18、轴向拉压杆的强度计算解析
轴向拉压杆件内力计算公式
轴向拉压杆件内力计算公式在工程力学中,轴向拉压杆件是一种常见的结构元件,它在工程实践中被广泛应用于各种机械设备和建筑结构中。
轴向拉压杆件内力计算公式是用来计算轴向拉压杆件在受力作用下内部产生的拉力或压力的公式,它是工程设计和分析中非常重要的一部分。
在本文中,我们将介绍轴向拉压杆件内力计算公式的推导和应用,希望能够帮助读者更好地理解和应用这一重要的工程知识。
一、轴向拉压杆件的受力分析。
轴向拉压杆件是一种受拉或受压的结构元件,它通常由材料制成,具有一定的截面形状和尺寸。
当轴向拉压杆件受到外部力的作用时,内部会产生拉力或压力,这种内力的大小和方向是由外部力和结构本身的特性共同决定的。
在进行轴向拉压杆件的内力计算时,需要先进行受力分析,确定受力情况和受力方向。
通常情况下,轴向拉压杆件受到的外部力可以分为两种情况,拉力和压力。
对于受拉的轴向拉压杆件,外部力的方向和内部拉力的方向相同;对于受压的轴向拉压杆件,外部力的方向和内部压力的方向相反。
在受力分析的基础上,可以得到轴向拉压杆件内力计算的基本公式:N = A σ。
其中,N为轴向拉压杆件的内力,A为截面积,σ为应力。
根据受力分析的结果,可以确定σ的正负号,从而确定N的正负号,进而确定内力的方向。
二、轴向拉压杆件内力计算公式的推导。
1. 受拉的轴向拉压杆件。
对于受拉的轴向拉压杆件,外部拉力的方向和内部拉力的方向相同,因此内力的大小可以直接由外部拉力计算得到。
假设外部拉力为P,截面积为A,根据胡克定律,可以得到应力σ=P/A,进而得到内力N=P。
因此,受拉的轴向拉压杆件内力计算公式为:N = P。
2. 受压的轴向拉压杆件。
对于受压的轴向拉压杆件,外部压力的方向和内部压力的方向相反,因此内力的大小需要考虑结构的稳定性。
假设外部压力为P,截面积为A,根据胡克定律,可以得到应力σ=P/A,进而得到内力N=P。
然而,受压的轴向拉压杆件在实际应用中往往需要考虑结构的稳定性,因此需要引入材料的材料的屈服强度和稳定性系数,从而得到更加精确的内力计算公式。
轴向拉(压)杆的强度计算
② 求杆件横截面上的应力。
BC
FNBC ABC
23.094 103
500
46.2 MPa
( 压应力 )
BD
FNBD ABD
11.547 103
200
57.7 MPa
( 拉应力 )
图6-4
1.2 斜截面上的应力
铸铁压缩的实验表明,破坏有时也可能是沿斜截面发生的。要更全方位地研 究拉(压)杆的强度,就需要进一步讨论斜截面上的应力。
面的剪应力 τα 。由图6-5d 可得
p cos cos2
(6-2)
p
sin
cos
sin
1 2
sin
2
(6-3)
式 (6-2) 和式(6-3) 表明轴向拉 (压) 杆斜截面上任一点既有正应力 σα ,又有 剪应力 τα ,并且它们都随斜截面方位角α 的变化而变化。
计算时要注意 α 、σα 和 τα 的符号,规定如下 (见图6-6 ):
图6-2
根据平面假设可断定拉杆所有纵向纤维的伸长相等。又因材料是均匀的,各 纵向纤维性质相同,因而其受力也就一样。所以,杆件横截面上的内力均匀分布, 即在横截面上各点的正应力相等,亦即 σ 等于常量 (见图6-2b)。由 FN = σA 得
FN A
(6-1)
式 (6-1) 就是拉 (压) 杆横截面上正应力σ 的计算公式。正应力符号与轴力FN 的符号规定相同,即拉应力为正,压应力为负。由于拉 (压) 杆横截面上各点的正
120o
2
sin
2
100 sin 2
2 120o
43.3 MPa
在本例中发现,α = 30o 和 α = 120o 两 个正交截面上的剪应力数值相等而符号相反, 此结果具有一般性,称为剪应力互等定理, 即在受力构件内互相垂直的任意两截面上, 剪应力大小相等而符号相反,其方向同时指 向或同时离开两截面的交线。
轴向拉、压杆的内力及应力计算
