行程问题7大经典题型归纳总结拓展

合集下载

行程问题7大经典题型归纳总结材料拓展

行程问题7大经典题型归纳总结材料拓展

行程问题7大经典题型归纳总结拓展简单地将行程问题分类:〔1〕直线上的相遇、追与问题〔含屡次往返类型的相遇、追与〕〔2〕火车过人、过桥和错车问题〔3〕多个对象间的行程问题〔4〕环形问题与时钟问题〔5〕流水、行船问题〔6〕变速问题一些习惯性的解题方法:〔1〕利用设数法、设份数处理〔2〕利用速度变化情况进展分段处理〔3〕利用和差倍分以与比例关系,将形程过程进展比照分拆〔4〕利用方程法求解1. 直线上的相遇与追与直线上的相遇、追与是行程问题中最根本的两类问题,这两类问题的解决可以说是绝大多数行程问题解决的根底例题1. 甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地间的距离是多少千米?例题2. 两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。

如果不计转向的时间,那么在这段时间内两人共相遇多少次?2. 火车过人、过桥与错车问题在火车问题中,速度和时间并没有什么需要特殊处理的地方,特殊的地方是路程。

因为此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关下面教你一招——以静制动法解决火车过桥问题。

呵呵~~这种类型的题目,看起来复杂,眼花缭乱,其实我们可以以静制动,只看火车头或火车尾在整个行程中的路程。

而当有多个变量〔火车过人、两辆火车齐头并进,齐尾并进等〕时可以把其中一个变量看做静止,只需要研究另一个变量的行程以与二者的速度和或速度差,就可以轻松求解、屡试不爽。

例题3. 一列客车通过250米长的隧道用25秒,通过210米长的隧道用23秒。

在客车的前方有一列行驶方向与它一样的货车,车身长为320米,速度每秒17米。

求列车与货车从相遇到离开所用的时间。

例题4. 某解放军队伍长450米,以每秒1.5米的速度行进。

一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?〔这道题超级经典~〕例题5 有2列火车同时同方向齐头行进,12秒钟后快车超过慢车,快车每秒行驶18米,慢车每秒行10米,求快车车身长度多少米?如果这两列火车车尾相齐,同时同方向行进,如此9秒钟后快车超过慢车,那么慢车车身长度是多少米。

奥数行程问题大全

奥数行程问题大全

奥数行程问题大全HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】奥数行程问题一、多人行程的要点及解题技巧行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。

行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。

每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程二速度X时间2.相遇问题:路程和=速度和X时间3.追击问题:路程差=速度差X时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

如“多人行程问题”,实际最常见的是“三人行程” 例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3 分钟和丙相遇。

问:这个花圃的周长是多少米分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)X3=228 (米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228+(38-36) =114 (分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)X114=8892 (米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。

总之,行程问题是重点,也是难点,更是锻炼思维的好工具。

只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!二、奥数行程:追及问题的要点及解题技巧1、多人相遇追及问题的概念及公式多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

公考行程题型归纳

公考行程题型归纳

公考行程题型归纳一、行程问题概述行程问题是公务员考试中的重要题型之一,主要考查考生对运动学知识的理解和应用能力。

行程问题涉及到的知识点包括路程、速度、时间等,通过不同的组合和变化,形成多种复杂的题型。

二、基础行程模型基础行程模型是行程问题的基本模型,包括直线行程和曲线行程两种。

直线行程模型涉及到的知识点包括速度、时间和距离之间的关系,即速度=距离/时间。

曲线行程模型涉及到圆周运动和匀速圆周运动等知识点。

三、相对速度问题相对速度问题是行程问题中的难点之一,主要考查考生对相对速度概念的理解和应用能力。

在相对速度问题中,需要考虑两个物体之间的相对速度,即一个物体相对于另一个物体的速度。

这种题型需要考生对速度的合成和分解有深入的理解。

四、相遇与追及问题相遇与追及问题是行程问题中的常见题型之一,主要考查考生对运动学规律的理解和应用能力。

在相遇与追及问题中,两个物体在同一直线上运动,一个物体追赶另一个物体,或者两个物体在某一地点相遇。

这种题型需要考生对追及和相遇的条件有深入的理解。

五、环形跑道问题环形跑道问题是行程问题中的另一种常见题型,主要考查考生对环形运动规律的理解和应用能力。

在环形跑道问题中,两个或多个物体在圆形跑道上运动,它们可能迎面相遇,也可能背向而行。

这种题型需要考生对环形跑道的运动规律有深入的理解。

六、多次往返问题多次往返问题是行程问题中的一种复杂题型,主要考查考生对往返运动规律的理解和应用能力。

在多次往返问题中,两个物体在同一直线上运动,一个物体从起点出发,经过多次往返运动后回到起点。

这种题型需要考生对往返运动的规律有深入的理解。

七、火车过桥问题火车过桥问题是行程问题中的另一种特殊题型,主要考查考生对火车过桥运动规律的理解和应用能力。

在火车过桥问题中,火车从桥的一端驶向另一端,同时桥上的路灯或其他物体也在移动。

这种题型需要考生对火车过桥的运动规律有深入的理解。

八、时间与距离计算时间与距离计算是行程问题的核心知识点之一,主要考查考生对时间和距离计算方法的理解和应用能力。

小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。

然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。

解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。

这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。

初一数学行程问题题型总结

初一数学行程问题题型总结

初一数学行程问题题型总结摘要:一、初一数学行程问题概述二、初一数学行程问题题型分类与解题方法1.直线行程问题2.曲线行程问题3.相遇问题4.追及问题5.比例行程问题6.往返行程问题三、解题技巧与策略四、巩固练习与答案解析正文:一、初一数学行程问题概述初一数学行程问题主要研究物体在一定时间内所行驶的路程、速度和时间之间的关系。

