核磁共振成像PPT演示课件

合集下载

第四章 核磁共振成像技术ppt课件

第四章 核磁共振成像技术ppt课件
∵S1→S2
S1PPRS2PRP S1P1 R1P1 S2P2 R2P2
∴R1P1=R2P2 且P1、P2在胶片中心位置不 变 ∴R点的影像即R1R2位置也 不变,即可获得清晰的断 层图像。
1、 NMR现象的发现(属于原子核物理研究范畴)
1945年12月,哈佛大学的 Purcell和他的小组, 在石蜡样品中观察到质子的核磁共振吸收信号
不仅为MRI奠定了基础,而且鼓舞了这一 领域的学者。
1988年Damadian和Lauterbur获美国最高科 技奖(总统奖)。
Lauterbur和英国Mansfield共同获2003年 Nobel医学及生理学奖。
2003 Nobel Prize in Physiology or Medicine
(2)奇偶核:质子数是奇数,中子数是偶数;或 质子数是偶数,中子数是奇数的核,自旋量子数 I=1/2,3/2,5/2…等半整数;
(3)奇奇核:质子数是奇数,中子数也为奇数的 核,I=1,2,3…等正常数。
只有自旋量子数 I 0 的原子核要进行自旋运动,原 子核的自旋运动用自旋角动量L描述,L的方向与自旋 轴重合。
原子核的一般特性 核中的质子数核的电荷; 核中的质子数目(Z)+中子数(N)核的质量(A)
2、核素
Z、N相同且有相同能量状态的一类原子核称为核素; 或Z、A相同且有相同能量状态的一类原子核称为核素;
4.1.2 原子核的电荷
原子核带正电荷,其电荷量Q=Ze 即核中的质子数核的电荷;
4.1.3 原子核的质量
RF信号包含人体内组织空间的定位信息, MR图像就是一个显示来自人体层面内每个体 素RF信号强度大小的象素陈列。图像象素的亮 度取决于相应体素所发射的RF信号的强度,而 RF的强度又取决于组织的性质。

核磁共振成像原理ppt课件

核磁共振成像原理ppt课件
•对磁共振而言,检测的生物体信息是磁共振信号
加快磁共振成像时间的途径
回波平面序列
•使成像时间由常规的扫描序列的秒级提高到了亚秒 级;30ms之内采集一幅完整的图像,使每秒获取的图 像达到20幅 ; •心脏电影 成为可能并进入临床; •从原理上讲,EPI应归属于GRE类序列,但现在已自 成体系了 ; •分为梯度回波EPI 和自旋回波EPI ; •梯度的转换速度要达到今天常规梯度的4倍,梯度的 幅值也需提出1倍。这样的梯度就是前面所说的振荡 梯度,而振荡梯度的代价是高昂的。
50
9.3
驰豫过程的综合表示(三种运动的综 合过程)
磁化矢量的进 动
纵向磁化的逐 渐增大过程
横向磁化的逐 渐减小过程
磁共振信号的获取与傅立叶变换
• 如果在垂直于XY平面,加一个接收线圈, 会接收到什么信号?
FID
补充说明3点
•组织的弛豫时间是组织的一种固有属性,与 组织的密度类似,在场强和环境确定后其时 间是一个确定不变的值;
14N 1
3.08
99.63 10mM
19F 1/2 40.05
100
10mM
23Na 3/2 11.26
100
80mM
31P 1/2 39K 3/2
17.23 1.99
100
10mM
93.1 45mM
相對靈敏 度
1
3×10-3 2×10-7 9×10-5 1×10-3 4×10-5 1×10-4
• 如果此时去掉RF脉冲,质子将会恢复到 原来状态,当然恢复有一个时间过程, 这个过程就叫弛豫过程。
横向弛豫过程t2弛豫过程用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感a射频结束瞬间纵向磁化为零横向磁化最大b反平行质子释放能量跃迁回平衡态纵向磁化逐渐增大c最后回归原始状态纵向磁化恢复到最大用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感a射频结束瞬间横向磁化达到最大进动相位一致bc内部小磁场的不均匀性使得进动相位分散横向磁化矢量逐渐减小用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感纵向恢复时间t1是由于被激发的反平行于静磁场的质子恢复到平行状态所以纵向磁化增大

