0,]m ,结合每段上的函数的取值范围列出相应不等式,即可求得答案.【详解】由题意可知()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩的定义域为[0,4],又因为函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”,故其值域为()()[0,4]f f ;而()()00,4f f m ==,则值域为[0,]m ;当02x ≤≤时,()5[0,10]f x x =∈,当24x <≤时,()24f x x x m =-+,此时函数在(2,4]上单调递增,则()(4,]f x m m ∈-,故由函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”可得041010m m ≤-≤⎧⎨≥⎩,解得1014m ≤≤,即实数m 的取值范围是[]10,14,故选:C7.已知,A B 两点的坐标分别为()()0,1,1,0A B ,两条直线1:10l mx y -+=和()2:10l x my m +-=∈R 的交点为P ,则AP BP +的最大值为()A.2B.C.1D.2【答案】D【解析】【分析】由直线所过定点和两直线垂直得到点P 的轨迹,再设ABP θ∠=,结合辅助角公式求出即可;【详解】由题意可得直线1:10l mx y -+=恒过定点()0,1A ,2:10l x my +-=恒过定点()1,0B ,且两直线的斜率之积为1-,所以两直线相互垂直,所以点P 在以线段AB 为直径的圆上运动,AB =,设ABP θ∠=,则,AP BP θθ==,所以π2sin 4AP BP θθθ⎛⎫+=+=+ ⎪⎝⎭,所以当π4θ=时,即0m =时,AP BP +取得最大值2,此时点P 的坐标为()1,1.故选:D.8.已知点P 在椭圆τ:22221x y a b +=(a>b >0)上,点P 在第一象限,点P 关于原点O 的对称点为A ,点P 关于x 轴的对称点为Q ,设3,4PD PQ →→=直线AD 与椭圆τ的另一个交点为B ,若PA ⊥PB ,则椭圆τ的离心率e =()A.12B.2C.2D.3【答案】C 【解析】【分析】设P 的坐标,由题意可得,A Q 的坐标,再由向量的关系求出D 的坐标,求出,AD PA 的斜率,设B 坐标,,P B 在椭圆上,将,P B 的坐标代入椭圆的方程,两式相减所以可得224 PA PB b k k a⋅=-,再由PA PB ⊥可得,a b 的关系,进而求出离心率.【详解】设()11,P x y ,则()()1111,,,A x y Q x y ---,3,4PD PQ →→=,则11,2y D x ⎛⎫- ⎪⎝⎭,设()22,B x y ,则2211222222221 ,1x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得到:()()()()1212121222x x x x y y y y a b +-+-=-,2121221212,,PBAD AB y y x x b k k k x x a y y -+==-⋅=-+即()1211211121124 ,4PA y y y y y y k x x x x x x ++===++,,PA PB ⊥故 1PA PBk k ⋅=-,即2241b a -=-,故2234a c =,故3 2e =.故选:C.【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力,属于中档题.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若圆()22260x y x y a a +--+=∈R 上至多存在一点,使得该点到直线3450x y ++=的距离为2,则实数a 可能为()A.5B.6C.7D.8【答案】BCD 【解析】【分析】根据圆的方程确定圆心和半径以及10a <,再结合题意列出相应不等式,即可求得答案.【详解】圆()22260x y x y a a +--+=∈R 即圆()()()221310x y a a -+-=-∈R ,需满足10a <,则圆心为()1,3圆心()1,3到直线3450x y ++=的距离为312545d ++==,要使圆()22260x y x y a a +--+=∈R 上至多存在一点,使得该点到直线3450x y ++=的距离为2,需满足42≥,解得610a ≤<,结合选项可知6,7,8符合题意,故选:BCD10.已知函数()f x 的定义域为(),1f x -R 为偶函数,()1f x +为奇函数,则下列选项正确的是()A.()f x 的图象关于直线1x =-对称B.()f x 的图象关于点()1,0对称C.()31f -=D.()f x 的一个周期为8【答案】ABD 【解析】【分析】根据函数的奇偶性可推出函数的对称性,判断AB ;利用赋值法求出()1f 的值,结合对称性可求()3f ,判断C ;结合函数奇偶性、对称性可推出函数的周期,判断D.【详解】由于函数()f x 的定义域为(),1f x -R 为偶函数,则()()11f x f x --=-,即()()2f x f x --=,则()f x 的图象关于直线1x =-对称,A 正确;又()1f x +为奇函数,则()()11f x f x -+=-+,即()()2f x f x -+=-,故()f x 的图象关于点()1,0对称,B 正确;由于()()11f x f x -+=-+,令0x =,则()()()11,10f f f =-∴=,又()f x 的图象关于直线1x =-对称,故()()310f f -==,C 错误;又()()2f x f x --=,()()2f x f x -+=-,则()()22f x f x --=--+,故()()22f x f x -=-+,即()()4f x f x +=-,则()()8f x f x +=,即()f x 的一个周期为8,D 正确,故选:ABD11.在棱长均为1的三棱柱111ABC A B C -中,1160A AB A AC BAC ∠=∠=∠=,点T 满足1AT xAB y AC z AA =++,其中[],,0,1x y z ∈,则下列说法一定正确的有()A.当点T 为三角形111A B C 的重心时,2x y z ++=B.当1x y z ++=时,AT 的最小值为3C.当点T 在平面11BB C C 内时,x y z ++的最大值为2D.当1x y +=时,点T 到1AA 的距离的最小值为2【答案】BCD 【解析】【分析】将AT 用1,,AB AC AA 表示,再结合1AT xAB y AC z AA =++ 求出,,x y z ,即可判断A ;将AT平方,将()1z x y =-+代入,再结合基本不等式即可判断B ;当点T 在平面11BB C C 内时,则存在唯一实数对(),λμ使得()11BT BB BC BB AC AB λμλμ=+=+- ,再根据1AT xAB y AC z AA =++ ,求出,,x y z ,再根据[],,0,1x y z ∈即可判断C ;求出AT 在1AA方向上的投影,再利用勾股定理结合基本不等式即可判断D.【详解】对于A ,当点T 为三角形111A B C 的重心时,()()11111211323AT A B A C AB AC =⨯+=+,所以1111133A AA A T AB AC A T A =++=+ ,又因为1AT xAB y AC z AA =++ ,所以1,13x y z ===,所以53x y z ++=,故A 错误;对于B ,2222211221222xy AB AC xz AB AA yz AC AA AT x AB y AC z AA +⋅+⋅+++⋅=+222x y z xy xz yz =+++++()()()21x y z xy xz yz xy xz yz =++-++=-++,因为1x y z ++=,所以()1z x y =-+,则()()()1xy xz yz xy x y z xy x y x y ⎡⎤++=++=++-+⎣⎦()()()()()2224x y xy x y x y x y x y +=++-+≤++-+()()223321144333x y x y x y ⎛⎫=-+++=-+-+≤ ⎪⎝⎭,当且仅当23x y +=时取等号,所以()2121133AT xy xz yz =-++≥-= ,所以3AT ≥,所以AT 的最小值为63,故B 正确;对于C ,当点T 在平面11BB C C 内时,则存在唯一实数对(),λμ使得()11BT BB BC BB AC AB λμλμ=+=+-,则()11AT AB BT AB AC AA μμλ=+=-++ ,又因为1AT xAB y AC z AA =++ ,所以1,,x y z μμλ=-==,所以11x y z μμλλ++=-++=+,因为[]0,1z λ=∈,所以[]11,2λ+∈,所以x y z ++的最大值为2,故C 正确;对于D ,当1x y +=时,由A 选项知,()()22222221AT x y z xy xz yz x y z xy x y z z xy z =+++++=++-++=+-+ ,AT 在1AA 方向上的投影为111111AT AA xAB AA y AC AA z AA AA AA ⋅=⋅+⋅+⋅111222x y z z =++=+,所以点T 到1AA的距离d ==因为()2144x y xy +≤=,所以2d =≥=,当且仅当12x y ==时,取等号,所以点T 到1AA的距离的最小值为2,故D 正确.故选:BCD.【点睛】关键点点睛:当点T 在平面11BB C C 内时,则存在唯一实数对(),λμ使得()11BT BB BC BB AC AB λμλμ=+=+- ,再根据1AT xAB y AC z AA =++,求出,,x y z ,是解决C选项的关键.三、填空题:本题共3小题,每小题5分,共15分.12.已知随机事件,A B 满足()()()111,,342P A P B P A B ==+=,则()P AB =____________.