初中七年级数学绝对值和相反数(3)

合集下载

苏教版七年级数学上册绝对值与相反数3同步测试题

苏教版七年级数学上册绝对值与相反数3同步测试题

绝对值与相反数【知识扫描】1、 _____________________________________________ ____叫做绝对值2、_________________的绝对值是它本身,_________________的绝对值是它的相反数。

3、______________、_____________相等的两个数叫做互为相反数3、-a的相反数是_________【基础演练】1、判断正误:(1)任何一个数的相反数都是负数。

()(2)a一定是正数。

()(3)-a一定是负数。

()(4)|n|一定是正数。

()(5)∵|a|=|b|,∴a=b或a= b。

()(6)∵|-m|=4, ∴m=-4。

()(7)若|a|=2,则a=±2。

()(8)只有两个数相等,它们的绝对值才能相等。

()(9)互为相反数的两个数的绝对值相等。

()2、化简下列各数:①(+23) ②+(8)] ③(5) ④[(7)] ⑤-[-(+6)] ⑥+[ -(9)] ⑦7______⑧–(8)=________3、计算:① |0|+|27| ② |313|+|423| ③|9||414 2.25|+ |5|4、填空: (1)-3.8相反数是____________,213的相反数是___________. (2)13和+13互为_____,|13|=_____,|13|=_____,它们的绝对值______。

(3)24是______的相反数,是_____的倒数,是_______的绝对值。

(4)任何一个有理数的绝对值都是________数。

(5)任何一个_______数的相反数都是正数,_____的相反数是0,任何一个______数的相反数都是负数。

(6)_______的相反数是它本身;_______数的绝对值是它本身;______的倒数是它的本身(7)______的相反数大于它本身;________的相反数小于它本身;________的绝对值大于它本身。

2024七年级数学上册第1章有理数1.2数轴相反数和绝对值第3课时绝对值课件新版沪科版

2024七年级数学上册第1章有理数1.2数轴相反数和绝对值第3课时绝对值课件新版沪科版
因为数 a 在数轴上的对应点在原点左边,所以 a <0.
又因为| a |=4,所以 a =-4.
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
8. 若| a |=- a ,则在下列选项中, a 不可能是(
D
)



A. -2
B.
C. 0
D. 5
【点拨】
因为| a |=- a ,
所以 a ≤0,
所以 a 不可能是正数.
数中最小的数是0.
(1)当 x =
时,| x -2 026|有最小值,这个最
2 026
小值是
0
(2)当 x =
1
大值是


时,2 026-| x -1|有最大值,这个最
.
2 026

返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
易错点
忽略0也是绝对值等于其相反数的数而致错
11. [新考法 逆向思维法]如果| x -2|=2- x ,那么 x 的取
12
13
14
15
14. [新考向 知识情境化]一条直线流水线上依次有5个机器
人,它们站的位置在数轴上依次用点 A1, A2, A3,
A4, A5表示,如图.
在点
上的机器人表示的数的绝对值最大,站
A1
(1)站在点
A2
和点
A5
,点
和点
A3
A4

七年级数学上册 2.4 绝对值与相反数导学案(3)(无答案)(新版)苏科版

七年级数学上册 2.4 绝对值与相反数导学案(3)(无答案)(新版)苏科版
, 4.3, -8
任务3:互为相反数的两个数的绝对值有什么关系?
结论:
练习 :
①一个数的绝对值是它本身,这个数是( )
A、正数B、0 C、非负数D、非正数
②一个数的绝对值是它的相反数,这个数是( )
A、负数B、0 C、非负数D、非正数
1.【情景导入】
课本第26----27页的学习内容导入
2【布置自主学习任务】
绝对值与相反数
学习
目标
1、理解有理数的绝对值与该数的关系,把握绝对值的代数意 义,体验分类思想。
2、会利用绝对值比较2个负数的大小,理解转化思想[比较负数→比较正数] [形→数]
重点难

重点
知道一个数的绝对值与这个数本身或它的相反数有什么关 系;会利用绝对值比较两个有理数大小
难点
会利用绝对值比较两个有理数大小
3.【巡视检查】
二、合作探究 (对学、群学)
探究两个有理数的大小与这两个数的绝对值的大小有什么关系
任务1:数轴上:两个数比较大小,绝对值大的那个 数一定大吗?
归纳总结得出结论:

小检测:
比较下列两个数的大小
(1) 与 ; (2)-3.5与-4.6;
(3)-|- 与-(-2).(4)+(-5)与-(-3).
三、拓展提升:
用“<”将各数从小到大排列起来:(直接写出结论,不必说明理由)
-4,+(- ),-(-1.5),0,|-3|
四、小结反思
1.收获******
2.困惑****
五、当堂检测
1、
2、
六、作业
必做1 2
选做1 2
4.课堂小结
5.教师出示检测题,学生独立完成。
6.布置作业