MRPPT课件

MRPPT课件

脑出血病例(急性期)
❖ 女性,57岁。 主诉:头晕,突然出现左侧上下肢麻木,运 动失灵一天。 现病史:昨天下午4时左右病人在休息时突然 感觉头晕,左侧上下肢运动不利,言语及神 志清,无恶心、呕 吐,查体合作,平时体健。 既往史:无肝炎、结核等传染病史;数年前 左眼不明原因失明
有以下情况的患者,需慎行此项检查:1.体内外金属 异物如带有心脏起搏器、神经刺激器、胰岛素泵、 人工心脏瓣膜、动脉瘤夹、人工耳蜗、金属假肢、 金属关节、等电子设备或铁磁性植入物的患者。 眼内或体内其他位置金属异物者。 2、带有金属避孕环妇女不能做盆腔、腰椎检 查;3.新生儿、婴幼儿、昏迷、神志不清、精神 异常、易发癫痫或心跳骤停者、严重外伤、幽闭
症患者及不配合的患者。4.妊娠期妇女,
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
47
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
讲师:XXXXXX XX年XX月XX日
管的成像。
中枢神经系统
急性脑梗塞
T2加权像
T1加权像
3D-TOF MRA
脊髓炎
脊柱
颈椎间盘突出
❖ 不同方向的成像、和软组织的高分辨率
腹部
MRCP
盆腔
子宫肌瘤
盆腔前列腺
关节
❖ 关节韧带、半月板,肌腱的损伤及退行性病 变
膝关节
膝关节后交叉韧带断裂
T2WI与T1WI成像
核磁共振成像(MRI)是稍晚于CT问 世的断面成像技术
❖ 磁共振成像(MRI),又称核磁共振成像 (NMR),是一种新的、非创伤性的成像方 法,它不用电离辐射而可以显示出人体内部 解剖结构。

磁共振成像基本原理PPT课件

磁共振成像基本原理PPT课件

射频脉冲与磁化矢量
射频脉冲
向样品发射特定频率的射频脉冲,使磁化矢量发生旋 转。
磁化矢量旋转
射频脉冲使磁化矢量从一个静息态旋转到另一态,产 生能量变化。
信号的产生
磁化矢量回到静息态时释放能量,被探测器接收并转 换为可测信号。
信号的接收与处理
接收线圈
环绕在样品周围的接收线圈用于接收磁共振信号。
信号处理
超高场强磁共振成像
超高场强磁共振成像技术使用大于或等于7 特斯拉(T)的磁场进行成像。超高场强设 备在图像质量和分辨率方面具有显著优势, 能够提供更深入的生理和病理信息,有助于 疾病的早期诊断和精准治疗。
功能与分子影像学在技术利用磁场变化 来研究大脑和其他器官的功能活动。通过测 量血液氧合状态的变化,fMRI可以揭示大脑 在执行特定任务时的活动模式。此外,fMRI 还可以用于研究其他器官的功能和疾病进程。
射频电磁场安全
射频电磁场是磁共振成像过程中产生的另一种能量形式, 需要确保其强度符合国际和国家安全标准,避免对患者的 健康造成潜在影响。
热安全
在磁共振成像过程中,设备会向人体发射射频脉冲,这些 脉冲会产生热量。因此,需要监测和限制患者的体温升高, 确保热安全。
磁共振成像质量控制
01
图像分辨率
图像分辨率是磁共振成像质量的重要指标之一。为了获得高质量的图像,
参数优化
根据不同的扫描目标和需求,优化扫描序列中的参数,如磁场强度、射频脉冲的频率和持续时间等,以提高图像 质量和分辨率。
04
磁共振成像设备
磁体系统
01
02
03
磁体类型
超导磁体、永磁磁体和常 导磁体等。
磁场强度
磁场强度决定了成像质量, 通常在0.5-3.0特斯拉之间。