通过对行程问题的学习,学生可以更好地理解代数、几何和三角函数等知识,为后续学习打下基础。

二、初一数学行程问题题型分类与解题方法1.直线行程问题:题目中涉及物体在直线上的运动,通过已知条件求解速度、时间或路程等问题。

解题方法:掌握速度、时间、路程之间的关系公式,如v=s/t,s=vt,t=s/v等。

2.曲线行程问题:题目中涉及物体在曲线上的运动,需要运用三角函数等知识求解。

解题方法:将曲线问题转化为直线问题,运用三角函数关系式,如sinα=对边/斜边,cosα=邻边/斜边等。

3.相遇问题:两个或多个物体在某一地点相向而行,求解相遇时间、地点等问题。

解题方法:利用相对速度的概念,设相遇时间为t,则各物体行驶的路程之和等于总路程,即v1+v2=s/t。

4.追及问题:一个物体在另一个物体前追逐,求解追及时间、距离等问题。

解题方法:利用相对速度的概念,设追及时间为t,则追及距离等于速度差乘以时间,即v1-v2=s/t。

5.比例行程问题:物体在两种不同速度下行驶相同距离,求解速度比等问题。

解题方法:设两种速度分别为v1和v2,行驶时间为t1和t2,则v1/v2=t2/t1。

6.往返行程问题:物体在往返过程中,求解总时间、总路程等问题。

解题方法:将往返过程分为两个单程,利用速度、时间、路程之间的关系求解。

三、解题技巧与策略1.画图辅助:对于复杂问题,可以通过画图来帮助理解题意,更好地找出已知条件和未知量。

2.设立未知量:根据题意,设定合适的未知量,然后列出方程求解。

3.单位统一:在解题过程中,要保持单位一致,便于计算。

(完整版)小学奥数行程问题经典整理

(完整版)小学奥数行程问题经典整理

第一讲行程问题(一)教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。

用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

行程问题7大经典题型四年级

行程问题7大经典题型四年级

行程问题7大经典题型四年级
行程问题在数学中是一个经典的题型,旨在训练学生的逻辑思维和计算能力。

下面将介绍四年级学生常见的行程问题的七种经典题型。

1. 单程问题:给定起点和终点,要求计算从起点到终点所需的距离
或时间。

这种题型要求学生直接计算两个点之间的距离或时间差。

2. 往返问题:给定起点和终点,要求计算从起点到终点再返回起点
的总距离或时间。

这种题型要求学生计算两次单程的距离或时间,并将其相加。

3. 同步问题:给定两个人从相同的地点同时出发,要求计算他们在
指定时间或指定距离后到达的位置。

这种题型要求学生计算两个人的行程,并比较他们的位置。

4. 平均速度问题:给定两个地点之间的距离和时间,要求计算平均
速度。

这种题型要求学生将距离除以时间,得到平均速度。

5. 快慢车问题:给定两辆车的速度和距离,要求计算两辆车分别到
达终点所需的时间。

这种题型要求学生根据速度和距离的关系,计算出所需的时间。

6. 集合问题:给定多个地点之间的距离,要求计算从起点到终点经过指定的中间点的最短路径。

这种题型要求学生进行路径规划,选择最短的路径。

7. 排队问题:给定多个人按照不同的顺序排队,要求计算某个人离队伍起点或终点的距离。

这种题型要求学生计算相对位置,并进行加减运算。

通过解决这些行程问题,四年级学生可以培养逻辑思维能力和计算能力,提高他们的数学综合素质。

同时,这些问题也能够让学生在实际生活中运用数学知识,理解和应用数学的意义和价值。

行程问题专题

行程问题专题

行程问题知识点归纳:反映时间、速度、距离三者之间关系的应用题一般称为行程问题。

行程问题的内容相当广泛,常见的有相遇、追及、相离、流水、火车过桥等问题。

解行程问题,关键是要寻找时间、速度、距离三者或它们的差(或和)中的不变量,然后再根据时间、速度、距离三者的关系求解。

一、相遇行程1.简单相遇:总路程=速度和×相遇时间2.二次相遇、多次相遇:第n次相遇,合走2n-1个全程二、追及行程:追及路程=速度差×追及时间三、环形行程四、火车过桥问题1.从头上桥到尾离桥,火车所走路程为:桥长+车长2.从尾上桥到头离桥(即完全在桥上),火车所走路程为:桥长-车长3.两列火车迎面错车而过,错车路程为:两车长度之和。

4.快车超过慢车,超车路程为:两车长度之和5.火车过固定物体,火车所走路程为:火车长6.火车和人相向而行,路程和为:火车长7.人和火车相向而行火车超过人,追及路程为:火车长度8.两火车齐头并进追及路程:快车车长9.两火车齐尾并进所走路程:慢车车长五、流水问题船速:指船在静水中的速度水速:水流速度顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2六、变速行程及其他行程典型例题解析例1.从A地到B地快车要6小时,慢车要8小时,如果两车同时从A、B两地相对开出,可在距中点35千米处相遇,快车行了多少千米?例2.甲乙两车相向而行,甲如果到达乙出发的地点,需要4小时,乙每小时走80公里,走了120公里时与甲相遇,问相遇时甲乙共走了多少公里?例3.在比例尺是1:1500000的地图上,量得两地距离是20厘米。