AB段:用1-1截面在AB段内将杆截开,取左段为研究对象,以N1表示截面上的轴力,并假设为拉力。写出平
衡方程: ∑X=0,N1+P1=0
得 N1=-P1=-20KN 负号表示AB段轴力N1实际为压力。
BC段:同理写出平衡方程: ∑X=0,N2+P1-P2=0
得 N2=-P1+P2=-20+30=10KN 正号表示BC段轴力N2实际为拉力。
面垂直的应力为正应力,与截面相切的应力为剪应力。轴向拉伸、压缩时,杆件
截面上各点处产生正应力,且大小相等。若应力用σ表示,横截面积为A,轴力
为N,则
N
A
正应力的正负号规定:拉应力为正,压应力为负。
课题七 轴向拉、压杆的内力及应力计算
例:如图7-2a悬臂梁,已知P1=20KN,P2=30KN,P3=10KN,试画出杆的轴力图。
课题七 轴向拉、压杆的内力及应力计算
三、轴力图
表明沿杆长各横截面轴力变化规律的图形称为轴力图。用平行于杆轴线的坐 标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上的轴力,按选定的比 例尺把正轴力画在轴的上方,负轴力画在轴的下方,并连成直线,就得到轴力 图。
四、轴向拉、压杆横截面上的应力
单位面积课题七 轴向拉、压杆的内力及应力计算
一、轴向拉伸和压缩
受力特点:直杆的两端沿杆轴线方向作用一对大小相等,方向相反的力。 变形特点:在外力作用下产生轴线方向的伸长或缩短。 当作用力背离杆端时,作用力是拉力,杆件产生伸长变形,叫做轴向拉伸。 见图7-1a 当作用力指向杆端时,作用力是压力,杆件产生压缩变形,叫做轴向压缩。 见图7-1b
图 7-1
课题七 轴向拉、压杆的内力及应力计算
杆件的轴向拉压变形及具体强度计算
根据强度条件,可以解决三类强度计算问题
1、强度校核:
max
FN A
2、设计截面:
A
FN
3、确定许可载荷: FN A
目录
拉压杆的强度条件
例题3-3
F
F=1000kN,b=25mm,h=90mm,α=200 。
〔σ〕=120MPa。试校核斜杆的强度。
解:1、研究节点A的平衡,计算轴力。
目录
——横截面上的应力
目录
FN
A
——横截面上的应力
该式为横截面上的正应力σ计 算公式。正应力σ和轴力FN同号。 即拉应力为正,压应力为负。
根据杆件变形的平面假设和材料均匀连续性假设 可推断:轴力在横截面上的分布是均匀的,且方向垂 直于横截面。所以,横截面的正应力σ计算公式为:
目录
• 拉(压)杆横截面上的应力
FN 2 45° B
F
FN1 28.3kN FN 2 20kN
2、计算各杆件的应力。
B
1
FN1 A1
28.3103 202 106
4
F
90106 Pa 90MPa
x
2
FN 2 A2
20103 152 106
89106 Pa 89MPa
目录
三、材料在拉伸和压缩时的力学性质
教学目标:1.拉伸、压缩试验简介; 2.应力-应变曲线分析; 3.低碳钢与铸铁的拉、压的力学性质; 4.试件的伸长率、断面收缩率计算。
教学重点:1.应力-应变曲线分析; 2.材料拉、压时的力学性质。
教学难点:应力-应变曲线分析。 小 结: 塑性材料与脆性材料拉伸时的应力-应变曲线分析。 作 业: 复习教材相关内容。
工程力学-第7章-轴向拉压杆件的强度与变形计算
7
Guang Zhou Auto College
工程力学
第7章 轴向拉压杆件的强度与变形计算
广 州 汽
斜拉桥承受拉力的钢缆 车 学 院
8
Guang Zhou Auto College
工程力学
第7章 轴向拉压杆件的强度与变形计算
广 州 汽 车 学 院9来自 7-1轴向拉压杆横截面上的应力
胡克定律
车
学
院
工程力学
17
轴向拉压的变形分析
P
P
A 细长杆受拉会变长变细,
P
B 受压会变短变粗
C 长短的变化,沿轴线方向, 称为纵向变形
l+Dl l
d-Dd d
D 粗细的变化,与轴线垂直,
称为横向变形
P
P
P
7-3轴向拉压杆的变形计算 胡克定律
工程力学
