(完整版)合情推理演绎推理专题练习及答案
2.1合情推理与演绎推理同步练习含答案详解
5.把正有理数排序:11,21,12,31,22,13,
41,32,23,14,…,则数 19891949 所在的位置序号
是________.
ቤተ መጻሕፍቲ ባይዱ6 .观察下列等式:13+23=(1+2)2,13+23+33 =(1
+2+3)2,13+23+33+43=(1+2+3+4)2,…,根
据上述规律,第四个等式为________.
f (n) =___________.
三、解答题(共 70 分) 7 .(15 分)通过观察下列等式,猜想出一个一般性的
结论,并证明结论的真假。
sin2 150
sin 2
750
sin2 1350
3 2
;
sin 2
300
sin 2
900
sin2 1500
3 2
;
9. (20 分 ) 在 ABC 中 ,若 C 900 ,则 cos2 A cos2 B 1 ,用 类比的方法,猜想三棱锥的
2.1 合情推理与演绎推理
一、选择题(每小题 5 分,共 20 分) 1.下列推理是归纳推理的是( ) A.A,B 为定点,动点 P 满足|PA|+|PB|=2a>|AB|, 则 P 点的轨迹为椭圆 B.由 a1=1,an=3n-1,求出 S1,S2,S3,猜想出 数列的前 n 项和 Sn 的表达式 C.由圆 x2+y2=r2 的面积πr2,猜想出椭圆 x2a2+ y2b2=1 的面积 S=πab D.科学家利用鱼的 沉浮原理制造潜艇
8.(2 0 分)蜜蜂被认为是自然界中最杰出的建筑师, 单个蜂
巢可以近似地看作是一 个正六边形,如图为一 组蜂
巢的截面图. 其中第一 个图有 1 个蜂巢,第二个图
高中数学 2.1《合情推理与演绎推理》测试(1) 新人教B版选修2-2
合情推理与演绎推理一、归纳推理 例1.(1)观察圆周上n 个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,你由此可以归纳出什么规律?变式1.设平面内有n 条直线)3(≥n ,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用)(n f 表示这n 条直线交点的个数,则)4(f =____________;当4>n 时,=)(n f .(用n 表示)变式2.在圆内画一条线段,将圆分成两部分;画两条线段,彼此最多分割成4条线段,同时将圆分割成4部分;画三条线段,彼此最多分割成9条线段,同时将圆分割成7部分.那么 (1)在圆内画四条线段,彼此最多分割成 条线段?同时将圆分割成 部分?(2)猜想:圆内两两相交的n (n ≥2)条线段,彼此最多分割成 条线段?同时将圆分割成 部分?强化训练1.某同学在电脑上打下了一串黑白圆,如图所示,○○○●●○○○●●○○○…,按这种规律往下排,那么第36个圆的颜色应是 .2.由107>85,119>108,2513>219,…若a >b >0,m >0,则m a m b ++与a b 之间的大小关系为 .3.下列推理是归纳推理的是 (填序号).①A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,得P 的轨迹为椭圆 ②由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式 ③由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆2222b y a x +=1的面积S =πab④科学家利用鱼的沉浮原理制造潜艇4.已知整数的数对列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第60个数对是 .二、类比推理(一)数列中的类比例1.在等差数列{}n a 中,若010=a ,则有等式n a a a +⋅⋅⋅++21),19(1921+-∈<+⋅⋅⋅++=N n n a a a n 成立,类比上述性质,相应地:在等比数列{}n b 中,若19=b ,则有等式 成立.强化练习1.定义“等和数列”,在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。
高二数学合情推理与演绎推理试题答案及解析
高二数学合情推理与演绎推理试题答案及解析1.观察下列各式:则,…,则的末两位数字为()A.01B.43C.07D.49【答案】B【解析】根据题意,得72=49,73=343,74=2401,75=16807,76=117649,77=823543,78=5764801,79=40353607…,发现:74k-2的末两位数字是49,74k-1的末两位数字是43,74k的末两位数字是01,74k+1的末两位数字是49,(k=1、2、3、4、…),∵2011=503×4-1,∴72011的末两位数字为43【考点】本题考查了推理的运用点评:本题以求7n(n≥2)的末两位数字的规律为载体,考查了数列的通项和归纳推理的一般方法的知识,属于基础题.2.从中得出的一般性结论是_______________.【答案】(注意左边共有项【解析】解:因为从中得出的一般性结论是3.若数列的通项公式,记,试通过计算的值,推测出 .【答案】【解析】因为,所以. 4.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第个“金鱼”图需要火柴棒的根数为 ( )A.B.C.D.【答案】C【解析】解:由图形可知:第一个金鱼需用火柴棒的根数为:2+6=8;第二个金鱼需用火柴棒的根数为:2+2×6=14;第三个金鱼需用火柴棒的根数为:2+3×6=20;…;第n个金鱼需用火柴棒的根数为:2+n×6=2+6n.故答案为2+6n.5.类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是()①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。
A.①③B.②③C.①②D.①②③【答案】D【解析】解:在由平面几何的性质类比推理空间立体几何性质时,我们常用的思路是:由平面几何中点的性质,类比推理空间几何中线的性质;由平面几何中线的性质,类比推理空间几何中面的性质;由平面几何中面的性质,类比推理空间几何中体的性质;或是将一个二维平面关系,类比推理为一个三维的立体关系,故类比平面内正三角形的“三边相等,三内角相等”的性质,推断:①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.都是恰当的故答案为:①②③6.下面几种推理是演绎推理的是()A.老鼠、猴子与人在身体结构上有相似之处,新药先在猴子身上试验,试验成功后再用于人体试验B.某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.C.由三角形的三条中线交于一点,联想到四面体四条中线(四面体每个顶点与对面重心的连线)交于一点D.一切偶数都能被2整除,是偶数,所以能被2整除.【答案】D【解析】根据演绎推理中的三段论推理,大前提---小前提----结论,D符合。
高中数学之合情推理与演绎推理含答案
专题08 合情推理与演绎推理1.在中,若则外接圆半径,将此结论拓展到空间,可得到的正确结论是在四面体中,若两两互相垂直,,则四面体的外接球半径( )A.B.C.D.2.电脑上显示,按这种规律往下排,那么第个图形应该是()A.三角形B.圆形C.三角形可能性大D.圆形可能性大3.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形内角和是归纳出所有三角形的内角和都是;③由,满足,推出是奇函数;④三角形内角和是,四边形内角和是,五边形内角和是,由此得凸多边形内角和是.A.①②B.①③④C.①②④D.②④4.如图所示的是一串黑白相间排列的珠子,若按这种规律排列下去,那么第39颗珠子的颜色是( )A.白色B.黑色C.白色的可能性大D.黑色的可能性大5.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形内角和是归纳出所有三角形的内角和都是;③由,满足,推出是奇函数;④三角形内角和是,四边形内角和是,五边形内角和是,由此得凸多边形内角和是.A.①②B.①③④C.②④D.①②④6.如图,第1个图形由正三角形扩展而成,共12个顶点.第n个图形是由正n+2边形扩展而来,则第n+1个图形的顶点个数是 ( )(1)(2)(3)(4)A.(2n+1)(2n+2)B.3(2n+2)C.(n+2)(n+3)D.(n+3)(n+4)7.斐波纳契数列,又称黄金分割数列,指的是这样一个数列:1,1,2,3,5,8,13,21,34,55,89,,在数学上,斐波纳契数列定义为:,斐波纳契数列有种看起来很神奇的巧合,如根据可得,所以,类比这一方法,可得A.714B.1870C.4895D.48968.下面几种推理过程是演绎推理的是()A.某校高二年级有10个班,1班62人,2班61人,3班62人,由此推测各班人数都超过60人B.根据三角形的性质,可以推测空间四面体的性质C.平行四边形对角线互相平分,矩形是平行四边形,所以矩形的对角线互相平分D.在数列中,,计算由此归纳出的通项公式9.“所有4的倍数都是2的倍数,某数是4的倍数,故该数是2的倍数”上述推理()A.小前提错误B.结论错误C.大前提错误D.正确10.杨辉三角,又称帕斯卡三角,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中用如图所示的三角形解释二项式乘方展开式的系数规律.现把杨辉三角中的数从上到下,从左到右依次排列,得数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1…….记作数列,若数列的前项和为,则()A.B.C.D.11.图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第代“勾股树”所有正方形的个数与面积的和分别为()A.B.C.D.12.平面内的一条直线将平面分成2部分,两条相交直线将平面分成4部分,三条两两相交且不共点的直线将平面分成7部分,…,则平面内六条两两相交且任意三条不共点的直线将平面分成的部分数为()A.16B.20C.21D.2213.观察下列等式:;;;;……照此规律,_________.14.对于大于或等于2的自然数m的n次幂进行如图方式的“分裂”.仿此,52的“分裂”中最大的数是______,若m3的“分裂”中最小的数是211,则m的值为______.15.观察下列事实:(1)的不同整数解的个数为4;(2)的不同整数解的个数为8;……则的不同整数解的个数为__________.16.边长为的等边三角形内任一点到三边距离之和为定值,这个定值等于,将这个结论推广到空间是:棱长为的正四面体内任一点到各面距离之和等于________.17.平面图形很多可以推广到空间中去,例如正三角形可以推广到正四面体,圆可以推广到球,平行四边形可以推广到平行六面体,直角三角形也可以推广到直角四面体,如果四面体中棱两两垂直,那么称四面体为直角四面体. 请类比直角三角形中的性质给出2个直角四面体中的性质,并给出证明.(请在结论中选择1个,结论4,5中选择1个,写出它们在直角四面体中的类似结论,并给出证明,多选不得分,其中表示斜边上的高,分别表示内切圆与外接圆的半径)直角三角形直角四面体18.数学研究性学习是高中学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动.某同学就在一次数学研究性学习中发现,以下五个式子的值都等于同一个常数.①;②;③;④;⑤.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,归纳出一个三角恒等式;(3)利用所学知识证明这个结论.19.在△中,内角有关系在四边形中,内角有关系在五边形中,内角有关系(1)猜想在边形有怎样的关系(不需证明);(2)用你学过的知识,证明△中的关系:,并指出等号成立的条件.20.一种十字绣作品由相同的小正方形构成,图①②③④分别是制作该作品前四步时对应的图案,按照此规律,第步完成时对应图案中所包含小正方形的个数记为.(1)求出的值;(2)利用归纳推理,归纳出的关系式;(3)猜想的表达式,并写出推导过程.21.(1)如图(a),(b),(c),(d)为四个平面图形,数一数每个平面图形含有多少个顶点、多少条边,它们将平面分成多少个区域?(2)由(1)推断一个平面图形的顶点数、边数和分平面所得区域的个数之间有什么关系?(3)现已知某个平面图形有999个顶点,且将平面分成了999个区域,试根据上述关系确定这个平面图形有多少条边?22.给出如图数阵的表格形式,表格内是按某种规律排列成的有限个正整数.(1)记第一行的自左至右构成数列的前项和,试求的表达式;(2)记为第行与第列交点的数字,观察数阵,若,试求出的值.。
