平均数检验——t检验
t检验
(二)t 检验当总体呈正态分布,如果总体标准差未知,而且样本容量n <30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈t 分布。
t 检验是用t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
t 检验分为单总体t 检验和双总体t 检验。
1.单总体t 检验单总体t 检验是检验一个样本平均数与一已知的总体平均数的差异是否显 著。
当总体分布是正态分布,如总体标准差σ未知且样本容量n <30,那么样本平均数与总体平均数的离差统计量呈t 分布。
检验统计量为:X t μσ-=。
如果样本是属于大样本(n >30)也可写成:X t μσ-=。
在这里,t 为样本平均数与总体平均数的离差统计量; X 为样本平均数; μ为总体平均数; X σ为样本标准差;n 为样本容量。
例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。
问二年级学生的英语成绩是否有显著性进步?检验步骤如下:第一步 建立原假设0H ∶μ=73 第二步 计算t 值79.2731.6317X t μσ--=== 第三步 判断因为,以0.05为显著性水平,119df n =-=,查t 值表,临界值0.05(19) 2.093t =,而样本离差的t =1.63小与临界值2.093。
所以,接受原假设,即进步不显著。
2.双总体t 检验双总体t 检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。
双总体t 检验又分为两种情况,一是相关样本平均数差异的显著性检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。
二是独立样本平均数的显著性检验。
各实验处理组之间毫无相关存在,即为独立样本。
该检验用于检验两组非相关样本被试所获得的数据的差异性。
现以相关检验为例,说明检验方法。
生物统计:t检验
t 检验前面讲了样本平均数抽样分布的问题。
抽样研究的目的是用样本信息来推断总体特征。
所谓统计推断是根据样本和假定模型对总体作出的以概率形式表述的推断,它主要包括假设检验(test of hypothesis )和参数估计(parametric estimation )二个内容。
由一个样本平均数可以对总体平均数作出估计,但样本平均数包含有抽样误差,用包含有抽样误差的样本平均数来推断总体,其结论并不是绝对正确的。
因而要对样本平均数进行统计假设检验。
假设检验又叫显著性检验(test of significance ),是统计学中一个很重要的内容。
显著性检验的方法很多,常用的有t 检验、F 检验和χ2检验等。
尽管这些检验方法的用途及使用条件不同,但其检验的基本原理是相同的。
本章以两个平均数的差异显著性检验为例来阐明显著检验的原理,介绍几种t 检验的方法,然后介绍总体参数的区间估计(interval estimation )。
第一节 显著性检验的基本原理一、显著性检验的意义为了便于理解,我们结合一个具体例子来说明显著性检验的意义。
随机抽测10头长白猪和10头大白猪经产母猪的产仔数,资料如下:长白:11,11,9,12,10,13,13,8,10,13大白:8,11,12,10,9,8,8,9,10,7经计算,得长白猪10头经产母猪产仔平均数1x =11头,标准差S 1=1.76头;大白猪10头经产母猪产仔平均数2x =9.2头,标准差S 2=1.549头。
能否仅凭这两个平均数的差值1x -2x =1.8头,立即得出长白与大白两品种经产母猪产仔数不同的结论呢?统计学认为,这样得出的结论是不可靠的。
这是因为如果我们再分别随机抽测10头长白猪和10头大白猪经产母猪的产仔数,又可得到两个样本资料。
由于抽样误差的随机性,两样本平均数就不一定是11头和9.2头,其差值也不一定是1.8头。
造成这种差异可能有两种原因,一是品种造成的差异,即是长白猪与大白猪本质不同所致,另一可能是试验误差(或抽样误差)。
统计学t检验简介(六)
检验的步骤:
(1)提出假设 H : 38, H1 : 38
(2)计算统计量的值
t
X X
42 38 5.7
3.365
n 1 24 1
(3)确定检验的形式(右尾检验)
(4)统计决断 t 3.365** t230.01 2.500
所以在0.01显著性水平上,拒绝初始假设,接 受备择假设.即:这一届初一学生的自学能力极 其显著地高于上一届.
(4)统计决断
df=20-1=19 t=2.266*> t190.05 2.093
所以在0.05水平上拒绝初始假设,接受备择假设,即该校 初三英语平均分数与全区平均分数有本质区别,或者说, 它不属于平均数为65的总体.
某校上一届初一学生自学能力平均分数 为38,这一届初一24个学生自学能力平均 分数为42,标准差为5.7,假定这一届初一 学生的学习条件与上一届相同,试问这一 届初一学生的自学能力是否高于上一届?
