(全国100套)中考数学试卷分类汇编 一元一次不等式(组)

合集下载

2022年中考数学复习:一元一次不等式(组)及一元一次不等式的应用

2022年中考数学复习:一元一次不等式(组)及一元一次不等式的应用

17.(2021·长沙)为庆祝伟大的中国共产党成立 100 周年,发扬红色传统,传承红 色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的 党史知识竞赛,一共有 25 道题,满分 100 分,每一题答对得 4 分,答错扣 1 分, 不答得 0 分. (1)若某参赛同学只有一道题没有作答,最后他的总得分为 86 分,则该参赛同学 一共答对了多少道题? 解:设该参赛同学一共答对了 x 道题,则答错了(25-1-x)道题.
解:圆圆的解答过程有错误. 正确过程如下:由①,得 2+2x>-1. 所以 2x>-3.所以 x>-32. 由②,得 1-x<2.所以-x<1.所以 x>-1. 所以原不等式组的解集是 x>-1.
3(x-1)>x, ①
15.(2021·湘西州)解不等式组1-2x≥x-2 3,
并在数轴上表示它的解集. ②
解:解不等式①,得 x>32. 解不等式②,得 x≤1. 在数轴上表示不等式①和②的解集为
∴不等式组无解.
3(x-1)≥2x-5,①
16.(2021·济南)解不等式组:2x<x+2 3, ②
并写出它的所有整数解.
解:解不等式①,得 x≥-2. 解不等式②,得 x<1. ∴不等式组的解集为-2≤x<1, ∴它的整数解是-2,-1,0.
11.(2021·眉山)若关于 x 的不等式 x+m<1 只有 3 个正整数解,则 m 的取
值范围是 -3≤m<-2
.
12.(2021·通辽)若关于 x 的不等式组32xx- -2a≥ <51,有且只有 2 个整数解,则
a 的取值范围是 -1<a≤1
.
13.(2021·乐山)当 x 取何正整数时,代数式x+2 3与2x3-1的值的差大于 1? 解:根据题意,得x+2 3-2x- 3 1>1,解得 x<5. ∵x 为正整数, ∴当 x 为 1,2,3,4 时,代数式x+2 3与2x3-1的值的差大于 1.

中考数专题13 一元一次不等式(组)及其应用(练透)-【讲通练透】中考数学一轮(全国通用)(学生版)

中考数专题13 一元一次不等式(组)及其应用(练透)-【讲通练透】中考数学一轮(全国通用)(学生版)

专题13 一元一次不等式(组)及其应用一、单选题1.(2022·珠海市九洲中学九年级三模)若x y >,则( ) A .22x y +<+B .22x y -<-C .22x y <D .22x y -<-2.(2022·浙江杭州·翠苑中学九年级二模)下列说法正确的是( ) A .若a b =,则ac bc = B .若a b =,则a b c c= C .若a b >,则11a b ->+D .若1xy>,则x y >3.(2022·深圳市南山区荔香学校九年级开学考试)关于x 的不等式()122m x m +>+的解集为2x <,则m 的取值范围是( ) A .1m ≠-B .1m =-C .1m >-D .1m <-4.(2022·重庆市天星桥中学九年级开学考试)已知关于x 的不等式组5720x a x -<⎧⎨--<⎩有且只有3个非负整数解,且关于x 的分式方程61a x --+a =2有整数解,则所有满足条件的整数a 的值的个数为( ) A .4B .3C .2D .15.(2022·老河口市教学研究室九年级月考)不等式组2030x x -≤⎧⎨->⎩的整数解有( )A .1个B .2个C .3个D .4个6.(2022·山东日照·)若不等式组643x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m >B .3m ≥C .3m ≤D .3m <7.(2022·珠海市紫荆中学九年级一模)不等式组20321x x -≥⎧⎨+>-⎩的解集是( )A .﹣1<x ≤2B .﹣2≤x <1C .x <﹣1或x ≥2D .2≤x <﹣18.(2022·四川省宜宾市第二中学校九年级三模)若关于x 的不等式3x +m ≥0有且仅有两个负整数解,则m 的取值范围是( ) A .6≤m ≤9B .6<m <9C .6<m ≤9D .6≤m <99.(2020·重庆梁平·)若数a 使关于x 的不等式组347x a x ≤⎧⎪+⎨>-⎪⎩有且仅有四个整数解,且使关于y 的分式方程2233a y y +=--有非负数解,则所有满足条件的整数a 的值之和是( ) A .﹣2B .﹣3C .2D .110.(2022·北京市第十二中学九年级月考)某中学举行了科学防疫知识竞赛.经过选拔,甲、乙、丙三位选手进入到最后角逐.他们还将进行四场知识竞赛.规定:每场知识竞赛前三名的得分依次为a ,b ,c (a >b >c 且a ,b ,c 均为正整数);选手总分为各场得分之和.四场比赛后,已知甲最后得分为16分,乙和丙最后得分都为8分,且乙只有一场比赛获得了第一名,则下列说法正确的是( ) A .每场比赛的第一名得分a 为4 B .甲至少有一场比赛获得第二名 C .乙在四场比赛中没有获得过第二名 D .丙至少有一场比赛获得第三名二、填空题11.(2022·湖北黄石八中九年级模拟预测)不等式组3712261x x ⎧->⎪⎨⎪-≥-⎩的整数解为______________.12.(2022·全国九年级课时练习)高速公路某收费站出城方向有编号为A ,B ,C ,D ,E 的五个小客车收费出口,假定各收费出口每30分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口30分钟内一共通过的小客车数量记录如下:在A ,B ,C ,D ,E 五个收费出口中,每30分钟通过小客车数量最多的一个收费出口的编号是________.13.(2022·辽宁沈阳·中考真题)不等式组51350x x -<⎧⎨-≥⎩的解集是__________.14.(2022·四川省宜宾市第二中学校九年级一模)不等式组:515264253(5)x x x x -+⎧+>⎪⎨⎪+≤-⎩的解集为______. 15.(2022·临沂第九中学九年级月考)不等式222x x ->- 的解集为_____. 三、解答题16.(2022·福建厦门双十中学思明分校九年级二模)解不等式组:31320x xx+>+⎧⎨->⎩17.(2022·山东济南·中考真题)解不等式组:3(1)25,32,2x xxx-≥-⎧⎪⎨+<⎪⎩①②并写出它的所有整数解.18.(2022·福建省福州第十九中学九年级月考)解不等式组()311922x xxx⎧+>-⎪⎨+<⎪⎩19.(2022·全国九年级课时练习)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如表:(单位:分)(1)求甲的平均成绩;(2)若公司将阅读能力、思维能力和表达能力三项测试得分按3:5:2的比确定每人的总成绩.①计算甲的总成绩;②若乙的总成绩超过甲的总成绩,则乙的表达能力成绩x超过多少分?20.(2022·福建省福州延安中学九年级月考)解不等式组3534(1)2x xx x-<-⎧⎨+≥-⎩,并把解集在数轴上表示.21.(2022·四川绵阳·中考真题)某工艺厂为商城制作甲、乙两种木制工艺品,甲种工艺品不少于400 件,乙种工艺品不少于680件.该厂家现准备购买A、B两类原木共150根用于工艺品制作,其中,1根A类原木可制作甲种工艺品4件和乙种工艺品2件,1根B类原木可制作甲种工艺品2件和乙种工艺品6件.(1)该工艺厂购买A类原木根数可以有哪些?(2)若每件甲种工艺品可获得利润50元,每件乙种工艺品可获得利润80元,那么该工艺厂购买A、B两类原木各多少根时获得利润最大,最大利润是多少?22.(2022·哈尔滨市第十七中学校九年级二模)毕业考试结束后,班主任罗老师预购进甲乙两种奖品奖励学生,若购进甲种奖品3件和乙种奖品2件共需要40元;若购进甲种奖品2件和乙种奖品3件共需要55元.(1)求购进甲、乙两种奖品每件分别需要多少元?(2)班主任罗老师决定购进甲、乙两种奖品共20件,且用于购买这20件奖品的资金不超过160元,则最多能购进乙种奖品多少件?23.(2022·日照港中学九年级一模)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场.某车行经营的A型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:。

中考数学专题06一元一次不等式(组)-三年(2019-2021)中考真题数学分项汇编(全国通用)

中考数学专题06一元一次不等式(组)-三年(2019-2021)中考真题数学分项汇编(全国通用)