【答案】112【解析】【分析】根据随机事件的和事件的概率计算公式,即可求得答案.【详解】由题意可知()()()111,,342P A P B P A B ==+=,故()()()()P A B P A P B P AB +=+-,则()()()()111134212P AB P A P B P A B =+-+=+-=,故答案为:11213.已知正三棱台的高为1,上、下底面边长分别为积为__________.【答案】100π【解析】【分析】分别求得上下底面所在平面截球所得圆的半径,找到球心,求得半径,再由球的表面积公式可得结果.【详解】由题意设三棱台为111ABC A B C -,如图,上底面111A B C所在平面截球所得圆的半径是112332O A =⨯⨯,1(O 为上底面截面圆的圆心)下底面222A B C所在平面截球所得圆的半径是2223432O A =⨯⨯,2(O 为下底面截面圆的圆心)由正三棱台的性质可知,其外接球的球心O 在直线12O O 上,当O 在线段12O O1=,无解;当O 在12O O1=,解得225R =,因此球的表面积是24π4π25100πS R ==⨯=.故答案为:100π14.已知2024是不等式()22log 2321log x x a a+->+的最小整数解,则a 的取值范围为____________.【答案】2021202222a ≤<【解析】【分析】结合分式不等式和对数函数与指数函数互换的性质变形不等式,再分21log a +大于零和小于零时分类讨论即可;【详解】由题意可得012230xa a a >⎧⎪⎪≠⎨⎪->⎪⎩,变形不等式可得()()222222223log 2log 2321log 01log 1log 1log xx a x x a a a a a a-+-+-+-=>+++,当211log 02a a +>⇒>时,有2223log 20x a x a-+->,由指数函数和对数函数的互化并整理可得2223240x x a a -⋅->,即()()2420xxaa -+>,解得24x a >或2x a <-(舍去),从而2log 4x a >,又12a >时2log 41a >,所以要使2024是不等式()22log 2321log x x aa+->+的最小整数解,有22023log42024a ≤<,解得2021202222a ≤<,所以2021202222a ≤<,当211log 002a a +<⇒<<时,注意到20242024323212a ->->,此时,不等式的分子大于零,不符合题意,综上,a 的取值范围为2021202222a ≤<.故答案为:2021202222a ≤<.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c .假设数据在组内均匀分布.(1)当漏诊率()0.5%p c =时,求临界值c 和误诊率()q c ;(2)已知一次调查抽取的未患病者样本容量为100,且该项医学指标检查完全符合上面频率分布直方图(图2),临界值99c =,从样本中该医学指标在[]95,105上的未患病者中随机抽取2人,则2人中恰有一人为被误诊者的概率是多少?【答案】(1)97.5c =,() 3.5%q c =(2)815【解析】【分析】(1)由图1,根据漏诊率()0.5%p c =列式求出c ,再由图2求出误诊率()q c ;(2)根据图2求出100个未患病者中,该项医学指标在[]95,105中的人数以及被误诊者的人数,再利用列举法和古典概型的概率公式可求出结果.【小问1详解】依题可知,图1第一个小矩形的面积为50.0020.5%⨯>,所以95100c <<,所以()950.0020.5%c -⨯=,解得97.5c =,()()0.0110097.550.0020.035 3.5%q c =⨯-+⨯==.【小问2详解】由题可知,100个未患病者中,该项医学指标在[]95,105中的有100(0.0100.002)56⨯+⨯=人,其中被误诊者有100(10099)0.0110050.0022⨯-⨯+⨯⨯=人,记随机抽取的2人恰有一人为被误诊者为事件A .分别用a ,b ,c ,d ,E ,F 表示这6人,E ,F 代表被误诊的2人,样本空间{},,,,,,,,,,,,,,ab ac ad aE aF bc bd bE bF cd cE cF dE dF EF Ω=,事件{},,,,,,,A aE aF bE bF cE cF dE dF =,故()15n Ω=,()8n A =,()()()815n A P A n ==Ω,故2人中恰有一人为被误诊者的概率是815.16.已知圆22:80C x y y +-=,过点()2,2P 的直线l 与圆C 交于,A B 两点,点M 满足2OM OA OB =+,其中O 为坐标原点.(1)求点M 的轨迹方程;(2)若CMP !的面积为2,求AB .【答案】(1)()()22132x y -+-=(2)【解析】【分析】(1)设s ,求出圆心坐标,利用CM MP ⊥的数量积为零求出轨迹方程即可;(2)设圆心到直线的距离为d ,由三角形面积公式求出2d ,再利用弦长公式求解即可;【小问1详解】由2OM OA OB =+可得点M 为线段AB 的中点,设s ,圆方程化为标准方程为()22416x y +-=,所以圆心()0,4C ,半径4r=,所以()(),4,2,2CM x y MP x y =-=--,因为CM MP ⊥,所以()(),42,20x y x y -⋅--=,整理可得()()22132x y -+-=,所以点M 的轨迹方程为()()22132x y -+-=,【小问2详解】设圆心到直线的距离为d ,因为M 为AB 的中点,且CM AB ⊥,CMP !的面积为2,CP =所以122d =,即4d =,解得24d =,由弦长公式可得AB ===17.如图,在四棱锥P ABCD -中,底面ABCD是矩形,PA PD ==,PB PC ==90APB CPD ∠=∠=︒,点M ,N 分别是棱BC ,PD 的中点.(1)求证://MN 平面PAB ;(2)若平面PAB ⊥平面PCD ,求直线MN 与平面PCD 所成角的正弦值.【答案】(1)见解析(2)69【解析】【分析】(1)取PA 的中点为Q ,连接NQ ,BQ ,由平面几何知识可得//NQ BM 且NQ BM =,进而可得//MN BQ ,由线面平行的判定即可得证;(2)过点P 作PE AB ⊥交AB 于点E ,作PF CD ⊥交CD 于点F ,连接EF ,取EF 的中点为O ,连接OP ,建立空间直角坐标系后,求出平面PCD 的一个法向量为n 、直线MN 的方向向量MN,利用sin cos n MN n MN n MNθ⋅=⋅=⋅即可得解.【详解】(1)证明:取PA 的中点为Q ,连接NQ ,BQ ,如图:又点N 是PD 的中点,则//NQ AD 且12NQ AD =,又点M 是BC 的中点,底面ABCD 是矩形,则12BM AD =且//BM AD ,∴//NQ BM 且NQ BM =,∴四边形MNQB 是平行四边形,∴//MN BQ ,又MN ⊄平面PAB ,BQ ⊂平面PAB ,∴//MN 平面PAB ;(2)过点P 作PE AB ⊥交AB 于点E ,作PF CD ⊥交CD 于点F ,连接EF ,则PF AB ⊥,PE PF P = ,∴AB ⊥平面PEF ,又AB ⊂平面ABCD ,∴平面PEF ⊥平面ABCD ,∵3PA PD ==,6PB PC ==90APB CPD ∠=∠=︒,∴3AB CD ==,2PE PF ==2BE CF ==,1AE DF ==.设平面PAB ⋂平面PCD l =,可知////l CD AB ,∵平面PAB ⊥平面PCD ,∴90EPF ∠=︒,∴2EF =,取EF 的中点为O ,连接OP 、OM ,则OP ⊥平面ABCD ,1OP =,∴OM 、OF 、OP 两两垂直,以O 为坐标原点,分别以OM ,OF ,OP 所在直线为x ,y ,z 轴建立空间直角坐标系,O xyz -,如图所示,则()0,0,1P ,()2,1,0C ,()1,1,0D -,()2,0,0M ,111,,222N ⎛⎫-⎪⎝⎭,∴()2,1,1PC =- ,()1,1,1PD =--,511,,222MN ⎛⎫=- ⎪⎝⎭,设平面PCD 的一个法向量为(),,n x y z =,则由020n PD x y z n PC x y z ⎧⋅=-+-=⎨⋅=+-=⎩ ,令1y =可得()0,1,1n =r .设直线MN 与平面PCD 所成角为θ,则6sin cos 9n MN n MN n MNθ⋅=⋅===⋅∴直线MN 与平面PCD所成角的正弦值为9.【点睛】本题考查了线面平行的判定及利用空间向量求线面角,考查了空间思维能力与运算求解能力,属于中档题.18.已知P是椭圆C :22221x y a b+=(a >b >0)上一点,以点P 及椭圆的左、右焦点F 1,F 2为顶点的三角形面积为2(1)求椭圆C 的标准方程;(2)过F 2作斜率存在且互相垂直的直线l 1,l 2,M 是l 1与C 两交点的中点,N 是l 2与C 两交点的中点,求△MNF 2面积的最大值.【答案】(1)22184x y +=;(2)49﹒【解析】【分析】(1)由椭圆过的点的坐标及三角形的面积可得a ,b ,c 之间的关系,求出a ,b 的值,进而求出椭圆的标准方程;(2)由题意设直线1l 的方程,与椭圆联立求出两根之和,进而求出交点的中点M 的纵坐标,同理求出N 的纵坐标,进而求出2MNF 面积的表达式,换元由函数的单调性求出其最大值.