5G移动通信的新型多址复用技术
5G网络知识探讨
mmWave 毫米波
4G网络均在sub 6GHz频段,根据香农定理与奈奎斯特准则、 可用最大带宽是100MHz,数据传输速率不超过1Gbps。 由于3Ghz以下的频段已经几乎使用殆尽,没有多余的频段可 供5G来使用,而且5G需要的带宽动辄上百M,必须使用新的 传输通道对无线传输速率进行扩宽。 波长为1~10毫米的电磁波称毫米波,毫米波频率范围为 26.5~300GHz,带宽高达273.5GHz。
NVF 网络功能虚拟化
传统的通信网络设备、网元采用软/硬件垂直一体化架构,且对外封闭。各网元功能必须使用对应的硬件产品, 各种硬件产品有多个厂家,多个厂家之间兼容性往往还不好。 NFV技术的核心理念在于把逻辑上的网络功能从实体硬件设备之中解耦出去。将此前的实体网元标准化为“大容 量服务器”、“大容量存储器”以及“数据交换机”这三大类的IT设备;
海量连接物联网(mMTC)
100万连接/平方公里
3D 视频, UHD 屏幕
基于云的办公
Voice
增强现实 工业自动化
时延可靠性敏感应用
自动驾驶
uRLLC mMTC
超低时延高可靠通信(uRLLC)
1ms时延
5G技术革新
网络技术方面
01
02
无线传输方面
SDN 基于软件定义网络
传统的网络的运作模式是静态的, 网络中的设备是决定性的 因素,控制单位和转发单位紧密耦合。 网络设备的连接产生 了不同的拓扑结构, 通过路由表进行数据传输, 导致目前的 网络非常复杂。 SDN将传统网络设备数据平面和控制平面进行分离,通过集 中式的控制器和标准化软件接口对网络进行管理和配置, 这 种网络架构为网络资源的设计、 管理和使用提供更多的可能 性, 从而更容易推动网络的革新与发展。 以OpenFlow为例,网络设备维护一个FlowTable并且只按 照FlowTable进行转发,FlowTable本身的生成、维护、下发 完全由外置的Controller来实现。
5G技术与应用智慧树知到答案章节测试2023年四川邮电职业技术学院
第一章测试1.第四代移动通信系统(4G)制式有( )A:LTE-TDDB:IS-95CDMAC:ITACSD:TD-LTE答案:AD2.我国目前有三大运营商获得了3G牌照,其中,CDMA2000是由()在运营A:中国电信B:中国移动C:中国铁通D:中国联通答案:A3.关于第三代移动通信系统说法错误的是()A:全球统一频段、统一标准,全球无缝覆盖B:支持上下链路不对称需求C:支持高速数据业务,速率最高可达20Mb/sD:工作频段在2000MHz答案:A4.相对于4G来说,5G的时延可以达到A:1msB:10msC:0.1msD:0.01ms答案:A5.5G的三大应用场景有()A:mMTCB:eMTCC:uRLLCD:eMBB答案:ACD第二章测试1.5G无线网节点之间的接口是?A:S1B:XnC:X2D:NG答案:B2.NG-RAN和5GC之间的网络接口是?A:NGB:S1C:GxD:Uu答案:A3.5G基站的功能组成被重构为以下哪几个功能实体?A:DUB:CUC:AAUD:RRU答案:ABD4.承载网不仅连接了接入网与核心网设备, 5G接入网网元之间:AAU、DU、CU之间,也是5G承载网负责连接的。
A:错B:对答案:B5.5G终端不支持LTE网络。
A:错B:对答案:A第三章测试1.在5G技术中,用于提升接入用户数的技术是A:Massive CAB:1mcTTIC:Massive MIMOD:SOMA答案:C2.5G无线接入的关键技术主要包含A:新型多载波B:大规模天线阵列C:新型多址D:超密集组网答案:ABCD3.5G每平方公里至少支持多少台设备A:1万B:100万C:10万D:1000答案:B4.以下哪种多址接入技术是5G新提出的?A:TDMAB:CDMAC:FDMAD:SCMA答案:D5.MASSIVE MIMO是5G网络的一项关键技术,只能在5G网络中使用。
A:对B:错答案:B第四章测试1.5G网络技术和网络结构将向着虚拟化、软件化、扁平化方向发展,如下与它相关的关联技术是( )A:同时同频全双工(CCDF)B:滤波组多载波技术(FBMC)C:SDND:NFV答案:ABCD2.SDN的典型架构分为应用层、()、数据转发层、转发层3个层面。
5G:非正交多址技术(NOMA)的性能优势
5G:非正交多址技术(NOMA)的性能优势移动通信技术发展到今天,频谱资源也变得越来越紧张了。
同时,为了满足飞速增长的移动业务需求,人们已经开始在寻找既能满足用户体验需求又能提高频谱效率的新的移动通信技术。
在这种背景下,人们提出了非正交多址技术(NOMA)。
非正交多址技术(NOMA)的基本思想是在发送端采用非正交发送,主动引入干扰信息,在接收端通过串行干扰删除(SIC)接收机实现正确解调。
虽然,采用SIC技术的接收机复杂度有一定的提高,但是可以很好地提高频谱效率。
用提高接收机的复杂度来换取频谱效率,这就是NOMA技术的本质。
NOMA的子信道传输依然采用正交频分复用(OFDM)技术,子信道之间是正交的,互不干扰,但是一个子信道上不再只分配给一个用户,而是多个用户共享。
同一子信道上不同用户之间是非正交传输,这样就会产生用户间干扰问题,这也就是在接收端要采用SIC技术进行多用户检测的目的。
在发送端,对同一子信道上的不同用户采用功率复用技术进行发送,不同的用户的信号功率按照相关的算法进行分配,这样到达接收端每个用户的信号功率都不一样。
SIC接收机再根据不同户用信号功率大小按照一定的顺序进行干扰消除,实现正确解调,同时也达到了区分用户的目的,如图1所示。
图1:下行链路中的NOMA技术原理总的来说,NOMA主要有3个技术特点:1、接收端采用串行干扰删除(SIC)技术。
NOMA在接收端采用SIC技术来消除干扰,可以很好地提高接收机的性能。
串行干扰消除技术的基本思想是采用逐级消除干扰策略,在接收信号中对用户逐个进行判决,进行幅度恢复后,将该用户信号产生的多址干扰从接收信号中减去,并对剩下的用户再次进行判决,如此循环操作,直至消除所有的多址干扰。
与正交传输相比,采用SIC技术的NOMA的接收机比较复杂,而NOMA技术的关键就是能否设计出复杂的SIC接收机。