Z
X
63 68 8.6
3.94
确定检验的形式(采用左尾检验) n
46
统计决断
所以在0.01水平上拒
绝 ,接受
,即该校入学考试数学的平均分极其显著地低于全
市的[自平己均总分结数单。侧Z检验的H统3 .计94决** 断 规2H.31则3。 Z] 0.01
Z0.05 1.65
对12名来自城市的学生与14名来自农村的学生进 行心理素质测验,试分析城市学生与农村学生心 理素质有无显著差异。
对12名学生进行培训之后,其培训前后某项心理 测试得分如表5.1所示,试分析该培训是否引起 学生心理变化。
均值比较的概念
第十一章 t 检验
H0: μ=μ0, 即该山区成年男子的平均脉搏数与一般成年男
子脉搏 数相等 H1: μ>μ0, 即该山区成年男子的平均脉搏数高于一般成年 男子脉 搏数 单侧 α=0.05
(2) 选定检验方法,计算检验统计量t值
X 0 74.2 72 t 1.833 S 6 n 25
v n 1 25 1 24 t0.05 24 1.7109
单位:千克
94.5
101
110
103.5
97
88.5
96.5
101
104
116.5
85
89.5
101.5
96
86
80.5
87
93.5
93
102
首先进行假设:H0 :μ1 - μ2 ≤ 8.5
H1 :μ1 - μ2 > 8.5
即平均体重减少不足 8.5千克
即平均体重减少超过 8.5千克
然后计算参加前后体重变化差值,见下表:
(3) 判断结果 t=1.833 > t0.05(24)=1.7109, 拒绝H0,接受H1,差异有统计学意义。 可认为该山区健康成年男子脉搏数高于 一般成年男子脉搏数。
两配对样本 t 检验
配对样本:是指一个样本中的数据与另一个样本中的数据相对应的两 个样本。 例如,医生对药物治疗效果进行检验时,将病情相似的病人分为两组, 其中一组按时服用药物,另一组则不服用药物;我们将一个班级的同 学(同质性较强)随机分为两组,一组采用新教案授课,另一组按原 教案上课,最后通过比较分析新教案是否有利于提高学生成绩。
取 α= 0.05 。
首先进行假设:H0 :μ1 = μ2
H1 : μ 1 ≠ μ 2
第5章t检验
1. 建立检验假设,确定检验水准 H0: σ12= σ 22 两组体重的总体方差相等 H1: σ12≠ σ22 两组体重的总体方差不等 α=0.05 2. 计算检验统计量 已知:n1=12 X1=45.75 S12=17.659 n2=13 X2=36.538 S22=3.269
S1 (较大) 17.659 F 2 5.402 S 2(较小) 3.269
注: P<0.01 差别有高度统计学意义 (P越小,越有理由拒绝H0)。
第三节
配对样本t检验
d 0 d t Sd Sd / n
配对设计主要有以下两种形式:
①同源配对: 同一受试对象处理前后的数据;同一受 试对象两个部位的数据;同一样品用两 种方法(仪器)检验的结果; ②异源配对: 配对的两个受试对象分别接受两种处理 后的数据。
第四节 两独立样本 t 检验 Two independent sample t-test • 又称成组t检验 • 适用于完全随机设计的两样本均数的比 较
将受试对象完全 随机地分配到两 组中
一、总体方差相等时的两独立样本 t 检验
应用条件:1. 两样本所代表的总体服从正态分布
2. 两总体方差具有齐性
s1 s12 17.659 2 sx 1.472 1 n n1 12 1
2 s2 s2 3.269 2 sx 2.179 2 n n2 12 2 2
2
三、完全随机分组两组几何均数比较的t检验
宜用几何平均数表示集中水平的资料,不服从 正态分布,但是测量值的对数值服从正态分布, 如抗体滴度的资料。此时可对lgx进行t检验。
t
' 2 2 S x t (1 ) S x t ( 2 )
第五部分--T检验和F检验
dfSig. (2-taD ileifdfe)rencLeower Upper
19
.000 3.05 1.58 4.52
8
标准差
标准差是用来反映变异程度,当两组观察值在
单位相同、均数相近的情况下,标准差越大,说
明观察值间的变异程度越大。在标准正态分布
曲线下,人们经常用均数加减标准差来计算样
本观察值数量的理论分布, 即: x ±1.96 s表
11
在实际工作中,由于抽取的样本较小,不呈标准正态分布,而 遵从t分布,所以常用t值代替1.96或2.58。可在t值表上查出 不同自由度下不同界值时的t值。可见到自由度越小, t值越 大,当自由度逐渐增大时, t值也逐渐接近1.96或2.58,当自 由度= ∞时, t值就完全被其代替了。所以,我们常用X±t 0.05Sx表示总体均数的95%可信区间,用x±t0.01Sx表示总体 均数的99%可信区间。综上所述,标准差与标准误尽管都是反 映变异程度的指标,但这是两个不同的统计学概念。标准差 描述的是样本中各观察值间的变异程度,而标准误表示每个 样本均数间的变异程度,描述样本均数的抽样误差,即样本均 数与总体均数的接近程度,也可以称为样本均数的标准差。 二者不可混淆。
12
练习题
7岁儿童的平均身高为102,现测得某班12名7岁儿童 身高分别为: 97、99、103、100、104、97、105、110、99、98、 103、99 请问该班儿童身高与平均水平是否存在差异?