苏教科版初中数学七年级上册2.3《绝对值与相反数(3)》PPT课件

苏教科版初中数学七年级上册2.3《绝对值与相反数(3)》PPT课件
苏科版初中数学网站
例2
已知有理数a,b,c在数轴上对应的位置如图 所示,求︱ a ︱- ︱ b ︱+ ︱ c︱
a 0b
C
苏科版初中数学网站
议一议:
1.如果字母a表示一个数,则
︱ a ︱表示什么?︱ a ︱一定是正数吗?
(1)如果︱ x ︱+ ︱ y ︱=o则x= __0___y =__0___
(2)如果︱ x+2 ︱+ ︱ y-1 ︱=o则x= _-2___
∴ -9.5 < -1.75 两个负数,绝对值大的反而小。
先判正负,再用法则。 苏科版初中数学网站
强化练习
1、比较下列每组数的大小 (1)-3 _<___ -0.5; (2)+(-0.5) _<___ +|-0.5| (3)-8 _>___ -12 (4)-5/6 _<___ -2/3 (5) -|-2.7| _<___ -(-3.32)
2 有理数的大小比较 .3-3
苏科版初中数学网站
苏科版初中数学网站
复习:
学.科.网
什么叫绝对值?什么叫相反数?
苏科版初中数学网站
数轴上表示一个数的点与原点的 距离,叫做这个数的绝对值。学.科.网
32
-3 -2 -1 0 1 2
n 符 号 不 同 , 绝 对 值 相 等 的两个数 叫做互为相反数(opposite number)。
苏科版初中数学网站
小结:
1.正数的绝对值是
,负数的
绝对值是
,0的绝对值是

2.一个数的绝对值是 数。
3. 两个负数, 反而小。
{ 4. ︱a︱=
a ( a 是正数或0时) -a ( a 是正数或0时)

绝对值与相反数

绝对值与相反数

点击关注,学习更多知识
点击关注,学习更多知识
初中数学 七年级上 绝对值与相反数第五讲
(习题讲解三)主讲:拓老师
点击关注,学习更多知识
点击关注,学习更多知识
初中数学 七年级上 绝对值与相反数第六讲
(提高训练一)主讲:拓老师
点击关注,学习更多知识
点击关注,学习更多知识
点击关注,学习更多知识
两数异号
正数大于负数
-数为0
正数与0:正数大于0 负数与0:负数小于0
点击关注,学习更多知识
要点诠释: 利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:
(3)判定两数的大小. 3. 作差法:设a、b为任意数,若a-b>0,则a>b;
若a-b=0,则a=b; 若a-b<0,a<b;反之成立.
2.性质: (1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离
相等(这两个点关于原点对称). (2)互为相反数的两数和为0.
绝对值
1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,
例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.
要点诠释:
(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是
4. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.
点击关注,学习更多知识
初中数学 七年级上 绝对值与相反数第三讲
(习题讲解一)主讲:拓老师
点击关注,学习更多知识
点击关注,学习更多知识
点击关注,学习更多知识
初中数学 七年级上 绝对值与相反数第四讲
(习题讲解二)主讲:拓老师
点击关注,学习更多知识

【初+中数学】+绝对值与相反数(第3课时+根据绝对值比较数的大小)+七年级数学(苏科版2024)

【初+中数学】+绝对值与相反数(第3课时+根据绝对值比较数的大小)+七年级数学(苏科版2024)
10.5




− =_______,
− 的相反数是_______;




0
0
(3) =_______
,0的相反数是______.
0的绝对值是 0
概念归纳
由绝对值和相反数的意义可知:
正数的绝对值是它本身;负数的绝对值是它的相反数;
0的绝对值是0。
也可以表示为:
当a>0时,|a|=a;当a<0时,|a|=-a;当a=0时,|a|=0
1.绝对值与相反数的关系:
正数的绝对值是
对值是 0
,负数的绝对值是 它的相反数 , 0的绝
它本身
.
即 ︱a︱=
a (a≥0)
-a
(a≤0)
2.两个正数比较大小,
两个负数比较大小,
绝对值大的正数 大,
绝对值大的负数反而 小.
.
(3)若|a-3|=2,|b-3|=1,且数a、b在数轴上对应的点分别是点A、点B,分别求出
A、B两点之间的最大距离和最小距离.
备用图
解析
(1)由题意可知,数轴上表示5和1的两点之间的距离是4,表示-3和2的
两点之间的距离是5.故答案为4;5.
(2)因为|x-1|=3,所以数轴上表示x和1的两点之间的距离是3,
A. 2个
B. 3个
C. 4个
D. 5个
)
)
15. [2024 无锡梁溪区校级期中]有理数 m , n 在数轴上对应点的位置如图,则
m , n ,| n |,- m ,0的大小关系是( D
)
A. n <0<- m < m <| n |
C. n <| n |<0<- m < m