随着未来几年芯片处理能力的提升,相信这一问题将会得到解决。
详解5G的六大关键技术5G-无线通信网络蜂窝结构体系和关键技术
2013 年 12 月,我国第四代移动通信(4G)牌照发放,4G 技术正式走向商用。
与此同时,面向下一代移动通信需求的第五代移动通信(5G)的研发也早已在世界范围内如火如荼地展开。
5G 研发的进程如何,在研发过程中会遇到哪些问题?在 5G 研发刚起步的情况下,如何建立一套全面的 5G 关键技术评估指标体系和评估方法,实现客观有效的第三方评估,服务技术与资源管理的发展需要,同样是当前 5G 技术发展所面临的重要问题。
作为国家无线电管理技术机构,国家无线电监测中心(以下简称监测中心)正积极参与到 5G 相关的组织与研究项目中。
目前,监测中心频谱工程实验室正在大力建设基于面向服务的架构(SOA)的开放式电磁兼容分析测试平台,实现大规模软件、硬件及高性能测试仪器仪表的集成与应用,将为无线电管理机构、科研院所及业界相关单位等提供良好的无线电系统研究、开发与验证实验环境。
面向5G 关键技术评估工作,监测中心计划利用该平台搭建 5G 系统测试与验证环境,从而实现对5G 各项关键技术客观高效的评估。
为充分把握5G 技术命脉,确保与时俱进,监测中心积极投入到 5G 关键技术的跟踪梳理与研究工作当中,为5G 频率规划、监测以及关键技术评估测试验证等工作提前进行技术储备。
下面对其中一些关键技术进行简要剖析和解读。
一、高频段传输移动通信传统工作频段主要集中在 3GHz 以下,这使得频谱资源十分拥挤,而在高频段(如毫米波、厘米波频段)可用频谱资源丰富,能够有效缓解频谱资源紧张的现状,可以实现极高速短距离通信,支持 5G 容量和传输速率等方面的需求。
高频段在移动通信中的应用是未来的发展趋势,业界对此高度关注。
足够量的可用带宽、小型化的天线和设备、较高的天线增益是高频段毫米波移动通信的主要优点,但也存在传输距离短、穿透和绕射能力差、容易受气候环境影响等缺点。
射频器件、系统设计等方面的问题也有待进一步研究和解决。
监测中心目前正在积极开展高频段需求研究以及潜在候选频段的遴选工作。
5g通信协议和信令
5G通信协议和信令5G通信协议和信令是下一代移动通信系统的关键组成部分,下面是关于5G通信协议和信令的概述,包括以下九个方面:1. 5G网络架构5G网络架构与4G网络架构有很大的不同,它基于服务和功能架构,将各种网络功能模块化,并采用分布式系统和容器技术,实现网络切片和灵活部署。
2. 5G协议栈5G协议栈包括控制平面和用户平面。
控制平面协议主要负责连接、移动性管理、资源分配等,用户平面协议主要负责数据传输、差错控制等。
3. 5G空中接口5G空中接口是基于OFDM(正交频分复用)技术的多载波调制方案,支持多种频段和部署模式,并支持大规模天线技术以增加频谱效率和可靠性。
4. 5G新型多址技术5G采用新型多址技术,如基于OFDM的SCMA(稀疏码多址)和基于CDM的PDMA(正交幅度调制多址),以提高频谱效率和用户容量。
5. 5G调制编码5G采用多种调制编码方案,包括低密度奇偶校验码、极化码等,以提高数据传输速率和可靠性。
6. 5G低延迟高可靠性5G需要满足低延迟和高可靠性的需求,采用边缘计算、缓存和优化传输等措施来实现低延迟和高可靠性的要求。
7. 5G大连接低功耗5G需要支持大规模物联网连接,采用低功耗通信协议和节能技术,例如T-V2X(车联网通信协议)和节能模式等,以延长终端设备的电池寿命。
8. 5G网络切片5G网络切片是一种虚拟化技术,将网络资源切分为多个虚拟网络,以满足不同业务场景和服务质量的要求,提高网络资源利用率和灵活性。
9. 5G与4G的平滑演进5G与4G的平滑演进是实现网络连续性的关键因素。
通过使用双连接、载波聚合等技术,5G可以在不中断现有4G业务的情况下逐步引入新功能和提供更高性能。
此外,为了确保与4G的兼容性,5G 引入了EPS(演进分组系统)核心网,该核心网基于4G LTE技术并增加了新的功能以支持5G特性。
总之,5G通信协议和信令是下一代移动通信系统的关键组成部分,它们将实现更高的数据传输速率、更低的延迟、更高的可靠性和更大的连接性,以满足未来移动通信的需求。
(完整word版)5G名词释义
5G名词释义一、5G基本概念(一)5G概念第五代移动电话行动通信标准,也称第五代移动通信技术,外语缩写:5G(5th generation),也是4G之后的延伸。
ITU 为5G 定义了eMBB(增强移动宽带)、mMTC(海量大连接)、URLLC(低时延高可靠)三大应用场景。
增强移动宽带(eMBB)典型应用包括超高清视频、虚拟现实、增强现实等。
关键的性能指标包括100Mbps 用户体验速率(热点场景可达1Gbps)、数十Gbps 峰值速率、每平方公里数十Tbps 的流量密度、每小时500km 以上的移动性等.低时延高可靠(URLLC) 典型应用包括工业控制、无人机控制、智能驾驶控制等,这类场景聚焦对时延极其敏感的业务,高可靠性也是其基本要求。
海量大连接(mMTC)典型应用包括智慧城市、智能家居等。
这类应用对连接密度要求较高,同时呈现行业多样性和差异化。
二、相关术语(一)专有名词解释1)IMT-2020IMT-2020(5G)推进组于2013年2月由工信部、发改委和科技部联合推动成立,目前至少有56家成员单位,涵盖国内移动通信领域产学研用主要力量,是推动国内5G技术研究及国际交流合作的主要平台。
2)3GPP R15/R163GPP全称3rd Generation Partnership Project,是一个国际性通讯组织.成员包括四类:组织会员、市场代表、观察员和特邀嘉宾(Guests)。
其中组织会员包括ARIB(日本电波产业协会)、ATIS(美国电信行业解决方案联盟)、CCSA(中国通信标准化协会)、ETSI(欧洲电信标准化协会)、TSDSI (印度电信标准开发协会)、TTA(韩国电信技术协会)和TTC(日本电信技术委员会)。
3GPP会定期并发布新的无线通信技术标准,R15(Release 15)就是第一个包括5G标准的版本。
按计划5G第二阶段的R16将会在2019年第四季度完成。