Guang Zhou Auto College
变形量的代数和:
汽
车
Δ
l
=
FNi li FNi ADlEADA+i
=Dl AD DlDE DlEB Dl
FNDElDE + FNEBlEB + FNBClBC
BC
学
Ec AAD
Ec ADE
Es AEB
Es ABC
=1.2106 m 0.6106 m 0.285106 m 0.428106 m
广
承受轴向载荷的拉(压)杆在工程中的
州
应用非常广泛。
汽
由汽缸、活塞、连
杆所组成的机构中,不
车
仅连接汽缸缸体和汽缸
盖的螺栓承受轴向拉力,
学
带动活塞运动的连杆由
杆件轴向拉伸与压缩_图文
许用应力:构件安全工作时的最大应力,即构件在工作时允许承受的
最大工作应力,以符号[σ]表示。计算公式为:
式中,n为安全系数,它是一个大于1的系数,一般来说,确定安全系数 时应考虑以下几个方面的因素。(1) 实际荷载与设计荷载的出入。(2) 材料 性质的不均匀性。(3) 计算结果的近似性。(4) 施工、制造和使用时的条件 影响。可见,确定安全系数的数值要涉及工程上的各个方面,不单纯是个 力学问题。通常,安全系数由国家制定的专门机构确定。
根据上述现象,对杆件内部的变形作如下假设:变形之前横截面为平 面,变形之后仍保持为平面,而且仍垂直于杆轴线,只是每个横截面沿 杆轴作相对平移。这就是平面假设。
ac
F
a' c'
F
b' d'
bd
11
建筑力学
推论:
1、等直拉(压)杆受力时没有发生剪切变形,因而横截 面上没有切应力。 2、拉(压)杆受力后任意两个横截面之间纵向线段的伸长 (缩短)变形是均匀的。亦即横截面上各点处的正应力 都相等。
p t
s M
10
建筑力学
拉(压)杆横截面上的正应力
推导思路:实验→变形规律→应力的分布规律→应力的计算公式
简单实验如下。用弹性材料做一截面杆(如下图),在受拉力前,在截 面的外表皮上画ab和cd两个截面,在外力F的作用下,两个截面ab和cd的 周线分别平行移动到a`b`和c`d`。根据观察,周线仍为平面周线,并且截 面仍与杆件轴线正交。
一般来说,在采用截面法之前不要使用力的可传性原理, 6
【教学能力比赛】轴向拉、压杆的强度计算-教学设计
轴向拉、压杆的强度计算教学设计基于中职、中专类学生的特点,我选用的是高教出版社《土木工程力学基础》,该书在内容上对原有的冗杂部分进行了删减,在满足教学需要的同时,符合中专生以就业为导向的培养思想。
力学课是一门技术基础课,本课的学习主要是为学生学习专业课做铺垫的,所以十分重要。
所以结合教学大纲的要求及学生层次特点,本课的教学重难点为:【教学重难点】教学重点:理解正应力拉压干强度公式含义教学难点:利用拉压杆强度条件公式解决强度效和、截面设计等工程实际问题。
【教学目标】1. 技能目标:使学生能够应用正应力强度条件公式完成轴向拉压构件强度校核、截面设计和确定许用荷载方面的实际任务。
2.能力目标:加强学生解决问题的能力。
3.情感目标:在探究学习中增强学生的自信。
这样多元化的教学目标,把关键的能力培养蕴含于知识技能的学习中专,并培养他们自信的心理态度。
【教学过程】科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。
因为我们所面对的学生的学习基础薄弱,学习方法单一,习惯于被动接受,而非主动思考,而本节课又是理论性极强的一节课,所以我采用的教法是以任务驱动法为主线贯穿整堂课,各部分穿插讲授法、演示教学法、启发教学法。
而学法上,我贯彻的指导思想是以提高和发展学生的能力为本,启发引导学生积极思考探究问题,发现规律,看到本质,纳未知为已知;倡导“自主、合作、探究”的学习方式,具体的学法是自主学习、探究学习、小组合作完成任务法和分组讨论法。
我的教学过程的开展以任务驱动的形式为主要的教学方法贯穿于课程始终。
在完成任务课题探讨阶段分别使用了范例式教学法和启发式教学法,使学生通过自主学习、探究学习、合作学习的学习方式理解新课知识点。