七年级上册数学期中易混淆要点:绝对值与相反数知识点总结

七年级上册数学期中易混淆要点:绝对值与相反数知识点总结

七年级上册数学期中易混淆要点:绝对值与相反数知识点总

对于初中的复习,在背诵一些课本知识点的同时还需要做一些练习题,一起来看一下这篇七年级上册数学期中易混淆要点吧!
1、相反数的概念关键要理解“只有符号不同”的含义,规定零的相反数是零;
2、互为相反数指的是一对数,甲、乙两数互为相反数包括甲是乙的相反数,乙也是甲的相反数;
3、相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O的两边,并且到原点的距离相等。

4、多重符号化简的依据就是相反数的意义,化简的结果是由“-”号的个数来决定的,简称:奇负偶正。

5、什么是一个数的绝对值呢?从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离。

注意,这里的距离,是以单位长度为度量单位的,是一个非负的量。

6、一个正数的绝对值是它本身,一个负数的绝对值是它的相反数;零的绝对值是零。

7、两个负数,绝对值大的反而小。

小编为大家提供的七年级上册数学期中易混淆要点就到这里了,愿大家都能在学期努力,丰富自己,锻炼自己。

七年级数学 相反数与绝对值

七年级数学 相反数与绝对值

x
-5 1 3
,

x

(3)已知 x-28 0. 则 x

D.5
【例8】出租车司机小李某天下午的营运全是在南北走向的鼓楼大街进行的。假定 向南为正,向北为负,他这天下午行车里程如下(单位:千米):+15,-3,+14 ,-11,+10,+4,-26 (1)小李在送第几位乘客时行车里程最远? (2)若汽车耗油量为0.1L/km,这天下午汽车共耗油多少升?
A.若 a b ,则a b C.若 -a b ,则-a b
B.若 a b ,则a -b D.若 a b ,则 a b
模块二:拓展创新 1.将-4、-3、-2、-1、0、1、2、3、4这九个数分别填入图中的方格中,使得 横、竖、斜对角的三个数相加都得0.
A.4 B.3 C.6 D.5 2.如图是一个正方形纸盒的展开图,在其中的四个正方形内标有数字1、2、3 和-3,要在其余的正方形内分别填上-1、-2,使得按虚线折成的正方体后,相 对面上的两个数互为相反数,则A处应该填( )。
第2 讲
相反数与绝对值
模块一:相反数
相反数的意义和性质 1、相反数的代数意义:如果两个数只有符号不同,那么我们称这两个数互为相 反数,其中一个数是另一个数的相反数。(注意:0的相反数为0.) 2、相反数的几何意义【:例在2】数若轴有上与的互两为个相点反,数若,分求别的位值于?原点两旁,并且到原点 的距离相等,则这两个数互为相反数。 3、任何数都只有一个相反数;正数的相反数是负数,负数的相反数是正数,0的 相反数是0,非正数的相反数是非负数,非负数的相反数是非正数。
A.4
2. 5 的值是( )
B.3 C.6
D.5

1.3 绝对值与相反数(课件)七年级数学上册(冀教版2024)

1.3 绝对值与相反数(课件)七年级数学上册(冀教版2024)
8
|-9|=9, |-3.2|=3.2,
5
2
5
2
7
8
7
8
= ,| |= ,
|-3.14|=3.14.
3.请分别写出下列各数的相反数:
-5, 13, 0,
1
3 ,-(+1.35).
2
-5的相反数是5,
13的相反数是-13,
0的相反数0,
1
2
1
2
3 的相反数- 3 ,
-(+1.35)的相反数是1.35.
分层练习-巩固
利用相反数的定义在数轴上表示相关的数
13.(1)写出下列各数的相反数,并将这些数连同它们的相反
数在数轴上表示出来:

+2,-3,0,-(-1),-3 ,-(+4).

【解】+2的相反数是-2,-3的相反数是3,0的相反数是0,-(-1)的相


反数是-1,-3 的相反数是3 ,-(+4)的相反数是4.如图.
小亮家
小明家
你有什么发现?
西



新知探究
1.绝对值的概念
请以学校为原点画一条数轴,并把小明家和小亮家的位置在数轴上表示出
来.你有什么发现?
小亮家
西
-1500

-1000
-500
小明家

0
500
1000
1500

做一做
请画一条数轴,在数轴上标出表示4,-2,0的点,并写出这些点到原点
的距离.
-6
)2(|-17|=
17
)3(|0|=


0



初中数学冀教版七年级上册教学课件 1.3绝对值与相反数(3)

初中数学冀教版七年级上册教学课件    1.3绝对值与相反数(3)