甲、乙两辆汽车同时从两地相对开出,3小时相遇。

已知甲、乙两车的速度比是2:3,甲车每小时行多少千米?例4.甲站向乙站开出一辆快车,速度是60千米/时,过了一小时后,又从甲站开出一辆慢车,速度是56千米/时,当快车到达乙站时,慢车离乙站还有80千米,甲、乙两站相距多少千米?例5.甲、乙两人同时从A地出发,与此同时丙从B地出发,出发150分钟后甲与丙相遇,之后又经过15分钟,乙与丙相遇。

行测—行程问题题型全汇总

行测—行程问题题型全汇总

行测—行程问题题型全汇总中公教育黄思林老师:行程问题是考过行测的人最怕遇到的,因为行程问题变化形式非常多,题型也多种多样,要完全做对不是一件容易的事。

针对此问题,中公教育专家们总结出了行程问题里面会考到的大部分题型,希望能帮助到广大考生。

一、相遇问题1.一次相遇例1.甲、乙二人同时从相距54千米的A、B两地同时相向而行,甲的速度为4千米/时,乙的速度为5千米/时。

问:假设甲乙相遇地点为C,则CB相距多少千米?这一段路程和甲乙第一次相遇时乙走过的路程是什么关系?中公解析:CB为30千米,即为到第一次相遇时乙走过的路程。

甲再一次回到C点是从B到的C,故甲走过的路程实际上是一个全程加上CB,即54+30=84(千米);甲乙再一次相遇的时候,两人走过的路程和为3倍的全程,每个人所走过的路程也是他第一次相遇时走过的路程的3倍,则甲走过的路程是24×3=72(千米)(甲第一次相遇时走过的路程为4×6=24千米)。

2.多次相遇例2.甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇离A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,则AB两地相距多少千米?中公解析:根据“多次相遇中的2倍关系”原理,可知甲从第一次相遇之后到第二次相遇走了6×2=12千米,在整个时间段内甲走了6+12=18千米。

因为甲是到达B地之后返回,相遇地点距离B地3千米,因此AB两地间的距离是18-3=15千米。

3.环行相遇问题例题3.甲、乙两人同时从A点背向出发,沿400米环形跑道行走,甲每分钟走80米,乙每分钟走50米,两人至少经过多少分钟才能在A点相遇?【2011-事业单位】A.10B.12C.13D.40中公解析:甲、乙要在A点相遇,则甲、乙行走的路程必是400的整数倍,而甲乙的速度和是130米/分钟,设所需时间为t,则有130t必然是400的倍数,排除A、B、C三项,选择D。