核磁共振成像PPT课件

核磁共振成像PPT课件

人体危害
由于射频线圈的电流所致的电阻率丧失,组 织中可产生热量,高场强的MRI扫描机比低 场强者更有可能产生能被测到的体温升高。
尽管证明没有危害,但对那些散热功能障碍 的病人,高热的病人,必须谨慎处理,防止 产生过多的热量,特别是在热而又潮湿的环 境下更应注意
25
人体危害
磁共振检查时,要把人体置于强大的 外加静磁场和变化着的梯度磁场内
22
03 MRI检查注意事项
人体危害
目前,经过各国医药工业管理部门批准生产的MR 成像仪都是安全的,均证明对人体没有不良作用
六类人群不适宜进行核磁共振检查
安装心脏起搏器的人 有或疑有眼球内金属异物的人 动脉瘤银夹结扎术的人 体内金属异物存留或金属假体的人 有生命危险的危重病人 幽闭恐惧症患者等
24
13 24
属无创伤 无射线检查
成像参数多 信息量大
13
MRI检查的限制
01 体内有金属异物,尤其被 检部位有磁铁性金属异物
02 重危病人需要生命监护 系统和生命维持系统者 扫描时间较长,噪声大。严
03 重不合作者,精神病患者, 危重病人,幽闭恐惧症患者
04 妊娠病人,尤其妊娠3个月内 急诊(脊髓损伤除外)
11
发展前景
快速成像技术
MR扫描时间过长和人体的生理运动之 间的矛盾仍是目前MR成像诊断中的一 大问题。如果屏气一次或数次即可完 成图像采集的话,那么胸部和腹部的 成像质量就能改善。工程技术人员在 这方面进行了很多研究并且仍在不断 改进完善中
12
MRI优点
具有较高 的分辨率 具有任意方向直 接切层的能力
进入扫描室前勿穿戴任何金属 物品如手表、发夹、眼镜、活 动假牙等,女性带有金属节育 环时,检查前一周取出节育环

磁共振 ppt课件

磁共振 ppt课件
化学交换饱和转移成像(Chemical Exchange Saturation Transfer,CEST):通过测量化学交换过程中产生的磁共振 信号来反映组织内的特定代谢物浓度,常用于神经退行性疾 病和肿瘤的研究。
05 磁共振的优势与局限性
优势
无电离辐射
磁共振成像技术利用磁场和射频脉冲,而 不是X射线,因此没有电离辐射,对病人
磁场均匀度
为了保证检测结果的准确性,磁体 系统需要提供高均匀度的磁场环境 。
射频系统
发射器
射频系统中的发射器负责 产生高频电磁波,用于激 发人体内的氢原子核。
接收器
接收器负责接收氢原子核 返回的信号,并将其转换 为可供计算机系统处理的 电信号。
射频线圈
射频线圈是发射和接收电 磁波的重要部件,其设计 和性能对信号质量和成像 质量有重要影响。
研究和发展分子成像技术,实现从分子水平上对疾病进行早期诊断 和疗效评估。
THANKS FOR WATCHING
感谢您的观看
磁共振的发展历程
1946年,美国科学家Bloch和Purcell 共同获得了诺贝尔物理学奖,因为他 们发现了核磁共振现象。
1977年,美国科学家Mansfield和 Maudsley开发出了基于快速扫描的 磁共振成像技术,大大缩短了成像时 间。
1971年,美国科学家Damadian发明 了第一台核磁共振成像仪,并获得了 专利。
无害。
高软组织分辨率
磁共振成像能够清晰地显示软组织结构, 对于脑、关节、肌肉等部位的病变诊断具
有优势。
多参数成像
磁共振成像可以获取多种参数,如T1、T2 、质子密度等,从而提供丰富的诊断信息 。
功能成像
除了结构成像外,磁共振还可以进行功能 成像,如灌注成像和弥散成像,有助于疾 病的早期诊断和预后评估。