___( a 0) a ___( a 0) ___( a 0)
口答:求下列各数的绝对值:
6, π, 3, 2.4 | (2)
| 3- |
变式2:计算
1 1 1 1 1 1 1 1 | - | | - | | - | ... | - | 3 2 4 3 5 4 10 9
10. 5 ; 10.5 _____ 10.5 ,-10.5的相反数是 _____ (2 ) 7 7 7 7 - 的相反数是_______; _______, 4 4 4 4 0 (3 ) . 0 _______
总结:
正数的绝对值是它本身; 负数的绝对值是它的相反数; 0的绝对值是0. 符号语言:
课堂小结:
1.求一个数的绝对值要先判断它的符号;
2.互为相反数的两个数的绝对值相等;
3.绝对值一定是非负数;
1.3
绝对值与相反数(3)
知识回顾:
1.说出绝对值的几何含义:
2.互为相反数的两个数在数轴上所表示的点有 什么位置关系? 他们的绝对值有什么关系?
温故知新:
根据绝对值与相反数的意义填空:
一个数的绝对 值与这个数本 身或它的相反 数有什么关系?
7 ( 1 ) 2.3 2.3 , 7 , 6 6 . 4 4 5 ,-5的相反数是_______ 5 ; 5 ______

2024年秋季新冀教版七年级上册数学教学课件1.3 绝对值与相反数

2024年秋季新冀教版七年级上册数学教学课件1.3  绝对值与相反数

编号 1
2
3
4
5
6
结果 -0.3 -0.2 +0.3 +0.2 -0.4 -0.1
指出第几个零件好些?请用学过的绝对值知识来说明.
解:因为|-0.3|=0.3,|-0.2|=0.2, |+0.3|= | 0.3|, | +0.2|=0.2,|-0.4|=0.4, |-0.1|=0.1, 所以|-0.1|最小,即第6号零件更好些. 绝对值 越小 越接近零件的标准尺寸,也就是说这个零件
到原点距离相等的点有: -4与4,-2与2,-1.5与+1.5; 每组数的符号不同,绝对值相同; 在数轴上在原点的两侧,且到原点的距离相等。
定义: 像-4与4,-2与2,-1.5与+1.5这样符号 不同,绝对值相等的两个数,我们称其中一个数是 另一个数的相反数,这两个数互为相反数,0的相 反数是0.
如果有理数用a表示,则有: 当a是正数时,|a |=a; 当a=0时,|a |=0; 当a是负数时,|a |= -a。
思考: 如果一个数的绝对值等于它本身,那么这个数是 非负数 ; 如果一个数的绝对值等于它的相反数,那么这个数 是 非正数 。 符号语言:若|a |=a,则a ≥0 ;若|a |= -a,则a ≤0 .
1.如图,数轴的单位长度为1,如果点A,B表示的数的绝 对值相等,那么点A表示的数是( B )
A. -4
B. -2
C.0
D.4
2.下列各组数中互为相反数的是( A )
A. -( - 5 )与 -|- 5|
B.|- 3|与|+3|
C. - (- 1)与|- 1|
D.|m|与|- m|
3.某车间生产了一批圆形机器零件,从中抽取6个进行检查, 比标准直径长的毫米数记作正数,比标准直径短的毫米数 记作负数,检查记录如下表:

苏科版-数学-七年级上册-2.4《绝对值与相反数(3)》教学设计

苏科版-数学-七年级上册-2.4《绝对值与相反数(3)》教学设计
绝对值与相反数(3)
一、教学目标
1.会求该数的绝对值与相反数,通过学生动脑动手感知有理数的绝对值与该数或
他的相反数的关系。
2会用绝对值比较两个负数的大小
二、教学重点难点
1.重点:有理数的绝对值与该数或他的相反数的关系。
2.难点:会用绝对值比较两个负数的大小
三、教学方法:整体建构和谐教学
四、教学过程
教师活动
先让学生相互讨论,探索解题方法,教师再指导学生回答。
及时反馈加强指导。
五、课后反思
负数的绝对值是它的相反数
0的绝对值是0
互为相反数的两个数的绝对值相等
联想数轴上比较有理数大小的方法,揭示用绝对值比较有理数大小的合理性;
两个正数,绝对值大的正数大;
两个负数,绝对值大的负数反而小;
学生先自主思考,然后参与讨论,归纳。
通过学生观察分析使学生主动参与到学习活动中来,培养学生的观察分析能力和语言表达能力
学生活动
设计意图
导入新课
明确目标
探索活动(一)
1求值
(1)—(+5);—(—5);+(+5);+(—5);
(2)—〔—(+5)〕;+〔—(—6)〕;
(3)︱10︱= ;︱1.9︱= ; ︱— ︱=
= ; 的相反数是 ;
—7.8的相反数 ;
(4) = ;0的相反数是 ;
思考:一个数的绝对值与这个数本身或它的相反数有什么关系?
探索活动(二)
Байду номын сангаас2 比较大小 (1) 与0; 0与 —2;
—9与—9.3; —6与6
讨论:绝对值大的数大,绝对值小的数小吗?
学生回顾所学
知识