按照3GPP规划,5G标准分为NSA(Non Standalone非独立组网)和SA(Standalone独立组网)两种。
5G无线移动通信网络的关键技术
5G无线移动通信网络的关键技术1、高级MIMO技术MIMO是应对无线数据业务爆发式增长挑战的关键技术,目前4G仅仅支持最大8端口MIMO技术,还有较大的潜力进一步地大幅提升系统容量。
MIMO的演进主要围绕着以下几个目标:更大的波束赋形/预编码增益;更多的空间复用层数(MU/SU)及更小的层间干扰;更全面的覆盖;更小的站点间干扰。
MassiveMIMO和3DMIMO是MIMO 演进的最主要的2种候选技术。
MassiveMIMO的主要特征是天线数目的大量增加,3DMIMO将波束赋型从原来的水平维度扩展到了垂直维度,对这一维度的信道信息加以有效利用,可以有效地抑制小区间同频用户的干扰,从而提升边缘用户的性能乃至整个小区的平均吞吐量。
虽然这2种研究侧重点不一样,但在实际的场景中往往会结合使用,在3GPP中称之为全维度MIMO(FD-MIMO)。
仿真结果表明,相对于4G系统中2天线的基站系统,采用32个天线端口的FD-MIMO系统可以取得2~3.6倍的小区平均速率增益和1.5~5倍的小区边缘速率增益。
2、高级多址技术移动通信从1G发展到4G,多址方式都是正交或者准正交的方式。
多址方式也是向着提高频谱效率的方向发展。
特别是非正交多址(NOMA)方式,用户的数据在同样的时频资源上并行发送,利用串行干扰消除(SIC)技术分别将用户的数据解调出来。
除了传统的基于SIC的NOMA技术之外,还有其他的改进型的NOMA技术。
如模式划分多址技术(PDMA)、稀疏码多址技术(SCMA)等。
以PDMA 多址技术为例,其允许不同用户在功率域、空域、码域的重叠以提高频谱效率。
不同用户的区分通过用户的模式进行区分。
在不同的功率域、空域、码域利用不同的用户特征模式来识别不同的用户。
3、同时同频全双工技术同时同频全双工技术就是在相同的频谱上,近端设备或远端设备同时发射、同时接收电磁波信号,利用干扰消除技术消除来自于发送天线的干扰信号,实现同时同频全双工通信。
第五代移动通信(5G)关键技术之空口技术综述
第五代移动通信(5G)关键技术之空口技术综述作者:丁丽萍杜文俊来源:《科学与财富》2018年第05期摘要:随着全球范围内第五代移动通信(5G)的逐步发展,5G的各种应用场景和关键能力使得现有的通信网络面临的问题日益凸显,而空口技术为通信网络带来体制性变革的技术可行性的同时也提供了全新的运营观念和模式。
1概述1.1 第5代移动通信基本要求从目前来看,移动互联网和物联网(internet of things,IoT)将成为未来移动通信发展的主要驱动力,并给移动通信带来新的技术挑战。
5G将满足人们在生活、工作和交通等各种区域的多样化业务需求,与此同时,5G还将渗透到物联网及各种行业领域,与工业设施、医疗仪器、交通工具等深度融合,有效满足工业、医疗、交通等垂直行业的多样化业务需求,实现真正的“万物互联”。
为此,各界达成共识的5G基本要求如下:1)传输速率要求:a. 10Gbit/s 峰值速率;b. 10-100Mbit/s的用户体验速率。
2)连接与流量器件数:a. 100倍的连接器件数;b. 1000倍的流量增长。
3)时延和可靠性要求:a. 用户面和控制面时延相对4G缩短为1/5-1/10;b. 更高的安全可靠性。
4)能耗和成本要求:a. 网络综合能效提升1000倍;b. 综合成本持续下降。
1.2 全球5G研发推进概况目前,世界上主要标准化组织、国家和公司都在大力研发和发展5G技术、标准与试验系统。
我国5G技术研发试验在政府的领导下,依托国家科技重大专项,由IMT-2020(5G)推进组负责实施。
在5G即将进入国际标准研究的关键时期,我国启动5G研发技术试验,搭建开放的研发试验平台,将有力推动全球5G统一标准的形成,促进5G技术研发与产业发展,为我国2020年启动5G商用奠定良好基础。
欧洲在5G研发方面与日本、中国、美国等地区的相关组织签订了相关协议,目标是形成全球统一的标准和协调全球的频率,这一工作将使全球的互操作最大化、经济规模最大化;据估计欧盟的5G网络将在2020年~2025年之间投入运营。
5G十大细分应用场景研究
5G是第五代移动通信技术的简称,作为4G通信技术的延伸,将在全社会数字化转型进程中担负着不可替代的重要使命。
5G时代,“人”与“人”、“人”与“物”和“物”与“物”之间原有的互联互通界线将被打破,所有的“人”和“物”都将存在于一个有机的数字生态系统里,数据或者信息将通过最优化的方式进行传递。
从全球视角来看,目前5G无论是在技术、标准、产业生态还是网络部署等方面都取得了阶段性的成果,5G落地的最后一环——应用场景正逐渐成为业界关注的焦点。
(一)5G性能指标和关键技术相较于4G ,在传输速率方面,5G峰值速率为10-20Gbps,提升了10—20倍,用户体验速率将达到0.1Gbps—1Gbps,提升了10—100倍;流量密度方面,5G目标值为10Tbs/km2,提升了100倍;网络能效方面,5G提升了100倍;可连接数密度方面,5G每平方公里可联网设备的数量高达100万个,提升了10倍;频谱效率方面,5G相对于4G提升了3—5倍;端到端时延方面,5G将达到1ms级,提升了10倍;移动性方面,5G支持时速高达 500km/h的通信环境,提升了1.43倍。
为了达到性能指标的要求,5G将综合运用大规模多天线技术(Massive MIMO)、新型多址、新型信息编码、毫米波通信、超密集组网、D2D等关键技术。
除此之外,5G还将引入全新的构架解决方案——允许在通用物理信息基础设施上创建一组逻辑上独立的网络,称之为“网络切片”。
网络切片可以根据垂直行业的业务需求量身定制,使5G能够真正成为全社会共用的新一代信息基础设施。
5G十大应用场景ITU定义了5G三大应用场景:增强型移动宽带(eMBB)、海量机器类通信(mMTC)及低时延高可靠通信(uRLLC)。
eMBB 场景主要提升以“人”为中心的娱乐、社交等个人消费业务的通信体验,适用于高速率、大带宽的移动宽带业务。