13
Analyze / Compare Means/
one-samples T Test
14
One-Sample Statistics
Std. Error N Me Sa td n. DeviatM ioenan 儿 童 身 10 1高 1 2.1667 3.9041 1.512703
平均数、变异数、t检验
s (y y)2 n 1
编辑课件
例 在同一稀释度的9个培养皿中,计算出微生物数量分别为148、
92、115、132、89、108、160、127、86(单位:个)。试 计算其标准差。
编辑课件
表达方法
表格中: Means ±SD
Means (SD)
R=ymax-ymin
特点:有单位,一个值(表述较偏差简单)
编辑课件
例 在同一稀释度的9个培养皿中,计算出微生物数量分别为148、
92、115、132、89、108、160、127、86(单位:个)。试 计算其极差。
编辑课件
第三节 变异数
三、方差
离差平方和
每一个观察值均有一个偏离平均数的度量指标—离均差,但各个离均差的
2 计算方法
G n y1 y2 y3 yn ( y1 y2 y3 yn )1/n
编辑课件
例 在同一稀释度的9个培养皿中,计算出微生物数量分别为148、
92、115、132、89、108、160、127、86(单位:个)。试 计算其几何平均数。
编辑课件
第二章
比较甲、乙两个小组(各5人)某门课成绩 的优劣。
图中: 误差线:正、负、正负
编辑课件
第三节 变异数
五、标准误 Standard error (SE)
编辑课件
第三节 变异数
Adapted from: Jacobs et al. 2005. Relative contribution of initial root and shoot morphology in predicting field performance of hardwood seedlings. New Forests, 30: 235-251.
t检验计算公式
t 检验计算公式:当总体呈正态分布,如果总体标准差未知,而且样本容量n <30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈t 分布。
t 检验是用t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
t 检验分为单总体t 检验和双总体t 检验。
1.单总体t 检验单总体t 检验是检验一个样本平均数与一已知的总体平均数的差异是否显 著。
当总体分布是正态分布,如总体标准差σ未知且样本容量n <30,那么样本平均数与总体平均数的离差统计量呈t 分布。
检验统计量为:X t μσ-=。
如果样本是属于大样本(n >30)也可写成:X t μσ-=。
在这里,t 为样本平均数与总体平均数的离差统计量; X 为样本平均数; μ为总体平均数; X σ为样本标准差;n 为样本容量。
例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。
问二年级学生的英语成绩是否有显著性进步?检验步骤如下:第一步 建立原假设0H ∶μ=73 第二步 计算t 值79.2731.63X t μσ--=== 第三步 判断因为,以0.05为显著性水平,119df n =-=,查t 值表,临界值0.05(19) 2.093t =,而样本离差的t =1.63小与临界值2.093。
所以,接受原假设,即进步不显著。
2.双总体t 检验双总体t 检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。
双总体t 检验又分为两种情况,一是相关样本平均数差异的显著性检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。
二是独立样本平均数的显著性检验。
各实验处理组之间毫无相关存在,即为独立样本。
该检验用于检验两组非相关样本被试所获得的数据的差异性。
现以相关检验为例,说明检验方法。
t检验计算公式
检验计算公式:t 当总体呈正态分布,如果总体标准差未知,而且样本容量<30,那么这时n 一切可能的样本平均数与总体平均数的离差统计量呈分布。
t 检验是用分布理论来推论差异发生的概率,从而比较两个平均数的差异t t 是否显著。
检验分为单总体检验和双总体检验。
t t t 1.单总体检验t 单总体检验是检验一个样本平均数与一已知的总体平均数的差异是否显t 著。
当总体分布是正态分布,如总体标准差未知且样本容量<30,那么样本σn 分布。
检验统计量为:t 。
t =)也可写成:t =在这里,为样本平均数与总体平均数的离差统计量;t 为样本平均数;X 为总体平均数;μ 为样本标准差;X σ 为样本容量。