苏教版七年级数学上册《绝对值和相反数》课件

苏教版七年级数学上册《绝对值和相反数》课件

解:3的相反数是-3,
-4.5 的相反数是 4.5 ,
-4(的 -4相 .5)反 = 4数 .54是.
7
7
例2 化 ( 简 2 ) ,( 2 .7 ) ,( 3 ) ,( 3 ).
4
解: 因 2为 的相反数 2, 是 所以 ( 2)2.
例2 化 ( 简 2 ) ,( 2 .7 ) ,( 3 ) ,( 3 ).
AB
FC D
E
- 5 - 4 - 3 - 2 - 1 0 1 2 34 5
点 A 表示 -5 ,点 A 与原点的距 离是 5 ,所以 -5 的绝对值是 5 .记为 |-5| = 5.
说一说:
你能说出数轴上点 A、B、C、D、 E、F 各点所表示的数的绝对值吗?
AB
FC D
E
- 5 - 4 - 3 - 2 - 1 0 1 2 34 5
解:(4)因为4 4, 4 4, 并且44,
所以4 4 .
动脑筋 有一天,甲、乙两个数在比谁
大.甲抢着说:“在数轴上我表示 的点到原点的距离比你表示的点到 原点的距离要大,看来我比你大”, 乙不甘示弱,紧接着说,“我是正 数,我大于零,也大于一切负数, 当然是我比你大”.你们说到底谁 大呢?
4
解 : 因 2为 .的 7 相反数 2., 7是
所 (以 2.7) 2.7.
例2 化 ( 简 2 ) ,( 2 .7 ) ,( 3 ) ,( 3 ).
4
解 : 因3为 的 相 反 数 3,是 所(以 3) 3.
例2 化 ( 简 2 ) ,( 2 .7 ) ,( 3 ) ,( 3 ).
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。