专题06.一元一次不等式(组)一、单选题1.(2021·河北中考真题)已知a b >,则一定有44a b --□,“”中应填的符号是( )A .>B .<C .≥D .=2.(2021·山东菏泽市·中考真题)如果不等式组541x x x m +<-⎧⎨>⎩的解集为2x >,那么m 的取值范围是( )A .2m ≤B .2m ≥C .2m >D .2m <3.(2021·湖南常德市·中考真题)若a b >,下列不等式不一定成立的是( ) A .55a b ->-B .55a b -<-C .a bc c> D .a c b c +>+4.(2021·湖南株洲市·中考真题)不等式组2010x x -≤⎧⎨-+>⎩的解集为( )A .1x <B .2x ≤C .12x <≤D .无解5.(2021·山东临沂市·中考真题)已知a b >,下列结论:①2a ab >;②22a b >;③若0b <,则2a b b +<;④若>0b ,则11<a b,其中正确的个数是( )A .1B .2C .3D .46.(2021·四川遂宁市·中考真题)不等式组20112x x ->⎧⎪⎨-≥-⎪⎩的解集在数轴上表示正确的是( )A .B .C .D .7.(2021·浙江金华市·中考真题)一个不等式的解在数轴上表示如图,则这个不等式可以是( )A .20x +>B .20x -<C .24x ≥D .20x -<8.(2021·四川南充市·中考真题)满足3x 的最大整数x 是( ) A .1B .2C .3D .49.(2021·浙江嘉兴市·中考真题)已知点(),P a b 在直线34y x =--上,且250a b -≤( ) A .52a b ≤ B .52a b ≥ C .25b a ≥ D .25b a ≤ 10.(2021·浙江丽水市·中考真题)若31a ->,两边都除以3-,得( ) A .13a <-B .13a >-C .3a <-D .3a >-11.(2021·湖南邵阳市·中考真题)不等式组51341233x x x x ->-⎧⎪⎨-≤-⎪⎩的整数解的和为( ) A .1B .0C .-1D .-212.(2021·浙江中考真题)不等式315x ->的解集是( ) A .2x >B .2x <C .43x >D .43x <13.(2021·湖南衡阳市·中考真题)不等式组1026x x +<⎧⎨-≤⎩的解集在数轴上可表示为( )A .B .C .D .14.(2021·山东临沂市·中考真题)不等式-113x x <+的解集在数轴上表示正确的是( ) A . B .C .D .15.(2021·重庆中考真题)不等式2x ≤在数轴上表示正确的是( )A .B .C .D .16.(2020·广西贵港市·中考真题)如果a b <,0c <,那么下列不等式中不成立的是( )A .a c b c +<+B .ac bc >C .11ac bc +>+D .22ac bc >17.(2020·广西中考真题)不等式组1051x x ->⎧⎨-≥⎩的整数解共有( )A .1个B .2个C .3个D .4个18.(2020·辽宁朝阳市·中考真题)某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?( ) A .8B .6C .7D .919.(2020·辽宁铁岭市·)不等式组31231x x +>⎧⎨-≤⎩的整数解的个数是( )A .2B . 3C .4D .520.(2020·辽宁盘锦市·中考真题)不等式417x x +>+的解集在数轴上表示正确的是( ) A .B .C .D .21.(2020·四川宜宾市·中考真题)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有( ) A .2种B .3种C .4种D .5种22.(2020·甘肃天水市·中考真题)若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<-B .74a -≤≤-C .74a -≤<-D .74a -<≤-23.(2020·山东潍坊市·中考真题)若关于x 的不等式组35128x x a -⎧⎨-<⎩有且只有3个整数解,则a 的取值范围是( ) A .02a ≤≤B .02a ≤<C .02a <≤D .02a <<24.(2020·山东德州市·中考真题)若关于x 的不等式组2242332x x x x a--⎧>⎪⎨⎪->--⎩的解集是2x <,则a 的取值范围是( ) A .2a ≥B .2a <-C .2a >D .2a ≤25.(2020·内蒙古呼伦贝尔市·中考真题)满足不等式组()5231131722x x x x⎧+-⎪⎨-≤-⎪⎩>的非负整数解的个数为( )A .4B .5C .6D .726.(2019·四川绵阳市·中考真题)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有( ) A .3种B .4种C .5种D .6种27.(2019·西藏中考真题)把一些书分给几名同学,如果每人分3本,那么余6本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有______本,共有______人.( ) A .27本,7人B .24本,6人C .21本,5人D .18本,4人28.(2019·重庆中考真题)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( ) A .13B .14C .15D .1629.(2019·湖南永州市·中考真题)若关于x 的不等式组26040x m x m -+⎧⎨-⎩<>有解,则在其解集中,整数的个数不可能是( ) A .1B .2C .3D .430.(2019·内蒙古呼和浩特市·中考真题)若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()xx m x +++﹣>成立,则m 的取值范围是( ) A .35m >-B .15m <-C .35m <-D .15m >-31.(2019·山东聊城市·中考真题)若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( )A .2m ≤B .2m <C .2m ≥D .2m >32.(2019·四川乐山市·中考真题)小强同学从1-,0,1,2,3,4这六个数中任选一个数,满足不等式12x +<的概率是()A .15B .14C .13D .1233.(2019·江苏扬州市·中考真题)已知n 正整数,若一个三角形的三边长分别是n+2、n+8、3n ,则满足条件的n 的值有( ) A .4个 B .5个C .6个D .7个二、填空题目34.(2021·湖南常德市·中考真题)刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有_________个. 35.(2021·四川眉山市·中考真题)若关于x 的不等式1x m +<只有3个正整数解,则m 的取值范围是______. 36.(2021·上海中考真题)不等式2120x -<的解集是_______.37.(2021·江苏扬州市·中考真题)在平面直角坐标系中,若点()1,52P m m --在第二象限,则整数m 的值为_________.38.(2021·浙江温州市·中考真题)不等式组343214x x -<⎧⎪⎨+≥⎪⎩的解为______.39.(2021·四川泸州市·中考真题)关于x 的不等式组23023x x a恰好有2个整数解,则实数a 的取值范围是_________.40.(2021·四川遂宁市·中考真题)已知关于x ,y 的二元一次方程组235423x y ax y a +=⎧⎨+=+⎩满足0x y ->,则a的取值范围是____.41.(2020·四川绵阳市·中考真题)若不等式52x+>﹣x﹣72的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是_______.42.(2020·四川绵阳市·中考真题)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是_____万元.(利润=销售额﹣种植成本)43.(2020·黑龙江鹤岗市·中考真题)若关于x的一元一次不等式组1020xx a->⎧⎨->⎩的解是1x>,则a的取值范围是_______.44.(2020·黑龙江鸡西市·中考真题)若关于x的一元一次不等式组1020xx a->⎧⎨-<⎩有2个整数解,则a的取值范围是______.45.(2020·山东滨州市·中考真题)若关于x的不等式组12420x ax⎧->⎪⎨⎪-≥⎩无解,则a的取值范围为________.46.(2020·四川遂宁市·中考真题)若关于x的不等式组214322x xx m x--⎧<⎪⎨⎪-≤-⎩有且只有三个整数解,则m的取值范围是______.47.(2020·贵州黔东南苗族侗族自治州·中考真题)不等式组513(1)111423x xx x->+⎧⎪⎨--⎪⎩的解集为_____.48.(2019·湖北鄂州市·中考真题)若关于x、y的二元一次方程组34355x y mx y-=+⎧⎨+=⎩的解满足0x y+≤,则m的取值范围是____.49.(2019·辽宁丹东市·中考真题)关于x的不等式组2401xa x->⎧⎨->-⎩的解集是2<x<4,则a的值为_____.50.(2019·贵州铜仁市·中考真题)如果不等式组324x a x a +⎧⎨-⎩<<的解集是x <a ﹣4,则a 的取值范围是_______.三、解答题51.(2021·山西中考真题)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步 49662x x ->--+第三步510x ->-第四步 2x >第五步任务一:填空:①以上解题过程中,第二步是依据______________(运算律)进行变形的; ②第__________步开始出现错误,这一步错误的原因是________________; 任务二:请直接写出该不等式的正确解集.52.(2021·河北中考真题)已知训练场球筐中有A 、B 两种品牌的乒乓球共101个,设A 品牌乒乓球有x 个. (1)淇淇说:“筐里B 品牌球是A 品牌球的两倍.”嘉嘉根据她的说法列出了方程:1012x x -=.请用嘉嘉所列方程分析淇淇的说法是否正确;(2)据工作人员透露:B 品牌球比A 品牌球至少多28个,试通过列不等式的方法说明A 品牌球最多有几个.53.(2021·湖北恩施土家族苗族自治州·中考真题)“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.(1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克.甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?54.(2021·湖北宜昌市·中考真题)解不等式组3(2)4 21132x xx x--≥⎧⎪-+⎨≤⎪⎩.55.(2021·湖南常德市·中考真题)某汽车贸易公司销售A、B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A、B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?56.(2021·湖北黄冈市·中考真题)2021年是中国共产党建党100周年,红旗中学以此为契机,组织本校师生参加红色研学实践活动,现租用甲、乙两种型号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动,每辆汽车上至少要有一名教师.甲、乙两种型号的大客车的载客量和租金如下表所示:(1)共需租________辆大客车;(2)最多可以租用多少辆甲种型号大客车?(3)有几种租车方案?哪种租车方案最节省钱?57.(2021·湖南长沙市·中考真题)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?58.(2021·陕西中考真题)解不等式组:543121 2xxx+<⎧⎪⎨+≥-⎪⎩59.(2021·江苏连云港市·中考真题)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的13,请设计出最省钱的购买方案,并求出最少费用.60.(2021·四川乐山市·中考真题)当x取何正整数时,代数式32x+与213x-的值的差大于161.(2021·江苏连云港市·中考真题)解不等式组:311442 x xx x-≥+⎧⎨+<-⎩.62.(2020·柳州市柳林中学中考真题)解不等式组21123xx+>⎧⎨-≥-⎩①②请结合解题过程,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在如图所示的数轴上表示出来:(Ⅳ)原不等式的解集为.63.(2020·山东济南市·中考真题)解不等式组:()42131322x x x x ⎧-≤+⎪⎨->⎪⎩①②,并写出它的所有整数解.64.(2020·山东威海市·中考真题)解不等式组423(1)5132x x x x -≥-⎧⎪⎨-+>-⎪⎩,并把解集在数轴上表示出来65.(2020·宁夏中考真题)在综合与实践活动中,活动小组的同学看到网上购鞋的鞋号(为正整数)与脚长(毫米)的对应关系如表1:为了方便对问题的研究,活动小组将表1中的数据进行了编号,并对脚长的数据n b 定义为[]n b 如表2:定义:对于任意正整数m 、n ,其中2m >.若[]n b m =,则22n m b m -+. 如:[]4175b =表示417521752b -+,即4173177b .(1)通过观察表2,猜想出n a 与序号n 之间的关系式,[]n b 与序号n 之间的关系式; (2)用含n a 的代数式表示[]n b ;计算鞋号为42的鞋适合的脚长范围; (3)若脚长为271毫米,那么应购鞋的鞋号为多大?66.(2020·湖南娄底市·中考真题)为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花7200元购进洗手液与84消毒液共400瓶,已知洗手液的价格是25元瓶,84消毒液的价格是15元瓶. 求:(1)该校购进洗手液和84消毒液各多少瓶?(2)若购买洗手液和84消毒液共150瓶,总费用不超过2500元,请问最多能购买洗手液多少瓶?67.(2020·江苏淮安市·中考真题)解不等式31212x x -->. 解:去分母,得2(21)31x x ->-.…… (1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A”或“B”) A .不等式两边都乘(或除以)同一个正数,不等号的方向不变; B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.68.(2020·贵州贵阳市·中考真题)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?祝你考试成功!祝你考试成功!。

中考复习模拟试题集锦——一元一次不等式(组)

中考复习模拟试题集锦——一元一次不等式(组)
x>1(2分)
由②得:x-2x<-1-4
-x<-5
x>5 (4分)
所以原不等式组的解是x>5(5分)
8、(2013年上海奉贤区二模)解不等式组: ,并把它的解集在数轴上表示;
答案:解:由(1)得: ---------------------------------------------------------------------(3分)
由 得 .
解得 .…………3分
原不等式组的解集为 .…….5分
4.(2013年北京顺义区一模)解不等式组 并把解集在数轴上表示出来.
答案:解:解不等式 ,得 .………………………………… 1分
解不等式 ,得 .………………………………… 2分
∴不等式组的解集为 .………………………………… 4分
在数轴上表示其解集为如图所示
B
18、(2013年福州市初中毕业班质量检查)一个不等式组的解集在数轴上表示如图,则这个不等式组可能是()
A. B. C. D.
D
19、(2013年湖北省武汉市中考全真模拟)若二次根式 在实数范围内有意义,则x的取值范围为( ).
A.x≥2B. x≤2C.x≥-2D.x≤-2
A
20、(2013年湖北省武汉市中考全真模拟)等式组 的解集表示在数轴上正确的是( ).
一元一次不等式(组)
一、选择题
1、(2013年湖北荆州模拟题)不等式组 的解集在数轴上表示正确的是( ▲ )
A. B.
C. D.
答案:A
2.(2013年安徽凤阳模拟题二)把不等式组 的解集表示在数轴上,正确的为图中的()
A.B.C.D.
答案:B
3、(2013年安徽省模拟六)已知 ,若c是任意实数,则下列不等式中总是成立的是【】

2024年一元一次不等式(组)(学生版)中考模拟数学真题分项汇编

2024年一元一次不等式(组)(学生版)中考模拟数学真题分项汇编

专题05 一元一次不等式(组)考点1 一元一次不等式(组)一、单选题1.(2024年湖南省邵阳市中考数学真题)不等式组1024x x -<⎧⎨-≤⎩的解集在数轴上可表示为( )A .B .C .D .14x+( ). A .B .C .D .3.(2024·广东·统考中考真题)不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( )A .无解B .1x ≤C .1x ≥-D .11x -≤≤4.(2024年广西壮族自治区中考数学真题)2x ≤在数轴上表示正确的是( ) A . B .C .D .轴上表示为( ) A . B . C .D .6.(2024年内蒙古包头市中考数学真题)关于x 的一元一次不等式1x m -≤的解集在数轴上的表示如图所示,则m 的值为( )A .3B .2C .1D .07.(2024年四川省遂宁市中考数学真题)若关于x 的不等式组()4131532x x x x a ⎧->-⎨>+⎩的解集为3x >,则a 的取值范围是( ) A .3a >B .3a <C .3a ≥D .3a ≤8.(2024·云南·统考中考真题)若关于x 的不等式组()2120x a x ⎧->⎨-<⎩的解集为x >a ,则a 的取值范围是( )A .a <2B .a ≤2C .a >2D .a ≥29.(2024年四川省眉山市中考数学真题)关于x 的不等式组35241x m x x >+⎧⎨-<+⎩的整数解仅有4个,则m 的取值范围是( )A .54m -≤<-B .54m -<≤-C .43m -≤<-D .43m -<≤-二、填空题三、解答题23() 3⎝⎭25.(2024·浙江·一模)关于x 的不等式1x m+≥-的解集如图所示,则m等于()A.3B.1C.0D.3-3A.B.C.D.202x->⎩A.B.C .D .1x x+( )A .B .C .D .31.(2024·福建福州·福建省福州铜盘中学校考模拟预测)不等式组2421x x -<⎧⎨->⎩的解集为( )A .23x -<<B .2x >-C .3x >D .23x <<( )1321xx -+≥-的解集为324x -≥的解为统考中考真题)不等式组51111423x x x -⎧⎪⎨--⎪⎩的解集为38.(2024·黑龙江·统考中考真题)若关于x的一元一次不等式组1020xx a->⎧⎨-<⎩有2个整数解,则a的取值范围是.39.(2024·广西·校联考二模)不等式组21{30xx+≥-≥①②的解集在数轴上表示正确的是()A .B.C.D.23()211x x⎧-≤+①26⎩。

2021全国各地中考数学真题专项汇编:一元一次不等式(含答案解析)

2021全国各地中考数学真题专项汇编:一元一次不等式(含答案解析)