【小问1详解】由题意可得22222231122a b c c a b ⎧+=⎪⎪⎪⋅=⎨⎪=-⎪⎪⎩,解得:28a =,24b =,∴椭圆的标准方程为:22184x y +=;【小问2详解】由(1)可得右焦点2(2,0)F ,由题意设直线1l 的方程为:2x my =+,设直线与椭圆的交点1(x ,1)y ,2(x ,2)y ,则中点M 的纵坐标为122M y y y +=,联立直线1l 与椭圆的方程222184x my x y =+⎧⎪⎨+=⎪⎩,整理可得:22(2)480m y my ++-=,12242m y y m -+=+,∴222Mmy m -=+,同理可得直线2l 与椭圆的交点的纵坐标2212()21122()N m m y m m-⋅-==++-,∴2221|||||||2MNF M N S MF NF y y =⋅=⋅△22422222(1)2(1)||||2522(1)m m m m m m m m ++==++++222||121m mm m =+⋅++,设0m >,令212m t m+=,则2212MNF S t t=+△,令1()2f t t t =+,2t ,21()2f t t '=-,2t ,()0f t '>恒成立,∴()f t 在[2,)+∞单调递增,∴22241192222MNF S t t ==+⨯+△.∴2MNF 面积的最大值为:49.19.基本不等式是最基本的重要不等式之一,二元基本不等式为122a a +≥.由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.基本不等式可以推广到一般的情形:对于n 个正数12,,...,n a a a ,它们的算术平均数121...1nn n i i a a a A a n n =+++==∑(注:121...nin i aa a a ==+++∑)不小于它们的几何平均数()11121...nnnn ni i G a a a a =⎛⎫== ⎪⎝⎭∏(注:121...ni n i a a a a ==∏),即)12...n n n a a a A G n+++≥≥,当且仅当12...n a a a ===时,等号成立.(1)已知0x y >>,求()1x y x y +-的最小值;(2)已知12,,...,0n a a a >且12...1n a a a +++=.(ⅰ)求证:()()2221111nnniii i a na==-≥-∏∏;(ⅱ)当2024n ≥,求3111nii i i a n a a =++-∑的最小值,其中11n a a +=.【答案】(1)3(2)(ⅰ)证明见解析(ⅱ)421n n -【解析】【分析】(1)直接使用均值不等式即可证明()13x y x y +≥-,再构造取到等号的例子即可;(2)(ⅰ)使用适当的1n +元和1n -元均值不等式,再将所得结果相乘即可;(ⅱ)先研究函数()()()ln 1ln 1f x x x =---+的性质,再利用相应性质得到结果.【小问1详解】由均值不等式得()()()1133x y x y y x y y x y +=+-+≥⋅--.而当2x =,1y =时,有0x y >>,()112321x y x y +=+=--.所以()1x y x y +-的最小值是3.【小问2详解】(ⅰ)由于12,,...,0n a a a >,12...1n a a a +++=,故对1,2,...,i n =,由均值不等式有()()11121112111......1......n i i i i i n i i i i n a a a a a a a a n a a a a a a a +-+-++=++++++++≥+⋅⋅⋅⋅⋅⋅⋅⋅,()()11121112111......1......n i i i n i i n a a a a a a n a a a a a --+-+-=++++++≥-⋅⋅⋅⋅⋅⋅.将二者相乘,得()()2222211121111......nn nii i nia n a a a a a a+--+-≥-⋅⋅⋅⋅⋅⋅⋅.再将该不等式对1,2,...,i n =相乘,即得()()()()()22212112222211111111n n n nn n n n nnn i i i i i i i i a n a n a n a -⋅++-====⎛⎫⎛⎫-≥-=-=- ⎪ ⎪⎝⎭⎝⎭∏∏∏∏.(ⅱ)对01x <<,设()()()ln 1ln 1f x x x =---+.则()1111f x x x'=--+,()()()2211011f x x x ''=+>-+.对01a b <<<,设()()()()()h u f u f b u b f b '=---,01u <<.则()()()h u f u f b '''=-,()()0h u f u ''''=>,所以()h u '在()0,1上递增.所以对0u b <<有()()()0h u f u f b '''=-<,对1b u <<有()()()0h u f u f b '''=->.这表明()h u 在()0,b 上递减,在(),1b 上递增,所以由a b ≠有()()()()()()0f a f b a b f b h a h b '---=>=.这就得到()()()()0f a f b a b f b '--->,同理有()()()()0f b f a b a f a '--->,即()()()()0f a f b a b f a '---<.再设()()()()()()11g t tf a t f b f ta t b =+--+-,01t ≤≤.则()()()()()()1g t f a f b a b f ta t b ''=---+-,()()()()210g t a b f ta t b ''''=--+-<.所以()g t '在[]0,1上递减.而()()()()()00g f a f b a b f b ''=--->,()()()()()10g f a f b a b f a ''=---<.所以一定存在01η<<,使得对0t η<<有()0g t '>,对1t η<<有()0g t '<.故()g t 在[]0,η上递增,在[],1η上递减,而()()010g g ==,结合()g t 的单调性,知对任意01t <<有()0g t >.特别地,有102g ⎛⎫>⎪⎝⎭,即()()022f a f b a b f ++⎛⎫-> ⎪⎝⎭,此即()()22f a f b a b f ++⎛⎫> ⎪⎝⎭.对01b a <<<,同理有()()22f a f b a b f ++⎛⎫> ⎪⎝⎭.而对01a b <=<,显然有()()22f a f b a b f ++⎛⎫= ⎪⎝⎭.综上,对任意(),0,1a b ∈,有()()22f a f b a b f ++⎛⎫≥ ⎪⎝⎭.先证明一个引理:设()12,,...,0,1n a a a ∈,则()()()1212......n nf a f a f a a a a f nn ++++++⎛⎫≥ ⎪⎝⎭.用数学归纳法证明.①当1n =时,结论显然成立.②若结论对n k =成立,则对()122,,...,0,1k a a a ∈,有()()()()()()()()()12212122.........222k k k k k f a f a f a f a f a f a f a f a f a k k k+++++++++++=+1212212122 (1)11222k k k k kk k k a a a a a a a a a a a a f f f f k k k k ++++++++++⎛++++++⎫⎛⎫⎛⎫⎛⎫⎛⎫≥+=+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1212212122............22k k k kk k k k a a a a a a a a a a a a k k f f k ++++++++++⎛⎫+ ⎪+++++++⎛⎫≥=⎪ ⎪⎝⎭⎪⎝⎭.从而结论对2n k =也成立.结合①②,可知原结论对无穷多个正整数n 成立.③若结论对1n k =+成立,则对()12,,...,0,1k a a a ∈,有()()()()()()12121212 (1)kk k k a a a f a f a f a f f a f a f a a a a k f k kk k +++⎛⎫++++ ⎪++++++⎛⎫⎝⎭=- ⎪⎝⎭()()()121212.........111k k k a a a f a f a f a f a a a k k f k k k k +++⎛⎫++++ ⎪++++⎛⎫⎝⎭≥⋅ ⎪+⎝⎭1221212.........111k k k k k a a a a a a a a a k k f f k k k k +++++⎛⎫++++ ⎪++++⎛⎫≥⋅-⎪ ⎪+⎝⎭⎪⎝⎭121212 (1)1k kka a a a a a a a a k f f f k k k k k ++++++++++⎛⎫⎛⎫⎛⎫=⋅-= ⎪⎪⎪⎝⎭⎝⎭⎝⎭.从而结论对n k =也成立.由于原结论对无穷多个正整数n 成立,再结合③,即知原结论对任意的正整数n 成立.引理证毕,回到原题.由于我们有()()()21ln 1ln 1ln1f x x x x =---+=-,故1211111ln 122223332111111111e 1nn i i n n nna nnni i i i i i i i i i i i i i a a a n n n n n a a a a a a a =⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪- ⎪⎝⎭ ⎪⎝⎭====++++∏⎛⎫⎛⎫⎛⎫≥===⋅ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭∑∏∏∏()221111ln1111114ln11222222221eeeee111n nni i k i k k f a f a f n n n a n n n n n n n n n n n ===⎛⎫⎛⎫⎛⎫⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑=⋅=⋅≥⋅=⋅=⋅=⋅=-⎛⎫- ⎪⎝⎭.而当121...n a a a n ====时,有2343222111113111111nnni i i i i i a n n n nn n n n a a n n n n n===++===⋅=-----∑∑∑.所以3111ni i i i a n a a =++-∑的最小值是421nn -.【点睛】关键点点睛:本题的关键点在于对全新知识和工具的运用,适当运用工具方可解决问题.。