七年级数学上册 第二章 3绝对值例题与讲解 北师大版

七年级数学上册 第二章 3绝对值例题与讲解 北师大版

3 绝对值1.相反数(1)相反数的定义像4和-4,3和-3,2.5和-2.5等这样只有符号不同的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0. 辨误区 相反数的理解 ①相反数“只有符号不同”,即符号相反,数字相同,不能误理解为“只要符号不同”就行,例如:-1与2符号不同,但不是互为相反数.②相反数是成对出现的,不能单独存在.例如,5是-5的相反数,-5也是5的相反数.③0的相反数为0是相反数定义的重要组成部分.【例1-1】 关于相反数下列说法正确的是( ).A .-14和0.25不互为相反数 B .-3是相反数 C .任何一个数都有相反数 D .正数与负数互为相反数解析:A × 只有符号不同,互为相反数B × 相反数是成对出现的C √ 正数、0、负数都有相反数D × 正数与负数中的数字不一定相同,不一定是互为相反数答案:C(2)相反数的求法求一个数的相反数,只要在这个数的前面添上“-”号,就表示这个数的相反数. 一个有理数a ,它的相反数是多少呢?有理数a 的相反数是-a .这里a 可以表示任意一个数,可以是正数,可以是0,可以是负数,还可以是一个式子.比如:当a =2时,-a =-2,2与-2是互为相反数;当a =-1时,-a =-(-1),因为-1的相反数是1,所以-(-1)=1;当a =m +n 时,-a =-(m +n ),所以m +n 的相反数是-(m +n ).【例1-2】 填空:(1)-8的相反数是__________;-(-2.8)的相反数是__________;__________的相反数是14;100和__________是互为相反数. (2)如果m =-9,则-m =__________.解析:(1)根据相反数的定义和求法直接写出相反数即可.其中应注意-(-2.8)表示-2.8的相反数,等于2.8,所以-(-2.8)的相反数也就是2.8的相反数,应该填-2.8.(2)-m 表示m 的相反数,也就是求-9的相反数.答案:(1)8 -2.8 -14-100 (2)9 (3)相反数的几何意义一对相反数在数轴上对应的点,位于原点的两侧,并且到原点的距离相等.【例1-3】 如图,数轴上的点A ,B ,C ,D ,E 表示的数中哪些互为相反数?分析:解:(方法1)由图可知A ,B ,C ,D ,E 各点分别表示-4,-2.5,0.5,2.5,4.因为-4与4互为相反数,-2.5与2.5互为相反数,所以A 与E ,B 与D 表示的数互为相反数.(方法2)由图可知,点A ,B 在原点的左侧,且到原点的距离分别是4个单位长度和2.5个单位长度.C ,D ,E 在原点的右侧,且到原点的距离分别是0.5个单位长度,2.5个单位长度和4个单位长度.根据互为相反数的几何意义可得A 与E ,B 与D 表示的数互为相反数.2.绝对值(1)绝对值的几何定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.①绝对值是一个数在数轴上的对应点离开原点的长度,如图中,点-4距离原点4个单位长度,则-4的绝对值就是4.②绝对值是一个距离.(2)绝对值的表示方法一个数a 的绝对值记作|a |,读作a 的绝对值.如,+4的绝对值记作|+4|,-8的绝对值记作|-8|.(3)绝对值的代数意义①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0.用式子表示为:|a |=⎩⎪⎨⎪⎧ a ,a >0,0,a =0,-a ,a <0.【例2】 下列说法正确的是( ).A .|-5|表示-5的绝对值,等于-5B .负数的绝对值等于它本身C .-10距离原点10个单位长度,所以-10的绝对值是10D .绝对值等于它本身的数有两个,是0和1 A × 绝对值是一个距离,不能为负数B × 负数的绝对值等于它的相反数C √ 一个数的绝对值是它在数轴上对应点与原点的距离D × 正数和0的绝对值都等于它本身3.绝对值的性质(1)数轴上表示某个数的点到原点的距离越近,它的绝对值就越小,到原点的距离越远,它的绝对值就越大.(2)任何一个有理数的绝对值一定是非负数,即|a |≥0.0是绝对值最小的有理数.(3)互为相反数的两个数的绝对值相等.反过来,若两个数的绝对值相等,则这两个数相等或互为相反数.(4)任何一个有理数都有唯一的绝对值.但绝对值为某一正数的数有两个,它们互为相反数.例如,如果|a |=2,那么a =±2.(5)任何一个数的绝对值都大于或等于它本身,即|a |≥a .【例3】 下列说法:①若|x |=2 013,则x =2 013;②⎪⎪⎪⎪⎪⎪-23=⎪⎪⎪⎪⎪⎪+32;③绝对值最小的有理数是1;④0没有绝对值;⑤一个有理数的绝对值一定是非负数.正确的个数为( ).A .1B .2C .3D .4解析:绝对值是2 013的数是±2 013;⎪⎪⎪⎪⎪⎪-23=23,⎪⎪⎪⎪⎪⎪+32=32;绝对值最小的有理数是0;0的绝对值是0;正数的绝对值是正数,负数的绝对值是它的相反数,也是正数,0的绝对值是0.所以⑤正确.答案:A4.多重符号的化简化简规律:化简一个含有多重括号的非零有理数,结果与这个有理数前面的负号的个数有关.①当“-”号的个数是奇数时,结果为负;②当“-”号的个数是偶数时,结果为正.由于正号可以省略,所以化简符号时,主要看这个数前面“-”号的个数.【例4】 化简下列各数的符号:(1)-{-[+(-10)]};(2)-[-(+5)].分析:题号 负号的个数 答案(1) 3 -10(2) 2 5解:(1)-{-[+(-(2)-[-(+5)]=5.点评:化简一个含有多重括号的非零有理数,可以逐步地由内向外层层化简,也可以根据“奇负偶正”的规律进行化简.5.绝对值的求法绝对值的求法有两种方式:一是给出数字,直接按要求求这个数的绝对值;二是给出含有绝对值符号的式子,求式子的值.求绝对值的方法:(1)先判断这个数是正数、负数,还是0.(2)根据绝对值的代数意义确定它的绝对值是它本身,还是它的相反数,从而求得它的绝对值.绝对值的代数意义:①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0.弄清绝对值与相反数符号的意义及相反数和绝对值的求法,是求含有绝对值符号式子的关键.【例5-1】 求下列各数的绝对值:+11,-3.4,0,-32. 分析:可根据绝对值的意义,即根据“正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0”进行求解.解:|+11|=11,|-3.4|=3.4,|0|=0,⎪⎪⎪⎪⎪⎪-32=32. 【例5-2】 求下列各式的值:|+2 013|,|-3.9|,-⎪⎪⎪⎪⎪⎪-56,-|+18|. 分析:|+2 013| 求+2 013的绝对值 |-3.9| 求-3.9的绝对值-⎪⎪⎪⎪⎪⎪-56 求-56的绝对值的相反数 -|+18| 求+18的绝对值的相反数解:|+2 013|=2 013,|-3.9|=3.9,-⎪⎪⎪⎪⎪⎪-56=-56,-|+18|=-18. 6.利用绝对值比较大小(1)利用绝对值比较两个负数的大小两个负数比较大小,绝对值大的反而小.比较的具体步骤:①先求两个负数的绝对值;②比较绝对值的大小;③根据“两个负数,绝对值大的反而小”作出判断.(2)几个有理数的大小比较①同号两数,可以根据它们的绝对值来比较:a.两个正数,绝对值大的数较大;b.两个负数,绝对值大的反而小.②多个有理数的大小比较,需要先将它们按照正数、0、负数分类比较,然后利用各数的绝对值或借助于数轴来进一步比较.【例6-1】 比较下列每组数的大小:(1)-3和-2.9;(2)-23和-0.6. 分析:可先求出它们的绝对值,再根据“两个负数,绝对值大的反而小”比较大小. 解:(1)因为|-3|=3,|-2.9|=2.9,3>2.9,所以-3<-2.9;(2)因为⎪⎪⎪⎪⎪⎪-23=⎪⎪⎪⎪⎪⎪23,|-0.6|=0.6,23>0.6, 所以-23<-0.6. 【例6-2】 求下列各数的绝对值,并用“>”将各数排列起来:-32,+1,0,-2.3. 分析:根据绝对值的意义来求各数的绝对值;根据“正数大于0”“0大于负数”“两个负数,绝对值大的反而小”来比较它们的大小.解:因为⎪⎪⎪⎪⎪⎪-32=32,|+1|=1,|0|=0,|-2.3|=2.3,所以+1>0>-32>-2.3. 7.绝对值的非负性的应用绝对值的非负性(1)绝对值具有非负性,即对于任意有理数,都有|a |≥0.绝对值的最小值为0.(2)若几个数的绝对值相加和为0,则这几个数的值都为0.用式子表示为:若|a |+|b |+|c |=0,则a =0,且b =0,且c =0.可以利用上面的知识求字母的值.【例7-1】 当m =__________时,5+|m -1|有最小值,最小值是__________. 解析:根据“任意一个有理数的绝对值都是非负数”来解答.因为|m -1|≥0,所以当m =1时,|m -1|有最小值为0,则5+|m -1|的最小值是5+0=5.答案:1 5【例7-2】 已知|a -2|+|7-b |+|c -3|=0,求a ,b ,c 的值.分析:当3个绝对值相加等于0时,说明每个绝对值都等于0.解:因为|a-2|≥0,|7-b|≥0,|c-3|≥0,且|a-2|+|7-b|+|c-3|=0,所以|a-2|=0,|7-b|=0,|c-3|=0,所以a=2,b=7,c=3.8.相反数与数轴的综合应用比较一组数的大小时,若需要比较相反数的大小,可按以下方法进行:(1)表示数:根据相反数的几何意义,将各数或字母的相反数在数轴上表示出来;(2)排顺序:按照数轴上“右边的数总是大于左边的数”,排列这组数的大小关系.【例8】如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是( ).A.a<1<-a B.a<-a<1C.1<-a<a D.-a<a<1解析:观察数轴可知,a<0,且|a|>1.因为-a是a的相反数,所以-a>0,且-a>1.先在数轴上标出有理数a的相反数-a的对应点,再排列大小可以得到a,-a,1的大小关系是a<1<-a,故选A.答案:A9.利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题,主要有以下两类:(1)判断物体或产品质量的好坏可以用绝对值判断物体或产品偏离标准的程度,绝对值越小,越接近标准,质量就越好.方法:①求每个数的绝对值;②比较所求绝对值的大小;③根据“绝对值越小,越接近标准”作出判断.(2)利用绝对值求距离路程问题中,当出现用“+”、“-”号表示的带方向的路程,求最后的总路程时,实际上就是求绝对值的和.方法:①求每个数的绝对值;②求所有数的绝对值的和;③写出答案.【例9-1】如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( ).解析:因为|-0.8|<|+0.9|<|+2.5|<|-3.6|,所以从轻重的角度看,最接近标准的是C.答案:C【例9-2】一天上午,出租车司机小王在东西走向的路上运营,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,-11,-13,+3,-12,-18,请问小王将最后一位乘客送到目的地时,共行驶了多少千米?分析:本题是绝对值意义在实际问题中的具体应用,有理数中的“+”号和“-”号在本题中表示的是方向,而它们的绝对值是小王在运营中所行驶的路程,因此求总共行驶的路程应是每次行车里程绝对值之和.解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18|=15+3+12+11+13+3+12+18=87(千米).答:小王将最后一位乘客送到目的地时,共行驶了87千米.。