n 例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。
问二年级学生的英语成绩是否有显著性进步?检验步骤如下:第一步 建立原假设=730H ∶μ第二步 1.63t ===第三步 判断因为,以0.05为显著性水平,,查值表,临界值119df n =-=t ,而样本离差的 1.63小与临界值2.093。
所以,接受原假设,0.05(19) 2.093t =t =即进步不显著。
2.双总体检验t双总体检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。
t 双总体检验又分为两种情况,一是相关样本平均数差异的显著性检验,用于检t 验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。
二是独立样本平均数的显著性检验。
各实验处理组之间毫无相关存在,即为独立样本。
该检验用于检验两组非相关样本被试所获得的数据的差异性。
现以相关检验为例,说明检验方法。
因为独立样本平均数差异的显著性检验完全类似,只不过。
0r =相关样本的t t =在这里,,分别为两样本平均数;1X 2X ,分别为两样本方差;12X σ22X σ 为相关样本的相关系数。
spss均值检验(均数分析单样本t检验独立样本t检验)
在统计学中,我们往往从样本的特性推知随机变量总体的特性。
但由于总体中个体之间存在差异,样本的统计量和总体的参数之间往往会有误差。
因此,均值不相等的样本未必来自不同分布的总体,而均值相等的样本未必来自有相同分布的总体。
也就是说,如何从样本均值的差异推知总体的差异,这就是均值比较的内容。
SPSS提供了均值比较过程,在主菜单栏单击“Analyze”菜单下的“Compare Means”项,该项下有5个过程,如图4-1。
平均数比较Means过程用于统计分组变量的的基本统计量。
这些基本统计量包括:均值(Mean)、标准差(Standard Deviation)、观察量数目(Number of Cases)、方差(Variance)。
Means过程还可以列出方差表和线性检验结果。
[例子]调查了棉铃虫百株卵量在暴雨前后的数量变化,统计暴雨前和暴雨后的统计量,其数据如下:暴雨前 110 115 133 133 128 108 110 110 140 104 160 120 120暴雨后 90 116 101 131 110 88 92 104 126 86 114 88 112该数据保存在“DATA4-1.SAV”文件中。
1)准备分析数据在数据编辑窗口输入分析的数据,如图4-2所示。
或者打开需要分析的数据文件“DATA4-1.SAV”。
图4-2 数据窗口2)启动分析过程在SPSS主菜单中依次选择“Analyze→Compare Means→Means”。
出现对话框如图4-3。
图4-3 Means设置窗口3)设置分析变量从左边的变量列表中选中“百株卵量”变量后,点击变量选择右拉按钮,该变量就进入到因子变量列表“Dependent List:”框里,用户可以从左边变量列表里选择一个或多个变量进行统计。
从左边的变量列表中选中“调查时候”变量,点击“Independent List”框左边的右拉按钮,该变量就进入分组变量“IndependentList”框里,用户可以从左边变量列表里选择一个或多个分组变量。
医学统计学——t检验课件
医学统计学——t检验课件xx年xx月xx日contents •t检验的基本概念•t检验的原理•t检验的步骤•t检验的应用•t检验的注意事项•t检验的实例演示目录01 t检验的基本概念统计假设检验的一种,用于比较两个独立样本的平均数是否有显著差异,或一个样本的平均数与一个已知的参考值之间是否有显著差异。
t检验常用于小样本数据,特别是两个独立样本的比较。
t检验的定义t检验的适用范围适用于小样本数据,特别是两个独立样本的比较;常用于检验一个样本的平均数与一个已知的参考值之间是否有显著差异;可用于二分类变量和等级变量的比较。
两个独立样本来自的总体服从正态分布;两个独立样本来自的总体方差相等;样本数据是随机样本。
t检验的假设条件02 t检验的原理两独立样本t检验适用条件样本应来自正态分布总体,且方差相等。
结果解释根据t值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。
统计假设比较两组独立样本的均值是否存在显著差异,即H0:μ1=μ2与H1:μ1≠μ2。
两配对样本t检验统计假设比较两组配对样本的差值均值是否显著非零,即H0:μ1-μ2=0与H1:μ1-μ2≠0。
适用条件样本应来自正态分布总体,且方差相等。
结果解释根据t值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。