中学奥数“行程问题”类型归纳及解题技巧总结

中学奥数“行程问题”类型归纳及解题技巧总结

中学奥数“行程问题”类型归纳及解题技巧总结本文将对中学奥数中常见的“行程问题”类型进行归纳并总结解题技巧。

1. 单程问题单程问题是指求解一个人或一个物体从出发地到目的地的最短路径或最快时间的问题。

解决单程问题需要根据给定的条件,运用数学知识进行计算和推理。

解题技巧:- 确定出发地和目的地;- 根据给定的条件,使用数学公式或方法计算最短路径或最快时间;- 注意考虑各种限制条件,如速度、距离等。

2. 往返问题往返问题是指一个人或一个物体在两个地点之间来回行程的问题。

解决往返问题需要考虑来回行程的距离、时间及其他相关条件。

解题技巧:- 确定往返的两个地点;- 分别计算去程和回程的距离或时间;- 综合考虑两次行程的条件,计算总距离或总时间。

3. 多次行程问题多次行程问题是指一个人或一个物体从多个地点之间进行多次行程的问题。

解决多次行程问题需要考虑多个地点之间的顺序、距离以及其他相关条件。

解题技巧:- 确定多次行程的起点和终点;- 根据给定的条件,以最优的方式确定行程的顺序;- 分别计算每次行程的距离或时间,然后求和得出总距离或总时间。

4. 排列组合问题排列组合问题是指在给定的一组元素中,通过排列或组合的方式选择其中的一部分元素的问题。

解决排列组合问题需要根据给定条件,运用组合数学的知识进行计算。

解题技巧:- 确定元素的个数和要选择的个数;- 根据给定的条件,使用组合数公式计算排列或组合的种类数;- 注意考虑元素的顺序或是否允许重复选择。

5. 时间约束问题时间约束问题是指在行程中,需要考虑到时间限制的问题。

解决时间约束问题需要根据给定的行程和时间限制,综合考虑时间与距离之间的关系。

解题技巧:- 确定行程的起点和终点;- 根据给定的时间限制,计算在限定时间内可到达的最远距离;- 注意考虑行程的速度和其他约束条件。

以上是中学奥数中常见的“行程问题”类型及解题技巧的总结。

通过熟练掌握这些技巧,可以更好地解决各类行程问题。

小学奥数“行程问题”类型归纳及解题技巧总结

小学奥数“行程问题”类型归纳及解题技巧总结

小学奥数“行程问题”类型归纳及解题技巧总结“行程问题”主要类型归纳一、直线型(1)两岸型:第n次迎面碰头相遇,两人的路程和是(2n-1)S。

第n次背面追及相遇,两人的路程差是(2n-1)S。

(2)单岸型:第n次迎面碰头相遇,两人的路程和为2ns。

第n次背面追及相遇,两人的路程差为2ns。

二、环型环型主要分两种情况,一种是甲、乙两人同地同时反向迎面相遇(不可能背面相遇),一种是甲、乙两人同地同时同向背面追及相遇(不可能迎面相遇)。

“行程问题”解题技巧总结一、直线型直线型多次相遇问题宏观上分“两岸型”和“单岸型”两种。

“两岸型”是指甲、乙两人从路的两端同时出发相向而行;“单岸型”是指甲、乙两人从路的一端同时出发同向而行。

现在分开向大家一一介绍:(一)两岸型两岸型甲、乙两人相遇分两种情况,可以是迎面碰头相遇,也可以是背面追及相遇。

题干如果没有明确说明是哪种相遇,考生对两种情况均应做出思考。

1、迎面碰头相遇:如下图,甲、乙两人从A、B两地同时相向而行,第一次迎面相遇在a处,(为清楚表示两人走的路程,将两人的路线分开画出)则共走了1个全程,到达对岸b后两人转向第二次迎面相遇在c处,共走了3个全程,则从第一次相遇到第二次相遇走过的路程是第一次相遇的2倍。

之后的每次相遇都多走了2个全程。

所以第三次相遇共走了5个全程,依次类推得出:第n次相遇两人走的路程和为(2n-1)S,S为全程。

而第二次相遇多走的路程是第一次相遇的2倍,分开看每个人都是2倍关系,经常可以用这个2倍关系解题。

即对于甲和乙而言从a到c走过的路程是从起点到a的2倍。

相遇次数全程个数再走全程数1 1 12 3 23 5 24 7 2………n 2n-1 22、背面追及相遇与迎面相遇类似,背面相遇同样是甲、乙两人从A、B两地同时出发,如下图,此时可假设全程为4份,甲1分钟走1份,乙1分钟走5份。

则第一次背面追及相遇在a处,再经过1分钟,两人在b处迎面相遇,到第3分钟,甲走3份,乙走15份,两人在c处相遇。

行程问题总结

行程问题总结

行程问题总结题型一:上山下山问题1、小李从A地上山,越过山顶B后下山到C地,共行了18千米,用了5小时。

又知他上山每小时3千米,下山每小时5千米。

小李从C地经过原路上山,越过山顶B返回A地要多少时间?解:此题实则为鸡兔同笼的变式,试问:鸡和兔一共5只,共18支脚,问鸡和兔分别有几只?设全为兔子,则有20支脚,多出两只脚,2/(4-2)=1,即有鸡1只其余为兔。

同理,设全为下山,则行了25千米,多行了7千米,7/(5-3)=3.5,即上山用了3.5小时,下山用了1.5小时。

AB=10.5千米;BC=7.5千米。

10.5/5+7.5/3=4.6小时。

2、甲、乙两人同时从山脚开始爬山,到达山顶后立即下山,他们两人下山的速度都是各自上山速度的2倍。

甲到山顶时乙距离山顶还有500米,甲回到山脚时乙刚好下到半山腰。

求从山脚到山顶的距离解:设山脚到山顶的距离为X。

X/V甲=(X-500)/V乙; X/2V甲=1/2S/2V乙+500/V乙3、一人骑自行车从M地到N地的速度为12千米/时,到达N地后立即返回,为了使其往返两地之间的平均速度为8千米/时,则返程速度应为?解:法一:S/t1=12;S/(t1+t2)=8,求S/t2=?解得S/t2=6。

法二:用公式:V平均=2V1V2/(V1+V2) 此为平均速度公式,记住!法三:秒杀此题。

设路程为1,用比例法列算式:1/(2/8-1/12)=6。

题型二:接送问题(把握路程比=速度比)1、甲班和乙班学生同时从学校出发去某个公园,甲班不行的速度是每小时4千米,乙班的速度是每小时3千米。

学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。

为了使两班学生在最短的时间内达到,那么甲班学生与乙班学生需要步行的距离比是多少?最短时间到达,只需要甲乘坐汽车与乙走路同时到达某公园设,乙先坐车,甲走路,当汽车把乙班送到C点,乙班学生下车走路,汽车返回在B点处接甲班的学生,根据时间一定,路程的比就等于速度的比:简单化下图A……………B……………………C…………..D其实就是比例解法:AB:(AC+BC)=4:48=1:12AB:2BC=1:11------------------①在C点乙班下车走路,汽车返回接甲,然后汽车与乙班同时到达某公园(BC+BD):CD=48:3=16:12BC:CD=15:1------------------②将①、②做比AB:CD=15:11公式①:步行速度相同速度比为a:b(最简速度比)三段的比值为:a:(b-a)/2:a2、甲、乙两班学生到离学校24千米的飞机场参观。

行程问题思维刘有珍行程问题归纳总结

行程问题思维刘有珍行程问题归纳总结

行程问题思维刘有珍行程问题归纳总结解题思路1个核心公式:路程=速度×时间2个基本题型:相遇即合作,路程和=速度和×时间;追及即干扰,路程差=速度差×时间;6种常见方法:图示法、公式法、比例法、赋值法、方程法、代入法8个行程模型:火车过桥、火车运动、队伍行进、往返相遇、等距离运动、等间隔发车、无动力漂流、流水行船精细备考考点1:基本公式法方:题干中等量关系明显,一般结合方程法,依据核心公式直接解题,方程往往围绕路程或时间展开。