mMTC和uRLLC则主要面向物物连接的应用场景,其中eMTC 主要满足海量物联的通信需求,面向以传感和数据采集为目标的应用场景;uRLLC则基于其低时延和高可靠的特点,主要面向垂直行業的特殊应用需求。
第五代移动通信技术(5G)
第五代移动通信技术(5G)一概述第五代移动通信技术(5G)是第四代移动通信技术(4G)之后未来的新一代移动通信技术。
虽然5G的技术规范与标准还没有明确,但与3G、4G相比,其网络传输速率和网络容量将大幅提升。
在未来5G网络强大的带宽及传输速度的支持下,更多的新型移动业务将得以成熟应用,移动互联网、物联网等产业的发展空间也将再度扩展。
二技术方向移动通信经历了从第一代移动通信系统(1G)到第四代移动通信系统(4G)的发展。
历代移动通信系统都有其典型的标志性技术,如1G的模拟蜂窝技术、2G的时分多址(TDMA)和频分多址(FDMA)技术、3G的码分多址(CDMA)技术、4G的正交频分复用(OFDM)和多入多出(MIMO)技术。
目前5G关键技术的研究方向主要包括:①新型信号处理技术,如更先进的干扰消除信号处理技术、新型多载波技术等;②超密集网络和协同无线通信技术,如小基站(Small Cell)的优化;③新型多天线技术,如有源天线阵列、三维波束赋形、大规模天线等;④新的频谱使用方式,如TDD/FDD的融合使用、实现频谱共享的认知无线电技术等;⑤高频段的使用,如6GHz以上高频段通信技术等。
移动通信技术演进概览三发展现状近年来,一些国家和地区已开始5G项目研发和战略布局。
欧盟2012年11月宣布启动名为METIS的项目,旨在推动5G标准的统一化,参与项目的成员包括爱立信、阿尔卡特·朗讯、诺基亚等通信设备厂商,德国电信、意大利电信、法国电信等运营商以及欧洲众多的研究机构。
2014年3月,英国与德国宣布,将加强在5G研究上的合作,并共同推进欧洲电信市场一体化。
韩国政府于2014年初公布了以5G发展总体规划为主要内容的“未来移动通信产业发展战略”,计划在2020年推出全面的5G商用服务,并将为此投资1.6万亿韩元(约合90.3亿元人民币)。
国内方面,2013年2月,由工业和信息化部、发展改革委、科技部共同支持成立了IMT-2020(5G)推进组,工作组下设技术组、需求组、频谱组和标准化组,对5G领域的主要课题进行研究。
华为5g通信技术用的什么原理
华为5g通信技术用的什么原理
华为5G通信技术的原理可以概括为以下几点:
一、多址复用技术
采用OFDM等多址技术,进行高效率信号调制和复用,提高频谱利用率。
二、大规模MIMO技术
在基站端使用大量MIMO发射天线,可以形成尖锐的射频波束,提高覆盖性能。
三、小区密化技术
通过减小小区覆盖范围,提高小区布局密度,增加系统容量。
四、毫米波技术
利用30-300 GHz的毫米波频段,获取更宽大的频谱资源。
克服传输损耗的问题。
五、精准束赋形技术
根据用户位置和信道环境,灵活调整射频波束的方向和形状,提高信号质量。
六、新型调制编码技术
采用诸如极化调制、低密度奇偶校验码等新型调制编码技术,提升可靠性。
七、边缘计算和缓存技术
通过边缘节点缓存和计算,降低时延,提供低延迟服务。
八、网络切片技术
通过网络切片,提供定制化的网络服务,满足不同应用需求。
综上所述,这些都是华为5G网络实现高速率和大容量的关键技术手段。
通信原理-信道复用与多址技术
应用场景选择
• 码分复用适用于保密性要求高的场景。
应用场景选择
01
多址技术
02 频分多址适用于用户数量较少、对频率资 源需求大的场景。
03
时分多址适用于用户数量较多、对时间资 源需求大的场景。
04
码分多址适用于用户数量大、对保密性要 求高的场景。
发展趋势分析
信道复用与多址技术的融合
随着通信技术的发展,信道复用与多址技术呈现融合趋势,以提高频谱利用率 和系统容量。
详细描述
码分复用通过分配不同的扩频码型给不同的用户或数据流,实现多个信号在同一信道上的传输。每个信号使用独 特的扩频码型进行调制,从而实现多路复用。由于不同的码型之间具有正交性,因此可以有效地实现信号的分离 和识别。
02
多址技术
频分多址
频分多址(Frequency Division Multiple Access, FDMA)是一种通信方式,它将通信频带分成若干个小的 频带,每个用户占用一个子频带进行通信。 FDMA通过将频带分割成多个小的频带,可以支持多个用 户同时进行通信,提高了频谱利用率。
01 频分多址(FDMA):不同用户占用不同频率。 02 时分多址(TDMA):不同用户在不同时间占用
同一频率。
03 码分多址(CDMA):不同用户使用不同的码型 占用同一频率。
应用场景选择
信道复用技术
频分复用适用于带宽需求大、信号特性差异明显 的场景。
时分复用适用于对实时性要求高、信号特性相近 的场景。
计算方法
复用增益可以通过比较单路传输和多路传输 的系统性能来计算。具体而言,可以通过比 较不同用户数下的总传输速率和单路传输速 率来计算复用增益。
复用增益与信道容量的关系
(2024年)5G移动通信技术完整全套教案PPT教学电子课件
5G终端设备在智慧城市建设中可发挥重要 作用,如智能安防、智能照明、智能环保 等,提高城市管理水平和生活质量。
2024/3/26
26
07
5G安全挑战与应对策略
2024/3/26
27
5G安全挑战分析
5G网络架构的复杂性
5G网络架构包括核心网、传输网、接入网 等多个层面,每个层面都面临不同的安全威 胁和挑战。
6
02
5G网络架构与关键技术
ห้องสมุดไป่ตู้
2024/3/26
7
5G网络架构组成及功能
5G核心网(5GC)
提供网络功能,支持网络切片、边缘计算等 新型业务能力。
传输网
承载5G核心网和接入网之间的数据传输, 提供高带宽、低时延的传输通道。
2024/3/26
5G接入网(5G AN)
实现无线接入功能,包括gNB和ng-eNB两 种基站类型。
控制与转发分离
5G核心网将控制平面和用户平面分离,使得网络更加灵活,易于 扩展和维护。
网络切片技术
5G核心网支持网络切片技术,可以为不同业务场景提供定制化的 网络服务,满足多样化的业务需求。
16
5G核心网部署策略探讨
1
分布式部署