合情推理演绎推理(带标准答案)
合情推理演绎推理(带答案)作者: 日期:1:与代数式有关的推理问题2a b a b a b ,例1、观察a 3b 3a b 2 a ab b 2进而猜想a n b n4a b 4 a b3a a 2b ab 2 b 3练习:观察下列等式:13 23 以 3 3 , 123 33 6, 13 2"33 43 10,…,根据上述规律,第五个等式为o解析:第i 个等式左边为 1 到i+1的立方和,右边为 1+2+.. .+ (i+1 )的平方所以第五个等式为13空 33 43 5"21 o2:与三角函数有关的推理问题例1、观察下列等式,猜想一个一般性的结论。
练习:观察下列等式:① COS2 a =2 cos 2 a — 1 ;42② cos 4 a =8 cos a — 8 COs a +1 ;③ cos 6 a =32 cos 6 a — 48 cos 4 a+ 18 cos 2 a — 1;④ cos 8 a = 128 cos a — 256cos a+ 160 cos a — 32 cos a + 1 ;108642⑤ cos 10 a =mcos a — 1280 cos a+ 1120cos a+ nC0S a+ p cos a — 1 ;可以推测,m — n+p= .答案:9623:与不等式有关的推理例1、观察下列式子:1 3 1 1 5 4 1 1 1 7 1尹2「豕孑护豕孕了?由上可得出一般的结论为: ____________________________________________________ 。
.1 1 1 2n 1答案:12232……(n 1)2n 1,练习、由35口 oooooo 可猜想到一个一般性的结论是: _________________________ 。
2 2 1 33 14 4 1合情推理sin 2 30 0 sin 2 60 0 • 2 Ar 0sin45sin 15• 2 “ 0sin90sin 2120 sin 2105 sin 275 0. 2 * LC 0sin 150sin 2180 sin 2165 2 X CL 0sin 1354:与数列有关的推理例1、已知数列{a n }中,a i =1,当n >2时,a . 2am 1,依次计算数列的后几项,猜想数列的一个通 项表达式为:。
2-1-1 合情推理与演绎推理
片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是 2”,乙看了丙的
卡片后说:“我与丙的卡片上相同的数字不是 1”,丙说:“我的卡片上的数字
之和不是 5”,则甲的卡片上的数字是________.
解析:由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足,
若丙(1,3),则乙(2,3),甲(1,2)不满足,故甲的卡片上的数字是(1,3).
解析:A 错误,因为 logax+logay=logaxy(x>0,y>0);B 错误,因为 sin(x+y) =sin xcos y+cos xsin y;对于 C,则有(x+y)n=C0nxn+C1nxn-1·y+…+Crn·xn-r·yr+… +Cnnyn;D 正确,为加乘法的结合律,故选 D.
B.f(n)=n+2
C.f(n)=2n
D.f(n)=2n
解析:选 C.对于 f(n)=2n,有 f(n1+n2)=2(n1+n2).f(n1)+f(n2)=2n1+2n2, ∴f(n1+n2)=f(n1)+f(n2).
∴f(n)=2n. 5.已知{bn}为等比数列,b5=2,则 b1b2b3…b9=29,若{an}为等差数列,a5 =2,则{an}的类似结论为( ) A.a1a2a3…a9=29 B.a1+a2+…+a9=29 C.a1a2a3…a9=2×9 D.a1+a2+…+a9=2×9 解析:选 D.由等差数列性质,有 a1+a9=a2+a8=…=2a5, ∴a1+a2+…+a9=9a5=2×9. 6.下列推理正确的是( )
解:在△DEF 中,由正弦定理,得 d = e = f .于是, sin D sin E sin F
类比三角形中的正弦定理,在四面体 SABC 中,我们猜想 S1 = sin α1
2.1合情推理与演绎推理同步练习含答案详解
2.1 合情推理与演绎推理一、选择题(每小题5分,共20分) 1.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|PA|+|PB|=2a>|AB|,则P 点的轨迹为椭圆B .由a1=1,an =3n -1,求出S1,S2,S3,猜想出数列的前n 项和Sn 的表达式C .由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇2.设n 为正整数,f(n)=1+12+13+…+1n ,经计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,f(32)>72,观察上述结果,可推测出一般结论( )A .f(2n)>2n +12B .f(n2)≥n +22C .f(2n)≥n +22D .以上都不对3. 有一段演绎推理是这样的:“若直线平行于平面,则该直线平行于平面内所有直线;已知直线b ∥平面α,直线a ⊂平面α,则直线b ∥直线a”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误4. 若点P 是正四面体A -BCD 的面BCD 上一点,且P 到另三个面的距离分别为h1,h2,h3,正四面体A -BCD 的高为h ,则( )A .h>h1+h2+h3B .h =h1+h2+h3C .h<h 1+h2+h3D .h1,h2,h3与h 的关系不定二、填空题(每小题5分,共10分)5.把正有理数排序:11,21,12,31,22,13,41,32,23,14,…,则数19891949所在的位置序号是________.6.观察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根据上述规律,第四个等式为________.三、解答题(共70分)7.(15分)通过观察下列等式,猜想出一个一般性的结论,并证明结论的真假。
高二数学合情推理与演绎推理试题答案及解析
高二数学合情推理与演绎推理试题答案及解析1.从1=12 2+3+4=32 3+4+5+6+7=52中,可得到一般规律为________.【答案】【解析】第一个式子左边一个数,从1开始;第二个式子左边三个数,从2开始;第三个式子左边5个数,从3开始,第个式子左边有个数,从,右边为中间数的平方;因此一般规律为.【考点】归纳推理的应用.2.有一段“三段论”推理是这样的:“对于可导函数f(x),如果f′(x0)=0,那么x=x是函数f(x)的极值点;因为函数f(x)=x3在x=0处的导数值f′(0)=0,所以x=0是函数f(x)=x3的极值点.”以上推理中(1)大前提错误;(2)小前提错误;(3)推理形式正确;(4)结论正确你认为正确的序号为.【答案】(1)(3).【解析】该“三段论”的推理形式符合“S是P,M是S,M是P”的推理形式,所以推理形式是正确的;对于可导函数f(x),如果f′(x0)=0,且在的两侧,的符号相反,那么x=x是函数f(x)的极值点,所以题中所给的大前提是错误的;而小前提是正确的,结论是错误的.【考点】演绎推理.3.在平面中,△ABC的角C的内角平分线CE分△ABC面积所成的比.将这个结论类比到空间:在三棱锥A-BCD中,平面DEC平分二面角A-CD-B且与AB交于E,则类比的结论为=________.【答案】.【解析】在平面中△ABC的角C的内角平分线CE分△ABC面积所成的比,将这个结论类比到空间:在三棱锥A-BCD中,平面DEC平分二面角A-CD-B且与AB交于E,则类比的结论为根据面积类比体积,长度类比面积可得:.【考点】类比推理.4.给出下列等式:;;,由以上等式推出一个一般结论:对于= .【答案】1-.【解析】由已知中的等式:;;,我们可以推断:对于=1-.【考点】归纳推理.5.甲、乙、丙三位同学被问到是否去过、、三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.【答案】A【解析】∵丙说:三人同去过同一个城市,甲说没去过B城市,乙说:我没去过C城市∴三人同去过同一个城市应为A,∴乙至少去过A,若乙再去城市B,甲去过的城市至多两个,不可能比乙多,∴可判断乙去过的城市为A.【考点】推理证明6.观察各式:,则依次类推可得;【答案】123【解析】此题为推断题,观察可发现每一个结果(第三个起)为前面两个结果之和.类此计算可得:123.【考点】观察推断能力.7.已知点是函数的图象上任意不同两点,依据图象可知,线段AB总是位于A、B两点之间函数图象的上方,因此有结论成立.运用类比思想方法可知,若点是函数的图象上任意不同两点,则类似地有_________________成立.【答案】【解析】由于函数的图象上任意不同两点,依据图象可知,线段AB总是位于A、B两点之间函数图象的上方,因此有结论成立;而函数的图象上任意不同两点的线段总是位于A、B两点之间函数图象的下方,类比可知应有:成立.【考点】类比推理.8.观察下列等式:,…,根据上述规律,第五个等式为______________.【答案】【解析】由规律得:第四个等式为;第五个等式为.【考点】归纳推理.9.如图(1)有面积关系:=,则图(2)有体积关系:=________.【答案】【解析】过点p作直线平面PAC,平面PAC,;因为,所以由(1)类比得===【考点】类比法.10.下面使用的类比推理中恰当的是()A.“若,则”类比得出“若,则”B.“”类比得出“”C.“”类比得出“”D.“”类比得出“”【答案】C【解析】A:等式的基本性质要求同时除以的是不为0的数或式,∴A错误;B:,由乘法分配律不能类比到乘法结合律,∴B错误;C:这是等式的基本性质的类比,∴C正确;D:不能由幂的乘方类比到和的乘方也有类似性质,∴D错误.【考点】类比推理.11.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以表示第幅图的蜂巢总数.则=_____,=___________.【答案】37【解析】,,,可得第4幅图,第n幅图.【考点】类比推理.12.用演绎法证明函数是增函数时的小前提是A.增函数的定义B.函数满足增函数的定义C.若,则D.若,则【答案】B【解析】∵证明y=x3是增函数时,依据的原理就是增函数的定义,∴用演绎法证明y=x3是增函数时的大前提是:增函数的定义,小前提是函数f(x)=x3满足增函数的定义.故选B.【考点】演绎推理的基本方法.13.如图所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,所表示的数是A.2B.4C.6D.8【答案】C【解析】通过图形可以看出,中间的每一个数都等于其肩上的两个数之和,所以a=3+3=6,故答案为C.【考点】归纳推理.14.设定义在R上的函数满足,,则=.【答案】3【解析】把代入得,进一步知所以.【考点】推理与证明.15. 36的所有正约数之和可按如下方法得到:因为,所以36的所有正约数之和为参照上述方法,可求得200的所有正约数之和为 .【答案】 465【解析】由题意得:,所以200的所有正约数之和为.【考点】类比推理.16.观察下列各式:,,,,,,则()A.B.C.D.【答案】B.【解析】观察可得各式的值构成数列1,3,4,7,11,,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第八项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,,第十项为47,即.【考点】归纳推理.17.观察下列各式:,,,,,,则()A.28B.C.D.【答案】B【解析】观察可得各式的值构成数列1,3,4,7,11,,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第八项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,,第十项为47,即.【考点】归纳推理.18.演绎推理“因为对数函数是增函数,而函数是对数函数,所以是增函数”所得结论错误的原因是()A.大前提错误B.小前提错误C.推理形式错误D.