【例题1】(广州2012-84)甲公司的马经理从本公司坐车去乙公司洽谈,以30千米/时的速度出发20分钟后,马经理发现文件忘带了,便让司机以原来1.5倍的速度回甲公司拿,而他自己则以5千米/时的速度步行去乙公司。

结果司机和马经理同时到达乙公司。

甲乙两公司的距离是()千米。

A. 12.5B. 13C. 13.5D. 14[答案]A[解析]20分钟的路程为30×1/3=10千米,设马经理步行的总距离为x,则,解得x=2.5(千米),因此两地的距离为12.5千米,答案选择A。

【例题2】(深圳2012-6)小强从学校出发赶往首都机场乘坐飞机回老家,若坐平均速度40千米/小时的机场大巴,则飞机起飞时他距机场还有12公里;如果坐出租车,车速50千米/小时,他能够先于起飞时间24分钟到达,则学校距离机场()公里。

A. 100B. 132C. 140D. 160[答案]C[解一]24分钟=0.4小时,假设学校距离机场的距离为s,则,解之可得s=140。

答案选择C。

[解二]12公里所需的时间为12÷40=0.3小时,24分钟=0.4小时。

两次速度比为4:5,路程一定,因此时间比为5:4,两次的时间差为0.7小时,进而得到第一次所需时间为5×0.7=3.5小时,从而可以得到学校距离机场的距离为40×3.5=140公里。

【例题3】(贵州2012-41)某部队从驻地乘车赶往训练基地,如果车速为54公里/小时,正好准点到达;如果将车速提高1/9,就可比预定的时间提前20分钟赶到;如果将车速提高1/3,可比预定的时间提前多少分钟赶到?()A. 30B. 40C. 50D. 60[答案]C[解析]54公里/小时=0.9公里/分钟,设准点达到的时间为t,则有:0.9t=1×(t-20),解得t=200(分钟),所以总路程为0.9×200=180(公里)。

行程问题奥数经典题型

行程问题奥数经典题型

行程问题奥数经典题型一、相遇问题1. 题目- 甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是每小时30千米,乙的速度是每小时20千米,经过3小时两人相遇。

求A、B两地的距离。

- 解析:- 这是一个典型的相遇问题。

相遇问题的基本公式是:路程 = 速度和×相遇时间。

- 甲的速度是每小时30千米,乙的速度是每小时20千米,那么他们的速度和就是30 + 20=50千米/小时。

- 经过3小时相遇,根据公式可得A、B两地的距离为50×3 = 150千米。

2. 题目- 两辆汽车同时从相距450千米的两地相对开出,甲车每小时行40千米,乙车每小时行50千米。

几小时后两车相遇?- 解析:- 已知两地距离为450千米,这是路程。

甲车速度40千米/小时,乙车速度50千米/小时,它们的速度和为40+50 = 90千米/小时。

- 根据相遇时间=路程÷速度和,可得相遇时间为450÷90 = 5小时。

二、追及问题1. 题目- 甲、乙两人在同一条路上同向而行,甲每小时行5千米,乙每小时行3千米,乙先走4小时后甲才出发,甲几小时后能追上乙?- 解析:- 乙先走4小时,根据路程 = 速度×时间,乙先走的路程为3×4 = 12千米。

- 甲每小时行5千米,乙每小时行3千米,那么甲每小时比乙多走5 - 3=2千米。

- 甲要追上乙,就是要把乙先走的12千米追回来,根据追及时间 = 追及路程÷速度差,可得追及时间为12÷2 = 6小时。

2. 题目- 快车和慢车同时从A地开往B地,快车每小时行60千米,慢车每小时行40千米,慢车先出发2小时,快车几小时后能追上慢车?- 解析:- 慢车先出发2小时,慢车速度为40千米/小时,那么慢车先出发所走的路程为40×2 = 80千米。

- 快车速度60千米/小时,慢车速度40千米/小时,速度差为60 - 40 = 20千米/小时。

行程问题7大经典题型归纳总结拓展

行程问题7大经典题型归纳总结拓展

行程问题7大经典题型归纳总结拓展引言行程问题是数学中常见的问题之一,主要研究物体在不同速度、时间、距离条件下的运动情况。

本文将对行程问题中的7大经典题型进行归纳总结,并进行拓展分析。

题型一:相遇问题定义相遇问题是指两个或多个物体从不同地点出发,以不同的速度相向而行,最终在某一点相遇的问题。

公式设A、B两点相距( d ),甲从A点出发,速度为( v_a );乙从B点出发,速度为( v_b )。

若甲乙相遇于C点,则相遇时间为( t ),有:[ t = \frac{d}{v_a + v_b} ]拓展可以拓展到多物体相遇问题,考虑物体间的速度差和相对运动。

题型二:追及问题定义追及问题是指一个物体追赶另一个物体,两者以不同速度运动,最终追上的问题。

公式设甲从A点出发,速度为( v_a );乙从B点出发,速度为( v_b ),甲追上乙所需时间为( t ),则:[ t = \frac{d}{v_a - v_b} ]拓展考虑追及过程中的加速、减速情况,以及追及的临界条件。