单因素方差分析t检验统计假设比较三组或多组独立样本的均值是否存在显著差异,即H0:μ1=μ2=…=μn与H1:μ1≠μ2≠…≠μn。
适用条件样本应来自正态分布总体,且方差相等。
结果解释根据F值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。
如果P值小于预设显著性水平α,则认为各组均值存在显著差异;否则,认为无显著差异。
03 t检验的步骤明确研究目的明确研究目的是t检验的首要步骤,决定了数据的类型和数量。
数据筛选对数据进行筛选,去除异常值和缺失值,以确保数据的有效性和可靠性。
数据分组根据研究目的,将数据分成两组或以上,以便进行比较和分析。
T检验法
T检验法T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的资料。
T检验是用于小样本(小于30)的两个平均值差异程度的检验方法。
它是用T分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显着。
T检验是为了观测酿酒质量而发明的。
戈斯特在位于都柏林的健力士酿酒厂担任统计学家。
戈特特于1908年在Biometrika上公布T检验,但因其老板认为其为而被迫使用笔名(学生)。
T检验的适用条件:正态分布资料单个样本的t检验目的:比较样本均数所代表的未知总体均数μ和已知总体均数μ。
计算公式:t统计量:自由度:v=n - 1适用条件:(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准误;(3) 样本来自正态或近似正态总体。
[]单个样本的t检验实例分析例1 难产儿出生体重= (大规模调查获得),问相同否一般婴儿出生体重μ解:1.建立假设、确定检验水准αH 0:μ = μ(难产儿与一般婴儿出生体重的总均数相等;H0无效假设,nullhypothesis)(难产儿与一般婴儿出生体重的总均数不等;H1备择假设,alternative hypothesis,)双侧检验,检验水准:α =2.计算检验统计量3.查相应界值表,确定P值,下结论查附表1:/= ,t = ,t < / ,P > ,按α = 水准,不拒绝H0,两者的差别无统计学意义,尚不能认为难产儿平均出生体重与一般婴儿的出生体重不同[]配对样本t检验配对设计:将受试对象的某些重要特征按相近的原则配成对子,目的是消除混杂因素的影响,一对观察对象之间除了处理因素/研究因素之外,其它因素基本齐同,每对中的两个个体随机给予两种处理。
•两种同质对象分别接受两种不同的处理,如性别、年龄、体重、病情程度相同配成对。
•同一受试对象或同一样本的两个部分,分别接受两种不同的处理•自身对比。
医学统计学-t检验
单样本t检验概述
1
定义和用途
单样本t检验是将一个样本的平均值与一个已知的总体平均值进行比较。该方法可用于检测某 一群体的平均数是否与已知平均数有显著差异。
2
计算公式
计算t值的公式为 (样本平均值-总体平均值) / 标准误差。
3
实例分析
例如,医生想检查其患者的平均血压是否与总体平均血压相同。医生可以采取一些患者的随 机抽样,进行平均血压值的估计。利用单样本t检验,医生可以比较患者平均血压和已知的总 体平均数的数量差异。
t检验在药物研发中的应用
1 疗效检验
t检验在药物研发中被广泛用于检验不同药物、不同剂量和不同给药方式的疗效。
2 药物毒性检测
t检验可用于检测药物给药对器官功能和生理指标的影响和损伤。
3 剂量选定
t检验可用于评估药物的安全性和有效性,并确定剂量的选择。
t检验在生物医学研究中的应用
基础研究
t检验在生物医学基础研究中应用 广泛,可用于比较不同基因型、 不同表观遗传信息和不同环境因 素对生物体的影响。
t检验和方差分析
方差分析
方差分析是一种用于比较三个或 更多群体之间差异的方法。它可 以用于比较顺序数据、类别数据 和等间隔数据。
t检验和方差分析的不同
t检验是用于比较两个群体之间差 异的方法,适用于均值分布差异 较小、样本较小的数据。而方差 分析适合适用于比较多个群体之 间差异的情况、以及数据间的交 互作用。
配对t检验概述
1 定义和用途
配对t检验是用于比较同一组受试者在两个不同时间点或两种不同条件下的差异。
2 计算公式
计算配对t值需用到每个块对的平均值和标准差。平均值差值除以标准误差的公式表示 t值。
t检验-医学统计学
或采用随机分组得到的样本。
(一)t 检验 (t-test)
目的:推断两样本均数分别代表的总体
均数μ1 与μ2 有无差别 适用条件 :
• • •
随机抽样的小样本( 两样本来自正态总体
未知) )
两样本的总体方差齐同(
注:
正态分布的经验判断方法
若
可怀疑该资料呈偏态分布 可认为资料呈偏态分布 否则可认为近似正态
⑵