整个过程强调提高和发展学生的能力为本,其中贯穿了引导、启发的思想,充分发挥教师主导的同时,体现学生主体的教学理念,下面我对具体的教学过程进行做一下阐释。
为了完成教学目标,解决教学重点突破教学难点,课堂教学我按四个大模块、七个教学环节展开来完成教学过程。
轴向拉伸和压缩—拉(压)杆的强度计算(建筑力学)
轴向拉伸与压缩
例7-12 图示三角支架,在节点A处受铅直荷载FP作用。已 知AB为圆截面钢杆,直径d=30mm,许用应力[σ]=160MPa, AC为正方形木杆,边长a=100mm,许用压应力[σc]=10MPa试 求许用荷载[ FP ]。
解 (1)计算杆的轴力
由∑Fy=0 -FNACsin30°-FP=0
A FNAB 63 103 mm2 393.8mm2
[ ] 160
轴向拉伸与压缩
当拉杆选用角钢时,每根角型的最小面积应为
A1
A 2
393.8 2
mm 2
196.9mm2
查型钢表,选用两根25×4的2.5号等边角钢。
A1=185.9mm2 故此时拉杆的面积为
A=2×185.9mm2=371.8mm2>370.6mm2 满足强度要求。
材料的安全系数比塑性材料的大。建筑工程中,一般,取nS =1.4~1.7,nb=2.5~3.0。
轴向拉伸与压缩
3. 强度条件 为了保证轴向拉(压)杆在承受外力作用时能安全正常地
使用,不发生破坏,必须使杆内的最大工作应力不超过材料 的许用应力,即
σmax≤[σ]
塑性材料: 脆性材料:
max
FN max A
解(1)先求支座反力。
FAy = FBy= 0.5q l = 0.5×10×8.4 = 42kN
轴向拉伸与压缩
(2)再求拉杆的轴力。
用截面法取左半个屋架为研究对 象,如图示。
由 MC 0
FNAB
h
FAy
l 2
q
l 2
l 4
0
FNAB
42 42 10 4.2 2.1 kN 1.4
63kN
(3)校核拉杆的强度。
轴向拉压
FN 3 A3 5000 8.33MPa 600
FN 1
○ -
s max s1 10MPa s 12MPa
∴ 此杆满足强度条件。 29
5kN
[例]图示结构中,拉杆AB由等边角钢制成,容许应力 [s]=160MPa,试选择等边角钢的型号。。
B
解:取杆AC。
m
40 kN
FN AB
3
19
三、斜截面的应力
m
P
m m
P
P
m
m
k
p
N
A——斜截面面积
P p A A
FN
P
m
sห้องสมุดไป่ตู้
p
2
FN A
FN A / cos
s p cos s cos s p sin s sin cos sin 2
A=80mm2,容许应力[s]=160MPa,试校核杆CD的强度并 计算容许荷载。 D A
30
N C B A 30 C
a
解:
a
XA
B P
P
YA
1 m A 0; 2 FN a P 2a 0 ∴ CD 杆满足 FN 4 P 8kN 强度条件。 FN 8000 s 100MPa s A 80
4)圣维南(Saint-Venant)原理:
厚度为1mm 100N 1mm 100N
厚度为1mm 50N 50N 1mm
50N
50N
厚度为1mm 1mm 100MPa 100MPa
二、横截面的正应力 拉压杆横截面上只有正应力而无剪应力,忽略应力集中
杆件的强度分析与计算
第九章杆件的强度分析与计算第一节概述一、构件的承载能力机械或机器的每一组成部分称为构件,它是机器的运动单元,为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
因此,构件应当满足以下要求:(一)、强度要求:构件在外力作用下应具有足够的抵抗破坏的能力。
在规定的载荷作用下构件不应被破坏,具有足够的强度。
例如,冲床曲轴不可折断;建筑物的梁和板不应发生较大塑性变形。
强度要求就是指构件在规定的使用条件下不发生意外断裂或塑性变形。
(二)、刚度要求:构件在外力作用下应具有足够的抵抗变形的能力。