题型三:往返问题定义往返问题是指物体在两点间来回运动,可能涉及速度变化的问题。

公式设A、B两点相距( d ),物体速度为( v ),往返一次所需时间为( t ),则:[ t = \frac{2d}{v} ]拓展考虑物体在往返过程中速度的变化,以及往返次数与时间的关系。

题型四:流水行船问题定义流水行船问题是指船只在有水流的河流中航行,需要考虑船速与水流速度的问题。

公式设船在静水中的速度为( v_s ),水流速度为( v_r ),船顺流而下的速度为( v_{up} ),逆流而上的速度为( v_{down} ),则:[ v_{up} = v_s + v_r ][ v_{down} = v_s - v_r ]拓展考虑船只在不同水流速度下的航行策略,以及如何最优化航行时间。

题型五:环形跑道问题定义环形跑道问题是指物体在环形跑道上运动,可能涉及速度和圈数的问题。

行程问题7大经典题型四年级

行程问题7大经典题型四年级

行程问题7大经典题型四年级
行程问题是数学题中常见的一个题型,主要考察学生在时间、距离、速度等方面的计算能力。

以下是四年级常见的7大经典行程问题题型:
1. 单程问题:小明骑自行车从家到学校的距离是5公里,速度是10公里/小时,问他需要多长时间才能到学校?
2. 往返问题:小红骑自行车从家到公园的距离是8公里,速度是12公里/小时,然后原路返回,问她总共用了多长时间?
3. 多人同时出发问题:小明和小红同时从A地出发,小明骑自行车速度是15公里/小时,小红步行速度是5公里/小时,他们同时到达B地,问B地离A地有多远?
4. 多人相遇问题:小华从A地出发,小明从B地出发,他们同时向对方出发,小华速度是10公里/小时,小明速度是15公里/小时,他们多久能相遇?
5. 超速问题:小王乘坐火车从A地到B地,全程200公里,平均速度是80公里/小时,但在旅途中超速行驶,超速部分之速度是100公里/小时,问他超速了多少时间?
6. 高速公路问题:小李驾车从A地到B地,全程300公里,他在高速公路上以100公里/小时的速度行驶,而在市区行驶的速度是40公里/小时,问他全程需要多长时间?
7. 追及问题:小明从A地以15公里/小时的速度出发,小红从B地以10公里/小时的速度出发,小明比小红晚出发1小时,问小明追上小红需要多长时间?
以上是四年级常见的7大经典行程问题题型。

通过解决这些问题,学生能够提高他们的数学计算能力和逻辑思维能力,同时也锻炼了他们在实际生活中解决问题的能力。

行程问题7大经典题型

行程问题7大经典题型

行程问题7大经典题型行程问题是在现代计算机科学中研究的重要研究领域之一,也称为旅行商问题。

根据具体的应用,行程问题可分为七类经典题型:一、最短路径问题最短路径问题是指使行程开销最小化的最优路径问题,即在有权网(即有距离弧权值的有向图)中求出从起点到终点的最短路径问题。

最短路径问题的特点是将多条路径的值做比较,选择最优的路径。

最短路径问题的解法一般有迪杰斯特拉算法和贝尔曼-福德算法。

二、最小生成树问题最小生成树问题是指在连通图中求最小代价覆盖图(最小生成树)的问题。

求最小生成树也可以用迪杰斯特拉算法、贝尔曼-福德算法、克鲁斯卡尔算法等求解。

三、拓扑排序问题拓扑排序问题是指要解决有向图中的局部拓扑排序问题,让用户能够处理有向图的排序操作。

例如,拓扑排序可以用来求解项目管理中的生产流程排序,求解最长路径问题,用来求解运输问题。

某些拓扑排序问题常用拓扑排序法来解决,它的优点是举例简单,容易解决,但是在处理较大的网络可能不太方便。

四、负责度限制约束最小生成树问题负责度限制约束最小生成树问题是指当有负责度限制或边限制时,求出最小生成树的问题。

负责度限制最小生成树问题与最小生成树问题相似,但限制要求不同,使其可以求最小生成树但不需要所有节点出现。

解决负责度限制最小生成树问题的常见算法有Prim,Kruskal算法,单源最短路径算法等。

五、旅行商问题旅行商问题是指将一个实体从一个位置出发,访问所有位置,最后返回原位置,要尽可能使得整个行程之和最小的问题。

旅行商问题与最短路径问题之间存在着一定的联系,但是它更加复杂,可能有多个路径都是最优的,旅行商问题最优解的求解方法有穷举法、贪心法、遗传算法等。

六、交通网络问题交通网络问题是指涉及多晶体的旅行问题,在该问题中,客户的行程将跨越多个晶体构成的网络,以最小的费用或最短的时间从起点到终点运输物品或人员。

交通网络问题可以使用模拟退火法、遗传算法、混合算法等解决。

七、联通子图覆盖问题联通子图覆盖问题是指求解一个图G是否存在一个联通子图T,满足T中所有顶点和G中的全部顶点是相同的,最小顶点覆盖问题是联通子图覆盖问题的一个特殊情况,该问题的解法一般有贪心法和回溯法。