大前提和小前提都错误【答案】A【解析】大前提错误,对数函数当时,为增函数,当时,为减函数.【考点】演绎推理,对数函数的性质.19.已知数列2,5,11,20,x,47,合情推出x的值为()A.29B.31C.32D.33【答案】C【解析】观察可知,可得,即.【考点】合情推理,数列的定义.20.若函数,则对于,【答案】【解析】当时,,则当时,故【考点】归纳推理21.观察下列等式:+=;+++=;+++++=;则当且时,++++++=________(最后结果用表示).【答案】【解析】观察可知:+++=(+)+(+)=(+)+(+),有项,+++++=(+)+(+)+(+)=(+)+(+)+(+),有项,因此++++++共有项,利用倒序求和:++++++【考点】归纳猜想22.记为有限集合的某项指标,已知,,,,运用归纳推理,可猜想出的合理结论是:若,(结果用含的式子表示).【答案】【解析】法一(相邻项的变化关系式):因为,,进而得到根据数列中的累加法可得到,所以;法二(每一项与集合元素的个数的联系):,所以可猜想.【考点】1.合情推理中的归纳推理;2.累加法.23.下列推理是归纳推理的是( ).A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,得P的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜出椭圆=1的面积S=πab D.科学家利用鱼的沉浮原理制造潜艇【答案】B【解析】从S1,S2,S3猜想出数列的前n项和Sn,是从特殊到一般的推理,所以B是归纳推理24.观察下列不等式:1>,1++>1,1+++…+,1+++…+>2,1+++…+>,…,由此猜测第n个不等式为________(n∈N+).【答案】1+++…+>【解析】3=22-1,7=23-1,15=24-1,可猜测:1+++…+>25.如图,在三棱锥S-ABC中,SA⊥SB,SB⊥SC,SA⊥SC,且SA、SB、SC和底面ABC,所成的角分别为α1、α2、α3,三侧面SBC,SAC,SAB的面积分别为S1,S2,S3,类比三角形中的正弦定理,给出空间情形的一个猜想.【答案】猜想成立【解析】在△DEF中(如图),由正弦定理得.于是,类比三角形中的正弦定理,在四面体S-ABC中,我们猜想成立.26.下列平面图形中与空间的平行六面体作为类比对象较合适的是()A.三角形B.梯形C.平行四边形D.矩形【答案】C【解析】根据题意,由于平面图形中与空间的平行六面体作为类比对象,那么最适合的为平行四边形的运用,故可知答案为C.【考点】类比推理点评:主要是考查了类比推理的运用,属于基础题。
高考数学 试题汇编 第二节 合情推理与演绎推理 理(含解析)
高考数学试题汇编第二节合情推理与演绎推理理(含解析)合情推理考向聚焦由已知条件归纳出一个结论或运用类比的形式给出某个问题的结论,是高考对合情推理的常规考法,从题型上看,以选择题、填空题为主,所占分值4~5分,属中低档题备考指津合情推理(归纳推理和类比推理)是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想.归纳推理时要做到归纳到位、准确;类比推理时,要从本质上去类比,不要被表面现象所迷惑1.(2012年江西卷,理6,5分)观察下列各式:a+b=1,a2+b 2=3,a 3+b3=4,a 4+b4=7,a5+b5=11,…,则a10+b10=( )(A)28 (B)76 (C)123 (D)199解析:本题考查递推数列知识以及归纳推理的思想方法.记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11;f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123,即a10+b10=123.故选C.答案:C.涉及递推数列的某一项或通项的问题(尤其是小题)常常可借助归纳推理加以解决.2.(2011年江西卷,理7)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为( )(A)3125 (B)5625 (C)0625 (D)8125解析:∵55=3125,56=15625,57=78125,58末四位数字为0625,59末四位数字为3125,510末四位数字为5625,511末四位数字为8125,512末四位数字为0625,…,由上可得末四位数字周期为4,呈规律性交替出现,∴52011=54×501+7末四位数字为8125.答案:D.3.(2012年陕西卷,理11,5分)观察下列不等式1+<,1++<,1+++<,……照此规律,第五个不等式为.解析:不完全归纳:第一个:1+<,第二个:1++<,第三个:1+++<,…归纳猜想:第n个:1+++…+<,故n=5时,1+++…+<.答案:1+++++<4.(2012年湖北卷,理13,5分)回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3443,94249等,显然2位回文数有9个:11,22,33,…,99,3位回文数有90个:101,111,121,…,191,202,…,999,则(1)4位回文数有个;(2)2n+1(n∈N+)位回文数有个.解析:已知1位回文数有9个,2位回文数有9个,3位回文数有90=9×10个,4位回文数有1001,1111,…,1991,2002,…,9999,共90个,以此类推,猜想2n+1位回文数与2(n+1)位回文数个数相等,均为9×10n个.答案:(1)90 (2)9×10n5.(2011年陕西卷,理13)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n个等式为.解析:照等式规律,第n行的首位数字为n且有2n-1个相邻正整数相加∴n+(n+1)+…+(3n-2)=(2n-1)2答案:n+(n+1)+…+(3n-2)=(2n-1)26.(2011年山东卷,理15)设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,f4(x)=f(f3(x))=,…根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n-1(x))= .解析:观察分母的x的系数数列:1,3,7,15,…,a n,…而分母的常数项数列:2,4,8,16,…,b n,…∴b n=2n,a n=2n-1,∴当n≥2时,f n(x)=f(f n-1(x))=答案:7.(2010年陕西卷,理12)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为.解析:观察已知等式13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,归纳可得,13+23+33+43+53+63=(1+2+3+4+5+6)2=212,故应填13+23+33+43+53+63=212.答案:13+23+33+43+53+63=2128.(2010年浙江卷,理14)设n≥2,n∈N,(2x+)n-(3x+)n=a0+a1x+a2x2+…+a n x n,将|a k|(0≤k ≤n)的最小值记为T n,则T2=0,T3=-,T4=0,T5=-,…,T n,…其中T n= .解析:由归纳推理得T n=.答案:此类题目要对所给的已知等式进行观察,分析其结构特征,再进行比较和联想,发现规律,归纳得出结论.演绎推理考向聚焦演绎推理也是高考重点考查的内容,渗透于各种题型的各个问题中,主要以综合题的形式考查演绎推理的基本步骤与严谨性,有时也会出现高难度题,12~14分备考指津在数学研究中,合情推理获得的结论,仅仅是一种猜想,未必可靠,它只能帮助我们猜想和发现结论,由已知条件归纳或类比出的结论,需要再运用演绎推理进行证明.也就是说,合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的.在前提和推理形式都正确的情况下,利用演绎推理证明所得结论是正确的9.(2011年浙江卷,理20)如图,在三棱锥P ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2.(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A MC B为直二面角?若存在,求出AM的长;若不存在,请说明理由.(1)证明:由AB=AC,D是BC的中点,得AD⊥BC.又PO⊥平面ABC,所以PO⊥BC.因为PO∩AD=O,所以BC⊥平面PAD,故BC⊥PA.(2)解:存在.如图,在平面PAB内作BM⊥PA于M,连接CM,PD.由(1)知AP⊥BC,得AP⊥平面BMC.又AP⊂平面APC,所以平面BMC⊥平面APC.在Rt△ADB中,AB2=AD2+BD2=(AO+OD)2+(BC)2=41,得AB=.在Rt△POD中,PD2=PO2+OD2,在Rt△PDB中,PB2=PD2+BD2,所以PB2=PO2+OD2+DB2=36,得PB=6.在Rt△POA中,PA2=AO2+OP2=25,得PA=5.又cos∠BPA==,从而PM=PB·cos∠BPA=2,所以AM=PA-PM=3.综上所述,存在点M符合题意,AM=3.演绎推理的主要形式,就是由大前提、小前提推出结论的三段论式推理,在应用三段论来求解问题时,首先应该明确什么是问题中的大前提和小前提.在演绎推理中,只有前提和推理形式是正确的,结论才是正确的.。
高二数学合情推理与演绎推理试题答案及解析
高二数学合情推理与演绎推理试题答案及解析1.当x∈R+时,可得到不等式x+≥2,x+≥3,由此可推广为x+≥n+1,其中P等于 ( )A、 B、C、 D、【答案】A【解析】∵x∈R+时可得到不等式x+≥2,x+≥3,∴在p位置出现的数恰好是分母的指数的指数次方,∴p=n n,故选A【考点】本题考查了归纳推理点评:解题的关键是理解归纳推理的规律--从所给的特例中总结出规律来,以之解决问题,归纳推理是一个很重要的思维方式,熟练应用归纳推理猜想,可以大大提高发现新问题的效率,解题时善用归纳推理,可以为一题多解指明探究的方向2.用演绎法证明函数是增函数时的小前提是 ( )A.增函数的定义B.函数满足增函数的定义C.若,则D.若,则【答案】B【解析】解:因为用演绎法证明函数是增函数,可以根据函数满足增函数的定义,得到结论。
3.根据给出的数塔猜测123456×9+7=( )1×9+2=1112×9+3=111123×9+4=11111234×9+5=1111112345×9+6=111111……A.1111113B.1111112C.1111111D.1111110【答案】C【解析】解:根据已知的条件1×9+2=1112×9+3=111123×9+4=11111234×9+5=1111112345×9+6=111111,观察归纳猜想可知123456×9+7=1111111 ,选C4.在平面几何中,有射影定理:“在中,, 点在边上的射影为,有.”类比平面几何定理,研究三棱锥的侧面面积与射影面积、底面面积的关系,可以得出的正确结论是:“在三棱锥中,平面,点在底面上的射影为,则有.”【答案】【解析】根据类比的规则,三角形类比三棱锥,边类比成面.所以.5.类比圆的性质“与圆心距离相等的两弦相等,距圆心较近的弦较长”,可得球的性质_【答案】“与球心距离相等的两截面圆面积相等,距球心较近的截面圆面积较大。
归纳与技巧:合情推理与演绎推理(含解析)