高二数学上学期第一次月考测试题和答案

高二数学上学期第一次月考测试题和答案

高二数学上学期第一次月考测试题和答案高二数学月底考试是检测学习成效的重要手段,只有平时认真对待每一次数学月考,才能够在高考数学考试中超常发挥。

以下是店铺为大家收集整理的高二数学月考测试题,希望对大家有所帮助!高二数学上学期第一次月考测试题(理科卷)(考试时间:120分钟总分:150分)一、(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.以两点A(-3,-1)和B(5,5)为直径端点的圆的方程是( )A.(x-1)2+(y+2)2=100B.(x-1)2+(y-2)2=100C.(x-1)2+(y-2)2=25D.(x+1)2+(y+2)2=252. 某程序框图如图所示,若输出的S=57,则判断框内应填(A) k>4?(B)k>5?(C) k>6?(D)k>7?(第3题)3、某程序框图如图所示,该程序运行后输出的的值是( )A. B. C. D.4. 将51转化为二进制数得 ( )A.100 111(2)B.110 110(2)C.110 011(2)D.110 101(2)5.读程序回答问题:甲乙I=1S=0WHILE i<=5S= S+iI= i+1WENDPRINT SENDI= 5S= 0DOS = S+iI = i-1LOOP UNTIL i<1PRINT SEND对甲、乙两程序和输出结果判断正确的是( )A 程序不同,结果不同B 程序不同,结果相同C 程序相同,结果不同D 程序相同,结果不同6.(如图)为了从甲乙两人中选一人参加数学竞赛,老师将二人最近6次数学测试的分数进行统计,甲乙两人的平均成绩分别是、,则下列说法正确的是( )A. ,乙比甲成绩稳定,应选乙参加比赛B. ,甲比乙成绩稳定,应选甲参加比赛C. ,甲比乙成绩稳定,应选甲参加比赛D. ,乙比甲成绩稳定,应选乙参加比赛7.如图,输入X=-10 则输出的是( )A. 1B. 0C. 20D. -208..若点P(1,1)为圆的弦MN的中点,则弦MN所在直线方程为( )A. B.C. D.9. 三个数390, 455, 546的最大公约数是 ( )A.65B.91C.26D.1310. 数据,,,的平均数为,方差为,则数据,,,的平均数和方差分别是( )A. 和B. 和C. 和D. 和11.已知点,过点的直线与圆相交于两点,则的最小值为( ). .12. 某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是( )A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样二、题(本大题共4小题,每小题4分,满分16分.把答案填在题中横线上)13. 某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采取分层抽样抽取容量为45的样本,那么高一?高二?高三各年级抽取的人数分别为________.14. 已知多项式函数f(x)=2x5-5x4-4x3+3x2-6x+7,当x=5时由秦九韶算法v0=2 v1=2×5-5=5 则v3= ________.15. 把容量为100的某个样本数据分为10组,并填写频率分布表,若前七组的累积频率为0.79,而剩下三组的频数成公比大于2的整数等比数列,则剩下三组中频数最高的一组的频数为___________.16.若集合A={(x,y)y=1+4-x2},B={(x,y)y=k(x-2)+4}.当集合A∩B有4个子集时,实数k的取值范围是________________.三、解答题(本大题共6小题,满分74分.解答应写出必要的文字说明?证明过程或演算步骤)17.(本小题满分12分)对甲?乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下甲6080709070乙8060708075问:甲?乙两人谁的平均成绩高?谁的各门功课发展较平衡?质量(单位克)数量(单位袋)26128218.(本小题满分12分)某种袋装产品的标准质量为每袋100克,但工人在包装过程中一般有误差,规定误差在2克以内的产品均为合格.由于操作熟练,某工人在包装过程中不称重直接包装,现对其包装的产品进行随机抽查,抽查30袋产品获得的数据如下:(1)根据表格中数据绘制产品的频率分布直方图;(2)估计该工人包装的产品的平均质量的估计值是多少.19.(本小题满分12分)某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x24568y3040605070(1)画出散点图;(2)求回归直线方程;(3)试预测广告费支出为10百万元时,销售额多大?参考公式:20. (本小题满分12分)据报道,某公司的33名职工的月工资(以元为单位)如下:职务董事长副董事长董事总经理经理管理员职员人数11215320工资5 5005 0003 5003 0002 5002 0001 500(1) 求该公司职工月工资的平均数、中位数、众数;(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3) 你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.21.(本小题满分12分)如图所示程序框图中,有这样一个执行框 =f( )其中的函数关系式为,程序框图中的D为函数f(x)的定义域.,(1)若输入,请写出输出的所有 ;(2)若输出的所有xi都相等,试求输入的初始值 .22.(本小题满分14分)已知圆x2+y2+2ax-2ay+2a2-4a=0(0(1)若m=4,求直线l被圆C所截得弦长的最大值;(2)若直线l是圆心下方的切线,当a在0,4的变化时,求m的取值范围.高二数学月考测试题参考答案一、题号123456789101112选项CAABCDDBDCDD二、题(13)、 15..10..20 (14)、 108. (15 ) 16 (16) 512三、解答题1718. 解析】 (1)频率分布直方图如图…………6分(2) (克) …………12分19. 解答:(1)根据表中所列数据可得散点图如下:————————3分(2)列出下表,并用科学计算器进行有关计算.i12345xi24568yi3040605070xiyi60160300300560因此,x=255=5,y=2505=50,i=15x2i=145,i=15y2i=13 500,i=15xiyi=1 380.于是可得b=i=15xiyi-5x yi=15x2i-5x2=1 380-5×5×50145-5×52=6.5; ——————7分a=y-bx=50-6.5×5=17.5,因此,所求回归直线方程是=6.5x+17.5. ——9分(3)据上面求得的回归直线方程,当广告费支出为10百万元时,=6.5×10+17.5=82.5(百万元),即这种产品的销售收入大约为82.5百万元. ————————————12分20. 【解析】:(1)平均数是=1 500+≈1 500+591=2 091(元).中位数是1 500元,众数是1 500元. ——————————————4分(2)平均数是≈1 500+1 788=3 288(元).中位数是1 500元,众数是1 500元. ————————————————8分(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平.因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平. ——————————————————12分21.-------------------------------------6分(2) 要使输出的所有数xi都相等,则xi=f(xi-1)=xi-1.此时有x1=f(x0)=x0,即 ,解得x0=1或x0=2,所以输入的初始值x0=1或x0=2时,输出的所有数xi都相等.——————————————12分22. 解析:(1)已知圆的标准方程是(x+a)2+(y-a)2=4a(0则圆心C的坐标是(-a,a),半径为2a. ——————————2分直线l的方程化为:x-y+4=0.则圆心C到直线l的距离是-2a+42=22-a. ——————————3分设直线l被圆C所截得弦长为L,由圆、圆心距和圆的半径之间关系是:L=2(2a)2-(22-a)2 ——————————5分=2-2a2+12a-8=2-2(a-3)2+10.∵0(2)因为直线l与圆C相切,则有m-2a2=2a,——————————8分即m-2a=22a.又点C在直线l的上方,∴a>-a+m,即2a>m. ——————————10分∴2a-m=22a,∴m=2a-12-1.∵0。