行程问题7类经典题型

行程问题7类经典题型

行程问题经典题型例题 1甲乙两地相距 800 千米,一辆客车以每小时40 千米的速度从甲地开出 3 小时后,一辆摩托车以每小时 60 千米的速度从乙地开出,开出后几小时与客车相遇习题:1、甲、乙两地相距1160 千米,小明以每分钟30 米的速度从甲地从发 6 分钟后,小华以每分钟 40 米的速度从乙地出发,几分钟后与小明相遇2、甲、乙两地相距1080 千米,一辆货车以每小时60 千米的速度从甲地从发4 小时后,一辆摩托车以每小时80 千米的速度从乙地出发,开出后几小时与货车相遇3、客车以每小时70 千米的速度从甲地开出 3 小时后,一辆货车以每小时 60 千米的速度从乙地开出 5 小时后与客车相遇,甲、乙两地相距多少千米4、小红一人去 14 千米远的叔叔家,她每小时行 6 千米。

从家出发 1小时后,叔叔闻讯立刻以每小时 10 千米的速度前来接她,几小时后能够接到小红例题 2六(1)班同学徒步去狼山看日出。

去时每小时行8 千米,按原路返回时每小时行 6 千米。

他们来回的均匀速度是多少1、一艘船从 A 地开往 B 地。

去时每小时行20 千米,按原路返回时每小时行 25 千米。

这艘船来回的均匀速度是多少2、一辆客车从甲地开往乙地。

去时每小时行40 千米,按原路返回时每小时行 35 千米。

这辆客车来回的均匀速度是多少3、一艘轮船,静水速度是每小时18 千米,此刻从下游开往上游,水流速度是每小时 2 千米,请问他来回一次的均匀速度是多少4、一列火车从甲站开往乙站。

去时每小时行120 千米,按原路返回每小时行 150 千米。

这列火车来回的均匀速度是多少例题 3甲、乙两车同时从A、B 两地相对开出,几小时后在距中点40 千米出相遇。

已知甲车行完整程要8 小时,乙车行完要10 小时,求 A、B 两地相距多少1、甲、乙两车同时从 A、B 两地出发,相对而行,在距离中点 6 千米处相遇。

已知甲车速度是乙车速度的5/6,求两地相距多少千米2、快、慢两车同时从甲、乙两地相对开出,几小时后在距离中点55千米处相遇。

行程问题7大经典题型归纳总结拓展

行程问题7大经典题型归纳总结拓展

行程问题7大经典题型归纳总结拓展简单地将行程问题分类:(1)直线上的相遇、追及问题(含多次往返类型的相遇、追及)(2)火车过人、过桥和错车问题(3)多个对象间的行程问题(4)环形问题与时钟问题(5)流水、行船问题(6)变速问题一些习惯性的解题方法:(1)利用设数法、设份数处理(2)利用速度变化情况进行分段处理(3)利用和差倍分以及比例关系,将形程过程进行对比分拆(4)利用方程法求解1. 直线上的相遇与追及直线上的相遇、追及是行程问题中最基本的两类问题,这两类问题的解决可以说是绝大多数行程问题解决的基础例题1. 甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地间的距离是多少千米?例题2. 两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。

如果不计转向的时间,那么在这段时间内两人共相遇多少次?2. 火车过人、过桥与错车问题在火车问题中,速度和时间并没有什么需要特殊处理的地方,特殊的地方是路程。

因为此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关下面教你一招——以静制动法解决火车过桥问题。

呵呵~~这种类型的题目,看起来复杂,眼花缭乱,其实我们可以以静制动,只看火车头或火车尾在整个行程中的路程。

而当有多个变量(火车过人、两辆火车齐头并进,齐尾并进等)时可以把其中一个变量看做静止,只需要研究另一个变量的行程以及二者的速度和或速度差,就可以轻松求解、屡试不爽。

例题3. 一列客车通过250米长的隧道用25秒,通过210米长的隧道用23秒。

已知在客车的前方有一列行驶方向与它相同的货车,车身长为320米,速度每秒17米。

求列车与货车从相遇到离开所用的时间。

例题4. 某解放军队伍长450米,以每秒1.5米的速度行进。

一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?(这道题超级经典~)例题5 有2列火车同时同方向齐头行进,12秒钟后快车超过慢车,已知快车每秒行驶18米,慢车每秒行10米,求快车车身长度多少米?如果这两列火车车尾相齐,同时同方向行进,则9秒钟后快车超过慢车,那么慢车车身长度是多少米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程问题7 大经典题型归纳总结拓展
简单地将行程问题分类:
(1)直线上的相遇、追及问题(含多次往返类型的相遇、追及)
(2)火车过人、过桥和错车问题
(3)多个对象间的行程问题
(4)环形问题与时钟问题
(5)流水、行船问题
(6)变速问题一些习惯性的解题方法:
(1)利用设数法、设份数处理
(2)利用速度变化情况进行分段处理
(3)利用和差倍分以及比例关系,将形程过程进行对比分拆(4)利用方程法求解
1. 直线上的相遇与追及直线上的相遇、追及是行程问题中最基本的两类问题,这两类问题的解决可以说是绝大多数行程问题解决的基础
例题1. 甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56 千米,乙每小时行48 千米,两车在离两地中点32 千米处相遇。

问:东西两地间的距离是多少千米
例题2. 两名游泳运动员在长为30 米的游泳池里来回游泳,甲的速度是每秒游1 米,乙的速度是每秒游米,他们同时分
别从游泳
池的两端出发,来回共游了5 分钟。

如果不计转向的时间,那么在这段时间内两人共相遇多少次
2. 火车过人、过桥与错车问题在火车问题中,速度和时间并没有什么需要特殊处理的地方,特殊的地方是路程。

因为此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关下面教你一招——以静制动法解决火车过桥问题。

呵呵~~这种类型的题目,看起来复杂,眼花缭乱,其实我们可以以静制动,只看火车头或火车尾在整个行程中的路程。

而当有多个变量(火车过人、两辆火车齐头并进,齐尾并进等)时可以把其中一个变量看做静止,只需要研究另一个变量的行程以及二者的速度和或速度差,就可以轻松求解、屡试不爽。