归纳与技巧:合情推理与演绎推理基础知识归纳一、合情推理二、演绎推理1.定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.2.特点:演绎推理是由一般到特殊的推理.3.模式:三段论.“三段论”是演绎推理的一般模式,包括:基础题必做1.(教材习题改编)命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B .使用了类比推理C .使用了“三段论”,但推理形式错误D .使用了“三段论”,但小前提错误解析:选C 由条件知使用了三段论,但推理形式是错误的. 2.数列2,5,11,20,x,47,…中的x 等于( ) A .28 B .32 C .33D .27解析:选B 由5-2=3,11-5=6,20-11=9. 则x -20=12,因此x =32.3.(教材习题改编)给出下列三个类比结论. ①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中结论正确的个数是( ) A .0 B .1 C .2D .3解析:选B 只有③正确.4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h113S 2h 2=⎝⎛⎭⎫S 1S 2·h 1h 2=14×12=18.答案:1∶8 5. 观察下列不等式 1+122<32, 1+122+132<53, 1+122+132+142<74 ……照此规律,第五个不等式为___________________________________________________. 解析:观察得出规律,左边为项数个连续自然数平方的倒数和,右边为项数的2倍减1的差除以项数,即1+122+132+142+152+…+1n 2<2n -1n(n ∈N *,n ≥2),所以第五个不等式为1+122+132+142+152+162<116.答案:1+122+132+142+152+162<116解题方法归纳1.合情推理主要包括归纳推理和类比推理,合情推理具有猜测和发现结论,探索和提供思路的作用.合情推理的结论可能为真,也可能为假,结论的正确性有待于进一步的证明.2.应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提、小前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.归纳推理典题导入[例1]已知函数f(x)=xx+2(x>0).如下定义一列函数:f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,f n(x)=f(f n-1(x)),…,n∈N*,那么由归纳推理可得函数f n(x)的解析式是f n(x)=________.[自主解答]依题意得,f1(x)=xx+2,f2(x)=xx+2xx+2+2=x3x+4=x(22-1)x+22,f3(x)=x3x+4x3x+4+2=x7x+8=x(23-1)x+23,…,由此归纳可得f n(x)=x(2n-1)x+2n(x>0).[答案]x(2n-1)x+2n(x>0)解题方法归纳1.归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围.2.归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的.[注意] 归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用.以题试法1. 将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( )13 5 79 11 13 15 1719 21 23 25 27 29 31… … …A .809B .852C .786D .893解析:选A 前20行共有正奇数1+3+5+…+39=202=400个,则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405-1=809.类 比 推 理典题导入[例2] 在平面几何里,有“若△ABC 的三边长分别为a ,b ,c 内切圆半径为r ,则三角形面积为S △ABC =12(a +b +c )r ”,拓展到空间,类比上述结论,“若四面体 ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,则四面体的体积为________________”.[自主解答] 三角形的面积类比为四面体的体积,三角形的边长类比为四面体四个面的面积,内切圆半径类比为内切球的半径.二维图形中12类比为三维图形中的13,得V 四面体ABCD=13(S 1+S 2+S 3+S 4)r . [答案] V 四面体ABCD =13(S 1+S 2+S 3+S 4)r解题方法归纳1.类比推理是由特殊到特殊的推理,命题有其特点和求解规律,可以从以下几个方面考虑类比:类比定义、类比性质、类比方法、类比结构.2.类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).以题试法2.若{a n }是等差数列,m 、n 、p 是互不相等的正整数,则有:(m -n )a p +(n -p )a m +(p -m )a n =0,类比上述性质,相应地,对等比数列{b n },有__________________.解析:设{b n }的首项为b 1,公比为q ,则b m -n p·b n -p m ·b p -mn =(b 1q p -1)m -n ·(b 1q m -1)n -p ·(b 1q n -1)p-m=b 01·q 0=1. 答案:b m -n p·b n -p m ·b p -mn =1演 绎 推 理典题导入[例3] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[自主解答] (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)解题方法归纳演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.以题试法3.如图所示,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,且DE ∥BA .求证:ED =AF (要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).证明:(1)同位角相等,两条直线平行,(大前提) ∠BFD 与∠A 是同位角,且∠BFD =∠A ,(小前提) 所以DF ∥EA .(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提) DE ∥BA 且DF ∥EA ,(小前提)所以四边形AFDE 为平行四边形.(结论) (3)平行四边形的对边相等,(大前提) ED 和AF 为平行四边形的对边,(小前提) 所以ED =AF .(结论) 上面的证明可简略地写成:⎭⎪⎬⎪⎫∠BFD =∠A ⇒DF ∥EA DE ∥BA ⇒四边形AFDE 是平行四边形⇒ED =AF .1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( )A .①B .②C .③D .①和②解析:选B 由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选B. 2. 正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C 因为f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确.3. 在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论;已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( )A.18B.19C.164D.127解析:选D 正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.4. 给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比结论正确的个数为( ) A .1 B .2 C .3D .4解析:选B 类比结论正确的有①②.5.观察如图所示的正方形图案,每条边(包括两个端点)有n (n ≥2,n ∈N *)个圆点,第n 个图案中圆点的总数是S n .按此规律推断出S n 与n 的关系式为( )A .S n =2nB .S n =4nC .S n =2nD .S n =4n -4解析:选D 由n =2,n =3,n =4的图案,推断第n 个图案是这样构成的:各个圆点排成正方形的四条边,每条边上有n 个圆点,则圆点的个数为S n =4n -4.6. 下列推理中属于归纳推理且结论正确的是( )A .设数列{a n }的前n 项和为S n .由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f (x )=x cos x 满足f (-x )=-f (x )对∀ x ∈R 都成立,推断:f (x )=x cos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b2=1(a >b >0)的面积S =πabD .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n 解析:选A 选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =n (1+2n -1)2=n 2,选项D 中的推理属于归纳推理,但结论不正确.因此选A.7. 设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为________.解析:由前四个式子可得,第n 个不等式的左边应当为f (2n ),右边应当为n +22,即可得一般的结论为f (2n )≥n +22.答案:f (2n )≥n +228 观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为________.解析:每行最左侧数分别为1、2、3、…,所以第n 行最左侧的数为n ;每行数的个数分别为1、3、5、…,则第n 行的个数为2n -1.所以第n 行数依次是n 、n +1、n +2、…、3n -2.其和为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)29. 在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是________.解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 21+S 22+S 23=S 24.答案:S 21+S 22+S 23=S 2410.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S =12×底×高;(3)三角形的中位线平行于第三边且等于第三边的12;……请类比上述性质,写出空间中四面体的相关结论. 解:由三角形的性质,可类比得空间四面体的相关性质为: (1)四面体的任意三个面的面积之和大于第四个面的面积; (2)四面体的体积V =13×底面积×高;(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的14.11.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5.(1)求a 18的值;(2)求该数列的前n 项和S n .解:(1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2…),故a 18=3.(2)当n 为偶数时,S n =a 1+a 2+…+a n =(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n ) =2+2+…+2n 2个2+3+3+…+3n 2个3=52n ;当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12.综上所述:S n=⎩⎨⎧52n ,n 为偶数,52n -12,n 为奇数.12.某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值. 解:(1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, …由上式规律,所以得出f (n +1)-f (n )=4n . 因为f (n +1)-f (n )=4n , 所以f (n +1)=f (n )+4n , f (n )=f (n -1)+4(n -1) =f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3) =…=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1. (3)当n ≥2时,1f (n )-1=12n (n -1)=12(1n -1-1n ), ∴1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12⎝⎛⎭⎫1-12+12-13+13-14+…+1n -1-1n=1+12⎝⎛⎭⎫1-1n =32-12n.1. 