选定检验方法,计算检验统计量 根据题目资料类型,可见,该资料是样本
与总体之间的比较,且为大样本,可用样本-总
体的Z检验。依公式计算检验统计量:
x 0 x 0 z sx s/ n 144.9 130 5.999 35.82 / 208
⑶ 确定P值,作出推断结论
Z=5.999>1.96,P<0.001, 拒绝H0,接受H1 差异有统计
Z检验:是一般用于大样本(即样本容量大于
30)平均值差异性检验的方法。它是用标准 正态分布的理论来推断差异发生的概率,从 而比较两个平均数的差异是否显著。在国内 也被称作u检验。
应用类型:
样本均数与总体均数的比较 配对t 检验 成组设计两样本均数的比较
一、样本均数与总体均数的比较
( One-sample test )
相关与回归
t检验和z检验
⑴ 总体标准差
σ 未知;
t 检验的应用条件:
⑵ 样本含量n 较小(n <100) ;
⑶ 样本来自正态总体; ⑷ 两样本均数比较时方差齐, 即
2 σ12 = σ 2
(1)样本含量n 较大( n≥100)
z 检验应用条件:
(2) n 虽小但总体标准差 (不常见)。
σ
实验六——平均数分析与T检验
5.1.2 假设检验的基本思想
•
5.1.3 假设检验的基本步骤
依据假设检验的基本思想,假设检验可以总结 成为以下四大基本步骤: 第一,提出原假设(记为H0)。 • 即根据推断检验的目的,对待推断的总体参 数或分布提出一个基本假设。 第二,选择检验统计量。 • 在假设检验中,样本值(或更极端值)发生 的概率并不直接由样本数据得到,而是通过计算检 验统计量观测值发生的概率而间接得到。这些检验 统计量服从或近似服从某种已知的理论分布。对于 不同的假设检验问题以及不同的总体条件,会有不 同的选择检验统计量的理论、方法和策略。
定义两总体的标识值
框中输入一个数字,大于 等于该值的对应一个总体 ,小于该值的对应另一个 总体
•
本市户口和外地户口的家庭人均住房面积的样 本平均值有一定的差距。
结论
• • •
分析结论应通过两步完成: 第一步,两总体方差是否相等的F检验。 该检验的F统计量的观察值为65.469,对应 的概率P-为0.00。如果显著性水平a为0.05,由 于概率P-小于0.05,可以认为两总体的方差有显 著差异。 • 第二步,两总体均值的检验。 • t统计量的观测值为-3.369,对应的双尾概率 P-值为0.001.如果显著性水平a为0.05,由于概 率P-小于0.05,因此认为两总体的均值有显著地 差异,及本市户口的家庭人均住房面积的平均值存 在显著差异。
统计方法
描述统计
推断统计
估计
假设检验
参数检验
非参数检验
• 假设检验的基本思路是首先对总体参数提出假设,
然后再利用样本告之的信息去验证先前提出的假设 是否成立。 • 如果样本数据不能够充分证明和支持假设, 则在一定的条件下,应拒绝假设;相反,如果样本 数据不能够充分证明和支持假设是不成立的,则不 能推翻假设成立的合理性和真实性。 • 上述假设检验推断过程所依据的基本信念是 小概率原理,即发生概率很小的随机事件,在某一 次特定的实验中是几乎不可能发生的。
t检验
▲计算公式:
t 统计量: 自由度:n - 1
X 0 t s n
▲ 适用条件:
(1) 已知一个总体均数;
(2) 可得到一个样本均数及该样本 标准误; (3) 样本来自正态或近似正态总体。
例1
• 通过以往大量资料得知某地20岁男子 平均身高为168cm,今随机测量当地16 名20岁男子,得其平均身高172cm,标 准差14cm。问当地现在20岁男子平均 身高是否高于以往?
(3) 确定P值,作出统计推断 查附表3,t界值表,得0.20>P>0.10,按=0.05 水准不拒绝H0 ,尚不能认为两种方法检查的结果不同。
三、两独立样本t检验
▲目的:由两个样本均数的差别推断两样本所代表 的总体均数间有无差别。
▲计算公式及意义:
X1 X 2 t sX 1 X 2
自由度:n1 + n2 –2
这两个平均数很有可能不同。
但能不能据此直接推断两地同性别、同
年龄小学生的平均体重不等?或者说这两个
样本所来自的总体不相同?
此类问题涉及两样本均数的比较。
▲ 适用条件: (1)已知/可计算两个样本均数及它们的标准差 ; (2)样本来自正态或近似正态总体;
2 (3)方差齐 12 2 。
例7-4 为了解内毒素对肌酐的影响,将20只雌性中 年大鼠随机分为甲、乙两组,给不同的处理,结果 如下,问内毒素对肌酐有影响?
按 0.05水准,不拒绝H0,不能认 为两法测定尿铅结果有差别
输入数据
Excel进行t检验步骤(一)
Excel进行t检验步骤(二)
“工具” 验” “数据分析”
“t检
这里假设无效假 设Ho成立,即两 品种无差异,二者 来自同一总体,则 为“双样本等方差 假设”。
t-检验是检验2个平均数之间是否存在显著差异的一种统计...