专题06 一元一次不等式(组)一、单选题1.(2021·河北)已知a b >,则一定有44a b --□,“”中应填的符号是( )A .>B .<C .≥D .=【答案】B【分析】直接运用不等式的性质3进行解答即可.【详解】解:将不等式a b >两边同乘以-4,不等号的方向改变得44a b -<-,∴“”中应填的符号是“<”,故选:B . 【点睛】此题主要考查了不等式的基本性质3:不等式的两边同乘以(或除以)同一个负数,不等号的方向改变,熟练掌握不等式的基本性质是解答此题的关键.2.(2021·山东菏泽市)如果不等式组541x x x m+<-⎧⎨>⎩的解集为2x >,那么m 的取值范围是( )A .2m ≤B .2m ≥C .2m >D .2m <【答案】A【分析】先解不等式组,确定每个不等式的解集,后根据不等式组的解集的意义,确定m 的取值范围即可. 【详解】∵541x x x m +<-⎧⎨>⎩①②,解①得x >2,解②得x >m , ∵不等式组541x x x m+<-⎧⎨>⎩的解集为2x >,根据大大取大的原则,∴2m ≤,故选A . 【点睛】本题考查了一元一次不等式组的解法,熟练根据不等式组的解集确定字母的取值是解题的关键. 3.(2021·湖南常德市)若a b >,下列不等式不一定成立的是( )A .55a b ->-B .55a b -<-C .a b c c >D .a c b c +>+ 【答案】C【分析】根据不等式的性质逐项进行判断即可得到答案.【详解】解:A .在不等式a b >两边同时减去5,不等式仍然成立,即55a b ->-,故选项A 不符合题意;B . 在不等式a b >两边同时除以-5,不等号方向改变,即55a b -<-,故选项B 不符合题意;C .当c ≤0时,不等得到a b c c>,故选项C 符合题意; D . 在不等式a b >两边同时加上c ,不等式仍然成立,即a c b c +>+,故选项D 不符合题意;故选:C .【点睛】此题主要考查了不等式的性质运用的,熟练掌握不等式的性质是解答此题的关键.4.(2021·湖南株洲市)不等式组2010x x -≤⎧⎨-+>⎩的解集为( ) A .1x <B .2x ≤C .12x <≤D .无解 【答案】A【分析】先解不等式组中的每一个不等式,再利用不等式组解集的口诀“同小取小”得出解集.【详解】解:2010x x -≤⎧⎨-+>⎩①②由①,得:x ≤2,由②,得:x <1,则不等式组的解集为:x <1,故选:A .【点睛】本题主要考查了一元一次不等式组解集的求法,关键在于根据解集的特点确定解集:同大取大、同小取小、大小小大中间找、大大小小无解得到.5.(2021·山东临沂市)已知a b >,下列结论:①2a ab >;②22a b >;③若0b <,则2a b b +<;④若>0b ,则11<a b,其中正确的个数是( ) A .1B .2C .3D .4【答案】A【分析】根据不等式的性质分别判断即可.【详解】解:∵a >b ,则①当a =0时,2a ab =,故错误;②当a <0,b <0时,22a b <,故错误; ③若0b <,则b b a b +<+,即2a b b +>,故错误;④若>0b ,则0a b >>,则11<a b,故正确;故选A . 【点睛】本题考查了不等式的性质,解题的关键是掌握不等式两边发生变化时,不等号的变化.6.(2021·四川遂宁市)不等式组20112x x ->⎧⎪⎨-≥-⎪⎩的解集在数轴上表示正确的是( ) A . B .C .D .【答案】C【分析】先分别求出两个不等式的解,得出不等式组的解,再在数轴上的表示出解集即可.【详解】解: 20112x x ->⎧⎪⎨-≥-⎪⎩①②解不等式①得,2x <解不等式②得,1x ≥- 不等式组的解集为12x -≤<,在数轴上表示为,故选:C .【点睛】本题考查了一元一次不等式组的解法和解集的表示,解题关键是熟练运用解不等式组的方法求解,准确在数轴上表示解集.7.(2021·浙江金华市)一个不等式的解在数轴上表示如图,则这个不等式可以是( )A .20x +>B .20x -<C .24x ≥D .20x -<【答案】B【分析】逐项解不等式,选择符合题意的一项.【详解】图中数轴表示的解集是x <2.A 选项,解不等式得x >-2,故该选项不符合题意,B 选项,解不等式得x <2,故该选项符合题意,C 选项,解不等式得2x ≥ ,故该选项不符合题意,D 选项,解不等式得x >2,故该选项不符合题意,故选:B .【点睛】本题主要考查不等式解集的表示方法和解简单的一元一次不等式.根据不等式的性质解一元一次不等式,主要是要细心.8.(2021·四川南充市)满足3x 的最大整数x 是( )A .1B .2C .3D .4 【答案】C【分析】逐项分析,求出满足题意的最大整数即可.【详解】A 选项,13<,但不是满足3x 的最大整数,故该选项不符合题意,B 选项,23<,但不是满足3x 的最大整数,故该选项不符合题意,C 选项,3=3,满足3x 的最大整数,故该选项符合题意,D 选项,43>,不满足3x ,故该选项不符合题意,故选:C .【点睛】本题较为简单,主要是对不等式的理解和最大整数的理解.9.(2021·浙江嘉兴市)已知点(),P a b 在直线34y x =--上,且250a b -≤( )A .52a b ≤B .52a b ≥C .25b a ≥D .25b a ≤ 【答案】D【分析】根据点(),P a b 在直线34y x =--上,且250a b -≤,先算出a 的范围,再对不等式250a b -≤变形整理时,需要注意不等号方向的变化. 【详解】解:点(),P a b 在直线34y x =--上,34b a ∴=--,将上式代入250a b -≤中,得:25(34)0a a -⨯--≤,解得:2017a ≤-,由250ab -≤,得:25a b ≤, 202,175b a a ≤-∴≤(两边同时乘上一个负数,不等号的方向要发生改变),故选:D . 【点睛】本题考查了解一元一次不等式,解题的关键是:要注意在变形的时候,不等号的方向的变化情况. 10.(2021·浙江丽水市)若31a ->,两边都除以3-,得( )A .13a <-B .13a >-C .3a <-D .3a >- 【答案】A 【分析】利用不等式的性质即可解决问题.【详解】解:31a ->,两边都除以3-,得13a <-,故选:A .【点睛】本题考查了解简单不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变. 11.(2021·湖南邵阳市)不等式组51341233x x x x ->-⎧⎪⎨-≤-⎪⎩的整数解的和为( ) A .1B .0C .-1D .-2【答案】A【分析】先求出不等式组的解集,再从中找出整数求和即可. 【详解】51341233x x x x ->-⎧⎪⎨-≤-⎪⎩①②,解①得32x >-,解②得x≤1,∴213x -<≤,∴整数解有:0,1,∴0+1=1.故选A. 【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 12.(2021·浙江)不等式315x ->的解集是( )A .2x >B .2x <C .43x >D .43x < 【答案】A【分析】直接移项、合并同类项、不等号两边同时除以3即可求解.【详解】解:315x ->,移项、合并同类项得:36x >,不等号两边同时除以3,得:2x >,故选:A .【点睛】本题考查解一元一次不等式,掌握不等式的基本性质是解题的关键. 13.(2021·湖南衡阳市)不等式组1026x x +<⎧⎨-≤⎩的解集在数轴上可表示为( ) A . B . C .D .【答案】A 【分析】根据一元一次不等式组的解题要求对两个不等式进行求解得到解集即可对照数轴进行选择.【详解】解不等式x +1<0,得x <-1,解不等式-26x ≤,得3x ≥-,所以这个不等式组的解集为-3-x ≤<1,在数轴上表示如选项A 所示,故选:A .【点睛】本题主要考查了一元一次不等式组的解,正确求解不等式组的解集并在数轴上表示是解决本题的关键.14.(2021·山东临沂市)不等式-113x x <+的解集在数轴上表示正确的是( ) A .B .C .D .【答案】B【分析】求出不等式的解集,再根据“大于向右,小于向左,不包括端点用空心,包括端点用实心”的原则将解集在数轴上表示出来. 【详解】解:解不等式113x x -<+, 去分母得:()131x x -<+,去括号得:133x x -<+,移项合并得:24x >-,系数化为得:2x >-,表示在数轴上如图:故选:B .【点睛】本题考查的是解一元一次不等式以及在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.15.(2021·重庆)不等式2x ≤在数轴上表示正确的是( )A .B .C .D .【答案】D【分析】根据在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆圈表示,把已知解集表示在数轴上即可.【详解】解:不等式2x ≤在数轴上表示为: .故选:D .【点睛】本题考查了在数轴上表示不等式的解集,熟悉相关性质是解题的关键.二、填空题1.(2021·湖南常德市)刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有_________个.【答案】21【分析】设弹珠的总数为x 个, 蓝珠有y 个,根据总数不超过50个列出不等式求解即可.【详解】解:设弹珠的总数为x 个, 蓝珠有y 个,根据题意得,1186450x x y x x ⎧+++=⎪⎨⎪≤⎩①②,由①得,96127y x +=,结合②得,9612507y +≤解得,1216y ≤ 所以,刘凯的蓝珠最多有21个.故答案为:21.【点睛】此题主要考查了一元一次不等式的应用,能够找出不等关系是解答此题的关键.2.(2021·四川眉山市)若关于x 的不等式1x m +<只有3个正整数解,则m 的取值范围是______.【答案】32m -≤<-【分析】首先解关于x 的不等式,然后根据x 只有3个正整数解,来确定关于m 的不等式组的取值范围,再进行求解即可.【详解】解:解不等式1x m +<,得:1x m <-,由题意x 只有3个正整数解,则分别为:1,2,3,故:1314m m ->⎧⎨-≤⎩,解得:32m -≤<-,故答案是:32m -≤<-. 【点睛】本题考查了关于x 不等式的正整数解及解一元一次不等式组的解集问题,解题的关键是:根据关于x 不等式的正整数解的情况来确定关于m 的不等式组的取值范围,其过程需要熟练掌解不等式的步骤. 3.(2021·上海)不等式2120x -<的解集是_______.【答案】6x <【分析】根据不等式的性质即可求解.【详解】2120x -<,212x <,6x < 故答案为:6x <.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.4.(2021·江苏扬州市)在平面直角坐标系中,若点()1,52P m m --在第二象限,则整数m 的值为_________.【答案】2【分析】根据第二象限的点的横坐标小于0,纵坐标大于0列出不等式组,然后求解即可.【详解】解:由题意得:10520m m -<⎧⎨->⎩,解得:512m <<,∴整数m 的值为2,故答案为:2. 【点睛】本题考查了点的坐标及解一元一次不等式组,记住各象限内点的坐标的符号是解决的关键.5.(2021·浙江温州市)不等式组343214x x -<⎧⎪⎨+≥⎪⎩的解为______.【答案】273x ≤< 【分析】分别求出不等式组中两个不等式的解集,再求出其公共部分即可. 【详解】解:343214x x -<⎧⎪⎨+≥⎪⎩①②,由①得,x <7;由②得,x ≥23; 根据小大大小中间找的原则,不等式组的解集为273x ≤<.故答案为:273x ≤< 【点睛】此题主要考查了解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.(2021·四川泸州市)关于x 的不等式组23023x x a 恰好有2个整数解,则实数a 的取值范围是_________. 【答案】102a <≤ 【分析】首先解每个不等式,根据不等式组只有2个整数解,确定整数解的值,进而求得a 的范围.【详解】解:23023x x a ①②解①得32x >,解②得32x a <+,不等式组的解集是3322x a . ∵不等式组只有2个整数解,∴整数解是2,3.则3324a ,∴102a <≤故答案是:102a <≤ 【点睛】本题考查的是一元一次不等式组的整数解,根据x 的取值范围,得出x 的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.(2021·四川遂宁市)已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a 的取值范围是____.【答案】1a >.【分析】根据题目中方程组的的特点,将两个方程作差,即可用含a 的代数式表示出x y -,再根据0x y ->,即可求得a 的取值范围,本题得以解决.【详解】解:235423x y a x y a +=⎧⎨+=+⎩①②①-②,得33x y a -=- ∵0x y ->∴330a ->,解得1a >,故答案为:1a >.【点睛】本题考查解一元一次不等式,二元一次方程组的解,熟悉相关性质是解答本题的关键.三、解答题1. (2021贺州)解不等式组:()2552314x x x x +>+⎧⎨-<⎩. 【答案】31x -<< 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】()2552314x x x x +>+⎧⎪⎨-<⎪⎩①② 解不等式①得1x <,解不等式②得3x >-,所以这个不等式组的解集为31x -<<.【点晴】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题关键.2.(2021·山西)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步49662x x ->--+第三步510x ->-第四步2x >第五步任务一:填空:①以上解题过程中,第二步是依据______________(运算律)进行变形的;②第__________步开始出现错误,这一步错误的原因是________________;任务二:请直接写出该不等式的正确解集.【答案】(1)6;(2)任务一:①乘法分配律(或分配律);②五;不等式两边都除以-5,不等号的方向没有改变(或不符合不等式的性质3);任务二:2x <【分析】(1)根据实数的运算法则计算即可;(2)根据不等式的性质3判断并计算即可.【详解】(1)解:原式118(8)4=⨯+-⨯()826=+-=. (2)①乘法分配律(或分配律)②五 不等式两边都除以-5,不等号的方向没有改变(或不符合不等式的性质3);任务二:不等式两边都除以-5,改变不等号的方向得:2x <.【点睛】本题主要考查实数的运算,不等式的性质等知识点,熟练掌握实数的运算法则以及不等式的性质是解题关键.3.(2021·河北)已知训练场球筐中有A 、B 两种品牌的乒乓球共101个,设A 品牌乒乓球有x 个. (1)淇淇说:“筐里B 品牌球是A 品牌球的两倍.”嘉嘉根据她的说法列出了方程:1012x x -=.请用嘉嘉所列方程分析淇淇的说法是否正确;(2)据工作人员透露:B 品牌球比A 品牌球至少多28个,试通过列不等式的方法说明A 品牌球最多有几个.【答案】(1)不正确;(2)36【分析】(1)解方程,得到方程的解不是整数,不符合题意,因此判定淇淇说法不正确;(2)根据题意列出不等式,解不等式即可得到A 品牌球的数量最大值.【详解】解:(1)1012x x -=,解得:1013x =,不是整数,因此不符合题意;所以淇淇的说法不正确. (2)∵A 品牌球有x 个,B 品牌球比A 品牌球至少多28个,∴10128x x --≥,解得:36.5x ≤, ∵x 是整数,∴x 的最大值为36,∴A 品牌球最多有36个.【点睛】本题考查了一元一次方程和一元一次不等式的应用,解决本题的关键是能根据题意列出方程或不等式,并结合实际情况,对它们的解或解集进行判断,得出结论;本题数量关系较明显,因此考查了学生的基本功.4.(2021·湖北恩施州)“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.(1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克.甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?【答案】(1)每千克花生的售价为10元,每千克的茶叶售价为50元;(2)花生销售30千克,茶叶也销售30千克时可获得最大利润,最大利润为540元.【分析】(1)设每千克花生的售价为(x -40)元,每千克的茶叶售价为x 元,然后根据题意可列出方程进行求解;(2)设茶叶销售了m 千克,则花生销售了(60-m )千克,所获得利润为w 元,由题意可得()660361260602m m m m ⎧-+≤⎨-≤⎩,10240w m =+,然后求出不等式组的解集,进而根据一次函数的性质可求解. 【详解】解:(1)设每千克花生的售价为(x -40)元,每千克的茶叶售价为x 元,由题意得:()504010x x -=,解得:50x =,∴花生每千克的售价为50-40=10元;答:每千克花生的售价为10元,每千克的茶叶售价为50元(2)设茶叶销售了m 千克,则花生销售了(60-m )千克,所获得利润为w 元,由题意得:()660361260602m m m m ⎧-+≤⎨-≤⎩,解得:2030m ≤≤, ∴()()()10660503610240w m m m =--+-=+,∵10>0,∴w 随m 的增大而增大,∴当m =30时,w 有最大值,最大值为1030240540w =⨯+=;答:当花生销售30千克,茶叶也销售30千克时可获得最大利润,最大利润为540元.【点睛】本题主要考查一次函数及一元一次不等式组的实际应用,熟练掌握一次函数及一元一次不等式组的实际应用是解题的关键.5.(2021·湖北宜昌市)解不等式组3(2)421132x x x x --≥⎧⎪-+⎨≤⎪⎩. 【答案】1x ≤.【分析】先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解集. 【详解】解:3(2)421132x x x x --≥⎧⎪⎨-+≤⎪⎩①②,解不等式①得,1x ≤,解不等式②得,5x ≤,则不等式组的解集为1x ≤.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.6.(2021·湖南常德市)某汽车贸易公司销售A 、B 两种型号的新能源汽车,A 型车进货价格为每台12万元,B 型车进货价格为每台15万元,该公司销售2台A 型车和5台B 型车,可获利3.1万元,销售1台A 型车和2台B 型车,可获利1.3万元.(1)求销售一台A 型、一台B 型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A 、B 两种新能源汽车共22台,问最少需要采购A 型新能源汽车多少台?【答案】(1)销售每台A 型车的利润为0.3万元,每台B 型车的利润为0.5万元;(2)最少需要采购A 型新能源汽车10台.【分析】(1)设每台A 型车的利润为x 万元,每台B 型车的利润为y 万元,根据题意中的数量关系列出二元一次方程组,解方程组即可;(2)先求出每台A 型车和每台B 型车的采购价,根据“用不超过300万元资金,采购A 、B 两种新能源汽车共22台”列出不等式求解即可.【详解】解:(1)设每台A 型车的利润为x 万元,每台B 型车的利润为y 万元,根据题意得,25 3.12 1.3x y x y +=⎧⎨+=⎩ 解得,0.30.5x y =⎧⎨=⎩答:销售每台A 型车的利润为0.3万元,每台B 型车的利润为0.5万元;(2)因为每台A 型车的采购价为:12万元,每台B 型车的采购价为:15万元,设最少需要采购A 型新能源汽车m 台,则需要采购B 型新能源汽车(22-m )台,根据题意得,1215(22)300m m +⨯-≤ 330,m ∴-≤- 解得,10m ≥∵m 是整数,∴m 的最小整数值为10,即最少需要采购A 型新能源汽车10台.【点睛】本题主要考查了一元一次不等式的应用和二元一次方程组的应用,解答此题的关键是找出题中的数量关系.7.(2021·湖北黄冈市)2021年是中国共产党建党100周年,红旗中学以此为契机,组织本校师生参加红色研学实践活动,现租用甲、乙两种型号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动,每辆汽车上至少要有一名教师.甲、乙两种型号的大客车的载客量和租金如下表所示:(1)共需租________辆大客车;(2)最多可以租用多少辆甲种型号大客车?(3)有几种租车方案?哪种租车方案最节省钱?【答案】(1)11;(2)3辆;(3)3种,租用3辆甲种型号大客车,8辆乙种型号大客车最节省钱.【分析】(1)根据学生和老师的总人数、乙种客车的载客量,以及每辆汽车上至少要有一名教师进行计算即可得;(2)设租用x 辆甲种型号大客车,从而可得租用(11)x -辆乙种型号大客车,根据甲、乙两种型号的大客车的载客量、学生和老师的总人数建立不等式,解不等式求出x 的取值范围,再结合1≥x 且为正整数即可得;(3)根据(2)中x 的取值范围可得出租车方案,再分别求出各租车方案的费用即可得.【详解】解:(1)(54911)5510+÷=(辆)10⋯(人),11111÷=(辆),∴共需租11辆大客车,故答案为:11;(2)设租用x 辆甲种型号大客车,则租用(11)x -辆乙种型号大客车,由题意得:4055(11)54911x x +-≥+,解得3x ≤,因为1≥x 且为正整数,所以最多可以租用3辆甲种型号大客车;(3)由(2)可知,租用甲种型号大客车的辆数可以为1,2,3辆,则有三种租车方案:①租用1辆甲种型号大客车,10辆乙种型号大客车;②租用2辆甲种型号大客车,9辆乙种型号大客车;③租用3辆甲种型号大客车,8辆乙种型号大客车;方案①的费用为1500106006500⨯+⨯=(元),方案②的费用为250096006400⨯+⨯=(元),方案③的费用为350086006300⨯+⨯=(元),所以租用3辆甲种型号大客车,8辆乙种型号大客车最节省钱.【点睛】本题考查了一元一次不等式的实际应用,正确建立不等式是解题关键.8.(2021·湖南长沙市)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题? (2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?【答案】(1)一共答对了22道题;(2)至少需答对23道题.【分析】(1)设该参赛同学一共答对了x 道题,从而可得该参赛同学一共答错了(251)x --道题,再根据“每一题答对得4分,答错扣1分,不答得0分”、“他的总得分为86分”建立方程,解方程即可得;(2)设参赛者需答对y 道题才能被评为“学党史小达人”,从而可得参赛者答错了(25)y -道题,再根据“总得分大于或等于90分”建立不等式,解不等式即可得.【详解】解:(1)设该参赛同学一共答对了x 道题,则该参赛同学一共答错了(251)x --道题, 由题意得:4(251)86x x ---=,解得22x =,答:该参赛同学一共答对了22道题;(2)设参赛者需答对y 道题才能被评为“学党史小达人”,则参赛者答错了(25)y -道题,由题意得:4(25)90y y --≥,解得23y ≥,答:参赛者至少需答对23道题才能被评为“学党史小达人”.【点睛】本题考查了一元一次方程和一元一次不等式的实际应用,正确列出方程和不等式是解题关键.9.(2021·陕西)解不等式组:5431212x x x +<⎧⎪⎨+≥-⎪⎩ 【答案】1x <-【分析】根据一元一次不等式组的解法直接进行求解即可. 【详解】解:5431212x x x +<⎧⎪⎨+≥-⎪⎩,由54x +<,得1x <-; 由31212x x +≥-,得3x ≤;∴原不等式组的解集为1x <-. 【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键. 10.(2021·江苏连云港市)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A 型消毒液和3瓶B 型消毒液共需41元,5瓶A 型消毒液和2瓶B 型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B 型消毒液的数量不少于A 型消毒液数量的13,请设计出最省钱的购买方案,并求出最少费用.【答案】(1)A 种消毒液的单价是7元,B 型消毒液的单价是9元;(2)购进A 种消毒液67瓶,购进B 种23瓶,最少费用为676元【分析】(1)根据题中条件列出二元一次方程组,求解即可;(2)利用由(1)求出的两种消毒液的单价,表示出购买的费用的表达式,根据购买两种消毒液瓶数之间的关系,求出引进表示瓶数的未知量的范围,即可确定方案.【详解】解:(1)设A 种消毒液的单价是x 元,B 型消毒液的单价是y 元.由题意得:23415253x y x y +=⎧⎨+=⎩,解之得,79x y =⎧⎨=⎩,答:A 种消毒液的单价是7元,B 型消毒液的单价是9元.(2)设购进A 种消毒液a 瓶,则购进B 种()90a -瓶,购买费用为W 元.则()79902810=+-=-+W a a a ,∴W 随着a 的增大而减小,a 最大时,W 有最小值. 又1903-≥a a ,∴67.5a ≤.由于a 是整数,a 最大值为67, 即当67a =时,最省钱,最少费用为810267676-⨯=元.此时,906723-=.最省钱的购买方案是购进A 种消毒液67瓶,购进B 种23瓶.【点睛】本题考查了二元一次不等式组的求解及利用一次函数的增减性来解决生活中的优化决策问题,解题的关键是:仔细审题,找到题中的等量关系,建立等式进行求解.11.(2021·四川乐山市)当x 取何正整数时,代数式32x +与213x -的值的差大于1 【答案】1,2,3,4【分析】根据题意,列一元一次不等式并求解,即可得到x 的取值范围;结合x 为正整数,通过计算即可得到答案. 【详解】根据题意得:321123x x ,解得:5x < ∵x 为正整数,∴x 为1,2,3,4时,代数式32x +与213x -的值的差大于1. 【点睛】本题考查了解一元一次不等式;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解. 12.(2021·江苏连云港市)解不等式组:311442x x x x -≥+⎧⎨+<-⎩. 【答案】x >2【分析】按照解一元一次不等式组的一般步骤进行解答即可.【详解】解:解不等式3x ﹣1≥x +1,得:x ≥1,解不等式x +4<4x ﹣2,得:x >2,∴不等式组的解集为x >2.【点睛】本题考查了解一元一次不等式组,熟悉“解一元一次不等式的方法和确定不等式组解集的方法”是解答本题的关键.。