磁共振成像(MRI)解剖PPT课件

磁共振成像(MRI)解剖PPT课件
局限性
检查费用较高、检查时间长、对 金属植入物敏感、部分患者不适 宜进行检查等。
02 MRI解剖学基础
头部MRI解剖
脑干与小脑
脑室与脑池
展示脑干和小脑的MRI图像,解释其 结构与功能。
介绍脑室和脑池的MRI表现,阐述其 临床意义。
脑皮质与髓质
通过MRI图像展示脑皮质和髓质的解 剖特点,解释其在神经系统中的作用。
信号产生与接收
通过施加射频脉冲,使原子核发生 能级跃迁并释放出能量,被探测器 接收并转化为电信号,再经过计算 机处理形成图像。
成像原理
利用不同组织对射频脉冲的吸收和 散射程度不同,通过测量磁场中原 子核的共振频率和相位信息,重建 出人体内部结构的图像。
MRI技术发展历程
1971年
第一台医用核磁共振成像仪问 世。
腹部MRI解剖
腰椎与肾脏
展示腰椎和肾脏的MRI图像,解释其在腹部结构中的功能。
肝脏与脾脏
通过MRI图像展示肝脏和脾脏的解剖特点,阐述其在消化系统中的作用。
03 正常MRI解剖图像展示
正常头部MRI解剖图像
总结词
展示大脑、脑干、小脑等结构
详细描述
正常头部MRI解剖图像可以清晰地展示大脑、脑干和小脑等重要结构,以及它们 之间的相互关系。这些结构包括灰质、白质、脑室和脑池等,对于诊断神经系统 疾病具有重要意义。
疗效评估
手术后或放化疗后,MRI 可用于评估肿瘤缩小或消 退的情况,监测疗效。
血管疾病的诊断与评估
动脉粥样硬化
MRI能够检测动脉粥样硬化的早期病变,对预防 心血管事件具有重要意义。
血管狭窄与阻塞
MRI能够评估血管狭窄和阻塞程度,为治疗方案 的选择提供依据。

《磁共振成像》课件

《磁共振成像》课件
穿着要求
穿着舒适、无金属纽扣或拉链的衣 服进行检查。
检查中的安全问题
保持静止
在检查过程中,需要保持静止不动,以免影 响成像效果。
遵循医生指导
在检查过程中,需要遵循医生的指导,如保 持正常呼吸、不要憋气等。
观察身体反应
在检查过程中,需要观察身体是否有不适反 应,如有异常应及时告知医生。
避免携带电子设备
02
磁共振成像系统
磁体系统
01
磁体类型
磁体系统是磁共振成像的核心 部分,主要分为永磁型、超导
型和脉冲型三种类型。
02
磁场强度
磁场强度是衡量磁体性能的重 要指标,通常在0.5-3.0特斯拉
之间。
03
磁场均匀性
为了获得高质量的图像,磁场 的均匀性必须得到保证,通常
要求在±0.01ppm之内。
梯度系统
• 技术挑战:高场强磁共振成像技术需要更高的技术和资金投入,同时还需要解决磁场均匀性、信噪比和安全性等问题。
快速成像技术
总结词
快速成像技术能够缩短成像时间,提高成像效率 ,减轻患者的痛苦和不适感。
发展趋势
随着快速成像技术的不断改进和完善,其应用范 围也将不断扩大,未来可能会成为磁共振成像技 术的主流之一。
02
详细描述
多模态成像技术是当前研究的 热点之一,它能够综合利用多 种成像模式的信息,如磁共振 成像、超声成像、X射线成像 等,从而提供更加全面和准确
的诊断结果。
03
发展趋势
多模态成像技术的应用范围将 不断扩大,未来可能会成为医
学影像技术的主流之一。
04
技术挑战
多模态成像技术需要解决不同 模态之间的兼容性和同步性问 题,同时还需要进一步提高图