浙江省宁波市2024-2025学年高二上学期第一次月考数学试卷含答案

浙江省宁波市2024-2025学年高二上学期第一次月考数学试卷含答案

2026届高二数学秋季月考卷第一期(答案在最后)考试范围:大部分学校已经学习过的内容:考试时间:120分钟:满分:150分注意事项:1.答题前填写好自已的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知向量()2,4a =,()1,1b =- ,则2a b -=A.()5,7 B.()5,9 C.()3,7 D.()3,9【答案】A 【解析】【详解】因为2(4,8)a =,所以2(4,8)(1,1)a b -=--=(5,7),故选A.考点:本小题主要考查平面向量的基本运算,属容易题.2.已知直线12:320,:310l x y l x ay -+=--=,若12l l ⊥,则实数a 的值为()A.1B.12C.12-D.1-【答案】D 【解析】【分析】对a 进行分类讨论,代入121k k =-g 求解即可.【详解】当0a =时,直线1:320l x y -+=的斜率113k =,直线2:310l x ay --=的斜率不存在,此时两条直线不垂直;当0a ≠时,直线1:320l x y -+=的斜率113k =,直线2:310l x ay --=的斜率23k a=,因为12l l ⊥,所以121k k =-g ,所以13113a a⨯==-,解得:1a =-.故选:D.3.已知m 是实常数,若方程22240x y x y m ++++=表示的曲线是圆,则m 的取值范围为()A.(),20-∞ B.(),5-∞ C.()5,+∞ D.()20,+∞【答案】B 【解析】【分析】由方程表示的曲线为圆,可得出关于实数m 的不等式,解出即可.【详解】由于方程22240x y x y m ++++=表示的曲线为圆,则222440m +->,解得5m <.因此,实数m 的取值范围是(),5-∞.故选:B.【点睛】本题考查利用圆的一般方程求参数,考查计算能力,属于基础题.4.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是()A.若a b ,与α所成的角相等,则∥B.若a αβ∥,b∥,αβ∥,则∥C.若a b a b αβ⊂⊂ ,,,则αβ∥D.若a b αβ⊥⊥,,αβ⊥,则a b ⊥r r【答案】D 【解析】【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误;B 项中两直线a b ,还可能相交或异面,错误;C 项两平面αβ,还可能是相交平面,错误;故选D.5.直线3y kx =+与圆()()22324x y -+-=相交于M 、N 两点,若MN =,则k 等于()A.0B.23-C.23-或0 D.34-或0【答案】D 【解析】【分析】求出MN 到圆心的距离和圆心(3,2)到直线3y kx =+的距离,即可求出k 的值.【详解】由题意,∵MN =,∴MN 到圆心的距离为1=,∴圆心(3,2)到直线3y kx =+的距离为:1=,即229611k k k ++=+.解得:0k =或34-,故选:D.6.过点()1,3P 作直线l ,若l 经过点(),0A a 和()0,B b ,且,a b 均为正整数,则这样的直线l 可以作出(),A.1条B.2条C.3条D.无数条【答案】B 【解析】【分析】假设直线截距式方程,代入已知点坐标可得,a b 之间关系,根据,a b 为正整数可分析得到结果.【详解】,a b 均为正整数,∴可设直线:1x yl a b+=,将()1,3P 代入直线方程得:131a b+=,当3b =时,10a =,方程无解,3331333b b a b b b -+∴===+---,a *∈N ,303b ≠-,33b *∴∈-N ,31b ∴-=或33b -=,44b a =⎧∴⎨=⎩或62b a =⎧⎨=⎩,即满足题意的直线l 方程有2条.故选:B.7.已知长方体1111ABCD A B C D -中,12AA AB ==,若棱AB 上存在点P ,使得1D P PC ⊥,则AD 的取值范围是()A.[)1,2 B.(C.(]0,1 D.()0,2【答案】C 【解析】【分析】建立空间直角坐标系,设AD a =,求出1D P 、CP,利用10D P CP ⋅= ,求出a 的范围.【详解】解:如图建立坐标系,设(0)AD a a =>,(02)AP x x =<<,则(),,2P a x ,()0,2,2C ,()10,0,0D ,∴()1,,2D P a x = ,(),2,0CP a x =-,1D P PC ⊥ ,∴10D P CP ⋅=,即2(2)0a x x +-=,所以a =,当02x <<时,所以(]2(1)10,1x --+∈,所以(]0,1a ∈.故选:C .8.已知点P 在直线3y x =--上运动,M 是圆221x y +=上的动点,N 是圆22(9)(2)16x y -+-=上的动点,则PM PN +的最小值为()A.13B.11C.9D.8【答案】D 【解析】【分析】根据圆的性质可得5PM PN PO PC +≥+-,故求PM PN +的最小值,转化为求PC PO +的最小值,再根据点关于线对称的性质,数形结合解.【详解】如图所示,圆22(9)(2)16x y -+-=的圆心为()9,2C ,半径为4,圆221x y +=的圆心为()0,0O ,半径为1,可知44,11PC PN PC PO PM PO -≤≤+-≤≤+,所以5PM PN PO PC +≥+-,故求PM PN +的最小值,转化为求PC PO +的最小值,设()0,0O 关于直线3y x =--的对称点为G ,设G 坐标为(),m n ,则1322nm n m ⎧=⎪⎪⎨⎪=--⎪⎩,解得33m n =-⎧⎨=-⎩,故()3,3G --,因为PO PG =,可得13PO PC PG PC GC +=+≥=,当,,P G C 三点共线时,等号成立,所以PM PN +的最小值为1358-=.故选:D.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.三条直线0x y +=,0x y -=,3x ay +=构成三角形,则a 的值不能为()A.1B.2C.1-D.-2【答案】AC【解析】【分析】由三条直线可构成三角形可知,直线3x ay +=不经过两条直线的交点,且与两条直线任意一条不平行.【详解】直线0x y +=与0x y -=都经过原点,而无论a 为何值,直线3x ay +=总不经过原点,因此,要满足三条直线构成三角形,只需直线3x ay +=与另两条直线不平行,所以1a ≠±.故选:AC.10.正方体1111ABCD A B C D -中,下列结论正确的是()A.直线1AD 与直线11A C 所成角为3π B.直线1AD 与平面ABCD 所成角为3πC.二面角1D AB D --的大小为4π D.平面11AB D ⊥平面11B D C【答案】AC 【解析】【分析】选项A :先判断出1AD 与11A C 所成角即为1AC B ,利用1ABC 为正三角形,即可判断;选项B :1AD 与平面ABCD 所成角为14DAD π∠=,即可判断;选项C :二面角1D AB D --的平面角为14DAD π∠=,即可判断;选项D :设1111D B AC O = ,连结,,AO CO AC ,可以判断出AOC ∠即为二面角11A B D C --的平面角.在三角形ACO 中,求出各边长,可以判断出90AOC ∠≠︒,即可判断.【详解】选项A :先判断出1AD 与11A C 所成角即为1BC 与11A C 所成角,1ABC 为正三角形,所以该角为3π;故A 正确.选项B :1AD 与平面ABCD 所成角为14DAD π∠=;故B 错误.选项C :二面角1D AB D --的平面角为14DAD π∠=;故C 正确.选项D :设1111D B AC O = ,连结,,AO CO AC ,因为11AD AB =,所以11AO B D ⊥.同理可证:11CO B D ⊥,所以AOC ∠即为二面角11A B D C --的平面角。