一元一次不等式(组)(初中数学中考题汇总8)

一元一次不等式(组)(初中数学中考题汇总8)

● 选择题(每小题x 分,共y 分)5.(2011贵州安顺,5,3分)若不等式组⎩⎨⎧≥-≥-0035m x x 有实数解,则实数m 的取值范围是( )A .m ≤35B .m <35C .m >35D .m ≥35 (2011•黑龙江省龙东地区)19、把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

则共有学生 ( )A 、4人B 、5人C 、6人D 、5人或6人 (2011•湖北省宜昌市)5.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( ).(A)a <b (B)a =b (C)a >b (D)ab >0(2011•深圳市)9、已知a 、b 、c 均为实数,且a>b ,c ≠0,下列结论不一定正确的是D(2011•威海市)11.如果不等式组()2131x x x m--⎧⎪⎨⎪⎩><的解集是2x <,那么m 的取值范围是 D A .m =2B .m >2C .m <2D .m ≥2(2011•苏州市)6.不等式组30,32x x -≥⎧⎪⎨<⎪⎩的所有整数解之和是BA .9B .12C .13D .15〔2011•日照市〕6.若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是A(A )1<a ≤7 (B )a ≤7 (C ) a <1或a ≥7 (D )a =7 ● 二、填空题(每小题x 分,共y 分)(2011•襄阳市)15.我国从2011年5月1日起在公众场所实行“禁烟”.为配合“禁烟”行动.某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对—题记10分.答错(或不答)一题记 一5分.小明参加本次竞赛得分要超过100分.他至少要答对______14_________道题.(2011•眉山市)18.关于x 的不等式30x a -≤,只有两个正整数解.则a 的取值范围是__6≤a<9_____(2011•黄冈市)7.若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为__ a <4____.(2011•鸡西市)18.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有 2 种购买方案.(第5题)ba三、解答题:(共x 分)1.(2011湖北鄂州,20,8分)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A 、B 两水库各调出14万吨水支援甲、乙两地抗旱.从A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地45千米.⑴设从A 水库调往甲地的水量为x 万吨,完成下表甲 乙 总计 A x 14 B 14 总计 15 13 28 ⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案? (3)在(2)条件下,哪种方案获利最大?并求最大利润.3(2011•莆田) 某高科技公司根据市场需求,计划生产A 、B 两种型号的医疗器械,其部分信息如下:信息一:A 、B 两种型号的医疔器械共生产80台.信息二:该公司所筹生产医疗器械资金不少于1800万元,但不超过1810万元.且把所筹资金全部用于生产此两种医疗器械.信息三:A 、B 两种医疗器械的生产成本和售价如下表:根据上述信息.解答下列问题:调入地 水量/万吨调出地(1)(6分)该公司对此两种医疗器械有哪-几种生产方案?哪种生产方案能获得最大利润? (2)(4分)根据市场调查,-每台A 型医疗器械的售价将会提高a 万元(0a >). 每台A 型医疗器械的售价不会改变.该公司应该如何生产可以获得最大利润? (注:利润=售价-成本)26、(2011•毕节地区)小明到一家批发兼零售的文具店给九年级学生购买考试用2B 铅笔,请根据下列情景解决问题.(1)这个学校九年级学生总数在什么范围内?(2)若按批发价购买6支与按零售价购买5支的所付款相同,那么这个学校九年级学生有多少人?(2011•黄石市)23.(本小题满分8分)今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环境意识,节约用水,某校数学教师编制了一道应用题: 为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:(1(2)记该用户六月份用水量为x 吨,缴纳水费为y 元,试列出y 与x 的函数式; (3)若该用户六月份用水量为40吨,缴纳水费y 元的取值范围为7090y ≤≤,试求m 的取值范围。

2013中考全国100份试卷分类汇编:一元一次不等式(组)

2013中考全国100份试卷分类汇编:一元一次不等式(组)

2013中考全国100份试卷分类汇编一元一次不等式(组)1、(德阳市2013年)适合不等式组的全部整数解的和是A.一1 B、0 C.1 D.2答案:B解析:解(1)得:32x>-,解(2)得:1x≤,所以,原不等式组的解为:312x-<≤,所有整数为:-1,0,1,和为0,故选B。

2、(绵阳市2013年)设“▲”、“●”、“■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为(C )A.■、●、▲ B.▲、■、●C.■、▲、● D.●、▲、■解析:3、(2013陕西)不等式组⎪⎩⎪⎨⎧<->-321021x x 的解集为( ) A .21>x B .1-<x C .211<<-x D .21->x 考点:不等式的解法及不等式组的解集的选取。

解析:此题一般考不等式组或者是一元一次方程的应用等简单的计算能力考查。

易错就是不等式的性质3,乘除负数时不等号的方向应改变。

解集的选取应尊循:“大大取大;小小取小;大小小大取中间;大大小小取不了”的原则。

第1个不等式解得:21>x ;第2个不等式解得:1->x ;因此不等式组的解集为:21>x ;此题故选A 4、(2013济宁)已知ab=4,若﹣2≤b ≤﹣1,则a 的取值范围是( ) A .a ≥﹣4 B .a ≥﹣2 C .﹣4≤a ≤﹣1 D .﹣4≤a ≤﹣2 考点:不等式的性质.分析:根据已知条件可以求得b=,然后将b 的值代入不等式﹣2≤b ≤﹣1,通过解该不等式即可求得a 的取值范围. 解答:解:由ab=4,得 b=,∵﹣2≤b ≤﹣1, ∴﹣2≤≤﹣1, ∴﹣4≤a ≤﹣2. 故选D .点评:本题考查的是不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5、(2013年临沂)不等式组20,1 3.2x x x ->⎧⎪⎨+≥-⎪⎩的解集是(A)8x ≥. (B)2x >. (C)02x <<. (D)28x <≤答案:D解析:第一个不等式的解集为x >2,解第二个不等式得:x ≤8,所以不等式的解集为:28x <≤6、(2013年武汉)不等式组⎩⎨⎧≤-≥+0102x x 的解集是( )A .-2≤x ≤1B .-2<x <1C .x ≤-1D .x ≥2 答案:A解析:解(1)得:x ≥-2,解(2)得x ≤1,所以,-2≤x ≤17、(2013四川南充,5,3分)不等式组()⎪⎩⎪⎨⎧≥+--+23x 321x 1x 3>的整数解是()A.-1,0,1B. 0,1C. -2,0,1D. -1,1 答案:A解析:解第1个不等式,得:x >-2,解第2个不等式,得:32x ≤,所以,322x -<≤,整数有:-1,0,1,选A 。