5G核心网采用分布式部署策略,将网络功能分 散到多个地理位置,提高网络的可靠性和性能。
信。
优势特点
02
提高频谱利用率和系统吞吐量,降低通信时延。
应用场景
03
适用于实时性要求较高的业务场景,如远程医疗、智能交通等
。
14
04
5G核心网演进与部署策略
2024/3/26
15
5G核心网架构变革及特点
2024/3/26
移动通信的新型多址复用技术
华东理工大学硕士院《高级数字通信》课程汇报开课学院:信息科学与工程专业:信号与信息处理*名:**学号: Y********任课教师:***2023年 11月5G移动通信旳新型多址复用技术摘要:滤波器组多载波(FBMC)技术因具有灵活旳资源分派、高旳谱效率、较强旳抗双选择性衰落旳能力、很好旳处理了高速率无线通信和复杂均衡接受技术之间旳矛盾,已成为5G无线通信系统旳关键技术之一。
OFDM系统即是滤波器组多载波技术中选择矩形脉冲作为滤波器旳一种特例,不过由于其选用时域矩形脉冲,虽然在时域具有良好局域化性质但频域却无限扩展,导致系统性能对频偏和相位噪声比较敏感,因此在某些场所并不合用,需要考虑性能更全面旳滤波器组多载波技术。
关键字:5G通信,滤波器组,OFDM,FBMCAbstract:Filter bank multicarrier (FBMC) technology has become one of the core technology of 5-generation broadband wireless communication system for its ability of flexible resource allocation、high spectral efficiency anti-double-selective fading channel and better resolving the contradiction of high-speed wireless communications and complicated equalization. OFDM is a special case of FBMC which chose a rectangular pulse as the sending and receive filter, the rectangular pulse is a time-limited pulse, but with unlimited frequency domain expansion, therefore it has the capacity of anti-inter-symbol interference (ISI), but inter-carrier interference (ICI) is a serious shortcoming. And so in some application system, there is a need to consider a more comprehensive FBMC technology.Keywords:5-generation communication,filter banks,OFDM,FBMC1.引言初期旳无线通信重要用于船舶、航空、列车、公共安全等专用领域,顾客数量很少。
移动通信技术中的复用技术研究
移动通信技术中的复用技术研究现代社会中,人们对于通信技术的需求越来越高。
而在通信技术领域中,复用技术被认为是实现高速数据传输和物联网等应用的关键技术之一。
本文将从移动通信技术中的复用技术入手,阐述其研究现状、应用场景以及未来发展趋势。
一、多路复用技术在通信网络中,多个通信线路共享同一个信道,可以减少信道数量,提高信道利用率的技术被称为多路复用技术。
常见的多路复用技术有频分复用、时分复用、码分复用以及波分复用等。
这些技术的实现原理都是在不同的时间、频率、码位等上对信号进行分配,从而实现多个信号并行传输。
频分复用技术是指将频带分成若干个不重叠的子频带,每个子频带用于传输不同的信息,从而实现多个信号共享一个频带。
常见的应用场景有数字电视、电话、无线局域网等。
时分复用技术是指将时间分段,每段时间内只传输一个信号,多个信号依次占用这段时间。
时分复用技术用于移动通信中,是将无线信道的时间资源分配给不同的用户,是让用户在移动的同一频段上进行信息交流的重要基础技术。
码分复用技术是指通过数码编码等方式来分配码片,从而使多路信号可以在同一频带上独立传输,并在接收端进行恢复。
码分复用技术适用于CDMA(码分多址)等应用,是4G通信技术的重要支持。
波分复用技术是指将不同波长的光信号在光纤中进行复用传输,实现多个通道在同一光纤传输。
波分复用技术是光纤通信和波分多路复用的核心技术,在宽带互联网、数字电视、电话等应用中广泛应用。
二、移动通信中多路复用技术的应用移动通信网络中,多个用户通过无线信道进行通信,无线资源相对较为紧张。
在这种情况下,必须采用多路复用技术来提高信道利用效率,减少通信线路的数量,提高系统的通信容量。
在移动通信中,主要采用时分复用和码分复用两种技术。
时分复用技术在GSM、WCDMA、TD-SCDMA等移动通信标准中广泛应用。
GSM中采用了TDMA时分多址和FDMA频分复用技术,即数字话音通信采用TDMA技术,数据传输采用FDMA技术。
5G移动通信系统-关键技术
/view/9f2ae6f1fab069 dc5022014a.html
中文: /link?url=PcQw4nO dK969lUbfNp2GK2rM29HWfPCPITCdbhOoA9kaKbl8 HTGZmvMLc5gb2WxJZUynHbzOCzTOs2leTam4KEYJ8dcidLUAH5lmltzGm
/link?url=JxRuidPQlh tRrtHZ038eHAkuGAIHUbh7hqqBbNTIiFzF_tFPP 7ieH-J5xMcY8F34Do7jdbkbqham53O0jbyKo0P7GnOo49_N aIdUkxf7im
2.(1)试推导MIMO系统容量
(2)简述MIMO在LTE中的应用
3.(1)简述OFDM的概念及优缺点
(2)如何克服OFDM高峰均比的问题?