磁共振成像(MRI)的基本原理PPT演示课件

磁共振成像(MRI)的基本原理PPT演示课件
磁共振成像(MRI)的基本原理 Magnetic Resonance Imaging
同济医科大学附属协和医院MR室 刘定西
1
磁共振现象的发现及发展
1924年pauli在进行电在子波谱 试验中发现了许多原子核象带电的 自旋粒子一样具有角动量和磁动量。
1946年美国物理学家Block和 Purcell分别测出了在均匀物质中磁 共振的能量吸收,进一步证实了核 自旋的存在,并为此获得了1952年 诺贝尔物理学奖。
• 影响M的因素:静磁场强度、温度、自 旋密度(单位体积的自旋数)。
• 纵向磁化:平行于磁场方向的磁化矢量 • 横向磁化:垂直于磁场方向的磁化矢量
30
31
磁共振成像中的坐标系统
Z
Y X
32
第四节 核磁共振现象
• 单摆共振 • 核磁共振
33
单摆共振的条件
• 系统与激发源的固有频率相同 • 系统吸收能量内能增加
10
3
11
净自旋
• 原子核的运动:自旋 • 净自旋:具有自旋磁动量的自旋。 • 零自旋/非零自旋:净自旋为零/净自旋不
为零 • 净自旋产生的条件:奇数质子和/或奇数中
子 • 净自旋的意义:是磁共振信号来源的基
础。 • 自旋系统:磁场中所有自旋的集合。
12
1H的原子核结构及特性
1H原子核仅有一个质子,无中子。 其磁化敏感度高,在人体的自然 丰 富度很高,是很好的磁共振靶核。
21
M1
M2
22
Z
M0 B1 X
Y
23
24
自旋在磁场中的运动
• 进动(旋进):自旋轴绕磁场方 向的圆周运动。遵循 lamor 定理, w=rB0
• 影响进动频率的因素:磁场强度。 • 进动的方向:上旋态与下旋态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1970年:Fourier(pilsed)-NMR 开始市场化(早期多使用的是连续波 NMR 仪器)
1973年:核磁共振技术被引入医学临床检测
1991年:Ernst 获1991年诺贝尔化学奖(高分辨核磁共振波谱学方法方面 )
2002年:瑞士核磁共振波谱学家维特里希,由于用多维NMR技术在测定溶液中蛋白质结构的三 维构象方面的开创性研究,而获2002年诺贝尔化学奖。同获此奖的还有一名美国科学家和一名 日本科学家
1939年: 拉比第一次做了核磁共振实验 ,并于1944年获得诺贝尔物理奖
1946年: Harvard 大学的Purcel和Stanford大学的Bloch各自首次发现并证实NMR现象,并于 1952年分享了诺贝尔物理奖
1953年:Varian开始商用仪器开发,并于同年制作了第一台高分辨NMR 仪
1956年:Knight发现元素所处的化学环境对NMR信号有影响,而这一影响与物质 分子结构有关
• 任意截面成像;
• 软组织图象更出色;
• 不受骨伪影的影响;
• 无电离辐射,一定条件下可进行介入MRI治疗
4、MRI的局限性
• 成像速度慢(相对于X-CT而言)
• 对钙化灶和骨皮质灶不敏感
• 图像易受多种伪影影响
• 禁忌症:心脏起搏器及铁磁性植入者等
• 定量诊断困难
8
核磁共振基本原理
核磁共振的研究对象: 自旋量子数≠0 的原子核(本实验对象为1H 核)
• 核磁共振波谱学(NMR) 化学位移
Larmor 频率 原子核
化学位移: 结构测定(功能团)
J-偶合:
结构测定(原子的相关性)
偶极偶合: 结构测定 (空间位置关系)
弛豫:
动力学
结构确定 化学鉴定 聚合物特性测定 药品开发 催化研究
• 核磁共振成像学(MRI)
全称:Nuclear Magnetic Resonance Imaging
核磁共振成像
Magnetic Resonance Imaging
(MRI)
1133
1
目录
• 发展历史 • 核磁共振基本原理 • 核磁共振信号的弛豫 • 自由感应衰减(FID)信号 • 核磁共振成像及其系统 • 常用射频脉冲序列 • 实验内容 • 附录
2
核磁共振分类
定义:原子核在外加恒定磁场作用下产生能级分裂,从而 对特定频率的电磁波发生共振吸收的现象
M0
N
1 2
I