2019中考数学分类汇编汇总 知识点11 一元一次不等式(组)的应用(第二期) 解析版

2019中考数学分类汇编汇总   知识点11  一元一次不等式(组)的应用(第二期)  解析版

一、选择题1. (2019黑龙江绥化,8题,3分)小明去商店购买A,B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元,若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量,则小明的购买方案有( )A.5种B.4种C.3种D.2种【答案】C【解析】设购买A种玩具x个,花x元,则买B种玩具花(10-x)元,购买102x-个,由题意得102xx->,∴103x>,又∵每种玩具至少买一件,∴A玩具最多买8件,其中x应为偶数,∴x=4,6,8,故选C.【知识点】不等式的应用2.(2019•常德)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为()A.10<x<12 B.12<x<15 C.10<x<15 D.11<x<14【分析】根据题意得出不等式组解答即可.【解答】解:根据题意可得:,可得:12<x<15,∴12<x<15故选:B.3.(2019•怀化)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55 B.72 C.83 D.89【分析】设该村共有x户,则母羊共有(5x+17)只,根据“每户发放母羊7只时有一户可分得母羊但不足3只”列出关于x的不等式组,解之求得整数x的值,再进一步计算可得.【解答】解:设该村共有x户,则母羊共有(5x+17)只,由题意知,解得:<x<12,∵x为整数,∴x=11,则这批种羊共有11+5×11+17=83(只),故选:C.4.(2019•绵阳)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种【分析】设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据“购进甲乙商品不超过4200元的资金、两种商品均售完所获利润大于750元”列出关于x的不等式组,解之求得整数x的值即可得出答案.【解答】解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.二.填空题(共2小题)1.(2019•大渡口区)商店购进一批文具盒,进价每个4元,零售价每个6元,为促销决定打折销售,但利润率仍然不低于20%,那么该文具盒实际价格最多可打8折销售.【分析】由题意可知:利润率为20%时,获得的利润为4×20%=0.8元;若打x折该商品获得的利润=该商品的标价×﹣进价,列出不等式,解得x的值即可.【解答】解:设可以打x折出售此商品,由题意得:,解得:x≥8,答:该文具盒实际价格最多可打8折,故答案为:82.(2019•荆州)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是13≤x<15.【分析】根据题意得到:6﹣0.5≤0.5x﹣1<6+0.5,据此求得x的取值范围.【解答】解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.三、解答题1.(2019内蒙古赤峰,22,12分)某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元.其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?【思路分析】(1)设小明原计划购买文具袋x个,则实际购买了(x+1)个,根据对话内容列出方程并解答;(2)设小明可购买钢笔y支,根据两种物品的购买总费用不超过400元列出不等式并解答.【解题过程】解:(1)设小明原计划购买文具袋x个,则实际购买了(x+1)个,依题意得:10(x+1)×0.85=10x﹣17.解得x=17.答:小明原计划购买文具袋17个.(2)设小明可购买钢笔y支,则购买签字笔(50﹣x)支,依题意得:[8y+6(50﹣y)]×80%≤400.解得y≤100.即y最大值=100.答:明最多可购买钢笔100支.【知识点】一元一次方程的应用;一元一次不等式的应用2.(2019•张家界)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?【分析】(1)设购买甲种树苗x棵,购买乙种树苗(2x﹣40)棵,由题意可得,30x+20(2x﹣40)=9000;(2)设购买甲树苗y棵,乙树苗(10﹣y)棵,根据题意可得,30y+20(10﹣y)≤230,根据y的范围确定购买方案即可;【解答】解:(1)设购买甲种树苗x棵,购买乙种树苗(2x﹣40)棵,由题意可得,30x+20(2x﹣40)=9000,70x=9800,x=140,∴购买甲种树苗140棵,乙种树苗240棵;(2)设购买甲树苗y棵,乙树苗(10﹣y)棵,根据题意可得,30y+20(10﹣y)≤230,10y≤30,∴y≤3;购买方案1:购买甲树苗3棵,乙树苗7棵;购买方案2:购买甲树苗2棵,乙树苗8棵;购买方案3:购买甲树苗1棵,乙树苗9棵;购买方案4:购买甲树苗0棵,乙树苗10棵;3.(2019•河南)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.【分析】(1)设A的单价为x元,B的单价为y元,根据题意列出方程组,即可求解;(2)设购买A奖品z个,则购买B奖品为(30﹣z)个,购买奖品的花费为W元,根据题意得到由题意可知,z≥(30﹣z),W=30z+15(30﹣z)=450+15z,根据一次函数的性质,即可求解;【解答】解:(1)设A的单价为x元,B的单价为y元,根据题意,得,∴,∴A的单价30元,B的单价15元;(2)设购买A奖品z个,则购买B奖品为(30﹣z)个,购买奖品的花费为W元,由题意可知,z≥(30﹣z),∴z≥,W=30z+15(30﹣z)=450+15z,当z=8时,W有最小值为570元,即购买A奖品8个,购买B奖品22个,花费最少;4.(2019•孝感)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?【分析】(1)直接利用今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.【解答】解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.5.(2019•广东)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?【分析】(1)设购买篮球x个,购买足球y个,根据总价=单价×购买数量结合购买篮球、足球共60个\购买这两类球的总金额为4600元,列出方程组,求解即可;(2)设购买了a个篮球,则购买(60﹣a)个足球,根据购买篮球的总金额不超过购买足球的总金额,列不等式求出x的最大整数解即可.【解答】解:(1)设购买篮球x个,购买足球y个,依题意得:.解得.答:购买篮球20个,购买足球40个;(2)设购买了a个篮球,依题意得:70a≤80(60﹣a)解得a≤32.答:最多可购买32个篮球.6.(2019•资阳)为了参加西部博览会,资阳市计划印制一批宣传册.该宣传册每本共10页,由A、B两种彩页构成.已知A种彩页制版费300元/张,B种彩页制版费200元/张,共计2400元.(注:彩页制版费与印数无关)(1)每本宣传册A、B两种彩页各有多少张?(2)据了解,A种彩页印刷费2.5元/张,B种彩页印刷费1.5元/张,这批宣传册的制版费与印刷费的和不超过30900元.如果按到资阳展台处的参观者人手一册发放宣传册,预计最多能发给多少位参观者?【分析】(1)设每本宣传册A、B两种彩页各有x,y张,根据题意列出方程组解答即可;(2)设最多能发给a位参观者,根据题意得出不等式解答即可.【解答】解:(1)设每本宣传册A、B两种彩页各有x,y张,,解得:,答:每本宣传册A、B两种彩页各有4和6张;(2)设最多能发给a位参观者,可得:2.5×4a+1.5×6a+2400≤30900,解得:a≤1500,答:最多能发给1500位参观者.7.(2019•岳阳)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积多600亩.(1)求复耕土地和改造土地面积各为多少亩?(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的,求休闲小广场总面积最多为多少亩?【分析】(1)设改造土地面积是x亩,则复耕土地面积是(600+x)亩.根据“复耕土地面积+改造土地面积=1200亩”列出方程并解答;(2)设休闲小广场总面积是y亩,则花卉园总面积是(300﹣y)亩,根据“休闲小广场总面积不超过花卉园总面积的”列出不等式并解答.【解答】解:(1)设改造土地面积是x亩,则复耕土地面积是(600+x)亩,由题意,得x+(600+x)=1200解得x=300.则600+x=900.答:改造土地面积是300亩,则复耕土地面积是900亩;(2)设休闲小广场总面积是y亩,则花卉园总面积是(300﹣y)亩,由题意,得y≤(300﹣y).解得y≤75.故休闲小广场总面积最多为75亩.答:休闲小广场总面积最多为75亩.8.(2019•聊城)某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?【分析】(1)直接利用两次采购的总费用得出等式进而得出答案;(2)利用采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元,进而得出不等式求出答案.【解答】解:(1)设A,B两种品牌运动服的进货单价各是x元和y元,根据题意可得:,解得:,答:A,B两种品牌运动服的进货单价各是240元和180元;(2)设购进A品牌运动服m件,购进B品牌运动服(m+5)件,则240m+180(m+5)≤21300,解得:m≤40,经检验,不等式的解符合题意,∴m+5≤×40+5=65,答:最多能购进65件B品牌运动服.9.(2019•北碚区)某杨梅园的杨梅除了运往市区销售外,还可以让市民亲自去园内采摘购买.已知今年5月份该杨梅在市区、园区的销售价格分别为16元/千克、20元/千克,今年5月份一共销售了2500千克,总销售额为44000元.(1)5月份该杨梅在市区、园区各销售了多少千克?(2)6月份是杨梅销售旺季,为了促销,杨梅园决定6月份将该杨梅在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种杨梅在市区、园区的销售量将在今年5月份的基础上分别增长30%、20%,要使6月份该杨梅的总销售额不低于49680元,则a的最大值是多少?【分析】(1)设在市区销售了x千克,则在园区销售了(2500﹣x)千克,根据等量关系:总销售额为44000元列出方程求解即可;(2)题目中的不等关系是:6月份该杨梅的总销售额不低于49680元列出不等式求解即可.【解答】解:(1)设在市区销售了x千克,则在园区销售了(2500﹣x)千克,则16x+20(2500﹣x)=44000,解得x=1500,2500﹣x=1000.故今年5月份该杨梅在市区销售了1500千克,在园区销售了1000千克.(2)依题意有16(1﹣a%)×1500(1+30%)+20(1﹣a%)×1000(1+20%)≥49680,55200(1﹣a%)≥49680,解得:a≤10.故a的最大值是10.10.(2019•万州区)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买12台节能新设备,现有甲乙两种型号的设备可供选购,经调查,购4台甲比购3台乙多用18万元,购3台甲比购4台乙少用4万元(1)求甲乙两种设备的单价;(2)该公司决定购买甲设备不少于5台,购买资金不超过136万元,你认为该公司有几种购买方案?并直接写出最省钱的购买方案.【分析】(1)设甲设备的单价为x万元,乙设备的单价为y万元,根据“购4台甲比购3台乙多用18万元,购3台甲比购4台乙少用4万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲设备m台,则购进乙设备(12﹣m)台,根据购买甲设备不少于5台且购买资金不超过136万元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数可得出各购买方案,再由甲设备的单价>乙设备的单价可找出最省钱的购买方案.【解答】解:(1)设甲设备的单价为x万元,乙设备的单价为y万元,依题意,得:,解得:.答:甲设备的单价为12万元,乙设备的单价为10万元.(2)设购进甲设备m台,则购进乙设备(12﹣m)台,依题意,得:,解得:5≤m≤8.∵m为整数,∴m=5,6,7,8,∴该公司共有4种购买方案,方案1:购进甲设备5台,乙设备7台;方案2:购进甲设备6台,乙设备6台;方案3:购进甲设备7台,乙设备5台;方案4:购进甲设备8台,乙设备4台.∵甲设备的单价>乙设备的单价,∴方案1购进甲设备5台,乙设备7台最省钱.11.(2019•遵义)某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?【分析】(1)根据题意可以列出相应的方程组,从而可以求得租用A,B两型客车,每辆的费用;(2)根据题意可以列出相应的不等式,从而可以得到有哪几种租车方案和最省钱的方案.【解答】解:(1)设租用A,B两型客车,每辆费用分别是x元、y元,,解得,,答:租用A,B两型客车,每辆费用分别是1700元、1300元;(2)设租用A型客车a辆,租用B型客车b辆,,解得,,,,∴共有三种租车方案,方案一:租用A型客车2辆,B型客车5辆,费用为9900元,方案二:租用A型客车4辆,B型客车2辆,费用为9400元,方案三:租用A型客车5辆,B型客车1辆,费用为9800元,由上可得,方案二:租用A型客车4辆,B型客车2辆最省钱.12.(2019•荆州)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为8辆;(3)学校共有几种租车方案?最少租车费用是多少?【分析】(1)设参加此次研学活动的老师有x人,学生有y人,根据“若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)利用租车总辆数=师生人数÷35结合每辆客车上至少要有2名老师,即可得出租车总辆数为8辆;(3)设租35座客车m辆,则需租30座的客车(8﹣m)辆,根据8辆车的座位数不少于师生人数及租车总费用不超过3000元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为正整数即可得出租车方案数,设租车总费用为w元,根据租车总费用=400×租用35座客车的数量+320×租用30座客车的数量,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:,解得:.答:参加此次研学活动的老师有16人,学生有234人.(2)∵(234+16)÷35=7(辆)……5(人),16÷2=8(辆),∴租车总辆数为8辆.故答案为:8.(3)设租35座客车m辆,则需租30座的客车(8﹣m)辆,依题意,得:,解得:2≤m≤5.∵m为正整数,∴m=2,3,4,5,∴共有4种租车方案.设租车总费用为w元,则w=400m+320(8﹣m)=80m+2560,∵80>0,∴w的值随m值的增大而增大,∴当m=2时,w取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.13.(2019•滨州)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.【分析】(1)可设辆甲种客车与1辆乙种客车的载客量分别为x人,y人,根据等量关系2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人,列出方程组求解即可;(2)根据题意列出不等式组,进而求解即可.【解答】解:(1)设辆甲种客车与1辆乙种客车的载客量分别为x人,y人,,解得:,答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车a辆,依题意有:,解得:6>a≥4,因为a取整数,所以a=4或5,a=4时,租车费用最低,为4×400+2×280=2160.14.(2019•大渡口区)母亲节前夕,某商店从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为3:4,单价和为210元.(1)求A、B两种礼盒的单价分别是多少元?(2)该商店购进这两种礼盒恰好用去9900元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A钟礼盒可获利12元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?【分析】(1)利用A、B两种礼盒的单价比为3:4,单价和为210元,得出等式求出即可;(2)利用两种礼盒恰好用去9900元,结合(1)中所求,得出等式,利用两种礼盒的数量关系求出即可;(3)首先表示出店主获利,进而利用w,m关系得出符合题意的答案.【解答】解(1)设A种礼盒单价为3x元,B种礼盒单价为4x元,则:3x+4x=2107x=210X=30所以A种礼盒单价为3×30=90元,B种礼盒单价为4×30=120元.(2)设A种礼盒购进a个,购进B种礼盒b个,则:90a+120b=9900,可列不等式组为:解得:30≤a≤36因为礼盒个数为整数,所以符合的方案有2种,分别是:第一种:A种礼盒30个,B种礼盒60个,第二种:A种礼盒34个,B种礼盒57个.(3)设该商店获利w元,由(2)可知:w=12a+(18﹣m)b,则w=(2﹣m)b+1320若使所有方案都获利相同,则令2﹣m=0得m=2,此时店主获利1320元.。