在载荷作用下,构件即使有足够的强度,但若变形过大,仍不能正常工作。
例如,机床主轴的变形过大,将影响加工精度;齿轮轴变形过大将造成齿轮和轴承的不均匀磨损,引起噪音。
刚度要求就是指构件在规定的使用条件下不发生较大的变形。
(三)、稳定性要求:构件在外力作用下能保持原有直线平衡状态的能力。
承受压力作用的细长杆,如千斤顶的螺杆、内燃机的挺杆等应始终维持原有的直线平衡状态,保证不被压弯。
稳定性要求就是指构件在规定的使用条件下有足够的稳定性。
为满足以上三方面的要求,构件可选用较好的材料和较大的截面尺寸,但这与节约和减轻构件自相矛盾。
构件设计的任务就是在保证满足强度、刚度和稳定性要求的前提下,以最经济的方式,为构件选择适宜的材料、确定合理的形状和尺寸。
二、变形固体的基本假设由各种固体材料制成的制成的构件在载荷作用下将产生变形,称为变形固体或变形体。
为了便于理论分析和实际计算,对变形固体常采用的几个基本假设:(一).连续性假设:假设在固体所占有的空间内毫无空隙地充满了物质。
实际上,组成固体的粒子之间存在空隙,但这种空隙极其微小,可以忽略不计。
于是可认为固体在其整个体积内是连续的。
基于连续性假设,固体内的一些物理量可用连续函数表示。
(二).均匀性假设:均匀性假设是指材料的力学性能在各处都是相同的,与其在固体内的位置无关。
(三).各向同性假设:即认为材料沿各个方向的力学性质是相同的。
材料力学 第02章 轴向拉伸和压缩及连接件的强度计算
弹屈 性服 阶阶 段段
强 化 阶 段
颈 缩 阶 段
33/113
2.3 材料在拉伸或压缩时的力学性能 2.3.1 低碳钢Q235拉伸时的力学性能-弹性阶段
Oa段应力与应变成正比
s Ee
s
b a
弹性模量E是直线Oa的斜率 Q235 E≈200GPa
直线部分的最高点a所对应的应力称为 比例极限,sp Oa段材料处于线弹性阶段
(2) 杆AB段上与杆轴线夹45°角(逆时针方向)斜截面上的正应力 和切应力。
A 1 300 mm B 500 kN 300 mm 2 C 3 300 kN 400 mm
26/113
D
200 kN
2.2 拉压杆截面上的内力和应力 【例2-3】解
A 1 300 mm B 500 kN 300 mm 2 C
内力相同,
但是常识告诉我们,
F F
直径细的拉杆更容易破坏。
求得各个截面上的轴力后,并不能直接判断杆件是否具有足 够的强度。必须用横截面上的应力来度量杆件的受力程度。 用横截面上的应力来度量杆件的受力程度。
18/113
2.2 拉压杆截面上的内力和应力 2.2.2 1 拉压杆横截面上的应力
a
F
c
c' d'
F4
D
FN4
F
x
0 FN4 F4 0
FN4 20 kN 拉
16/113
同一位置处左右侧截面上的内力分量具有相同的正负号
2.2 拉压杆截面上的内力和应力 【例】解
1
FR A F1
F1=40kN,F2=55kN,F3=25kN,F4=20kN
2
F2 B
3-轴向拉伸和压缩杆的强度计算
F2 =10kN
AAC =500mm2 ACD =200mm2
AB段:
AB
NAB AAB
20103 N 500mm2
40MPa
压
第26页,共37页。
【例3-3】试求图示阶梯形钢杆: ⑴各段杆横截面上的内力和应 力;⑵杆件内最大正应力;⑶杆件的总变形。
⑶杆件的总变形
已知弹性模量E=200GPa
l lAB lBC lCD
学习情境3
轴向拉伸和压缩杆的强度计算
甘肃省庆阳市及西峰区体委联合组
织西峰区各乡镇及市区机关单位共11支 500人代表队在庆阳市西峰区世纪大道一
级公路路面上举行万人拔河比赛,所用
钢丝绳长约550米,直径约3厘米,在比 赛到第二回合, 正当双方用力拼比时,
钢丝绳突然被拉断,拉断的钢丝绳绳头 将分界线两旁的人打伤,另将其余人摔 倒在公路上致使多人被擦破手腿皮肤和 踩伤。
第27页,共37页。
子情景3.2 轴向拉伸和压缩杆的强度计算
3.2.1 轴向拉伸和压缩杆的强度条件