2.4绝对值与相反数(3)教学设计

2.4绝对值与相反数(3)教学设计
通过探究得出结论:
两个正数,绝对值大的正数大;
两个负数,绝对值大的负数小.
结合数轴,体会利用绝对值可以比较同号的两个数的大小.
例题教学:
例6比较 与 的大小.
解:因为 ,且 ,
所以 .
两个负数,绝对值大的负数小.
掌握如何利用绝对值比较两个负数的大小.
练一练
1.填空:
(1) 的符号是______,绝对值是______;
_________, 的相反数是________;
(3) _______.
议一议:一个数的绝对值与这个数本身或它的相反数有什么关系?
正数的绝对值是它本身;
负数的绝对值是它的相反数;
0的绝对值是0.
通过填空将绝对值与相反数的关系具体化.通过不完全归纳法,探索绝对值的代数意义.
例题教学:
例5求下列各数的绝对值:
2.求已知数的绝对值与相反数;
3.用绝对值比较两个负数的大小.
教学难点
绝对值与相反数的意义.
教学过程(教师)
学生活动
设计思路
试一试:
根据绝对值与相反数的意义填空:
(1) _______, _________, _________;
(2) _______, 的相反数是_______,
_________, 的相反数是_______,
(2)10.5的符号是______,绝对值是______;
(3)符号是“+”号,绝对值是 的数是______;
(4)符号是“-”号,绝对值是9的数是______;
(5)符号是“-”号,绝对值是0.37的数是______.
2.用“<”或“>”填空:
(1) ; (2) ;
(3)} ; (4) .