2012-2011年中考数学汇编:一元一次不等式(组)的应用

2012-2011年中考数学汇编:一元一次不等式(组)的应用

2011-2012全国各中考数学试题分考点解析汇编一元一次不等式(组)的应用一、选择题1.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

则共有学生A 、4人B 、5人C 、6人D 、5人或6人【考点】一元一次不等式组的应用。

2.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打A 、6折B 、7折C 、8折D 、9折【考点】一元一次不等式的应用。

3. 如图,天平右盘中的每个砝码的质量都是1克,则物体A 的质量m 克的取值范围表示在数轴上为A B C D二、填空题1.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入.铁钉所受的阻力也越来越大,当铁钉未进入木块部分长度足够时,每次钉入木块妁铁钉长度是前一次的13,已知这个铁钉被敲击3次后全部进入木块(木块足够厚).且第一次敲击后,铁钉进入木块的长度是a cm ,若铁钉总长度为 6 cm ,则a 的取值范围是▲ 。

2.有3人携带会议材料乘坐电梯,这3人的体重共210kg .毎梱材料重20kg .电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载 ▲ 捆材枓.3.我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答) 一题记﹣5分.小明参加本次竞赛得分要超过100分,他至少要答对 ▲ 道题.4.在一次社会实践活动中,某班可筹集到的活动经费最多900元.此次活动租车需300元,每个学生活动期间所需经费15元,则参加这次活动的学生人数最多为▲ .三、解答题1.筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务.该厂生产桌子的必须5人一组.每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均毎天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.2. 2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”。

中考数学真题分类汇编(第三期)专题6 不等式(组)试题(含解析)-人教版初中九年级全册数学试题

中考数学真题分类汇编(第三期)专题6 不等式(组)试题(含解析)-人教版初中九年级全册数学试题

不等式(组)1. (2018·某某江汉·3分)若关于x的一元一次不等式组的解集是x >3,则m的取值X围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.2.(2018·某某省某某·3分)关于x的不等式﹣1<x≤a有3个正整数解,则a的取值X 围是.解:∵不等式﹣1<x≤a有3个正整数解,∴这3个整数解为1.2.3,则3≤a<4.故答案为:3≤a<4.3.(2018·某某省某某市)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2,在数轴上表示为.故选B.4. (2018•呼和浩特•3分)若满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,则实数m的取值X围是()A.m<﹣1 B.m≥﹣5 C.m<﹣4 D.m≤﹣4解:∵满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,∴m<,∴m≤﹣4故选:D.5.(2018·某某某某·3分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.1.(2018·某某省某某市)(3.00分)不等式组的解集是﹣2≤x<2 .【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式x﹣2<0,得:x<2,解不等式3x+6≥0,得:x≥﹣2,则不等式组的解集为﹣2≤x<2,故答案为:﹣2≤x<2.【点评】本题考查了解一元一次不等式组,遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.2.(2018·某某省某某市)不等式组的解集是0<x≤8.【解答】解:∵解不等式①得:x≤8,解不等式②得:x>0,∴不等式组的解集为0<x≤8.故答案为:0<x≤8.3. (2018•呼和浩特•3分)若不等式组的解集中的任意x,都能使不等式x ﹣5>0成立,则a的取值X围是.解:∵解不等式①得:x>﹣2a,解不等式②得:x>﹣a+2,又∵不等式x﹣5>0的解集是x>5,∴﹣2a≥5或﹣a+2≥5,解得:a≤﹣2.5或a≤﹣6,经检验a≤﹣2.5不符合,故答案为:a≤﹣6.1. (2018·某某贺州·8分)某自行车经销商计划投入7.1万元购进100辆A型和30辆B 型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A.B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧X,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?【解答】解:(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,根据题意得:,解得:.答:A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆.(2)设购进B型自行车m辆,则购进A型自行车(130﹣m)辆,根据题意得:260(130﹣m)+1500m≤58600,解得:m≤20.答:至多能购进B型车20辆.2. (2018·某某某某·8分)解不等式组,并求出它的整数解,再化简代数式•(﹣),从上述整数解中选择一个合适的数,求此代数式的值.【分析】先解不等式组求得x的整数解,再根据分式混合运算顺序和运算法则化简原式,最后选取使分式有意义的x的值代入计算可得.【解答】解:解不等式3x﹣6≤x,得:x≤3,解不等式<,得:x>0,则不等式组的解集为0<x≤3,所以不等式组的整数解为1.2.3,原式=•[﹣]=•=,∵x≠±3.1,∴x=2,则原式=1.【点评】此题主要考查了分式的化简求值以及不等式组的解法,正确进行分式的混合运算是解题关键.3.(2018·某某荆州·5分)求不等式组的整数解.【解答】解:解不等式①,得:x≥﹣1,解不等式②,得:x<1,则不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1.0.4.(2018·某某省某某)某某市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么X围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的X围.5.(2018·某某省某某·8分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【分析】(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.【解答】解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【点评】本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式,本题属于中等题型.6.(2018·某某省·8分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A.B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)3 2 120A商品200B商品设生产A种商品x千克,生产A.B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值X围;(2)x取何值时,总成本y最小?【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.7.(2018·某某省某某·8分)解不等式组:【分析】根据不等式组的解集的表示方法:大小小大中间找,可得答案.【解答】解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.8.(2018·某某省某某市) 某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?【解答】解:(1)设修建一个足球场x万元,一个篮球场y万元,根据题意可得:,解得:,答:修建一个足球场和一个篮球场各需3.5万元,5万元;(2)设足球场y个,则篮球场(20﹣y)个,根据题意可得:3.5y+5(20﹣y)≤90,解得:y,答:至少可以修建6个足球场.9.(2018·某某省某某市)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?【解答】解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:,解得:,答:购买一个篮球,一个足球各需150元,100元;(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10﹣a)≤1050,解得:a≤4,答;最多可购买4个篮球.10.(2018·某某省某某市)(12.00分)为落实“美丽某某”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.11. (2018•某某•9分)解不等式组:解:.∵解不等式①得:x>0,解不等式②得:x<6,∴不等式组的解集为0<x<6.12. (2018•某某•3分)已知点P(1﹣a,2a+6)在第四象限,则a的取值X围是()A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>1【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(1﹣a,2a+6)在第四象限,∴,解得a<﹣3.故选:A.【点评】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(2018·某某某某·9分)解不等式组:解:∵解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.14. (2018·某某某某·10分)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.【答案】(1)老师有16名,学生有284名;(2)8;(3)共有3种租车方案,最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【解析】【分析】(1)设老师有x名,学生有y名,根据等量关系:若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,列出二元一次方程组,解出即可;(2)由(1)中得出的教师人数可以确定出最多需要几辆汽车,再根据总人数以及汽车最多的是42座的可以确定出汽车总数不能小于=(取整为8)辆,由此即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,由题意得出400x+300(8﹣x)≤3100,得出x取值X围,分析得出即可.【详解】(1)设老师有x名,学生有y名,依题意,列方程组为,解得:,答:老师有16名,学生有284名;(2)∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,word综合起来可知汽车总数为8辆,故答案为:8;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,∵车总费用不超过3100元,∴400x+300(8﹣x)≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7(x为整数),∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组是解题的关键.15.(2018·某某某某·8分)解方程组和不等式组:(2)【分析】(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(2),解不等式①得:x≥3;解不等式②得:x≥﹣1,所以不等式组的解集为:x≥3.16.(2018·某某某某·5分)(2)解不等式组:【解答】解:(2)解不等式2x﹣4>0,得:x>2,解不等式x+1≤4(x﹣2),得:x≥3,则不等式组的解集为x≥3.11 / 11。

2021全国中考真题:方程与不等式(一元一次方程答案版)

2021全国中考真题:方程与不等式(一元一次方程答案版)