⒈ 安全因数与许用应力
塑性材料,当应力达到屈服极限时,构件已发生明显的塑性变形,
影响其正常工作,称之为失效,因此把屈服极限作为塑性材料的极
限应力。 脆性材料,直到断裂也无明显的塑性变形,断裂是失效的唯一标
≤
第33页,共37页。
【例3-5】图示托架, AC是圆钢杆,许用拉应力[σ l]=160MPa, BC是方 木杆, F=60kN, 试选钢杆直径d。
N2 40 30 20
30kN压
4
4
N4
③CD段 X 0 :
N3 30 20
10kN 拉
④DE段 X 0 : N4 20kN压
轴向拉压杆内力和内力图
11
第12页/共50页
五、挤压应力的确定:(实用的挤压应力,名义挤压应力) 假设:挤压面上只存在挤压应力,且挤压应力分布均匀。
bs
Fbs Abs
方向:垂直于挤压面。
max P
G →
G
→
G
d
dx
方向垂直于半径。
19
第20页/共50页
应力分布
(实心截面)
(空心截面)
20
第21页/共50页
二、圆轴扭转时的强度计算
1、强度条件:
max
Tm ax Wp
2、强度计算:
1)校核强度; 2)设计截面尺寸; 3)确定外荷载。
max
Tm a x Wp
[ ]
F
第8页/共50页
焊缝
F
7
F
F m
F
F
m
m
m
F
F
二、剪切的概念
受力特点:作用于构件两侧面上的外力合力大小相等,方向相反,且作用 线相距很近。
变形特点:两力之间相邻截面发生相对错动。
剪切面:相对错动的面。
8
第9页/共50页
三、 剪切与挤压的强度计算
1、外力:F。
F m
F
m
F
Fs
τ
2、内力:(截面法)剪力 Fs=F。 3、应力:实用切应力,名义切应力(剪应力) 假设——剪切面上只存在切应力,而且其分布是均匀的。
右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在 截面则扭矩规定为正值,反之为负值。
工程力学18轴向拉(压)杆的强度计算
作用正应应力力的也5%可为略宜F大N。,于max材 料 的许A用应力,一般认为以不超过许
然后根据静力平衡条件,确定结构所许用的荷载。
例1 阶梯形杆如图所示。AB、BC和CD段的横截面面积分别 为A1=1500mm2、 A2=625mm2、 A3=900mm2。杆的材料为 Q235钢,[σ]=170MPa。试校核该杆的强度。
解:(1)作轴力图
120 kN
①
220 kN
②
260 kN
③ 160 kN
(2)校核强度
A
B
C
D
由轴力图和各段杆的横
FN / kN
160
截面面积可知,危险截
120
面可能在BC段或CD段。
o
BC段:
x
100
2
FN 2 A2
100103 N 625 106 m2
160 106 Pa
160MPa(压应力)
CD段:
3
FN 3 A3
160103 N 900 106 m2
177.8 106 Pa
177.8MPa(拉应力)
2 160MPa 压 3 177.8MPa 拉
120 kN
①
A FN / kN 120
o
220 kN
②
B
100
结果表明,杆的最大正应力发生在CD段
260 kN
③
C 160
已算最校3.已轴确知出大核知力定杆该工。结,结件杆作构并构的所正承 由的横能应受此许截承力的确用面受m,ax荷定载尺的并载杆荷寸最检AF和 件和大查NA,材的m材轴是aFx料横料力否N,的截的,m满a许面x许亦足用面用称强应积应许度力。力用条,,轴件即可力的可根要算据求出强。杆度这件条称的件为最计强大度
拉压杆的强度计算
因此,为了合理地利用材料,应使杆的每一横截面上的应力都等 于材料的许用应力[σ],这样设计的杆称为等强度杆,其形状 如图2-33(a)所示。不过,等强度杆的制作复杂而且昂贵,故 在工程中,一般都制成与等强度杆相近的阶梯形杆[图2-33 (b)]或截锥形杆[图2-33(c)]。
2) 求杆EH的轴力。假想用截面m-m将桁架截开,取左边部分 为研究对象[图2-30(b)], 由平衡方程∑MC=0
