广东省韶关市2020年(春秋版)中考数学试卷D卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省韶关市2020年(春秋版)中考数学试卷D卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分) -1996的相反数是()
A . 1996
B . -1996
C . ±1996
D .
2. (2分)数据26000用科学记数法表示为2.6×10n ,则n的值是()
A . 2
B . 3
C . 4
D . 5
3. (2分) (2019七下·南海期末) 如图,若直线a∥b,AC⊥AB,∠1=34°,则∠2的度数为()
A . 34°
B . 56°
C . 66°
D . 146°
4. (2分)(2018·平房模拟) 如左图是由几个相同的小正方体搭成的一个几何体,它的左视图是()
A .
B .
C .
D .
5. (2分) (2019九上·杭州期末) 如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()
A . 50°
B . 60°
C . 80°
D . 100°
6. (2分) (2015九上·山西期末) 如图,⊙O的弦,于,且,则⊙O的半径等于()
A . 8
B . 4
C . 10
D . 5
7. (2分) (2019九上·瑞安期末) 小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()
A .
B .
C .
D .
8. (2分)(2019·荆州模拟) 如图,在△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E 点,若△ABC与△EBC的周长分别是40,24,则AB为()
A . 8
B . 12
C . 16
D . 20
9. (2分) (2016八上·江阴期末) 甲、乙两辆摩托车分别从A、B两地出发相向而行,图中、分别表示两辆摩托车与A地的距离s(千米)与行驶时间t(小时)之间的函数关系,则下列说法:
①A、B两地相距24千米;
②甲车比乙车行完全程多用了0.1小时;
③甲车的速度比乙车慢8千米/时;
④两车出发后,经过小时,两车相遇.
其中正确的有()
A . 1个
B . 2个
C . 3个
D . 4个
10. (2分) (2017八上·钦州期末) 已知如图,AB是半圆O的直径,弦AD、BC相交于点P,那么等于∠BPD的()
A . 正弦
B . 余弦
C . 正切
D . 以上都不对
二、填空题 (共6题;共6分)
11. (1分) (2017·深圳模拟) 分解因式 =________.
12. (1分)甲、乙两名学生在5次数学考试中,得分如下:
甲:89,85,91,95,90;
乙:98,82,80,95,95.
________ 的成绩比较稳定.
13. (1分)(2020·上饶模拟) 直线y= x+3与两坐标轴交于A、B两点,以AB为斜边在第二象限内作等腰Rt△ABC ,反比例函数y= (x<0)的图象过点C ,则m=________.
14. (1分)(2019·花都模拟) 如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为________m.
15. (1分) (2020九下·郑州月考) 如图,在中,,,,是
的中点,点在边上,将沿翻折,使点落在点处,连接、,当是等腰直角三角形时,的长为________.
16. (1分) (2018九上·长宁期末) 已知⊙ 的半径为4,⊙ 的半径为R,若⊙ 与⊙ 相切,且,则R的值为________.
三、解答题 (共8题;共72分)
17. (5分)(2016·大连) 计算:( +1)(﹣1)+(﹣2)0﹣.
18. (10分) (2020九上·广东开学考) 如图,矩形ABCO中,点C在上,点A在轴上,点B的坐标是(-6,8),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、轴分别交于点D、F.
(1)求点F的坐标;
(2)若点N是平面内任意一点,在轴上是否存在点M,使M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.
19. (9分)(2017·岳池模拟) 为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):
(1)报名参加课外活动小组的学生共有________人,将条形图补充完整________;
(2)扇形图中m=________,n=________;
(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.
20. (10分)(2016·江西) 如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.
(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)
(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)
(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)
21. (3分) (2016八上·宁城期末) 如图,在平面直角坐标系中,每个小正方形的边长为1,点A的坐标为(-3,2)
请按要求分别完成下列各小题:
(1)画出△ABC关于y轴对称的△ ________,则点的坐标是________;
(2)△ABC的面积是________.
22. (10分)(2017·桂林) 某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒?(用含x的代数式表示).
(2)该敬老院至少有多少名老人?最多有多少名老人?
23. (10分)已知,如图,A、D、C、B在同一条直线上AD=BC,AE=BF,CE=DF,求证:
(1)DF∥CE;
(2) DE=CF.