(3)若在LTE中基于OFDM传输 实现?
,如何
4.推导协作通信系统容量,仿真验证协作与直传 模式相比的性能提升。
中文: /link?url=PcQw4nO dK969lUbfNp2GK2rM29HWfPCPITCdbhOoA9kaKbl8 HTGZmvMLc5gb2WxJZUynHbzOCzTOs2leTam4KEYJ8dcidLUAH5lmltzGm
柴蓉 通信与信息工程学院
5G移动通信系统关键技术
多天线技术 高频段传输电技术 全双工技术 终端直通(Device to Device, D2D) 技术 超密集网络架构
5G无线通信网络物理层关键技术分析
5G无线通信网络物理层关键技术分析5G无线通信网络是第五代无线通信技术,是基于4G技术的升级和创新,旨在提供更高的带宽、更低的延迟和更稳定的连接。
物理层是5G网络中至关重要的一部分,负责处理无线信号的传输和接收,是实现高速、稳定通信的关键。
以下是5G物理层的关键技术分析。
1. 多址技术(MA):多址技术是实现多用户同时访问无线通信网络的关键技术。
在5G 网络中,引入了更多的多址技术,如正交频分多址(OFDMA)、多用户正交转移(MU-MIMO)等,以提高网络的容量和效率。
2. 高频段技术:5G网络采用了更高的频段,如毫米波频段,以增加网络的带宽和容量。
高频段技术也面临着衰减、穿透力不足等问题,因此需要采用波束成形技术、中继技术等来增强信号的覆盖和传输能力。
3. 多天线技术:多天线技术在提高信号质量和容量方面起着重要作用。
5G网络中引入了Massive MIMO技术,通过利用大量的天线和用户之间的空间分集,提高信号的传输速率和覆盖范围。
4. 高速调制技术:高速调制技术是实现高速数据传输的关键。
5G网络采用了更高阶的调制技术,如64QAM、256QAM等,以增加数据传输速率。
高阶调制技术也对信号的传输质量和抗干扰能力提出了更高的要求。
5. 新型信道编码技术:5G网络采用了新的信道编码技术,如Polar码、低密度奇偶校验码(LDPC)等,以提高信号的纠错能力和抗干扰能力。
新型信道编码技术可以在高速传输和高可靠性之间找到平衡,从而实现高速、稳定的通信。
6. 软定义无线电(SDR)技术:软定义无线电技术是5G网络的关键技术之一。
它通过可编程的硬件和软件定义的网络架构,实现了灵活、高效的无线资源管理和频谱利用。
SDR技术可以根据不同的网络需求和环境条件,动态地调整信道配置和参数,以实现更好的网络性能。
7. 高密度小区技术:5G网络采用了更高的小区密度,以增加网络的容量和覆盖范围。
高密度小区技术可以有效地利用有限的频谱资源,提高网络的容量和效率。
移动通信5G简介介绍
多用户共享接入:新型多址技术支持多用户共享 接入,可根据用户业务需求动态分配资源,提高 资源利用效率。
稀疏码分多址:稀疏码分多址(SCMA)是另一 种新型多址技术,通过稀疏扩频实现多用户复用 ,降低用户间干扰。
强合作与政策协调。
02
技术标准与产业协同
国际组织和产业界应共同推动5G技术标准制定和产业协同发展,促进
全球5G产业链的形成和完善。
03
数字鸿沟与普遍服务
在推动5G全球普及的过程中,应关注数字鸿沟问题,通过普遍服务政
策和技术手段,确保所有人都能享受到5G带来的便利。
THANKS
感谢观看
04
5G应用场景与业务
eMBB(增强移动宽带)
高速数据传输
提供极高的数据速率,支持高清视频、虚拟现实等大流量应用的 传输。
网络覆盖增强
通过更高阶的调制解调技术、多用户多输入多输出等技术手段,提 升网络覆盖范围,减少信号死角。
频谱效率提升
优化频谱利用,提高频谱效率,进一步增加网络容量。
URLLC(高可靠低时延通信)
高速、低时延
5G网络提供更高的数据传输速率、更 低的时延,以及更高的网络覆盖范围 。
5G发展历程
01
02
03
研究阶段
在4G网络广泛应用之后, 业界开始了对5G技术的研 究,包括网络架构、无线 传输技术等方面的研究。
标准制定
国际电信联盟(ITU)和 3GPP等组织开始了5G国 际标准的制定工作。
商用阶段
大规模天线技术
MIMO技术
5G采用多输入多输出(MIMO )技术,通过大规模部署天线,
《5G将给我们带来什么》阅读练习及答案
(三)(10分)5G将给我们带来什么①英国萨里大学5G创新研究中心的拉希姆教授在BBC的采访中说:“如果你觉得第五代移动通信技术(5G)意味着应用程序不再拖延,视频不卡,网络超负荷的不复存在,你可能是正确的,但是你只说出了故事的一半。
5G网络将是对无线电频资源的一次巨大的重修和协调统一。
未来,在5G网络的支撑下,智能城市、远程手术、无人驾驶汽车和物联网时髦概念将逐步成为现实。
”②据专家声称:5G将以用户为中心构建全方位的信息生态系统,使用5G将有光纤般的接入速率,干亿设备的连接能力,网络能效提升超过百倍。
③那么,5G究竟有哪些不同?首先,同3G和4G相比,5G速度更快,而且快得不是一星半点儿。
专家认为5G数据传输速度最终可以达到惊人的800Gbps,比目前测试的最新技术快100倍。
三星公司曾在2013年宣布正在测试 I Gbps运行的网络,记者当时激动地报道称,1 Gbps 意味着不到半分钟便可下载一部高清电影,而800Gbps速度相当于1秒钟可以下载30部高清电影。
其次,5G网络的容量将是巨大的。
数据显示,目前全球有70亿个网络连接,到2020年全球网络特征就是能承载1000亿个网络连接。
这将为物联网的进一步铺开和万物互联时代的到来奠定重要基础。
目前网络连接仍以人与人之间的连接为主,但可以穿戴设备、智能家居等智能设备的大规模商用,将带来大量人与物、物与物的连接,从而形成更广阔和开放的物联网世界。