图1 单个样本均数t-检验的 数据输入格式
3
1.2 操作步骤
打开“数据分 析”对话框
选定“描述统 计”分析工具
输入区域中输入数 据所在区域
分组方式选 定“逐列”
单击“确定”
选定汇总统计和平 均数置信度为95%
选择输出区 域
图2 “描述统计” 对话框
4
1.3 结果分析
表1 描述统计结果
实验三 t-检验
t-检验是检验2个平均数之间是否存在显著差异的一种统计假设检验方法 ■ 单个样本均数的t-检验 检验样本所属总体的总体平均数是否等于某一特定总体的总体平均数 ■ 两个样本均数差异的t-检验 根据两个样本平均数间的差值来推断这两个样本所属总体是否有显著差异
◆ 非配对数据t-检验 ◆ 配对数据t-检验
平均
131.8
标准误差
4.404038551
中位数
132.5
众数
#N/A
标准差
ቤተ መጻሕፍቲ ባይዱ
13.92679272
方差
193.9555556
峰度
2.117547046
偏度
-0.424740484
区域
54
最小值
103
最大值
157
求和
1318
观测数
10
置信度(95.0%) 9.962627332
总体平均数的置信区间: 样本平均数±置信度
6
2.1 数据输入
图3 非配对资料t-检验数据输入格式
7
2.2 操作步骤
图4 非配对资料t-检验对话框
8
2.3 结果分析
表3 非配对资料t-检验输出结果
P>0.05 差异不显著 说明两个品种猪产仔 数差异不显著。
生物统计第5章t检验
t分布
t分布是统计学中另一种重要的概率分布,主要用于描述小样本数据的分布情况。与正态分布不同,t分布的形状取决于自由度 (degrees of freedom),当自由度越大时,t分布越接近正态分布。
根据p值判断两种药物治疗前后血压变化的差异是 否显著。如果p值小于显著性水平(如0.05),则 认为两种药物治疗效果存在显著差异。
06
t检验的注意事项
数据正态性的判断
判断数据是否符合正态分布
在进行t检验之前,需要判断数据是否符合正态分布。可以通过图形展示、统计学检验 等方法进行判断。
若数据不符合正态分布,考虑非参数检验
实例分析
假设有一项研究比较了两种不同药物治疗某疾病 的效果,其中每种药物各治疗了20名患者。在治 疗前后分别测量了患者的血压水平,现在需要比 较两种药物治疗前后血压变化的差异是否显著。
然后,使用配对样本t检验公式计算t统计量,并 根据自由度确定临界值。
首先,收集数据并整理,得到每种药物治疗前后 血压的平均值和标准差。
正态分布具有两个特点:一是曲线下的面积为1,表示随机变量 取值在一定范围内的概率;二是曲线关于其均值对称,即随机 变量取值离均值越近,取值概率越大。
平均值和标准差
平均值是一组数据之和除以数据的个 数,用于描述数据的中心位置。标准 差是一组数据与平均值之差的平方和 的平均值的平方根,用于描述数据的 离散程度。
t检验的前提条件和局限性
t检验的前提条件
除了数据需要符合正态分布和方差齐性外, 还需要满足独立性和随机性等前提条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用从一份有30个题目的试卷中获得的数 据,对接受案例法教学的学生和控制组的 学生的学习成绩做了独立样本t检验。恰如 假设的那样,接受案例法教学的学生的学 业成绩(M=83.23, SD=10.29)与控制组 学生的学习成绩(M=76.76, SD=12.43) 有显著差异,t(134)=2.34, p<0.01。
第六讲 平均数检验——t检验
零(原)假设和研究假设
• 零假设:起点假设,它表明,变量之间的 无关、无差异的陈述是零假设的基本内容。
• 研究假设:表明变量之间有关系、有影响 的陈述。
• 除非你有足够的把握证明存在关系、存在 差异,否则你只能假定没有差异,只能接 受零假设。
统计推断原理的简单复习
显著性的含义
一个例子有助于大家理解显著性水平
• 一个赌徒拿出一枚硬币给你,并告诉你这 枚硬币是真的(与平常的硬币没有差异), 有个数学家告诉你,你可以通过掷硬币的 方式来检验这枚硬币的真假。
• 数学家的方法是这样的:你将这枚硬币抛 掷十次,记录正反面的次数,根据正面朝 上的概率结果,就可以做出决策了,即, 这枚硬币究竟是真还是假了。
• 显著性(significance)就是犯第一类错误的概率 水平,通常设为0.05、0.01或0.001。
• 第一类错误就是:零假设为真,但我们却拒绝 了零假设,而接受了研究假设。
• 如果研究者把显著性水平定得非常低,则犯第 一类错误的可能性就越小。