观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199解析:选C 记a n +b n =f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.2.对于命题:若O 是线段AB 上一点,则有|OB |·OA +|OA |·OB =0.将它类比到平面的情形是:若O 是△ABC 内一点,则有S △OBC ·OA +S △OCA ·OB +S △OBA ·OC =0,将它类比到空间情形应该是:若O 是四面体ABCD 内一点,则有________.解析:将平面中的相关结论类比到空间,通常是将平面中的图形的面积类比为空间中的几何体的体积,因此依题意可知若O 为四面体ABCD 内一点,则有V O -BCD ·OA +V O -ACD ·OB+V O -ABD ·OC +V O -ABC ·OD =0.答案:V O -BCD ·OA +V O -ACD ·OB +V O -ABD ·OC +V O -ABC ·OD =03. 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:(1)sin 213°+cos 217°-sin 13°cos 17°;(2)sin 215°+cos 215°-sin 15°cos 15°;(3)sin 218°+cos 212°-sin 18°cos 12°;(4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°;(5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30° =1-14=34. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34. 证明如下:法一:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α =34sin 2α+34cos 2α =34. 法二:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.1. 观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92解析:选B 由特殊到一般,先分别计算|x |+|y |的值为1,2,3时,对应的(x ,y )的不同整数解的个数,再猜想|x |+|y |=n 时,对应的不同整数解的个数.通过观察可以发现|x |+|y |的值为1,2,3时,对应的(x ,y )的不同整数解的个数为4,8,12,可推出当|x |+|y |=n 时,对应的不同整数解(x ,y )的个数为4n ,所以|x |+|y |=20的不同整数解(x ,y )的个数为80.2. 已知如下等式:3-4=17(32-42), 32-3×4+42=17(33+43), 33-32×4+3×42-43=17(34-44), 34-33×4+32×42-3×43+44=17(35+45), 则由上述等式可归纳得到3n -3n -1×4+3n -2×42-…+(-1)n 4n =________(n ∈N *). 解析:依题意及不完全归纳法得,3n -3n -1×4+3n -2×42-…+(-1)n 4n =17[3n +1-(-4)n +1].答案:17[3n +1-(-4)n +1]。
福建高考数学合情推理与演绎推理考点专项练习(含答案)
福建高考数学合情推理与演绎推理考点专项练习(含答案)则最短交货期为个工作日.8.(2019福建,文16)已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b=2;③c≠0有且只有一个正确,则100a+10b+c等于.9.f(x)=,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.10.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos 17°②sin215°+cos215°-si n 15°cos 15°③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin (-18°)cos 48°;⑤sin2(-25°)+cos255°-sin (-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.能力提升组11.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人B.3人C.4人D.5人12.类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=ax-a-x,C(x)=ax+a-x,其中a>0,且a≠1,下面正确的运算公式是()①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)-C(x)S(y);③2S(x+y)=S(x)C(y)+C(x)S(y);④2S(x-y)=S(x)C(y)-C(x)S(y).A.①②B.③④C.①④D.②③13.已知x(0,+∞),观察下列各式:x+≥2,x+≥3,x+≥4,类比得x+≥n+1(nN*),则a=.14.(2019四川,文15)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sin x时,φ1(x)A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)A”的充要条件是“?bR,?a∈D,f(a)=b”;②若函数f(x)B,则f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)A,g(x)∈B,则f(x)+g(x)?B;④若函数f(x)=aln(x+2)+(x>-2,aR)有最大值,则f(x)B.其中的真命题有.(写出所有真命题的序号)15.如图所示,D,E,F分别是BC,CA,AB上的点,BFD=∠A,且DEBA.求证:ED=AF(要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).16.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f'(x)是函数y=f(x)的导数,f″(x)是f'(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f(x)=x3-x2+3x-,请你根据这一发现,(1)求函数f(x)=x3-x2+3x-的对称中心;(2)计算f+f+f+f+…+f.1.B解析:证明y=x3是增函数时,依据的原理就是增函数的定义,用演绎法证明y=x3是增函数时的大前提:增函数的定义,小前提:函数f(x)=x3满足增函数的定义.结论:函数f(x)=x3是增函数.故选B.2.C解析:由“三段论”的推理方式可知,该推理的错误原因是推理形式错误.3.D解析:利用归纳推理求解.由Sn++2=an=Sn-Sn-1,得=-Sn-1-2(n≥2).又S1=a1=-,所以S2=-,S3=-,S4=-.由归纳推理可得S2 015=-.4.C解析:①是类比推理,②④是归纳推理,③是非合情推理.5.C解析:因为f(2)=,f(4)>2=,f(8)>,f(16)>3=,f(32)>,所以猜想:f(2n)≥.6.8πr3解析:由已知,可得圆的一维测度为二维测度的导函数;球的二维测度是三维测度的导函数.类比上述结论,“超球”的三维测度是四维测度的导函数,即V=W'=(2πr4)'=8πr3.7.42解析:最短交货期为先由徒弟完成原料B的粗加工,共需6天,然后工艺师加工该件工艺品,需21天;徒弟可在这几天中完成原料A的粗加工;最后由工艺师完成原料A的精加工,需15个工作日.故交货期为6+21+15=42个工作日.8.201解析:由题意可知三个关系只有一个正确分为三种情况:(1)当①成立时,则a≠2,b≠2,c=0,此种情况不成立;(2)当②成立时,则a=2,b=2,c=0,此种情况不成立;(3)当③成立时,则a=2,b≠2,c≠0,即a=2,b=0,c=1,所以100a+10b+c=100×2+10×0+1=201.故答案为201.9.解:f(0)+f(1)=同理可得:f(-1)+f(2)=,f(-2)+f(3)=.由此猜想f(x)+f(1-x)=.证明:f(x)+f(1-x)10.解:(1)选择②式,计算如下:sin215°+cos215°-sin 15°cos 15°=1-sin 30°=1-.(2)由上述5个式子的结构特征可知,三角恒等式为sin2α+cos2(30°-α)-s in αcos (30°-α)=.证明如下:(方法一)sin2α+cos2(30°-α)-sin αcos (30°-α)=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin2α+cos2α+sin αcos α+sin2α-sin αcosα-sin2α=sin2α+cos2α=.(方法二)sin2α+cos2(30°-α)-sin αcos (30°-α)=-sin α(cos 30°cos α+sin 30°sin α)sin αcos α-sin2α=(cos 60°cos 2α+sin 60°sin 2α)-sin 2α-(1-cos 2α)=.11.B解析:用A,B,C分别表示优秀、及格和不及格.显然,语文成绩得A的学生最多只有一人,语文成绩得B的也最多只有1人,得C的也最多只有1人,所以这组学生的成绩为(AC),(BB),(CA)满足条件,故学生最多为3人.12.B解析:经验证易知①②错误.依题意,注意到2S(x+y)=2(ax+y-a-x-y),S(x)C(y)+C(x)S(y)=2(ax+y-a-x-y),因此有2S(x+y)=S(x)C(y)+C(x)S(y);同理有2S(x-y)=S(x)C(y)-C(x)S(y).13.nn解析:第一个式子是n=1的情况,此时a=11=1;第二个式子是n=2的情况,此时a=22=4;第三个式子是n=3的情况,此时a=33=27,归纳可知a=nn.14.①③④解析:对于①,若对任意的bR,都?aD使得f(a)=b,则f(x)的值域必为R.反之,f(x)的值域为R,则对任意的bR,都?aD使得f(a)=b,故正确.对于②,比如对f(x)=sin xB,但它无最大值也无最小值. 对于③,f(x)∈A,∴f(x)∈(-∞,+∞).∵g(x)∈B,∴存在正数M使得-M≤g(x)≤M,故f(x)+g(x)(-∞,+∞),∴f(x)+g(x)?B,正确.对于④,-,当a>0或a<0时,aln x(-∞,+∞),f(x)均无最大值,若f(x)有最大值,则a=0,此时f(x)=,f(x)B,故正确.15.证明:(1)同位角相等,两条直线平行,(大前提)BFD与A是同位角,且BFD=∠A,(小前提)则DFEA.(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提) DEBA,且DFEA,(小前提)则四边形AFDE为平行四边形.(结论)(3)平行四边形的对边相等,(大前提)ED和AF为平行四边形的对边,(小前提)则ED=AF.(结论)上面的证明可简略地写成:?四边形AFDE是平行四边形?ED=AF.16.解:(1)f'(x)=x2-x+3,f″(x)=2x-1,由f″(x)=0,即2x-1=0,解得x=.f+3×=1.由题中给出的结论,可知函数f(x)=x3-x2+3x-的对称中心为.(2)由(1),知函数f(x)=x3-x2+3x-的对称中心为, 所以f+f=2,即f(x)+f(1-x)=2.故f+f=2,f+f=2,f+f=2,f+f=2.所以f+f+f+f+…+f×2×2 014=2 014.。
完整版合情推理演绎推理专题练习及答案
合情推理、演绎推理一、考点梳理:(略)命题预测:归纳、类比和演绎推理是高考的热点,归纳与类比推理大多数出现在填空题中,为中、抵挡题,主要考察类比、归纳推理的能力;演绎推理大多出现在解答题中,为中、高档题,在知识的交汇点出命题,考察学生的分析问题,解决问题以及逻辑推理能力。
预测2012年仍然如此,重点考察逻辑推理能力。
三、题型讲解:1:与代数式有关的推理问题a b a b a b ,3a ab b2进而猜想a n b n例1、观察a b3a b 24 a b4a b 3 a a2b ab2 b3例2、观察1=1,1-4=- (1+2), 1-4+9= (1+2+3)1-4+9-16= - (1+2+3+4)…猜想第n 个等式是:_____________________________________________________________________________________________________ 。