第三,5G网络的另一特点是稳定性高,不会断掉。
专家预测,5G网络的可靠性相当于光纤连接,能够保证突然中断情况不再出现。
这对安全至关重要,无论是远程手术,还是智能交通都要求网络不能在关键时刻掉链子。
另外,5G网络的时延只有百万分之一秒,这是人类所不能察觉的速度,比4G网络快了约50倍。
④未来的5G生活将是万物相连。
比如清晨醒来,卧室的灯和空调自动开启。
你来到卫生间,洗脸水已自动调至适中的温度,数码牙刷刻录并上传你的牙齿以及口腔的实时数据;戴上眼镜,妻子带着孩子正在上学的路上,通过眼镜片上的虚拟现实显示,孩子向你挥手说早安。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华东理工大学研究生院《高级数字通信》课程报告开课学院:信息科学与工程专业:信号与信息处理姓名:王坤学号:Y30150585任课教师:袁伟娜2015年11月5G移动通信的新型多址复用技术摘要:滤波器组多载波(FBMC)技术因具有灵活的资源分配、高的谱效率、较强的抗双选择性衰落的能力、较好的解决了高速率无线通信和复杂均衡接收技术之间的矛盾,已成为5G无线通信系统的关键技术之一。
OFDM 系统即是滤波器组多载波技术中选择矩形脉冲作为滤波器的一种特例,不过由于其选用时域矩形脉冲,虽然在时域具有良好局域化性质但频域却无限扩展,导致系统性能对频偏和相位噪声比较敏感,因此在某些场合并不适用,需要考虑性能更全面的滤波器组多载波技术。
关键字:5G通信,滤波器组,OFDM,FBMCAbstract:Filter bank multicarrier (FBMC) technology has become one of the core technology of 5-generation broadband wireless communication system for its ability of flexible resource allocation、high spectral efficiency anti-double-selective fading channel and better resolving the contradiction of high-speed wireless communications and complicated equalization. OFDM is a special case of FBMC which chose a rectangular pulse as the sending and receive filter, the rectangular pulse is a time-limited pulse, but with unlimited frequency domain expansion, therefore it has the capacity of anti-inter-symbol interference (ISI), but inter-carrier interference (ICI) is a serious shortcoming. And so in some application system, there is a need to consider a more comprehensiveFBMC technology.Keywords:5-generation communication,filter banks,OFDM,FBMC1.引言早期的无线通信主要用于船舶、航空、列车、公共安全等专用领域,用户数量很少。
20世纪60年代,贝尔实验室提出了蜂窝的概念,使无线通信摆脱了传统的大区制结构,为无线通信的大规模商用奠定了基础。
从20世纪70年代末到现在的几十年时间里,无线通信系统从第1代发展到了第4代,进入了一个飞速发展的时期,并随着多媒体信息化时代的到来,无线通信技术正渗透到社会生活的方方面面。
基于视频、图像、数据的通信业务需求逐渐增大,传统的以语音通信为主的移动通信网络已经无法满足人们日益提升的消费需求。
正在演进中的第四代移动通信网络技术(4G),如LTE-A[1] (LTE-Advanced)已经提出系统基本指标:下行峰值速率1Gbps,上行峰值速率500Mbps,上下行峰值频谱利用率分别达到15Mbps/Hz和30Mbps/Hz。
其系统带宽将从1.5Mhz到20Mhz,并且通过载波聚合技术最大能聚合带宽高达100Mhz。
因此移动通信技术发展的最新要求就是要在较宽的频带内提供稳定可靠的高速数据传输,并且尽可能在有限的频谱资源上提升频谱效率。
多载波技术(Multi-carrier technique )在60、70年代由Saltzberg[2],Chang[3],Weinstein[4]和Bingham[5]等人提出,最初受制于实现上的复杂性并没有在业界受到重视,随着数字信号处理技术的发展,尤其是快速傅立叶算法、大规模集成电路的出现,从90年代开始,多载波技术逐渐得到了大范围的应用。
该技术其本质上就是把一路宽带高速数据流通过串并变换转换为并行的多路相对低速的数据流,然后再对应调制到相互正交的多个子载波上,从而有效延长符号周期,降低多径带来的频率选择性衰落影响。
OFDM作为多载波技术中的特例,其每个子载波上传输的是矩形脉冲包络的复指数信号,并且在相邻时域符号间添加循环前缀(Cyclic prefix,CP)作为保护间隔。
由于矩形脉冲优良的时域性能和CP 的保护,并通过频域单抽头均衡处理,OFDM 能够很好的抑制符号间干扰(Inter-symbol interference,ISI)和降低系统接收复杂度。