高二数学上学期第一次月考试题含解析 试题

高二数学上学期第一次月考试题含解析 试题

智才艺州攀枝花市创界学校潜山第二二零二零—二零二壹高二数学上学期第一次月考试题〔含解析〕第I 卷〔选择题,一共60分〕一、选择题:〔本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕A ={x |x >1},B ={x |x 2-2x <0},那么A ∪B 等于()A.{x |x >0}B.{x |x >1}C.{x |1<x <2}D.{x |0<x <2}【答案】A 【解析】 【分析】先解出集合B ,再由并集的定义即可求出. 【详解】因为集合{}02B x x =<<,A ={x |x >1},所以{}0A B x x ⋃=>.应选:A .【点睛】此题主要考察集合的并集运算,属于根底题.x 的终边上一点的坐标为(sin56π,cos 56π),那么角x 的最小正值为() A.56πB.53π C.116π D.23π 【答案】B【解析】 【分析】先根据角x 终边上点的坐标判断出角x 的终边所在象限,然后根据三角函数的定义即可求出角x 的最小正值.【详解】因为5sin06π>,5cos 06π<,所以角x 的终边在第四象限,根据三角函数的定义,可知 53sin cos 62x π==-,故角x 的最小正值为5233x πππ=-=.应选:B .【点睛】此题主要考察利用角的终边上一点求角,意在考察学生对三角函数定义的理解以及终边一样的角的表示,属于根底题.3.数列{a n }是等差数列,a 1+a 7=-8,a 2=2,那么数列{a n }的公差d 等于〔〕 A.-1 B.-2C.-3D.-4【答案】C 【解析】试题分析:由等差数列的性质知,,所以,又,解得:,应选C .考点:1、等差数列的性质;2、等差数列的通项公式.a >0,b >0,且ln (a +b )=0,那么11a b+的最小值是() A.14B.1C.4D.8【答案】C 【解析】 【分析】先将对数式化指数式,再根据根本不等式即可求出. 【详解】由()ln0a b +=得1a b +=,所以()11112224b aa b a b a b a b⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当12ab ==时取等号,故11a b+的最小值是4. 应选:C .【点睛】此题主要考察对数的性质以及根本不等式中“1的代换〞的应用,属于根底题. 5.m ,n 表示两条不同直线,α表示平面.以下说法正确的选项是() A.假设m ∥α,n ∥α,那么m ∥n B .假设m ⊥α,n ⊂α,那么m ⊥nC.假设m ⊥α,m ⊥n ,那么n ∥αD.假设m ∥α,m ⊥n ,那么n ⊥α 【答案】B 【解析】 【分析】根据线线、线面关系的定义、性质、结论和断定定理对各项逐个判断即可. 【详解】对于A ,假设,mn αα,那么m 与n 可能平行,可能相交,可能异面,所以A 错误;对于B ,根据线面垂直的定义可知,正确; 对于C ,假设,m m n α⊥⊥,那么n α或者n ⊂α,所以C 错误;对于D ,假设,m m n α⊥,那么n 可能垂直于α,也可能n⊂α,也可能n α,所以D 错误.应选:B .【点睛】此题主要考察空间线线、线面关系的判断,意在考察学生的直观想象和逻辑推理才能,属于中档题. 〔1,1〕在圆()()224x a y a -++=的内部,那么a 的取值范围是〔〕A.11a -<<B.01a <<C.1a <-或者1a >D.1a =±【答案】A 【解析】因为点〔1,1〕在圆内部,所以22(1)(1)4a a -++<,解之得11a -<<.x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,那么a 的范围是()A.a <-2或者a >23B.-23<a <2C.-2<a <0D.-2<a <23【答案】D 【解析】 【分析】先把圆的一般方程化为圆的HY 方程,由此可求得a 的范围. 【详解】由题意可得圆的HY 方程2223()()124a x y a a a +++=--,由23104a a -->解得223a -<<,选D.【点睛】圆的一般方程220x y Dx Ey F ++++=,化HY 方程为22224()()224D E D E F x y +-+++=〔其中2240D E F +->〕,圆心为(,)22D E--,半径2r =.8.点P 〔2,﹣1〕为圆〔x ﹣1〕2+y 2=25的弦AB 的中点,那么直线AB 的方程为〔〕 A.x+y ﹣1=0B.2x+y ﹣3=0C.x ﹣y ﹣3=0D.2x ﹣y ﹣5=0【答案】C【解析】试题分析:由垂径定理,得AB中点与圆心C的连线与AB互相垂直,由此算出AB的斜率k=1,结合直线方程的点斜式列式,即可得到直线AB的方程.解:∵AB是圆〔x﹣1〕2+y2=25的弦,圆心为C〔1,0〕∴设AB的中点是P〔2,﹣1〕满足AB⊥CP因此,PQ的斜率k===1可得直线PQ的方程是y+1=x﹣2,化简得x﹣y﹣3=0应选C考点:直线与圆相交的性质.9.一个算法:(1)m=a.(2)假设b<m,那么m=b,输出m;否那么执行第(3)步.(3)假设c<m,那么m=c,输出m.假设a=3,b=6,c=2,那么执行这个算法的结果是()A.3B.6C.2D.m【答案】C【解析】【分析】根据算法的功能可知,输出三个数中的最小值,即可求解.【详解】根据算法的功能可知,输出三个数中的最小值,故执行这个算法的结果是2.应选:C.【点睛】此题主要考察对算法语句以及算法功能的理解.C 的方程为22(2)(1)9x y -++=,直线l 的方程为320x y -+=,那么曲线C 上到直线l 的间隔为10的点的个数为〔〕A.1B.2C.3D.4【答案】B 【解析】试题分析:由22(2)(1)9x y -++=,可得圆心坐标为(2,1)C -,半径为3r =,那么圆心到直线的间隔为d ===,所以此时对应的点位于过圆心C 的直径上,所以满足条件的点有两个,应选B . 考点:直线与圆的位置关系.【方法点晴】此题主要考察了直线与圆的位置关系的应用,其中解答中涉及到点到直线的据公式和直线与圆位置关系的断定与应用,试题思维量和运算量较大,属于中档试题,着重考察了学生分析问题和解答问题的才能,以及数形结合思想的应用,此类问题平时需要注意方法的积累和总结.11.两点A 〔-2,0〕,B 〔0,2〕,点C 是圆x 2+y 2-2x =0上任意一点,那么△ABC 面积的最小值是〔〕A.3B.3C.3 【答案】A 【解析】 试题分析:圆C的HY 方程为22(1)1x y -+=,圆心为(1,0)D ,半径为1,直线AB 方程为122x y+=-,即20x y -+=,D 到直线AB 的间隔为2d ==,点C 到AB 的间隔的最小值为1-,AB =,所以ABC∆面积最小值为11)32S =⨯=.应选A . 考点:点到直线的间隔.(1,1)P 的直线,将圆形区域{}22(,)|4x y x y +≤分两局部,使得这两局部的面积之差最大,那么该直线的方程为 A.20x y +-= B.10y -=C.0x y -=D.340x y +-=【答案】A 【解析】要使直线将圆形区域分成两局部的面积之差最大,通过观察图形,显然只需该直线与直线OP 垂直即可,又P(1,1),那么所求直线的斜率为-1,又该直线过点P(1,1),易求得该直线的方程为x +y -2=0.应选A.第II 卷〔非选择题,一共90分〕二、填空题(本大题一一共4小题,每一小题5分,一共20分.)13.函数的定义域为___________________________.【答案】()1,1- 【解析】 【分析】根据函数表达式得到使得函数有意义只需要210340x x x +>⎧⎨--+>⎩,解这个不等式获得交集即可. 【详解】由210340x x x +>⎧⎨--+>⎩得-1<x<1. 故答案为()1,1-.【点睛】求函数定义域的类型及求法:(1)函数解析式:构造使解析式有意义的不等式(组)求解;(2)抽象函数:①假设函数f (x )的定义域为[a ,b ],其复合函数f [g (x )]的定义域由a ≤g (x )≤b 求出;②假设函数f [g (x )]的定义域为[a ,b ],那么f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,那么C 的方程为__________.【答案】22(2)10x y -+=.【解析】 【分析】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,求出AB 的垂直平分线方程,令0y =,可得圆心坐标,从而可得圆的半径,进而可得圆的方程. 【详解】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,AB 的垂直平分线为24y x =-,令y =,得2x =,故圆心坐标为(2,0),所以圆的半径=22(2)10x y -+=.