练习:观察下列等式:132332, 1323336", 13b 3s才10,…,根据上述规律,第五个.等式为_____________ 。
练习:在计算“ 1 2 2 3 n(n 1) ”时,某同学学到了如下一种方法:先改写第k项:1k(k 1) [k(k 1冰2) (k 1)k(k 1)],由此得31 1 11 2 -(1 2 3 0 1 2),2 3 —(2 3 4 1 2 3),…n(n 1) -[n(n 1)(n 2) (n 1)n(n 1)].3 3 31相加,得1 2 2 3 n(n 1) -n(n 1)(1 2).3类比上述方法,请你计算“ 1 2 3 2 3 4 n(n 1)(n 2) ”,其结果为.2:与三角函数有关的推理问题例1、观察下列等式,猜想一个一般性的结论,并证明结论的真假。
练习:观察下列等式:2① cos2 a =2 cos a — 1 ;② cos 4 a =8 cos 4 a — 8 COS 2 a +1 ;642③ cos 6 a =32 cos a — 48 cos a+ 18 cos a — 1;④ cos 8 a = 128 cos 8a — 256cos 6 a+ 160 cos 4 a — 32 cos 2 a + 1 ;108642⑤ cos 10 a =mcos a — 1280 cos a+ 1120cos a+ nC0S a+ p cos a — 1 ;可以推测,m — n+p=.3:与不等式有关的推理0),若再添加m 克盐(m>o 则盐水就变咸了,试根据这一事实提炼一个不等式 .例2、用锤子以均匀的力敲击铁钉入木板,随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入 木板的钉子长度后一次为前一次的 i (k N ),已知铁钉受击三次后全部进入木板,且第一次受击后进入木k' ' 44,请从这个事实中提炼一个不等式组为7由上可得出一般的结论为: _____________________ 。
高二数学合情推理与演绎推理试题答案及解析
高二数学合情推理与演绎推理试题答案及解析1.观察下列式子:根据以上式子可以猜想:A.B.C.D.【答案】C【解析】由可以发现:每一项不等式右边的分子恰好构成一个以3为首项以2为公差的等差数列,分母恰好构成一个以2为首项以1为公差的等差数列,此项为2013项所以此时右边为.【考点】归纳推理.2.观察下列等式23=3+5,33=7+9+11,43=13+15+17+19,53=21+23+25+27+29,,若类似上面各式方法将m3分拆得到的等式右边最后一个数是131,则正整数m等于_________.【答案】11【解析】由题意可知131是按规律加的第个奇数,因此,解得m=11或m=-12(舍),答案为11.【考点】归纳推理与等差数列的通项公式3.观察分析下表中的数据:多面体面数()顶点数()棱数()569猜想一般凸多面体中,所满足的等式是_________.【答案】【解析】对三棱锥,5+8-9=2,对五棱锥,6+6-10=2,对立方体,6+8-12=2,可归纳得.【考点】归纳推理4.观察下列各式:则______;【答案】123【解析】此题为推断题,观察可发现每一个结果(第三个起)为前面两个结果之和.类此计算可得:123.【考点】观察推断能力.5.观察以下个等式:照以上式子规律:写出第个等式,并猜想第个等式;用数学归纳法证明上述所猜想的第个等式成立.【答案】(1);(2)【解析】(1)根据题目给我们的几个式子易得出结论;(2)先猜想第n个式子为,当n=1,n=k时的式子成立,然后利用规纳总结也成立,即可证明.试题解析:(1)第6个等式为 2分(2)猜想:第个等式为 4分下面用数学归纳法给予证明:①当时,由已知得原式成立; 5分②假设当时,原式成立,即 6分那么,当时,故时,原式也成立 11分由①②知,成立 13分【考点】1,学生对规律的把握2,学生对规纳总结方法的应用.6.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图. 其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以表示第幅图的蜂巢总数,则=_______.【答案】【解析】由题意得:【考点】归纳猜想7.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图. 其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以表示第幅图的蜂巢总数,则=_______。
高三数学合情推理与演绎推理试题
高三数学合情推理与演绎推理试题1.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市.丙说:我们三个去过同一城市.由此可判断乙去过的城市为__________【答案】A【解析】由丙说可知,乙至少去过A,B,C中的一个城市,由甲说可知,甲去过A,C且比乙去过的城市多,故乙只去过一个城市,且没去过C城市,故乙只去过A城市.【考点】推理.2.表示不超过的最大整数,例如:.依此规律,那么()A.B.C.D.【答案】A【解析】解:因为;所以故选A.【考点】合情推理.3. [2014·长春调研]用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n条“金鱼”需要火柴棒的根数为________.【答案】6n+2【解析】由图形间的关系可以看出,第一个图中有8根火柴棒,第二个图中有8+6根火柴棒,第三个图中有8+2×6根火柴棒,以此类推第n个“金鱼”需要火柴棒的根数是8+6(n-1),即6n +2.4.观察等式:,,.照此规律,对于一般的角,有等式 .【答案】【解析】,,,所以.【考点】归纳推理.5.已知,经计算得,,,,观察上述结果,可归纳出的一般结论为 .【答案】【解析】,,,,由归纳推理得,一般结论为,【考点】归纳推理.6.(2013•湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数,正方形数N(n,4)=n2,五边形数,六边形数N(n,6)=2n2﹣n,…可以推测N(n,k)的表达式,由此计算N(10,24)=_________.【答案】1000【解析】原已知式子可化为:,,,,由归纳推理可得,故=1100﹣100=1000故答案为:10007.观察下列事实|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12 ….则|x|+|y|=20的不同整数解(x,y)的个数为()A.76B.80C.86D.92【答案】B【解析】观察可得不同整数解的个数4,8,12,…可以构成一个首项为4,公差为4的等差数列,通项公式为an =4n,则所求为第20项,所以a20=80故选B.8.观察下列各式:则___________.【答案】123【解析】观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即123,故答案为:123.【考点】数列的简单应用、推理与证明.9.在计算“1×2+2×3+...+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:k(k+1)=由此得1×2=...............相加,得1×2+2×3+...+n(n+1).类比上述方法,请你计算“1×2×3×4+2×3×4×+....+”,其结果是_________________.(结果写出关于的一次因式的积的形式)【答案】【解析】先改写第k项:由此得……相加,得.【考点】归纳推理.10.将正偶数、、、、按表的方式进行排列,记表示第行和第列的数,若,则的值为()第列第列第列第列第列第行第行第行第行第行【答案】C【解析】由表所反映的信息来看,第行的最大偶数为,则,由于,解得;另一方面奇数行的最大数位于第列,偶数行最大数位于第列,第行最大数为,此数位于第行第列,因此位于第行第列,所以,,故,选C.【考点】推理11.将正偶数、、、、按表的方式进行排列,记表示第行和第列的数,若,则的值为()第列第列第列第列第列第行第行第行第行第行A. B. C. D.【答案】C【解析】由表所反映的信息来看,第行的最大偶数为,则,由于,解得;另一方面奇数行的最大数位于第列,偶数行最大数位于第列,第行最大数为,此数位于第行第列,因此位于第行第列,所以,,故,选C.【考点】推理12.某公司推出了下表所示的QQ在线等级制度,设等级为级需要的天数为,等级等级图标需要天数等级等级图标需要天数【答案】2700【解析】由表格知,∴.【考点】归纳推理,数列的通项公式.13.已知数列{an }满足a1=2,an+1= (n∈N*),则a3=________,a1.a2.a3 (2007)________.【答案】-,3【解析】(解法1)分别求出a2=-3、a3=-、a4=、a5=2,可以发现a5=a1,且a1·a2·a3·a4=1,故a1·a2·a3·…·a2 007=a2 005·a2 006·a2 007=a1·a2·a3=3.(解法2)由a n +1=,联想到两角和的正切公式,设a 1=2=tanθ,则有a 2=tan,a 3=tan,a 4=tan,a 5=tan(π+θ)=a 1,….则a 1·a 2·a 3·a 4=1,故a 1·a 2·a 3·…·a 2 007=a 2 005·a 2 006·a 2 007=a 1·a 2·a 3=3.14. 下表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为a ij (i≥j,i,j ∈N *),则a 53等于 ,a mn = (m≥3)., ,,… 【答案】【解析】由题意可知第一列首项为,公差d=-=,第二列的首项为,公差d=-=, 所以a 51=+4×=,a 52=+3×=, 所以第5行的公比为q==,所以a 53=a 52q=×=.由题意知a m1=+(m-1)×=, 第m 行的公比q=, 所以a mn =a m1q n-1=×=,m≥3.15. 观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为 . 【答案】13+23+33+43+53+63=212【解析】由13+23=(1+2)2=32;13+23+33=(1+2+3)2=62;13+23+33+43=(1+2+3+4)2=102得,第五个等式为13+23+33+43+53+63=(1+2+3+4+5+6)2=212.16. 某少数民族的刺绣有着悠久的历史,如图(1)(2)(3)(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f(n)个小正方形.(1)求出f(5).(2)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的关系式.【答案】(1)41 (2) f(n)=2n 2-2n+1【解析】(1)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25, ∴f(5)=25+4×4=41. (2)由f(2)-f(1)=4=4×1. f(3)-f(2)=8=4×2, f(4)-f(3)=12=4×3, f(5)-f(4)=16=4×4, …得f(n+1)-f(n)=4n.∴f(2)-f(1)=4×1,f(3)-f(2)=4×2,f(4)-f(3)=4×3,…f(n-1)-f(n-2)=4·(n-2),f(n)-f(n-1)=4·(n-1)∴f(n)-f(1)=4[1+2+…+(n-2)+(n-1)]=2n(n-1),∴f(n)=2n2-2n+1.17.已知…,若(a,t均为正实数),则类比以上等式,可推测a,t的值,a+t= .【答案】35.【解析】照此规律:a=6,t=a2-1=35.【考点】推理证明.18.观察下列等式:;;;……则当且时, .(最后结果用表示).【答案】.【解析】当时,为第一个式子,此时,当时,为第二个式子,此时,当时,为第三个式子,此时,由归纳推理可知观察下列等式:,故答案为:.【考点】归纳推理.,则;类比此性质,如图,在四19.在中,,斜边上的高为h1面体中,若,,两两垂直,底面上的高为,则得到的正确结论为_________________________.【答案】【解析】连接且延长交于点,连,由已知,在直角三角形中,,即,容易知道⊥平面,所以,在直角三角形中,,所以,,故.(也可以由等体积法得到)【考点】1.等面积法应用;2.勾股定理.20.给出下列等式:观察各式:,则依次类推可得;【答案】18【解析】由于,所以【考点】归纳推理点评:做归纳推理的题目,关键是找出里面的规律。