只是传统OFDM相当于采用矩形脉冲来成型滤波,其频谱可以看作是Sinc函数与一组位于各个子载波频点上的δ函数的卷积,尽管频域上这组Sinc 谱重叠且相互正交,由于Sinc函数旁瓣较大、衰减缓慢。
所以OFDM的子载波间正交性在复杂移动条件下的快时变衰落信道中是十分脆弱的,难以得到保证。
滤波器组技术在数字信号处理领域是一种较为成熟的技术,经过几十年的发展,现己广泛应用于语音处理、快速计算、噪声处理、图像压缩、雷达信号处理、多媒体信号处理等领域[6]。
在PHYDYAS项目中,由于重新设计了原型滤波器,FBMC具有更高的频谱分辨率。
这使得FBMC具有相对OFDM小得多的带外干扰,这样更能够保证子信道间的独立性。
基于这个特性,FBMC能够提供更好的动态频谱接入方法和更灵活的多用户接入机制。
同时,研究表明FBMC仍然具备OFDM的高传输速率,去除ISI等优点,同时现有OFDM的功率控制、信号同步、信道编解码等技术都能直接应用于FBMC[7]。
因此FBMC的研究对于认知无线电的发展具有十分重要的作用,同时对于缓解当下紧张的频谱资源有着间接的贡献。
2.第5代移动通信基本要求从目前来看,移动互联网和物联网是未来移动通信发展的两大主要驱动力,并给移动通信带来新的技术挑战。
5G移动通信系统和网络必须支持爆炸性的移动数据流量增长、海量的设备连接、不断涌现的各类新业务和应用场景。
因此,5G移动通信的基本要求如下:1)传输速率要求:10Gbit/s峰值速率。
根据移动通信历代发展规律,5G 网络需要10倍于4G网络的峰值速率,即达到10Gbit/s量级的峰值速率,相当于10吉比特以太网速率,类似有线宽带骨干网络;2)连接与流量要求:100倍的连接器件数。
随着物联网的快速发展,到2020年连接的器件数目将达到500-1000亿。
这就要求单位覆盖面积内支持的期间数目极大增长,在一些场景下单位面积内通过5G移动网络连接的器件数目达到100万/平米,相对4G增长100倍;3)时延和可靠性要求:相对于4G缩短为1/5-1/10,达到人力反应的极限如5ms(触觉反应)甚至更低,并提供真正的永远在线体验。
端到端可靠性提升到99.999%甚至100%;4)能耗和成本要求:绿色低碳是未来技术发展的重要需求,通过端到端的节能设计,支持更高的能耗效率,使网络综合能效提升1000倍,并使综合成本持续下降,在维护方面,实现精确监控网络资源和有效感知业务特性,并降低多制式共存、网络升级以及新功能引入等带来的复杂度。
3滤波器组的基本原理滤波器组的基本原理是:输入信号首先通过分析端的一组分析滤波器及其级联的抽取器(下采样)被分解为多个子带信号。
各个子带信号根据应用场合不同进行相应的处理。
在综合端通过一组插值器(上采样)及其级联的综合滤波器组,将子带信号恢复成为原始输入信号或稍有失真的原始信号。
抽取器和插值器用于改变采样速率,去除冗余信息,提高信号处理的效率。
多速率滤波器组重构信号的误差一般来自三个方面:幅度失真、相位失真和混叠失真。
如果这三种失真可以被完全消除,那么输出信号就可以完全重构出输入信号,这样的滤波器称之为完全重构(PR)滤波器组。
然而,在一些应用中,比如有损编码中,系统允许一定的误差存在。
在这种情况下,滤波器组可以设计成具有近似完全重构(NPR)特性的系统。
此时系统的输出信号是原始信号的一个近似信号。
3.1 FBMC的基本原理滤波器组多载波(FBMC)是一种频分复用技术,它通过一组滤波器对信道频谱进行分割以实现信道的频率复用(FDM)。
最初,多载波传输思想是通过一组模拟滤波器实现的。
这组模拟滤波器将信道的频谱分割成多个子带,相邻子带间留有足够的保护间隔,以防产生子信道间的干扰(ICI)。
但这种多载波方式造成了频谱资源的极大浪费,而且对模拟滤波器的高要求限制了该技术的广泛应用。
随着数字信号处理(DSP)技术的发展,特别是器件运算能力的飞速提高,人们己经可以利用数字滤波器组来代替模拟滤波器组实现信道频谱的分割,且通过对滤波器组中各分支滤波器频率响应的灵活设计可以将各子带间的保护间隔去掉,从而明显地提高了信道频谱的利用率。
在多载波通信系统中,离散傅立叶变换(DFT)滤波器是最普遍的调制解调技术,实际应用中,一般用快速傅立叶变换(FFT)实现[8]。
发送端,调制器使用反向快速傅立叶变换(IFFT)技术。
将宽带信号调制到各个子载波;接收端,解调器使用FFT,从子载波信号中解调出原始信号。
图3-1为一个典型的多载波通信系统实现框图:图3-1 基于FFT的多载波调制解调框图图中d为发送的频域多载波数字信号;M表示IFFT的位数,即将一个宽带信号调制成M个子载波信号;m表示信号序列号;i表示子载波序列号,范围为0≤i≤M-1。
P/S表示并串转换,即将并行的M个子载波信号转换成串行的时域信号X(n)。
S/P表示串并转换,将串行信号转换为M个并行的子载波信号。
将发送端信号的采样频率为单位1,那么子载波频率间隔1/M,多载波信号X的时域周期T为子载波频率间隔的倒数,即T=M。
这也说明在理想条件下,多载波符号在时域上不会出现重叠。
3.2 FBMC在认知无线电中的潜在应用FBMC作为CR的物理层传输技术虽然比OFDM更有优势,但其仍处于研究的初级阶段。
前面的章节已经提到过,OFDM的带外泄露比FBMC要大很多,在CR中,由于频谱资源的稀缺性,OFDM大的带外干扰这一缺点就变得非常难以接受。
虽然OFDM可以使用加入保护频带和加窗方法来降低带外干扰的影响,但这些方法都是以降低频谱利用率为代价的。
FBMC以其相对非常小的带外干扰引起了人们的关注。