2021全国中考真题分类汇编(方程与不等式)----一次方程(组)一、选择题1.(2021·安徽省)设a ,b ,c 为互不相等的实数,且4155b ac =+,则下列结论正确的是()A.a b c>> B.c b a>> C.4()a b b c -=- D.5()a c ab -=-【答案】D 【解析】【分析】举反例可判断A 和B ,将式子整理可判断C 和D .【详解】解:A .当5a =,10c =,41655b ac =+=时,c b a >>,故A 错误;B .当10a =,5c =,41955b ac =+=时,a b c >>,故B 错误;C .4()a b b c -=-整理可得1455b ac =-,故C 错误;D .5()a c a b -=-整理可得4155b ac =+,故D 正确;故选:D .2.(2021•甘肃省定西市)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为()A .B .C .D .【分析】设共有x 人,y 辆车,根据“如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行”,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】解:设共有x 人,y 辆车,依题意得:.故选:C .3.(2021•湖北省武汉市)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱;每人出7钱,还差4钱.问人数,物价是y 钱,则下列方程正确的是()A .8(x ﹣3)=7(x +4)B .8x +3=7x ﹣4C .=D .=【分析】根据人数=总钱数÷每人所出钱数,得出等式即可.【解答】解:设物价是y 钱,根据题意可得:=.故选:D .4.(2021•株洲市)方程122x-=的解是()A.2x =B.3x = C.5x = D.6x =【答案】D5.(2021•四川省成都市)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x ,y ,则可列方程组为()A .B .C .D .【分析】设甲需持钱x ,乙持钱y ,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.【解答】解:设甲需持钱x ,乙持钱y ,根据题意,得:,故选:A6(2021•四川省南充市)端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x 元,则可列方程为()A .10x +5(x ﹣1)=70B .10x +5(x +1)=70C .10(x ﹣1)+5x =70D .10(x +1)+5x =70【分析】设每个肉粽x 元,则每个素粽(x ﹣1)元,根据总价=单价×数量,结合购买10个肉粽和5个素粽共用去70元,即可得出关于x 的一元一次方程,此题得解.【解答】解:设每个肉粽x 元,则每个素粽(x ﹣1)元,依题意得:10x +5(x ﹣1)=70.故选:A .7.(2021•天津市)方程组234x y x y +=⎧⎨+=⎩的解是()A.02x y =⎧⎨=⎩ B.11x y =⎧⎨=⎩C.22x y =⎧⎨=-⎩ D.33x y =⎧⎨=-⎩【答案】B 【解析】【分析】直接利用加减消元法解该二元一次方程组即可.【详解】234x y x y +=⎧⎨+=⎩①②,②-①得:32x y x y +--=,即22x =,∴1x =.将1x =代入①得:12y +=,∴1y =.故原二元一次方程组的解为11x y =⎧⎨=⎩.故选B .8.(2021•新疆)某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分.设该班胜x 场,负y 场,则根据题意,下列方程组中正确的是()A.26216x yx y+=⎧⎨+=⎩B.26216x yx y+=⎧⎨+=⎩C.16226x yx y+=⎧⎨+=⎩D.16226x yx y+=⎧⎨+=⎩【答案】D9.(2021•浙江省杭州)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x>0),则()A.60.5(1﹣x)=25B.25(1﹣x)=60.5C.60.5(1+x)=25D.25(1+x)=60.5【分析】依题意可知四月份接待游客25万,则五月份接待游客人次为:25(1+x),进而得出答案.【解答】解:设该景点今年四月到五月接待游客人次的增长率为x(x>0),则25(1+x)=60.8.故选:D.10.(2021•浙江省温州市).解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x 【分析】可以根据乘法分配律先将2乘进去,再去括号.【解答】解:根据乘法分配律得:﹣(4x+2)=x,去括号得:﹣3x﹣2=x,故选:D.11.(2021•江苏省无锡市)方程组的解是()A.B.C.D.【分析】将两个方程相加,可消去y,得到x的一元一次方程,从而解得x=4,再将x =4代入①解出y的值,即得答案.【解答】解:,①+②得:2x=8,∴x=4,把x=4代入①得:4+y=5,∴y=1,∴方程组的解为.故选:C.12.(2021•黑龙江省龙东地区)为迎接2022年北京冬奥会,某校开展了以迎冬奥为主题的演讲活动,计划拿出180元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有()A.5种B.6种C.7种D.8种【答案】A【解析】【分析】设购买甲种奖品为x件,乙种奖品为y件,由题意可得15x+10y=180,进而求解即可.【详解】解:设购买甲种奖品为x件,乙种奖品为y件,由题意可得:15x+10y=180,3∴y=18-x,2∵x>0,y>0,且x、y都为正整数,∴当x=2时,则y=15;当x=4时,则y=12;当x=6时,则y=9;当x=8时,则y=6;当x=10时,则y=3;∴购买方案有5种;故选A.13.(2021•齐齐哈尔市)周末,小明的妈妈让他到药店购买口罩和消精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有()A.3种B.4种C.5种D.6种【答案】B 【解析】【分析】设购买口罩x 包,酒精湿巾y 包,根据总价=单价⨯数量,即可列出关于,x y 的二元一次方程,结合,x y 均为正整数,即可得出购买方案的个数.【详解】解:设购买口罩x 包,酒精湿巾y 包,依据题意得:3230x y +=2103x y ∴=-,x y 均为正整数,83x y =⎧∴⎨=⎩或66x y =⎧⎨=⎩或49x y =⎧⎨=⎩或212x y =⎧⎨=⎩∴小明共有4种购买方案.故选:B .二.填空题1.(2021•江苏省扬州)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.【答案】20【解析】【分析】设良马行x 日追上驽马,根据路程=速度×时间结合两马的路程相等,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设快马行x 天追上慢马,则此时慢马行了(x +12)日,依题意,得:240x =150(x +12),解得:x =20,∴快马20天追上慢马,故答案为:20.2.(2021•山东省泰安市)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为.【分析】根据乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50和题目中所设的未知数,可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.3.(2021•陕西省).幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,则图中a的值为﹣2.【分析】根据各行的三个数字之和相等,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:依题意得:﹣1﹣6+3=0+a﹣4,解得:a=﹣7.故答案为:﹣2.⎧x+2y=2-_________4.(2021•广东省)二元一次方程组⎨的解为.⎩2x+y=2【答案】22x y =⎧⎨=-⎩【解析】2222x y x y +=-⎧⎨+=⎩①②,①+②可得0x y +=③,①-③得,2y =-,把2y =-代入③得2x =因此22x y =⎧⎨=-⎩,考查二元一次方程组的解法5.(2021•四川省凉山州)已知13x y =⎧⎨=⎩是方程2ax y +=的解,则a 的值为______________.【答案】-1【解析】【分析】根据方程解的定义,将x =1,y =3代入方程2ax y +=,即可求得a 的值.【详解】解:根据题意,将x =1,y =3代入方程2ax y +=,得:32a +=,解得:a =-1,故答案为:-1.6.(2021•浙江省嘉兴市)已知二元一次方程x +3y =14,请写出该方程的一组整数解(答案不唯一).【分析】把y 看做已知数求出x ,确定出整数解即可.【解答】解:x +3y =14,x =14﹣3y ,当y =1时,y =11,则方程的一组整数解为.故答案为:(答案不唯一).7.(2021•浙江省金华市)已知是方程3x +2y =10的一个解,则m 的值是2.【分析】把方程组的解代入到方程中,得到关于m 的一元一次方程,解方程即可.【解答】解:把代入方程得:3×2+2m=10,∴m=2,故答案为:2.8.(2021•浙江省绍兴市)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两;若每人9两,则差8两.银子共有46两.【分析】通过设两个未知数,可以列出银子总数相等的二元一次方程组,本题得以解决.【解答】解:设有x人,银子y两,由题意得:,解得,故答案为46.9.(2021•重庆市B)方程2(x﹣3)=6的解是x=6.【分析】按照去括号,移项,合并同类项的步骤解方程即可.【解答】解:方程两边同除以2得:x﹣3=3.移项,合并同类项得:x=6.故答案为:x=6.【点评】本题主要考查了解一元一次方程.解一元一次方程常见的过程有去分母,去括号、移项、合并同类项,系数化为1等.10.(2021•重庆市A)若关于x的方程442x a-+=的解是2x=,则a的值为__________.【答案】3【解析】【分析】将x=2代入已知方程列出关于a的方程,通过解该方程来求a的值即可.【详解】解:根据题意,知4-2+a=4,2解得a=3.故答案是:3.11.(2021•湖北省江汉油田)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为_______尺.(其大意为:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺.)【答案】20【解析】【分析】设绳索长x 尺,根据两种量竿的方法建立方程,解方程即可得.【详解】解:设绳索长x 尺,由题意得:552xx -=+,解得20x =,即绳索长20尺,故答案为:20.三、解答题1.(2021•四川省广元市)解方程:31423x x --+=.【答案】7x =【解析】【分析】根据整式方程的计算过程,去分母、去括号、移项、合并同类项、系数化为1,就可以得到结果.【详解】解:去分母得:()()332124x x -+-=,去括号得:392224x x -+-=,移项并合并同类项得:535x =,系数化为1得:7x =,故答案为:7x =.2.(2021•浙江省台州)解方程组:241x y x y +=⎧⎨-=-⎩【答案】12x y =⎧⎨=⎩.【解析】【分析】观察方程组中同一未知数的系数特点:x 的系数存在倍数关系,而y 的系数互为相反数,因此将两方程相加,消去y 求出x ,再求出y 的值,可得到方程组的解.【详解】解:①+②得:3x =3,即x =1,把x =1代入①得:y =2,则方程组的解为12x y =⎧⎨=⎩.3.(2021•四川省眉山市)解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①×15+②×2得:49x =﹣294,解得:x =﹣6,把x =﹣6代入②得:y =1,则方程组的解为4.(2021•呼和浩特市)解方程组1.5(2010)150001.2(110120)97200x y x y +=⎧⎨+=⎩解:1.5(2010)150001.2(110120)97200x y x y +=⎧⎨+=⎩,化简得210001112810x y x y +=⎧⎨+=⎩①②①×12-②得:133900x =解得300x =把300x =代入①得:400y =∴方程组的解为:300400x y =⎧⎨=⎩5.(2021•江苏省扬州)已知方程组271x y x y +=⎧⎨=-⎩的解也是关于x 、y 的方程4ax y +=的一个解,求a 的值.1【答案】a =2【解析】【分析】求出方程组的解得到x 与y 的值,代入方程计算即可求出a 的值.【详解】解:方程组271x y x y +=⎧⎨=-⎩①②,把②代入①得:()217y y -+=,解得:3y =,代入①中,解得:2x =,把2x =,3y =代入方程4ax y +=得,234a +=,解得:12a =.6.(2021·安徽省)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加块;(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n 的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?【答案】(1)2;(2)2n +4;(3)1008块【解析】【分析】(1)由图观察即可;(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,再结合题干中的条件正方形地砖只有1块时,等腰直角三角形地砖有6块,递推即可;(3)利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量.【详解】解:(1)由图可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖;故答案为:2;(2)由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖;当正方形地砖只有1块时,等腰直角三角形地砖有6块,即2+4;所以当地砖有n 块时,等腰直角三角形地砖有(24n +)块;故答案为:24n +;(3)令242021n +=则1008.5n =当1008n =时,242020n +=此时,剩下一块等腰直角三角形地砖∴需要正方形地砖1008块.7.(2021•湖南省邵阳市)为庆祝中国共产党成立100周年,某校计划举行“学党史•感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品店购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.【分析】设钢笔购买了x 支,笔记本购买了y 本,篮球个数+钢笔支数+笔记本本数=56,篮球总价+钢笔总价+笔记本总价=1000,利用这两个相等关系列出二元一次方程组,解出即得钢笔和笔记本的数量,乘以各自单价即得各自总价.【解答】解:设钢笔购买了x 支,笔记本购买了y 本.由题意得:,解得:,∴15×15=225(元),35×5=175(元),答:钢笔购买了15支共225元,笔记本购买了35本共175元.8.(2021•陕西省)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.【分析】设这种服装每件的标价是x 元,根据“这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等”从而得出等式方程,解方程即可求解;【解答】解:设这种服装每件的标价是x 元,根据题意得,10×0.8x =11(x ﹣30),解得x =110,答:这种服装每件的标价为110元.9.(2021•广西贺州市)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m 时,按一级单价收费;当每户每月用水量超过312m 时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m ,缴纳水费32元.七月份因孩子放假在家,用水量为314m ,缴纳水费51.4元.(1)问该市一级水费,二级大费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?【答案】(1)一级水费的单价为3.2元/3m ,二级水费的单价为6.5元/3m ;(2)316m 【解析】【分析】(1)设该市一级水费的单价为x 元/3m ,二级水费的单价为y 元/3m ,根据题意,列出二元一次方程组,即可求解;(2)先判断水量超过312m ,设用水量为3m a ,列出方程,即可求解.【详解】(1)设该市一级水费的单价为x 元/3m ,二级水费的单价为y 元/3m ,依题意得()103212141251.4x x y =⎧⎨--=⎩,解得 3.26.5x y =⎧⎨=⎩,答:该市一级水费的单价为3.2元/3m ,二级水费的单价为6.5元/3m .(2)当水费为64.4元,则用水量超过312m ,设用水量为3m a ,得,()12 3.212 6.564.4a ⨯+-⨯=,解得:16a =.答:当缴纳水费为64.4元时,用水量为316m .。

中考数学模拟试题分类汇编一元一次不等式(组)

中考数学模拟试题分类汇编一元一次不等式(组)

一元一次不等式(组)一、选择题1、(2012江西高安) 把不等式组110x x +⎧⎨-⎩≤>0,的解集表示在数轴上,正确的为图中的( )A .B .C .D . 答案:B2、(2012昆山一模)不等式组12350x x ⎧-≤⎪⎨⎪+>⎩的解集为A .5132x -<≤-B .53x >- C .x ≥0 D .x ≥-2答案:C3. (2012年,瑞安市模考)关于x 的不等式22≤+-a x 的解集如图所示,那么a 的值是( ) A .-4 B .-2C .0D.2答案:C4. (2012年吴中区一模)已知点P (1-m ,2-n ),如果m>1,n<2,那么点P 在第( ▲ )象限.(A)一 (B)二 (C)三 (D)四 答案:B5. (2012年,广东二模)不等式组⎩⎪⎨⎪⎧2x-1<x 15x ≤1的解集在数轴上表示正确的是( C )6、(1x ⎩≤ A )A .B .答案:A7、(2012石家庄市42中二模)把某不等式组中两个不等式的解集表示在数轴上,如图,则这个不等式组可能是( )A . x >4B . x <4C . x>4 D . x ≤4x ≤-1x ≥-1 x >-1x >-1 答案:B8、(2012温州市泰顺九校模拟)不等式组431x x +>⎧⎨⎩≤的解集在数轴上可表示为()答案:A9、(2012双柏县学业水平模拟考试)不等式组201x x ->⎧⎨-≤⎩ 的解集是【 】A .x ≥-1B .-1≤x <2C .x >2D .x ≤-1答案:C10、(杭州市2012年中考数学模拟)不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个 答案:B11.(2012广西贵港)关于x 的不等式12-≤-a x 的解集如图所示 ,则a 的取值是 A .0 B .-3C .-2D .-1 答案:DA .B .C .D .12、(盐城市第一初级中学2011~2012学年期中考试)不等式组⎩⎨⎧><-01x x 的解集在数轴可表示为 ( ▲ )答案D二、填空题1、不等式组()⎪⎩⎪⎨⎧〉+〈+28x 2104x 2的整数解是 。

初中数学试卷分类汇编一元一次不等式易错压轴解答题(含答案)100

初中数学试卷分类汇编一元一次不等式易错压轴解答题(含答案)100

初中数学试卷分类汇编一元一次不等式易错压轴解答题(含答案)100一、一元一次不等式易错压轴解答题1.定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a-2b.例如:3*(-4)=3+(-8)=-5,(-6)*12=-6-24=-30(1)填空:(-4)*3=________.(2)若(3x-4)*(x+6)=(3x-4)+2(x+6),则x的取值范围为________;(3)已知(3x-7)*(3-2x)<-6,求x的取值范围;(4)小明在计算(2x2-4x+8)*(x2+2x-2)时随意取了一个x的值进行计算,得出结果是-4,小丽告诉小明计算错了,问小丽是如何判断的.2.某服装店用2400元购进一批运动服,很快售完;老板又用3750元购进第二批运动服,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批运动服每件进价是多少元?(2)服装店按标价的8折进行销售,要使得两次的销售总利润不少于1850元,每件运动服标价至少为多少元?(利润=售价-进价).3.已知关于x,y的方程满足方程组.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣4|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.4.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:总利润单件利润销售量商品价格A B进价元件12001000售价元件13501200B两种商品各多少件?(2)商场第2次以原进价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原售价销售,而B商品按原售价打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?5.对非负有理数x“四舍五入”到个位的值记为<x>.即n为非负整数时,如果时,则<x>=n,例如:<0>=<0.48>=0;<0.64>=<1.493>=1;<2>=2;<3.52>=<4.48>=4;……尝试解决下列问题:(1)填空:①<3.49>=________;②如果<2a-1>=3,那么a的取值范围是________;(2)举例说明<x+y>=<x> + <y>不恒成立;(3)求满足<x>=的所有非负有理数x的值.6.陆老师去水果批发市场采购苹果,他看中了A,B两家苹果,这两家苹果品质一样,零售价都我6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~500部分500以上~15001500以上~2500部分2500以上部分价格补贴零售价的95%零售价的85%零售价的75%零售价的70%(2)如果他批发x千克苹果(1500<x<2000),请你分别用含x的代数式表示他在A、B 两家批发所需的费用;(3)A、B两店在互相竞争中开始了互怼,B说A店的苹果总价有不合理的,有时候买的少反而贵,忽悠消费者;A说B的总价计算太麻烦,把消费者都弄糊涂了;旁边陆老师听完,提出两个问题希望同学们帮忙解决:①能否举例说明A店买的多反而便宜?②B店老板比较聪明,在平时工作中发现有巧妙的方法:总价=购买数量×单价+价格补贴;注:不同的单价,补贴价格也不同;只需提前算好即可填下表:数量范围(千克)0~500部分500以上~15001500以上~25002500以上部分价格补贴0元300▲▲7.有大小两种货车,3辆大货车与2辆小货车一次可以运货21吨,2辆大货车与4辆小货车一次可以运货22吨.(1)每辆大货车和每辆小货车一次各可以运货多少吨?(2)现有这两种货车共10辆,要求一次运货不低于35吨,则其中大货车至少多少辆?(用不等式解答)(3)日前有23吨货物需要运输,欲租用这两种货车运送,要求全部货物一次运完且每辆车必须装满.已知每辆大货车一次运货租金为300元,每辆小货车一次运货租金为200元,请列出所有的运输方案井求出最少租金.8.某校七年级为了表彰“数学素养水平测试”中表现优秀的同学,准备用480元钱购进笔记本作为奖品.若A种笔记本买20本,8本笔记本买30本,则钱还缺40元;若A种笔记本买30本,B种笔记本买20本,则钱恰好用完.(1)求A,B两种笔记本的单价.(2)由于实际需要,需要增加购买单价为6元的C种笔记本若干本.若购买A,B,C三种笔记本共60本,钱恰好全部用完.任意两种笔记本之间的数量相差小于15本,则C种笔记本购买了________本.(直接写出答案)9.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备每台的价格;(2)该公司经决定购买甲型设备不少于3台,预算购买节省能源的新设备资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备每月的产量为240吨,乙型设备每月的产量为180吨.若每月要求产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.10.某商店需要购进甲、乙两种商品共180件其进价和售价如表:(注:获利=售价进价)(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.11.淮河汛期即将来临防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看河面及两岸河堤的情况•如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a,b满足:a是 +1的整数部分,b是不等式2(x+1)>3的最小整数解.假定这一带淮河两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)a=________,b=________;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前,若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,求∠BCD:∠BAC的值.12.某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:A型号客车B型号客车载客量(人/辆)4530租金(元/辆)60045010辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.【参考答案】***试卷处理标记,请不要删除一、一元一次不等式易错压轴解答题1.(1)-10(2)x≥5(3)解:由题意知①或②,解①得:x>5;解②得:x<1;(4)解:若2x2-4x+8≥x2+2x-2,则原式=2x2-4x+8+2(x2+2x-解析:(1)-10(2)x≥5(3)解:由题意知①或②,解①得:x>5;解②得:x<1;(4)解:若2x2-4x+8≥x2+2x-2,则原式=2x2-4x+8+2(x2+2x-2)=2x2-4x+8+2x2+4x-4=4x2+4;若2x2-4x+8<x2+2x-2,则原式=2x2-4x+8-2(x2+2x-2)=2x2-4x+8-2x2-4x+4=-8x+12,∴小明计算错误.【解析】【解答】解:(1)(-4)*3=-4-2×3=-10,故答案为:-10;( 2 )∵(3x-4)*(x+6)=(3x-4)+2(x+6),∴3x-4≥x+6,解得:x≥5,故答案为:x≥5.【分析】(1)根据公式计算可得;(2)结合公式知3x-4≥x+6,解之可得;(3)由题意可得或,分别求解可得;(4)计算(2x2-4x+8)*(x2+2x-2)时需要分情况讨论计算.2.(1)解:设第一批运动服每件进价x元,则第二批运动服每件进价(+5)元,依题意得: .解得:x=120检验:x=120时,2x(x+5)≠0.x=120是原方程的根,且符合题意答解析:(1)解:设第一批运动服每件进价x元,则第二批运动服每件进价(+5)元,依题意得:.解得:x=120检验:x=120时,2x(x+5)≠0.x=120是原方程的根,且符合题意答:第一批运动服每件进价是120元.(2)解:设每件运动服标价为y元,依题意得:≥1850.解得y≥200.答:每件运动服标价至少为200元.【解析】【分析】(1)此题的等量关系为:第二批的进价=第一批的进价+5;2400÷第一批的进价×=3750÷第二批运动服每件进价,设未知数,列方程求出方程的解即可。