合情推理与演绎推理(分层练习)
合情推理与演绎推理(分层练习)[基础训练]1.[2019全国卷Ⅰ]古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12⎝ ⎛⎭⎪⎫5-12≈0.618,称为黄金分割比例.著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cm答案:B 解析:设某人身高为m cm ,脖子下端至肚脐的长度为n cm ,则由腿长为105 cm ,可得m -105105>5-12≈0.618,解得m >169.890.由头顶至脖子下端的长度为26 cm ,可得26n >5-12≈0.618,得n <42.071.所以头顶到肚脐的长度小于26+42.071=68.071.所以肚脐到足底的长度小于68.0715-12≈68.0710.618≈110.147. 所以此人身高m <68.071+110.147=178.218.综上,此人身高m 满足169.890<m <178.218.所以其身高可能为175 cm.故选B.2.[2020安徽六校教育研究会第一次素质测试]如图,第1个图形由正三角形扩展而成,共12个顶点.第n 个图形由正n +2边形扩展而来,其中n ∈N *,则第n 个图形的顶点个数是( )A .(2n +1)(2n +2)B .3(2n +2)C .2n (5n +1)D .(n +2)(n +3)答案:D 解析:由已知中的图形可以得到:当n =1时,图形的顶点个数为12=3×4,当n =2时,图形的顶点个数为20=4×5,当n =3时,图形的顶点个数为30=5×6,当n =4时,图形的顶点个数为42=6×7,……由此可以推断:第n 个图形的顶点个数为(n +2)(n +3),故选D.3.[2020湖北武汉模拟]演绎推理“因为对数函数y =log a x (a >0且a ≠1)是增函数,而函数y =log 12x 是对数函数,所以y =log 12x 是增函数”所得结论错误的原因是 ( )A .大前提错误B .小前提错误C .推理形式错误D .大前提和小前提都错误答案:A 解析:因为当a >1时,y =log a x 在定义城内单调递增,当0<a <1时,y =log a x 在定义城内单调递减,所以大前提错误.4.[2020河北衡水第十三中学质检]平面内的一条直线将平面分成2部分,两条相交直线将平面分成4部分,三条两两相交且不共点的直线将平面分成7部分,……,则平面内六条两两相交且任意三条不共点的直线将平面分成的部分数为( )A .16B .20C .21D .22答案:D 解析:当由k 条直线增加到k +1条直线时增加k +1个平面,k ∈N *,所以平面内六条两两相交且任意三条不共点的直线将平面分成的部分数为6+5+4+3+2+2=22,故选D.5.给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若f ″(x )有零点x 0,则称点(x 0,f (x 0))为原函数y =f (x )的“拐点”.已知函数f (x )=4x +3sin x -cos x 的拐点是M (x 0,f (x 0)),则点M ( )A .在直线y =-3x 上B .在直线y =3x 上C .在直线y =-4x 上D .在直线y =4x 上答案:D 解析:易知f ′(x )=4+3cos x +sin x ,则f ″(x )=-3sin x +cos x .x 0是f ″(x )的零点,即f ″(x 0)=0,也就是-3sin x 0+cos x 0=0,即3sin x 0-cos x 0=0,所以f (x 0)=4x 0+3sin x 0-cos x 0=4x 0.因此点M (x 0,f (x 0))在直线y =4x 上.故选D.6.[2020江西赣州十四县联考]我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金12,第2关收税金为剩余的13,第3关收税金为剩余的14,第4关收税金为剩余的15,第5关收税金为剩余的16,5关所收税金之和,恰好重1斤,问原本持金多少?”若将“5关所收税金之和,恰好重1斤,问原本持金多少?”改为“假设这个人原本持金为x ,按此规律通过第8关”,则第8关所收税金为________x .答案:172 解析:第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =x 6=x 2×3; 第3关收税金:14⎝ ⎛⎭⎪⎫1-12-16x =x 12=x 3×4; ……第8关收税金:x8×9=x72.7.[2020黑龙江哈尔滨期末]《孙子算经》卷下第二十六题:今有物,不知其数(shù ),三三数(shǔ )之剩二,五五数之剩三,七七数之剩二,问物几何?________.(只写出一个答案即可)答案:23[23+105(n-1),n∈N*均可]解析:由题意,可得物体的个数为3m+2=5n+3=7k+2,m,n,k∈N*,所以物体的个数最少是23.8.[2019吉林长春质检]有甲、乙二人去看望高中数学张老师,期间他们做了一个游戏,张老师的生日是m月n日,张老师把m告诉了甲,把n告诉了乙,然后张老师列出来如下10个日期供选择:2月5日,2月7日,2月9日,5月5日,5月8日,8月4日,8月7日,9月4日,9月6日,9月9日.看完日期后,甲说:“我不知道,但你一定也不知道.”乙听了甲的话后,说:“本来我不知道,但现在我知道了.”甲接着说:“哦,现在我也知道了.”请问,张老师的生日是________.答案:8月4日解析:根据甲说的“我不知道,但你一定也不知道”,可排除5月5日,5月8日,9月4日,9月6日,9月9日;根据乙听了甲的话后说的“本来我不知道,但现在我知道了”,可排除2月7日,8月7日;根据甲接着说的“哦,现在我也知道了”,可以得知张老师生日为8月4日.[强化训练]1.[2020广东佛山模拟]如图,已知△ABC的周长为2,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,依此类推,第2 019个三角形的周长为()A.12 017 B.12 016 C.122 017 D.122 016答案:C解析:由中位线的性质知,第二个三角形的周长为12(|AB|+|BC|+|CA |)=12×2=1,则由归纳推理知每一个小三角形的周长是上一个三角形周长的12,所有三角形的周长构成一个首项为2,公比为12的等比数列,则第2 019个三角形的周长为2×⎝ ⎛⎭⎪⎫122 018=⎝ ⎛⎭⎪⎫122 017=122 017,故选C. 2.[2020山东临沂模拟]已知三角形的三边分别为a ,b ,c ,内切圆的半径为r ,则三角形的面积S =12(a +b +c )·r .四面体的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为R ,类比三角形的面积可得四面体的体积为( )A .V =(S 1+S 2+S 3+S 4)·RB .V =12(S 1+S 2+S 3+S 4)·RC .V =13(S 1+S 2+S 3+S 4)·RD .V =14(S 1+S 2+S 3+S 4)·R答案:C 解析:设四面体的内切球的球心为O ,则球心O 到四面体四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.类比三角形的面积可得四面体的体积V =13(S 1+S 2+S 3+S 4)·R .故选C.3. [2020河南安阳一模]如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,……,以此类推,则标2 0172的格点的坐标为( )A .(1 009,1 008)B .(1 008,1 007)C .(2 017,2 016)D .(2 016,2 015)答案:A 解析:点(1,0)处标1,即12;点(2,1)处标9,即32;点(3,2)处标25,即52;……,由此推断点(n +1,n )处标(2n +1)2,当2n +1=2 017时,n =1 008,故标2 0172的格点的坐标为(1 009,1 008).故选A.4.[2020陕西商洛期末]对于任意的两个实数对(a ,b )和(c ,d ),规定:(a ,b )=(c ,d ),当且仅当a =c ,b =d ;运算“”为:(a ,b )(c ,d )=(ac -bd ,bc +ad );运算“”为:(a ,b )(c ,d )=(a +c ,b +d ),设p ,q ∈R ,若(1,2)(p ,q )=(5,0),则(1,2)(p ,q )=( ) A .(4,0)B .(2,0)C .(0,2)D .(0,-4) 答案:B 解析:由(1,2)(p ,q )=(5,0),得 ⎩⎪⎨⎪⎧ p -2q =5,2p +q =0⇒⎩⎪⎨⎪⎧p =1,q =-2, 所以(1,2)(p ,q )=(1,2)(1,-2)=(2,0).5.[2020河北衡水中学模拟考试]观察下列各式:13=1;23=3+5;33=7+9+11;43=13+15+17+19;…若m 3(m ∈N *)按上述规律展开后,发现等式右边含有“2 017”这个数,则m 的值为________.答案:45 解析:由题意可得第n 个式子的左边是n 3,右边是n 个连续奇数的和,设第n 个式子右边的第一个数为a n ,则有a 2-a 1=3-1=2,a 3-a 2=7-3=4,……,a n -a n -1=2(n -1), 以上(n -1)个式子相加可得a n -a 1=(n -1)[2+2(n -1)]2, 故a n =n 2-n +1,可得a 45=1 981,a 46=2 071,故可知2 017在第45个式子中,故m =45.6.已知△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,则有a =c ·cos B +b ·cos C ;类比上述结论,写出下列条件下的结论:四面体P -ABC 中,△ABC ,△P AB ,△PBC ,△PCA 的面积分别是S ,S 1,S 2,S 3,二面角P -AB -C ,P -BC -A ,P -CA -B 分别记为α,β,γ,则S =________.答案:S 1cos α+S 2cos β+S 3cos γ 解析:平面几何中:在△ABC 中,有a =c ·cos B +b ·cos C .类比这一性质,可以推出:立体几何中:在四面体P -ABC 中,△ABC ,△P AB ,△PBC ,△PCA 的面积分别为S ,S 1,S 2,S 3,二面角P -AB -C ,P -BC -A ,P -CA -B 依次为α,β,γ,则S =S 1cos α+S 2cos β+S 3cos γ.7.设等差数列{a n }的前n 项和为S n ,则S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列.类比以上结论:设等比数列{b n }的前n 项积为T n ,则T 3,________,________,T 12T 9成等比数列.答案:T 6T 3 T 9T 6解析:等比数列{b n }的前n 项积为T n ,则T 3=b 1b 2b 3,T 6=b 1b 2…b 6,T 9=b 1b 2…b 9,T 12=b 1b 2…b 12,所以T 6T 3=b 4b 5b 6,T 9T 6=b 7b 8b 9,T 12T 9=b 10b 11b 12, 所以T 3,T 6T 3,T 9T 6,T 12T 9的公比为q 3, 因此T 3,T 6T 3,T 9T 6,T 12T 9成等比数列. 8.若点P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过点P 0作该椭圆的两条切线,切点分别为P 1,P 2,则切点弦P 1P 2所在直线的方程x 0x a 2+y 0y b 2=1.那么对于双曲线x 2a 2-y 2b 2=1(a >0,b >0),类似地,可以得到一个正确的切点弦方程为________.答案:x 0x a 2-y 0y b 2=1 解析:若点P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过点P 0作该双曲线的两条切线,切点分别为P 1,P 2,则切点弦P 1P 2所在直线的x0x a2-y0yb2=1.方程为。
合情推理(正式版)
你能举出归纳推理 的例子吗?