3m×FNEH-4m×FA=0得 FNEH=4/3 RA=4/3×220kN =293kN
3) 计算杆EH的横截面积。由式(2-16),有
A≥FNEH/[σ]=293×103N/170×106Pa=1.72×10-3m2 =1720mm2
【例2-10】如图2-31(a)所示三角形托架,AB为钢杆,其横
截面面积为A1=400mm2,许用应力[σ]=170MPa ;BC 为木杆,其横截面面积为A2=10000mm2,许用压应力为[σc] =10 MP。求荷载F的最大值Fmax 。
【解】1) 求两杆的轴力与荷载的关系。取结点B为研究对象 [图2-31(b)],
图2-33
材料力学
由平衡方程
∑Y=0 FN2sin30°-F=0 得 FN2=F/sin30°=2F(压) ∑X=0 FN2cos30°-FN1=0 得 FN1=FN2cos30°=2F×31/2/2=31/2F(拉)
图2-31
2) 计算许用荷载。由式(2-16),AB杆的许用轴力为 FN1= 31/2F ≤A1[σ 所以对于AB杆,许用荷载为
3) 求拉杆的最大正应力。钢拉杆是等直杆,横截面上的轴力相 同,故杆的最大正应力为
第7章 轴向拉压杆件的强度与变形计算
F NBC 56 . 6 kN (压力) F NBA 40 kN
(拉力)
(2)由强度条件确定各杆截面尺寸 对BA杆
A BA
d
4
2
F NBA
s
d
4 F NBA
s
17 . 8 mm
可取
d 18 mm
F NBC
对BC杆
A BC a
2
w
a
F NBC
【例】已知AB梁为刚体,CD为拉杆,拉杆直径
d=2cm,E=200GPa,FP=12kN, 求B点位移。
C 0.75m A D B
1m
1.5m
FP
解:(1)受力分析,求轴力
FN
F Ax
A
D
B
F Ay
1m
1.5m
FP
M
A
0
F P AB F N AD sin
FN
解:(1)受力分析, 求各杆轴力
F NBD
F x 0, Fy 0
2 F P 31 . 4 kN
(2)求各杆应力
BD
F NCD F P 22 . 2 kN
F NBD A BD F NCD A CD 22 . 2 kN 31 . 4 kN
CD
3
m
DD BB
AD AB
B B D D /(
AD AB
)
4 . 17 10
3
m
7.4 轴向拉压杆的强度计算
• 工作应力
FN A
• 失效:工作应力超过了杆件材料所能承受的极 限应力;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
;σcmax及[σc] 分别为最大工作压应力和许用压应力。
轴向拉伸和压缩
⒉ 强度条件在工程中的应用
根据强度条件,可以解决三类强度计算问题
FN max 1、强度校核: A FN 2、设计确定截面: A
3、确定许用载荷:
FN A
轴向拉伸和压缩
例1 正方形截面阶梯形砖柱。已知:材料的许用压应力 [σC]=1.05MPa,荷载FP=60kN,试校核该柱的强度。
A1
9kN
A2 4kN ⊕ A3
2kN ⊕
○ -
max 1 10MPa 12MPa
∴ 此杆安全。
5kN
5000 3 8.33MPa A3 600
2000 1 10MPa A1 200 FN 2 4000 2 8MPa A2 500
1.8m
FCx C FN A
由型钢表查得∟45×45×5等边角钢
FCy
q 60kN / m
例4 图示装置为重物架,已知重物对物架的压力FP=40KN,作用于D处,拉杆BC为
横截面面积A=600mm2的圆钢,许用应力 [σ]=160MPa,物架和拉杆自重不计,试 校核拉杆BC的强度。
FP
D B
FP
∴ CD 杆安全
FN 8000 100MPa A 80
D A
30
C
B
A 30 FAx FAy
FN
C
B F
a
a
F
FN A