【点睛】此题主要考察圆的性质和圆的方程的求解,意在考察对根底知识的掌握与应用,属于根底题. 15.执行如图的程序框图,假设输入的ε的值是0.25,那么输入的n 的值_____.【答案】3. 【解析】根据运行顺序计算出11F 的值,当11F ≤ε时输出n 的值,完毕程序.由程序框图可知:第一次运行:F 1=1+2=3,F 0=3-1=2,n =1+1=2,11F =13>ε,不满足要求,继续运行; 第二次运行:F 1=2+3=5,F 0=5-2=3,n =2+1=3,11F =15=0.2<ε,满足条件. 完毕运行,输出n =3.【此处有视频,请去附件查看】,a b 夹角为45︒,且1,210a a b =-=,那么b =__________.【答案】32【解析】试题分析:的夹角,,,,.考点:向量的运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.三、解答题(本大题一一共6小题,一共70分.解容许写出文字说明,证明过程或者演算步骤) 17.如下列图,底角为45°的等腰梯形ABCD ,底边BC 长为7cm ,腰长为2cm ,当一条垂直于底边BC (垂足为F )的直线l 从B 点开场由左至右挪动(与梯形ABCD 有公一共点)时,直线l 把梯形分成两局部,令BF =x (0≤x ≤7),左边局部的面积为y ,求y 与x 之间的函数关系式,画出程序框图,并写出程序.【答案】221,02222,251(7)10,572x x y x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+<<⎩,程序框图和程序见解析. 【解析】 【分析】根据直线l 将梯形分割的左边局部的形状进展分类讨论,求出函数关系式,即可根据条件构造画出程序框图,并写出程序.【详解】过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .∵四边形ABCD 是等腰梯形,底角是45°,AB =2cm ,∴BG =AG =DH =HC =2cm .又BC =7cm ,∴AD =GH =3cm ,当02x ≤≤时,212y x =; 当25x <≤时,22y x =-; 当57x <<时,21(7)102y x =-+, 所以221,02222,251(7)10,572x x y x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+<<⎩. 程序框图如下:程序:INPUT “x =〞;xIFx >=0ANDx <=2THENy =0.5*x ^2ELSEIFx <=5THENy =2*x -2ELSEy =-0.5*(x -7)^2+10ENDIFENDIFPRINTyEND【点睛】此题主要考察分段函数解析式的求法、程序框图的画法以及程序语句的书写,意在考察学生分类讨论思想和算法语句的理解和书写.xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上,那么圆C 的方程为.【答案】22(3)(1)0.x y -+-= 【解析】【详解】试题分析:根据题意令y=0,可知23610,y x x x =-+==±∴同时令x=0,得到函数与y 轴的交点坐标为〔0,1〕,那么利用圆的性质可知,与x 轴的两个根的中点坐标即为圆心的横坐标为3,设圆心为:(3,)t ,那么229(1)8t t +-=+,解得1t = 因此可知圆的方程为22(3)(1)0.x y -+-=,故答案为22(3)(1)0.x y -+-=.考点:本试题考察了抛物线与坐标轴的交点问题.点评:解决该试题的关键是确定出交点的坐标,然后结合交点坐标,得到圆心坐标和圆的半径,进而秋季诶圆的方程,属于根底题.19.如图,在四棱锥P ﹣ABCD 中,PA⊥底面ABCD ,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC ,E 是PC 的中点.〔1〕求PB 和平面PAD 所成的角的大小;〔2〕证明AE⊥平面PCD .【答案】〔1〕45°;〔2〕见解析【解析】试题分析:〔1〕先找出PB 和平面PAD 所成的角,再进展求解即可;〔2〕可以利用线面垂直根据二面角的定义作角,再证明线面垂直.〔1〕解:在四棱锥P ﹣ABCD 中,因PA⊥底面ABCD ,AB ⊂平面ABCD ,故PA⊥AB.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD ,故PB 在平面PAD 内的射影为PA ,从而∠APB 为PB 和平面PAD 所成的角.在Rt△PAB 中,AB=PA ,故∠APB=45°.所以PB 和平面PAD 所成的角的大小为45°.〔2〕证明:在四棱锥P ﹣ABCD 中,因为PA⊥底面ABCD ,CD ⊂平面ABCD ,所以CD⊥PA.因为CD⊥AC,PA∩AC=A,所以CD⊥平面PAC .又AE ⊂平面PAC ,所以AE⊥CD.由PA=AB=BC ,∠ABC=60°,可得AC=PA .因为E 是PC 的中点,所以AE⊥PC.又PC∩CD=C,所以AE⊥平面PCD .考点:直线与平面所成的角;直线与平面垂直的断定.()f x 是(),-∞+∞上的奇函数,()()2f x f x +=-,当01x ≤≤时,()f x x =.〔1〕求()f π的值;〔2〕当44x -≤≤时,求()f x 的图象与x 轴所围成图形的面积.【答案】〔1〕4π-〔2〕4 【解析】【分析】〔1〕由()()2f x f x +=-可推出函数()f x 是以4为周期的周期函数,再利用函数的周期性及奇偶性可得()()()()1444f f f f ππππ=-⨯+=-=--, 再利用函数在[]0,1上的解析式即可得解,〔2〕由函数的周期性、奇偶性及函数在[]0,1上的解析式,作出函数在[]4,4-的图像,再求()f x 的图象与x 轴所围成图形的面积即可.【详解】解:〔1〕由()()2f x f x +=-得,()()()()4222f x f x f x f x +=++=-+=⎡⎤⎣⎦,所以()f x 是以4为周期的周期函数, 所以()()()()1444f f f f ππππ=-⨯+=-=--()44ππ=--=-.〔2〕由()f x 是奇函数且()()2f x f x +=-, 得()()()1211f x f x f x -+=--=--⎡⎤⎡⎤⎣⎦⎣⎦, 即()()11f x f x +=-.故知函数()y f x =的图象关于直线1x =对称.又当01x ≤≤时,()f x x =,且()f x 的图象关于原点成中心对称,那么()f x 44x -≤≤时,()f x 的图象与x 轴围成的图形面积为S ,那么1442142OAB S S ∆⎛⎫==⨯⨯⨯= ⎪⎝⎭. 【点睛】此题考察了函数的周期性、奇偶性及函数的图像,主要考察了函数性质的应用,重点考察了作图才能,属中档题.()2cos sin 34f x x x x π⎛⎫=⋅++ ⎪⎝⎭,x R ∈.〔Ⅰ〕求()f x 的最小正周期;〔Ⅱ〕求()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最小值和最大值. 【答案】〔Ⅰ〕π;〔Ⅱ〕最小值12-和最大值14. 【解析】 试题分析:〔1〕由利用两角和与差的三角函数公式及倍角公式将()f x 的解析式化为一个复合角的三角函数式,再利用正弦型函数()sin y A x B ωϕ=++的最小正周期计算公式2T πω=,即可求得函数()f x 的最小正周期;〔2〕由〔1〕得函数,分析它在闭区间上的单调性,可知函数()f x 在区间上是减函数,在区间上是增函数,由此即可求得函数()f x 在闭区间上的最大值和最小值.也可以利用整体思想求函数()f x 在闭区间上的最大值和最小值.由,有 ()f x 的最小正周期. 〔2〕∵()f x 在区间上是减函数,在区间上是增函数,,,∴函数()f x 在闭区间上的最大值为,最小值为.考点:1.两角和与差的正弦公式、二倍角的正弦与余弦公式;2.三角函数的周期性和单调性.22.设数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2.(1)设b n =a n +1−2a n ,证明:数列{b n }是等比数列;(2)求数列{a n }的通项公式.【答案】(1)见解析;(2)a n=(3n−1)·2n−2.【解析】(1)由a1=1及S n+1=4a n+2,得a1+a2=S2=4a1+2.∴a2=5,∴b1=a2−2a1=3.又①−②,得a n+1=4a n−4a n−1,∴a n+1−2a n=2(a n−2a n−1).∵b n=a n+1−2a n,∴b n=2b n−1,故{b n}是首项b1=3,公比为2的等比数列. (2)由(1)知b n=a n+1−2a n=3·2n−1,∴−=,故是首项为,公差为的等差数列.∴=+(n−1)·=,故a n=(3n−1)·2n−2.。