七年级数学上册绝对值与相反数(3)教案人教版

七年级数学上册绝对值与相反数(3)教案人教版

一、创设情境:
1.让学生画一条数轴,并在数轴上标出下列各
数:
在讨论数轴上的点与原点的距离时,只需要观
察它与原点之间相隔多少个单位长度,与位于原点
何方无关.
2.两辆汽车,第一辆沿公路向东行驶了5千米,
第二辆向西行驶了4千米.为了表示行驶的方向(规
定向东为正)和所在位置,分别记作+5千米和-4千
米.这样,利用有理数就可以明确表示每辆汽车在
公路上的位置了.
我们知道,出租汽车是计程收费的,这时我们
只需要考虑汽车行驶的距离,不需要考虑方向.当
不考虑方向时,两辆汽车行驶的距离就可以记为5
千米和4千米.揭示生活中确实存在只需考虑距离
的问题.这里的5叫做+5的绝对值,4叫做-4的绝
对值.
教师活动内容、方式学生活动方式、内容旁注
=,=,=;
=;
=,=,= .
教师活动内容、方式学生活动方式、内容旁注例2化简:
四、交流反思
和学生一起归纳本节课主要内容:
1.一个正数的绝对值是它的本身;一个负数的
绝对值是它的相反数;零的绝对值是零.
2.从数轴看,一个数a的绝对值就是数轴上表
示数a的点到原点的距离.
3.要注意一个数的绝对值不可能是负数.
五、巩固练习
1.课本P35练习
2.求下列各数的绝对值:
-5,,,+1,0.
3.填空:
(1)-3的符号是______, 绝对值是____;
(2)符号是“+”号,绝对值是7的数是_____;
(3)的符号是_____, 绝对值是______;
(4)绝对值是,符号是“-”号的数是_____.
六、布置作业
课本P36习题2.3 T1--5。

绝对值与相反数-2022-2023学年七年级数学上册课件(苏科版)

绝对值与相反数-2022-2023学年七年级数学上册课件(苏科版)

(2)因为动点P,Q同时从A,B出发沿数轴负方向运动,点P的速度是每秒 个单位长度,点Q的


速度是每秒2个单位长度,又因为AB=6,两点速度差为:2- ,所以6÷(2- )=4,运动4


秒后,点Q可以追上点P.
(3)存在点M,使P到A,B,C的距离和等于10,当M在AB之间,则M对应的数是2;当M在C
结论.
解∶
因为|−


|= =





>




|− |= =





>



所以 −
<−


【典例1】若﹣1<x<4,则|x+1|﹣|x﹣4|= 2x﹣3 .
解析∶
利用数形结合分析求解
|x+1|是x到﹣1的距离,
x+1>0, |x+1|=x+1
解:



(+ )=










+(– ) =– ; – (– ) = ,故A、B、C选项错误.因为– ( – 0.2)= 0.2; –
,且0.2与–

互为相反数,故D选项正确.

四、绝对值的性质(难点)
正数的绝对值是它本身






文字描述
0的绝对值是0
负数的绝对值是它的相反数
a(a>0),
个负数的点都在原点的左边,并且表示绝对值较大的负数的点在表示绝对值较小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3.绝对值和相反数(3)【学习目标】
1、理解有理数的绝对值和相反数的意义。

2、经历将实际问题数学化得过程,感受数学与生活的联系。

3、通过实际问题的解决,培养学生勇于探索、锲而不舍的精神。

【学习重点】
1、会用绝对值比较两个负数的大小。

2、会求已知数的相反数和绝对值。

【自主学习】
1、—3的符号是___________,绝对值是__________
2、1.5的符号是____________,绝对值是___________________
3、—2
3
的相反数是__________,绝对值是
2
3
的数是________________
4、符号是“—”,绝对值是9的数是________________
5、比较下列两个数的大小:
(1)、3与—7 (2)、—5.4与—5.3
【例题剖析】
例1、(1)、若一个数的绝对值是2,则这个数___________
例2、计算(1)、︱—4
7
︱-︱—
1
8

(2)、︱—0.75︱÷︱+55
8

例3、比较—9.5与—1.75的大小。

例4、求下列各数的绝对值 +6、-3、-2.7、0
例5、求6、—6、1
4
、—
1
4
的大小。

【基础演练】
1、—2的符号是___________,绝对值是______________;3.5的符号是________,绝对值是____________。

2、符号是+,绝对值是6的数是___________________.
3、符号是—,绝对值是4.3的数是__________________
4、计算
(1)、︱—2︱+︱+8︱(2)、︱—1
2
︱+︱—
3
4

(3)、︱—0.38︱+︱0.2︱(4)︱—7︱+︱—3
4

5、比较下列有理数的大小
(1)、—0,。

7与—1.7 (2)、—3
4
与—
4
5
(3)、—
3
11
与—0.273 (4)、—5与0
(编写:蒋继盛)。

相关文档
最新文档