专题13:一元一次不等式(组)的应用

专题13:一元一次不等式(组)的应用

2012年全国中考数学试题分类解析汇编(159套63专题)专题13:一元一次不等式(组)的应用一、选择题1. (2012湖北恩施3分)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高【】A.40% B.33.4% C.33.3% D.30%【答案】B。

【考点】一元一次不等式的应用。

【分析】设购进这种水果a千克,进价为b元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)b元/千克,根据题意得:购进这批水果用去ab元,但在售出时,大樱桃只剩下(1﹣10%)a千克,售货款为(1﹣10%)a(1+x)b=0.9a(1+x)b元,根据公式:利润率=(售货款-进货款)÷进货款×100%可列出不等式:÷ab·100%≥20%,解得x≥13。

∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%。

故选B。

2. (2012湖北荆州3分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是【】A. B. C.D.【答案】A。

【考点】关于x轴对称的点坐标的特征,平面直角坐标系中各象限点的特征,解一元一次不等式组,在数轴上表示不等式的解集。

【分析】由题意得,点M关于x轴对称的点的坐标为:(1﹣2m,1﹣m),又∵M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴12m 01m 0>>-⎧⎨-⎩,解得:1m 2m 1<<⎧⎪⎨⎪⎩,在数轴上表示为:。

故选A 。

3. (2012山东日照4分)某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有【 】(A )29人 (B )30人 (C )31人 (D )32人【答案】B 。

2012年中考试题159套精选一元一次不等式(组)

2012年中考试题159套精选一元一次不等式(组)

2012年全国中考数学试题分类解析汇编(159套63专题)专题12:一元一次不等式(组)一、选择题1. (2012上海市4分)不等式组2x6x20<>-⎧⎨-⎩的解集是【】A. x>﹣3 B.x<﹣3 C.x>2 D.x<2【答案】C。

【考点】解一元一次不等式组。

【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。

因此,由第一个不等式得:x>﹣3,由第二个不等式得:x>2。

∴不等式组的解集是x>2.故选C。

2. (2012广东广州3分)已知a>b,若c是任意实数,则下列不等式中总是成立的是【】A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc【答案】B。

【考点】不等式的性质。

【分析】根据不等式的性质,应用排除法分别将个选项分析求解即可求得答案:A、∵a>b,c是任意实数,∴a+c>b+c,故本选项错误;B、∵a>b,c是任意实数,∴a﹣c>b﹣c,故本选项正确;C、当a>b,c<0时,ac<bc,而此题c是任意实数,故本选项错误;D、当a>b,c>0时,ac>bc,而此题c是任意实数,故本选项错误.故选B。

3. (2012浙江义乌3分)在x=﹣4,﹣1,0,3中,满足不等式组x22(x1)2<⎧⎨+>-⎩的x值是【】A.﹣4和0 B.﹣4和﹣1 C.0和3 D.﹣1和0 【答案】D。

【考点】解一元一次不等式组,不等式的解集。

【分析】解出不等式组,再检验所给四个数是否在不等式的解集的解集即可:由2(x +1)>-2得x >﹣2。

∴此不等式组的解集为:﹣2<x <2。

x=﹣4,﹣1,0,3中只有﹣1,0在﹣2<x <2内。

故选D 。

4. (2012江苏常州2分)已知a 、b 、c 、d 都是正实数,且a cb d<,给出下列四个不等式: ①a c a+b c+d <;②c a c+d a+b <;③d b c+d a+b <;④b d a+b c+d <。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式(组)1、(德阳市2013年)适合不等式组的全部整数解的和是A.一1 B、0 C.1 D.2答案:B解析:解(1)得:32x>-,解(2)得:1x≤,所以,原不等式组的解为:312x-<≤,所有整数为:-1,0,1,和为0,故选B。

2、(绵阳市2013年)设“▲”、“●”、“■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为(C )A.■、●、▲ B.▲、■、●C.■、▲、● D.●、▲、■解析:3、(2013陕西)不等式组⎪⎩⎪⎨⎧<->-32121xx的解集为()A.21>x B.1-<x C.211<<-x D.21->x考点:不等式的解法及不等式组的解集的选取。

解析:此题一般考不等式组或者是一元一次方程的应用等简单的计算能力考查。

易错就是不等式的性质3,乘除负数时不等号的方向应改变。

解集的选取应尊循:“大大取大;小小取小;大小小大取中间;大大小小取不了”的原则。

第1个不等式解得:21>x;第2个不等式解得:1->x;因此不等式组的解集为:21>x;此题故选A4、(2013济宁)已知ab=4,若﹣2≤b≤﹣1,则a的取值范围是()A.a≥﹣4 B.a≥﹣2 C.﹣4≤a≤﹣1 D.﹣4≤a≤﹣2考点:不等式的性质.分析:根据已知条件可以求得b=,然后将b的值代入不等式﹣2≤b≤﹣1,通过解该不等式即可求得a的取值范围.解答:解:由ab=4,得b=,∵﹣2≤b≤﹣1, ∴﹣2≤≤﹣1, ∴﹣4≤a≤﹣2. 故选D .点评:本题考查的是不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5、(2013年临沂)不等式组20,1 3.2x x x ->⎧⎪⎨+≥-⎪⎩的解集是(A)8x ≥. (B)2x >. (C)02x <<. (D)28x <≤答案:D解析:第一个不等式的解集为x >2,解第二个不等式得:x ≤8,所以不等式的解集为:28x <≤6、(2013年武汉)不等式组⎩⎨⎧≤-≥+0102x x 的解集是( )A .-2≤x ≤1B .-2<x <1C .x ≤-1D .x ≥2答案:A解析:解(1)得:x ≥-2,解(2)得x ≤1,所以,-2≤x ≤17、(2013四川南充,5,3分)不等式组()⎪⎩⎪⎨⎧≥+--+23x 321x 1x 3>的整数解是()A.-1,0,1B. 0,1C. -2,0,1D. -1,1 答案:A解析:解第1个不等式,得:x >-2,解第2个不等式,得:32x ≤,所以,322x -<≤,整数有:-1,0,1,选A 。

8、(2013河南省)不等式组221x x ≤⎧⎨+>⎩的最小整数解为【】(A ) -1 (B ) 0 (C )1 (D )2【解析】不等式组的解集为12x -<≤,其中整数有0,1,2。

最小的是0 【答案】B9、(2013•内江)把不等式组的解集表示在数轴上,下列选项正确的是( )A .B .C .D .考点: 在数轴上表示不等式的解集. 分析: 求得不等式组的解集为﹣1<x≤1,所以B 是正确的. 解答:解:由第一个不等式得:x >﹣1; 由x+2≤3得:x≤1.∴不等式组的解集为﹣1<x≤1. 故选B . 点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10、(2013山西,2,2分)不等式组35215x x +≥⎧⎨-<⎩的解集在数轴上表示为( )【答案】C【解析】解(1)得:2x ≥,解(2)得:x <3,所以解集为23x ≤<,选C 。

11、(2013•攀枝花)已知实数x ,y ,m 满足,且y 为负数,则m 的取值范围是( ) A . m >6 B . m <6 C . m >﹣6 D . m <﹣6考点:非负数的性质:算术平方根;非负数的性质:绝对值;解二元一次方程组;解一元一次不等式. 分析:根据非负数的性质列出方程求出x 、y 的值,然后根据y 是负数即可得到一个关于m 的不等式,从而求得m 的范围. 解答:解:根据题意得:,解得:,则6﹣m<0,解得:m>6.故选A.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12、(2013•眉山)不等式组的解集在数轴上表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x<4;由②得,x≥3,故此不等式组的解集为:3≤x<4,在数轴上表示为:故选D.点评:本题考查的是在数轴上表示一元一次不等式组的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13、(2013•雅安)不等式组的整数解有()个.A.1B.2C.3D.4考点:一元一次不等式组的整数解.分析:先求出不等式组的解集,再确定符合题意的整数解的个数即可得出答案.解答:解:由2x﹣1<3,解得:x<2,由﹣≤1,解得x≥﹣2,故不等式组的解为:﹣2≤x<2,所以整数解为:﹣2,﹣1,0,1.共有4个.故选D.点评:本题主要考查了一元一次不等式组的解法,难度一般,关键是会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.14、(2013泰安)不等式组的解集为()A.﹣2<x<4 B.x<4或x≥﹣2 C.﹣2≤x<4 D.﹣2<x≤4考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,解①得:x≥﹣2,解②得:x<4,∴不等式组的解集为:﹣2≤x<4,故选:C.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15、(2013聊城)不等式组的解集在数轴上表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.解答:解:,∵解不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为:1<x≤2,在数轴上表示不等式组的解集为:,故选A.点评:本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.16、(2013•滨州)若把不等式组的解集在数轴上表示出来,则其对应的图形为()A.长方形B.线段C.射线D.直线考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先解出不等式组的解,然后把不等式的解集表示在数轴上即可作出判断.解答:解:不等式组的解集为:﹣1≤x≤5.在数轴上表示为:解集对应的图形是线段.故选B.点评:本题考查了不等式组的解集及在数轴上表示不等式的解集的知识,属于基础题.17、(2013•铁岭)如图,在数轴上表示不等式组的解集,其中正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:求出不等式的解集,表示在数轴上即可.解答:解:,由①得:x<1,由②得:x≥﹣1,则不等式的解集为﹣1≤x<1,表示在数轴上,如图所示:故选C点评:此题考查了在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18、(2013•张家界)把不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:求出不等式组的解集,表示在数轴上即可.解答:解:,由②得:x≤3,则不等式组的解集为1<x≤3,表示在数轴上,如图所示:.故选C点评:此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19、(2013•淮安)不等式组的解集是()A.x≥0B.x<1 C.0<x<1 D.0≤x<1考点:不等式的解集.分析:根据口诀:大小小大中间找即可求解.解答:解:不等式组的解集是0≤x<1.故选D.点评:本题考查了不等式组的解集的确定,解不等式组可遵循口诀:同大取较大,同小取较小,大小小大中间找,大大小小解不了.20、(2013•湘西州)若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>考点:不等式的性质.分析:根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案.解答:解:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.点评:此题考查了不等式的性质,掌握不等式的性质是解题的关键,不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.21、(2013•孝感)使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A.3,4 B.4,5 C.3,4,5 D.不存在考点:一元一次不等式组的整数解.分析:先分别解出两个一元一次不等式,再确定x的取值范围,最后根据x的取值范围找出x的整数解即可.解答:解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;故选A.点评:此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22、(2013•荆门)若关于x的一元一次不等式组有解,则m的取值范围为()A.B.m≤C.D.m≤考点:解一元一次不等式组.分析:先求出两个不等式的解集,再根据有解列出不等式组求解即可.解答:解:,解不等式①得,x<2m,解不等式②得,x>2﹣m,∵不等式组有解,∴2m>2﹣m,∴m>.故选C.点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).23、(2013•恩施州)下列命题正确的是()A.若a>b,b<c,则a>c B.若a>b,则ac>bc C.若a>b,则ac2>bc2D.若ac2>bc2,则a>b考点:不等式的性质;命题与定理.分析:根据不等式的基本性质,取特殊值法进行解答.解答:解:A、可设a=4,b=3,c=4,则a=c.故本选项错误;B、当c=0或c<0时,不等式ac>bc不成立.故本选项错误;C、当c=0时,不等式ac2>bc2不成立.故本选项错误;D、由题意知,c2>0,则在不等式ac2>bc2的两边同时除以c2,不等式仍成立,即ac2>bc2,故本选项正确.故选D.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.24、(2013•玉林)在数轴上表示不等式x+5≥1的解集,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:计算题分析:求出不等式的解集,表示在数轴上即可.解答:解:不等式x+5≥1,解得:x≥﹣4,表示在数轴上,如图所示:故选B点评:此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.25、(2013浙江丽水)若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解释A. x≤2B. x>1C. 1≤x<2D. 1<x≤226、(2013年广东省3分、8)不等式5215+>-x x 的解集在数轴上表示正确的是答案:A解析:解不等式,得x >2,故选A 。

相关文档
最新文档