1 2
N1 2
B0

I


1 2
N1 2
B0
1 e kT
1 B0
N
1 2
kT
自旋角动量:
J I (在磁场中I有2I 1种取向)
磁场中核能级分裂: E B0 B0m (m I, I 1,
磁场中的核能级间距: E B0
(磁旋比 egI )
J 2mp
, I 1, I)
Larmor频率:
B0
0.53T磁场中的1H1核的共振频率(本实验的情况):
• 1968年 Jockson 试制全身磁共振
• 1971年 美国纽约州立大学的 R.Damadian 利用磁共振波谱仪对小 鼠研究发现,癌变组织的T1,T2弛豫时间比正常组织长
• 1973年 美国纽约州立大学的 Lauterbur 利用梯度磁场进行空间定位, 获得两个充水试管的第一幅磁共振图像
• 1978年 英国取得了第一幅人体头部的磁共振图像
f B0 2.6752108 0.53 22.6106 Hz
2
2
9
在磁场中热平衡时,各能级粒子数服从玻尔兹曼分布,宏观磁化强度M:
M N
I
m B0
m ቤተ መጻሕፍቲ ባይዱ kT
mI
I
m B0
e kT
mI

N
2
2I (I 3kT
1)
B0
常温,I=1/2,T=300K,B0 =0.53T,平衡时:
2003年:美国科学家劳特劳尔于1973年发明在静磁场中使用梯度场,能够获得磁共振信号的位
置,从而可以得到物体的二维图像;英国科学家曼斯菲尔德进一步发展了使用梯度场的方法,
指出磁共振信号可以用数学方法精确描述,从而使磁共振成像技术成为可能,他发展的快速成
像方法为医学磁共振成像临床诊断打下了基础。诺贝尔生理学或医学奖授予美国科学家劳特布
3
核磁共振发展史
迄今为止众多科学家因核磁共振领域的研究获得诺贝尔奖
1924年: Pauli 预言了NMR 的基本理论(有些核同时具有自旋和磁量子数,这些核在磁场中 会发生分裂)
斯特恩和盖拉赫在原子束实验中观察到了锂原子和银原子的磁偏转。随后斯特恩等人测量了质 子的磁距,斯特恩于1943年获得诺贝尔物理奖。
1952年 诺贝尔物理学奖授予 美国科学家布洛赫(图左)和波赛尔(图右)
2003年 诺贝尔生理学或医学奖授予美国科学家
劳特布尔(图左)和英国科学家曼斯菲尔德(图右) 5
核磁共振成像发展史
• 1946年 美国哈佛大学的 E.Purcell及斯坦福大学的 F.Bloch 领导 的两个研究小组各自独立地发现了磁共振现象。Purcell 和 Bloch 共同获得1952年诺贝尔物理学奖
2、MRI的特点与意义
• 高、尖、新:高科技、边缘科学、发展迅速、产生了14位诺贝尔奖金获得者 。
• 综合性:数学、核物理、电磁学、电子学、计算机、生理解剖学、超导技术 、材料科学、医学诊断等等从宏观到微观的各个领域;
• 生命意义:科技的双刃剑作用;
3、MRI应用于医学的优势
• 利用人体氢质子的MR信号成像,从分子水平提供诊断信息;
尔和英国科学家曼斯菲尔德,以表彰他们在核磁共振成像技术领域的突破性成就
4
斯特恩
1943年 诺贝尔物理学奖授予 美国科学家斯特恩
1944年 诺贝尔物理学奖授予
美国科学家拉比
1991年 诺贝尔化学奖授予 瑞士物理学家艾斯特
2002年 诺贝尔化学奖授予美日瑞士三国科学家
芬恩 (图左),田中耕一(图中),维特里希(图右)
• 1980年 第一副人体胸腹部MR图像产生 ,磁共振设备商品化
• 1982年底 全世界有2000名病例接受MRI检查
• 1984年 美国FDA批准核磁共振使用于临床
• 1986年 中国成立安科公司
• 1998年 世界磁共振成像年
• ……
6
医用核磁共振成像仪器
7
核磁共振成像优缺点
1、成像条件
有信号、获取信号、处理信号及图像重建。
相关文档
最新文档