• 一旦达到了显著性水平,研究者就能有比较大 的把握下如下的结论:差异的产生不是由于随 机的或偶然的原因,而是确实存在着本质上的 差异和不同(即偶然性之外的因素所导致)。
三个因变量的测量
• 字母识别:要求学生指出并念出字母表中的 每一个字母,得分就是所识别对的字母个数;
• 单词识别:要求学生指出并念出一组单词中 的每一个字母,得分就是所识别对的字母个 数;
• 行为表现:编制了一套由8个项目组成的行为 量表,内容涉及“集中注意能力”、“按指 令做事能力”等,用李克特5级记分,分数越 高,代表在校行为越好。
达到了显著性水平。因此,出现这几种情况,我们就应当做出决策 了,这枚硬币不是与正常硬币没有差异的,而是一枚假币。
小结
• 显著性水平通常是由研究者自己设定的, 根据自己的情况来作出判断,但通常不会 大于0.05。
• 一旦p值小于你设定的显著性水平,如 p<0.05,此时就需要拒绝零假设,接受研究 假设了。也即,群体间的差异不是由偶然 或随机因素导致的(这是零假设的论点), 而是由偶然因素之外的因素所导致的(研 究变量)。
相关的概率列表
正面次数
0 1 2 3 4 5 6 7 8 9 10
概率
0.00 0.01 0.04 0.12 0.21 0.25 0.21 0.12 0.04 0.01 0.00
若我们以0.05为显著性水平,则根据双尾的分布情况,可以清楚地 看到,正面次数出现0、1、9、10的几种情况的概率之和为0.02,
独立样本t检验的核心知识要点
• 当出现下列情况时,就需要进行独立样本t 检验了:
1、研究两个群体之间的差异; 2、每一个参与者只被测试一次; 3、对这两个群体之间的平均数的差异进行统
计; 4、因变量必须是连续变量(定距水平以上的
变量)。
如何计算均值间的差异及其检验
• 案例一:公立中学与私立中学的学生对学校基 础设施的满意度差异。
• 在第四讲的末尾处,我们曾经提到这样一个问 题:公立中学的学生与私立中学的学生相比, 在“对学校基础设施的满意度”上,是否存在 着差异呢?
• 我们分别计算了这两个群体在这个变量上的平 均满意度,并随后得除了如下的结论:私立中 学的学生对学校的基础设施的平均满意度要高, 即,3.09>2.73。
案例三:五、六月份出生的学生与前一 年七、八月份出生的学生的学习差异
• 有时候,更加复杂的平均数检验会以表格 形式呈现,这在期刊论文中是十分常见的。
• 下表比较了同一班级内年龄最小的学生 (入学截止出生日期6月30日以前的孩子) 是否比班级里年龄最大的学生(出生在前 一年七、八月份的学生)更易表现出行为 异常问题和较差识字能力问题。
案例二:传统讲授法与案例法对大学生 《心理学引论》课学习效果的影响
• Mayo(2002)对案例法和更传统的讲授法对心 理学引论课的教学效果做了比较,用课程成 绩作为教学效果的量度。请看这篇文章在其 结果部分是如何表述t检验的结果的(见: 《Case-based Instruction:A Technique for Increasing Conceptual Application in Introductory Psychology》,in:<Journal of Constructivist Psychology>,2002(15))
• 但是,尽管有差异,但这个差异是否足够 大,大到我们有把握说这个差异不是随机 导致的,而是两个群体所身处的不同学校 而产生的?
• 描述性统计无法解决决策的问题、推断的 问题(即能否判断两个变量之间的关系), 而t检验作为推断性统计,能从显著性的水 平给出判断。
• 通过SPSS的“独立样本的t检验”统计技术, 我们得到:t=-3.886, p<0.001。
• 现在的问题是:这个结果说明了什么?
这个结果意味着
• 公立中学和私立中学这两个完全独立群体 的学生,在“对学校基础设施的满意度” 上,差异非常大(t值是描述两个样本差异 的统计量),私立中学学生的满意度要显 著地高于公立中学的学生。p<0.001,意味 着犯第一类错误的概率是非常小的,研究 者有高于99%的把握认为,这两个群体之间 的差异就是因为他们所处的学校不同而导 致的。
t检验的基本内涵
• t检验是对个平均数的差异情况进行的一种 统计推断。它的基本统计逻辑是:两个平均 数之间是否有差异,并且差异大到了在统计 学上我们有把握认为这不是由于随机因素所 导致的,而是由于干预因素所导致的。
• 有两种类型t检验,一是独立样本t检验,另 一是相关样本t检验。
独立样本t检验的几个研究案例