1 1 F FN A 4 4 1 160 106 80 10 6 4 3.2kN
D
B
-FNBC×2sin45°+FP×2=0
FNBC=56.58KN(拉力) 2、计算BC杆工作应力, 与许用应力比较,进行强 度校核。
FNBC 56.58 1O3 = MPa A 600 94.3MPa
45°
A 2m 2m C A
FNBC
450
FAX
FAY 解:1、求BC杆轴力。 取AD杆为研究对象,画受 所以:BC杆的强度满足要求。 力图。由∑MA=0得:
拉压杆的强度计算
教学目的:
• 1、掌握拉压杆的强度条件
• 2、会灵活应用强度条件进行相关计算
轴向拉伸和压缩
第五节 许用应力、安全系数和强度计算
一、许用应力和安全系数
任何一种材料都存在一个能承受应力的上限,这个上 限称为极限应力,常用符号σo表示。 极限应力
塑性材料 脆性材料
0 S
0 b
例5 图示支架中,AB为圆截面钢杆,直径d=16mm,容许 应力[]1=150MPa; AC为方形截面木杆,边长l=100mm, 容许应力[]2=4.5MPa。求容许荷载[F]。 B 1.5m A 解:
2.0m
FN1 1 A1 FN 2 2 A2
4 FN 2 F 0 5 4 F FN 2 5 3 Fx 0; 5FN 2 FN 1 0 4 F FN 1 3
n —安全系数
0
n
—许用应力。
轴向拉伸和压缩
塑性材料的许用应力 脆性材料的许用应力
s
Ks
b
Kb
选取安全系数的原则是:在保证构件安全可靠的前提下, 尽可能减小安全系数来提高许用应力。 确定安全系数时要考虑的因素,如:材料的均匀程度、荷 载的取值和计算方法的准确程度、构件的工作条件等。 塑性材料 KS取1.4~1.7; 脆性材料 Kb取2.5~3。 某些构件的安全系数和许用应力可以从有关的规范中查到。
比较得:最大工作应力为压应力,产生在AB段。 即|σmax|=0.96Mpa。 (3)校核强度 σmax=0.96MPa<[σC] =1.05MPa
所以该柱满足强度要求。
例2 已知A1=200mm2,A2=500mm2 ,A3=600mm2 , []=12MPa,试校核该杆的强度。 2kN
2kN
例6 图示结构中,已知F=2kN,杆CD的截面面积
A=80mm2,容许应力[]=160MPa,试校核杆CD的强度并 计算容许荷载。 D A
30
FN C B A 30 C
a
解:
a
FAxB FF源自FAy M A 0;
1 FN a F 2a 0 2 FN 4F 8kN
解(1)画轴力图如图b所示。 (2)计算最大工作应力 需分段计算各段的应力,然后选 最大值。
AB
FNAB 60103 MPa 0.96MPa AAB 250 250
BC
FNBC 180103 MPa 0.72MPa ABC 500 500
轴向拉伸和压缩
FN3
FN1
例3 图示结构中,拉杆AB由等边角钢制成,容许应力 []=160MPa,试选择等边角钢的型号。
B
解:取杆AC为研究对象画受 力图。
M
C
0;
4 1.8 FN 1.8 1.8q 0 5 2
C
q 60kN / m
A
FN 67.5kN
67.5 10 3 A 422 mm 2 160 FN
轴向拉伸和压缩
二、 轴向拉压杆的强度计算
1.强度条件
FN max σmax≤[σ] A σmax是杆件的最大工作应力,可能是拉应力,也可能是
压应力。 对于脆性材料的等截面杆,其强度条件式为:
t max t c max c
式中:σtmax及[σt] 分别为最大工作拉应力和许用拉应力
取结点A。 Fy 0;
C
FN1
F A
FN2
F
B 2.0m
1.5m
A
FN1
A
FN2
C
F
F 4 4 4 单考虑AB杆: F FN 1 1 A1 1 d 2 3 3 3 4 150 16 2 40.212 kN 3 4 4 4 单考虑AC杆: F FN 2 2 A2 2 l 2 5 5 5 4 4.5 100 2 36 kN 5 ∴[F] = 36kN