【高二】2021 2021学年高二数学上册第一次月考测试题(含答案)

【高二】2021 2021学年高二数学上册第一次月考测试题(含答案)

【高二】2021 2021学年高二数学上册第一次月考测试题(含答案)【高二】2021-2021学年高二数学上册第一次月考测试题(含答案)“华安、连城、永安、漳平一中、龙海二中、泉港一中”联考2021-2021学年上学期第一次月考高二文科数学试题(考试时间:120分钟总分:150分)一、(本问题共有12个子问题,每个子问题得5分,总计60分。

每个子问题给出的四个选项中只有一个符合问题的要求)一.一个年级有12个班,每个班有50名同学,随机编号为1~50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是()a、抽签法B、分层抽样法C、随机数表法D、系统抽样法2.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,在这个问题中,下面说法正确的是(?a、 1000名学生是整个B。

每个学生都是一个人c.100名学生中每一名学生是样本d.样本的容量是1003.将88转换为十六进制数()a.324(5)b.323(5)c.233(5)d.332(5)4.计算机执行右边的程序语句后,输出结果为()a.,b.,c、,d5.从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是() a、至少一个黑色球,两个都是黑色球B,至少一个黑色球和至少一个红色球c、恰好有一个黑球与恰好有两个黑球d、至少有一个黑球与都是红球6.一名篮球运动员在一个赛季40场比赛中的得分干叶图如右下图所示:中位数和模式为()a.3与3b.23与3c、 23和23d。

3和237.直线l1:ax+3y+1=0,l2:2x+(a+1)y+1=0,若l1∥l2,则a=()n=5s=0当小于15s=s+nn=n-1wend普林顿enda、 -3B。

2C.-3或2D。

3或-28.下列程序执行后输出的结果是()A.1b。

0c。

1d。

二9.有如下四个游戏盘,撒一粒黄豆,若落在阴影部分,就可以中奖,若希望中奖的机会最大,则应该选择的游戏是()10.当使用秦九韶算法计算当时多项式的值时,该值为a.5.2b.1c.3.2d.4.211.一组数据的平均值为,方差为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

库尔勒市第四中学2016-2017学年(上)高二年级第一次月考数学(文科)
试卷(问卷) 考试范围: 试卷页数:4页 考试时间:120分钟
班级: 姓名: 考号:
一、选择题(本题共有12小题,每小题5分)
1、设集合{}
{},0|,065|2>=≥+-=x x T x x x S 则=T S ( ) (][)+∞,32,0. A []3,2.B (][)+∞∞-,32,. C [)+∞,3.D
2、执行如图所示程序框图,则输出的结果是( ) 61.A 43.B 109.C 12
11.D
3、如图所示的甲、乙两人在5次综合测评中成绩的茎叶图,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为( )
52.A 107.B 54.C 10
9.D 4、在ABC ∆中,3,6,60===∠b a A ,则ABC ∆解的情况是( )
A.无解
B.有一解
C.有两解
D.不能确定
5、下表是某工厂1—4月份用电量(单位:万度)的一组数据:
月份x
1 2 3 4 用电量y 4.5 4 3 2.5
由散点图可知,用电量y 与月份x 间有较好的线性相关关系,其线性回归直线方程是a x y
+-=7.0ˆ,则=a ( )
A.10.5
B.5.25
C.5.2
D.5.15
6、一个四棱锥的三视图如图所示,则该四棱锥的体积为( )
61.A 3
1.B 41.C 21.D
7、某高中计划从全校学生中按年级采用分层抽样方法抽取20名学生进行心理测试,其中高三有学生900人,已知高一与高二共抽取了14人,则全校学生的人数为( )
A.2400
B.2700
C.3000
D.3600
8、已知直线,,,//,γααγβγβα⊥⊂=⋅m m l l l m 满足、、与平面、则下列命题一定正确的是( )
A l m .αγ⊥⊥且 βγα//.m
B 且⊥ m l m
C ⊥且β//. γαβα⊥且//.D
9、设P :实数,11,>>y x y x 且满足q :实数满足2>+y x ,则p 是q 的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
10、已知命题,01,:200≤+∈∃mx R x p 命题01,:2>++∈∀mx x R x q ,若q p ∨为假命题,则实数m 的取值范围是( )
A m .-≤≤22
B m m .≤-≥2或2
C m .≤-2
D m .≥2
11、在平面直角坐标系xOy 中,若⎪⎩
⎪⎨⎧≥≥--≤-+001042,y y x y x y x 满足约束条件,则y x z +=的最大值为( )
A .73
B .1
C .2
D .3 12、数列{}n a 满足)1)((2,11211>+++==--n a a a a a n n n ,则=5a ( )
A.54
B.81
C.162
D.243
二、填空题
13、在长为2的线段AB 上任取一点C,以线段AC 为半径的圆面积小于π的概率为__________.
14、命题"052,"2>++∈∀x x R x 的否定是__________________.
15、已知是单位向量,(,b =223,()a a b ⊥+2,则a ,的夹角为__________.
16、已知是)(x f 定义在R 上的奇函数,且满足
()x f x f 1)2(-=+,当21≤≤x 时,x x f =)(则
=-)211(f _____________. 三、解答题
17、已知
{}n a 是公比为正数的等比数列,a =13, a a =+329 (1)求{}n a 的通项公式
(2)数列{}n
b 是首项为为4,公差为3等差数列,求数列{}n n b a +的前n 项
18、已知函数()sin(2)cos(2).63f x x x π
π
=++-
(1)求函数f(x)的最大值及周期;
(2)求函数f(x )的单调递增区间。

19、某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[)50,60,第二组[)60,70,...,第五组[]90,100,下图是按上述分组方法得到的频率分布直方图:
(1)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;并计算这个班级的平均分;
(2)从测试成绩在[)[]50,6090,100⋃内的所有学生中随机抽取两名同学,设其测试成绩分别为m 、
n ,求事件“|m-n|>10”的概率。

20、如图,设四棱锥E ABCD -的底面为菱形,且60,ABC
∠=2,AB EC ==2,AE BE F
==是AB 的中点。

(1)证明:EF⊥平面ABCD;(2)求四棱锥E ABCD
-的体积。

21、已知椭圆C的焦点在x轴上,且经过(2,0),离心率
3 e=
(1)求椭圆C的标准方程;
(2)已知斜率为1的直线l过椭圆C的右焦点,交椭圆于A,B两点,求弦长|AB|.。

相关文档
最新文档