数学皇冠上璀璨的明珠——哥德巴赫猜想
3+3=6,3+5=8,3+7=10, 5+7=12,3+11=14,3+13=16,
……
6=3+3,8=3+5,10=3+7, 12=5+7,14=3+11,16=3+13, …… 1000=29+971, 1002=139+863, ……
——归纳推理
世界上最长的跨海大桥----杭州湾跨海大桥, 全长36公里,总投资118亿元。 大桥通车后,上海到宁波的距离将缩短120公里。
跨海大桥收费标准调查(100位车主) 收费标准 60元以下 认同者所占比例 14%
60元到80元
80元到100元 100元以上
71%
11% 4%
问1:你能判断全市车主较为接受的收费标准吗? 问2:预测大桥通车时日均车流量能达到5万辆, 你能推断一年的收入吗?
● (1)
●●● (2) ●●●●
● ●
●
● ● ● ●
(3)
●
(5)
探究2
观察下面的“三角阵” 1 1 1 1 2 1 1 3 3 1
……
1.写出接下来的三行. 2.你能从中发现什么规律?
分层作业
1、基础练习:完成课本 P83 A组 1.2.3.4
2.发展提高:若a1 , a 2 R ,则不等式 a1 a 2 a1 a 2 成立, 此不等式能推广吗? 2 2
4 、 1 1 ,1 3 2 ,1 3 5 3 ,
2 2 2
。。。
1 3 5 (2n 1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合情推理、演绎推理一、考点 二、命题预测:归纳、类比和演绎推理是高考的热点,归纳与类比推理大多数出现在填空题中,为中、抵挡题,主要考察类比、归纳推理的能力;演绎推理大多出现在解答题中,为中、高档题,在知识的交汇点出命题,考察学生的分析问题,解决问题以及逻辑推理能力。
预测2012年仍然如此,重点考察逻辑推理能力。
三、题型讲解:1:与代数式有关的推理问题例1、观察()()()()()()223322443223,a b a b a b a b a b a ab ba b a b aa b ab b -=-+-=-++-=-+++进而猜想nn ab -=例2、观察1=1,1-4=-(1+2),1-4+9=(1+2+3),1-4+9-16= -(1+2+3+4)…猜想第n 个等式是: 。
练习:观察下列等式:332123+=,33321236++=,33332123410+++=,…,根据上述规律,第五个...等式..为 。
解析:第i 个等式左边为1到i+1的立方和,右边为1+2+...+(i+1)的平方所以第五个...等式..为333333212345621+++++=。
练习:在计算“1223(1)n n ⨯+⨯+⋅⋅⋅++”时,某同学学到了如下一种方法:先改写第k 项:1(1)[(1)(2)(1)(1)],3k k k k k k k k +=++--+由此得112(123012),3⨯=⨯⨯-⨯⨯123(234123),3⨯=⨯⨯-⨯⨯ (1)(1)[(1)(2)(1)(1)].3n n n n n n n n +=++--+相加,得11223(1)(1)(2).3n n n n n ⨯+⨯+⋅⋅⋅++=++ 类比上述方法,请你计算“123234(1)(2)n n n ⨯⨯+⨯⨯+⋅⋅⋅+++”,其结果为 .答案:1(1)(2)(3)4n n n n +++2:与三角函数有关的推理问题例1、观察下列等式,猜想一个一般性的结论,并证明结论的真假。
2020202020202020202020203sin 30sin 90sin 150,23sin 60sin 120sin 18023sin 45sin 105sin 165,23sin 15sin 75sin 1352++=++=++=++=练习:观察下列等式:① cos2α=2 cos 2α-1;② cos 4α=8 cos 4 α-8 cos 2α+1;③ cos 6α=32 cos 6 α-48 cos 4 α+18 cos 2α-1;④ cos 8α= 128 cos 8α-256cos 6 α+160 cos 4 α-32 cos 2α+1;⑤ cos 10α=mcos 10α-1280 cos 8α+1120cos 6 α+ncos 4 α+p cos 2α-1; 可以推测,m -n+p= . 答案:9623:与不等式有关的推理例1、b 克盐水中,有a 克盐(0>>a b ),若再添加m 克盐(m>0)则盐水就变咸了,试根据这一事实提炼一个不等式 .例2、用锤子以均匀的力敲击铁钉入木板,随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度后一次为前一次的1(),k N k +∈已知铁钉受击三次后全部进入木板,且第一次受击后进入木板部分铁钉长度是钉长的4,7请从这个事实中提炼一个不等式组为 。
答案:244177,4441777k k k ⎧+<⎪⎪⎨⎪++≥⎪⎩ 练习、观察下列式子:213122+<,221151,233++<22211171,2344.............+++<由上可得出一般的结论为: 。
答案:222111211......,23(1)1n n n ++++<++练习、由331441551,,221331441+++>>>+++。
可猜想到一个一般性的结论是: 。
4:与平面向量有关的推理例1、类比平面向量的基本定理:如果21,e e ρρ是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ρ,有且只有一对实数21,λλ使:2211e e a ρρρλλ+=。
写出空间向量基本定理是:练习:类比平面上的三点共线基本定理。
5:与数列有关的推理例1、已知数列}{n a 中,1a =1,当n ≥2时,121n n a a -=+,依次计算数列的后几项,猜想数列的一个通项表达式为: 。
例2、(2008江苏)将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3≥n )从左向右的第3个数为例3、(2010深圳模拟)图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第n 个图形包含()f n 个“福娃迎迎”,则(5)f = ;()(1)f n f n --= .例4、等差数列}{n a 中,若10a = 0则等式121219......................(19,)n n a a a a a a n n N *-+++=+++<∈成立,类比上述性质,相应的,在等比数列中,若101b =,则有等式 。
练习:设等差数列{}n a 前n 项和为n s ,则36396129,,,s s s s s s s ---成等差数列。
类比以上结论:设等比数列{}n b 前n 项积为n T ,则3,T , ,129,T T 成等比数列。
思考题:(1)数列}{n a 是正项等差数列,若nna a a a b nn ++++++++=ΛΛ32132321,则数列}{n b 也为等差数列,类比上述结论,写出正项等比数列}{n c ,若n d = ,则数列}{n d 也为等比数列。
(2)若012,,,n a a a a L成等差数列,则有等式 012012(1)0n n n nn n n C a C a C a C a -+++-=L 成立,类比上述性质,相应地:若 012,,,n b b b b L 成等比数列,则有等式_________成立。
12 3 4 5 6 7 8 9 10 11 12 13 14 15………………6:与立体几何有关的推理例 1、在直角三角形⊿ABC 中,c =090,AC=b,BC=a,则⊿ABC的外接圆的半径r =,运用类比方法,写出空间类似的命题: 。
练习:在直角三角形⊿ABC 中,,AB AC AD BC ⊥⊥于D,求证:222111,ADABAC=+那么在四面体ABCD 中,类比上述结论,你能得到怎样的猜想,并说明理由。
例2、在三角形⊿ABC 中,c=090,则22cos cos 1A B +=,用类比的方法,猜想三棱锥的类似性质,并证明你的猜想。
练习:在平面几何中有命题“正三角形内任意一点到三边距离之和是一个定值”,那么在正四面体中类似的命题是什么?例3、如图,在平面内有面积关系1111..PA B PABS PA PB S PA PB=>>,写出图二中类似的体积关系,并证明你的结论。
7、与解析几何有关的推理例1、已知命题:平面角坐标系 XOY 中,⊿ABC 顶点A (-P,0)和C (P,0),顶点B在椭圆22221(0,x y m n p m n +==f f 上,椭圆的离心率是e,则sin sin 1,sin A C B e+=试将该命题类比到双曲线中,给出一个结论。
练习:圆222(0)x y R R +=f 上任意点(不在x 轴上),与圆上的(,0),(,0)A R B R -连线,PA PB 的斜率PA PB K K 有下面等式成立:1,PA PB K K =-类比该结论,写出椭圆22221(0)xy a b a b+=f f 中对应命题,并证明。
8:其他知识结合的推理例1、观察圆周上n 个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,你由此可以归纳出什么规律?例2、在⊿ABC 中,不等式1119ABCπ++≥成立;在四边形ABCD 中,不等式111116+2A B C D π++≥成立;在五边形ABCDE 中,1111125+3ABCDEπ+++≥成立;试猜想在N 边形中,有怎样的不等式成立?例3规定(1).......(1),!m x x x x m C m --+=,1,x x R m C ∈=是正整数,且这是组合数(,)m n C n m m n ≤是正整数,且的推广。
(1)求515C -的值。
(2)组合数两个性质:11(1);(2)mn m m m m nn n n n C C C C C --+=+=是否都能推广到m x C (,x R m ∈是正整数)的情形?若能推广,写出推广形式并给出证明,若不能,则说明理由。