例题3.一列客车通过250 米长的隧道用25 秒,通过210 米长的隧道用23 秒。

已知在客车的前方有一列行驶方向与它相同的货车,车身长为320 米,速度每秒17米。

求列车与货车从相遇到离开所用的时间。

例题4. 某解放军队伍长450 米,以每秒米的速度行进。

一战士以每秒3 米的速度从排尾到排头并立即返回排尾,那么这需要多少时间(这道题超级经典~)
例题5有2 列火车同时同方向齐头行进,12 秒钟后快车超过慢车,已知快车每秒行驶18米,慢车每秒行10 米,求快车车身长度多少米如果这两列火车车尾相齐,同时同方向行进,则9 秒钟后快车超过慢车,那么慢车车身长度是多少米。

2精心整理
(齐头并进,齐尾并进问题,充分锻炼以静制动法解题,另外还有头头相向和头尾相接两种类型噢~思考一下。

)补充题:火车经过长度400 米的大桥需要6 秒的时间,车身完全在大桥上的时间是4 秒,求火车的速度。

3多个对象间的行程问题虽然这类问题涉及的对象至少有三个,但在实际分析时不会同时分析三、四个对象,而是把这些对象两两进行对比。

因此,求解这类行程问题的关键,就在于能否将某两个对象之间的关系,转化为与其它对象有关的结论。

例题6.有甲、乙、丙3 人,甲每分钟走100 米,乙每分钟走80 米,丙每分钟走75 米。

现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6 分钟后,甲又与丙相遇。

那么,东、西两村之间的距离是多少米
例题7 有甲乙丙三人在300m环形跑道上行走,甲每分钟行走120m,乙每分钟行走100m,丙每分钟行走70m,如果3 个人同时同向出发,那么几分钟后又可以相遇(这道题也是环形问题,与公倍数的只是联系紧密)
4. 环形问题与时钟问题
例题8. 甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。

现在已知甲走一圈的时间是70 分钟,如果在出发后45 分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟例题9. 有一座时钟现在显示10 时整。

那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第
二次重合3精心整理
(周期周期~~~~)
5. 流水行船问题
例题10 甲、乙两船分别在一条河的A,B 两地同时相向而行,甲顺流而下,乙逆流而上。

相遇时,甲乙两船行了相等的航程,相遇后继续前进,甲到达B 地、乙到达A地后,都立即按原来路线返航,两船第二次相遇时,甲船比乙船少行1000 米。

如果从第一次相遇到第二次相遇时间相隔1 小时20 分,那么河水的流速为每小时多少千米。

例题11 甲乙两名选手在一条河中进行划船比赛,赛道是河中央的长方形ABCD,其中AD=80米,AB=60米。

已知水流从左到右,速度为1m/s,甲乙两名选手从A 出发,甲沿顺时针方向划行,乙沿逆时针方向划行,已知甲比乙的静水速度快
1m/s(AB、CD边上的划行速度视为静水速度),两人第一次相遇在CD 边上的P 点,CD=3C,P 那么:
(1)甲选手划行一圈用多少分钟
(2)在比赛开始的10 分钟内,两人一共相遇了多少次
6 变速问题
例题12 已知甲从A到B,丁从B到A,甲,丁两人行走速度之比是6:5。

如图所示,M是AB的中点,离M点26 千米处有一点C,离M点4 千米处有一点D。

谁经过C点都要减速1/4 ,经过D点都要加速1/4 。

现在甲、丁两人同时出发,同时到达。

求A、B之间的距离是多少千米
7 多次往返类型的相遇和追及
4精心整理
下面来练练手~~
1大货车和小轿车从同一地点出发沿同一公路行驶,大货车先走小时,小轿车出发后4小时后追上了大货车. 如果小轿车每小时多行5 千米,那么出发后3 小时就追上了大货车. 问:小轿车实际上每小时行多少千米
2小强骑自行车从家到学校去,平常只用20 分钟。

由于途中有2 千米正在修路,只好推车步行,步行速度只有骑车的1/3 ,结果用了36 分钟才到学校。

小强家到学校有多少千米
3小灵通和爷爷同时从这里出发回家,小灵通步行回去,爷爷在前的路程中乘车,车速是小灵通步行速度的10 倍.其余路程爷爷走回去,爷爷步行的速度只有小灵通步行速度的一半,您猜一猜咱们爷孙俩谁先到家
4客车和货车同时从甲、乙两城之间的中点向相反的方向相反的方向行驶,3 小时后,客车到达甲城,货车离乙城还有30千米.已知货车的速度是客车的,甲、乙两城相距多少千米
5小明跑步速度是步行速度的3 倍,他每天从家到学校都是步行。

有一天由于晚出发10 分钟,他不得不跑步行了一半路程,另一半路程步行,这样与平时到达学校的时间一样。

那么小明每天步行上学需要时间多少分钟
6甲、乙两车的速度分别为52 千米/时和40 千米/时,它们同时从甲地出发到乙地去,出发后6 时,甲车遇到一辆迎面开来的卡车,1 时后乙车也遇到了这辆卡车。

求这辆卡车的速
度。

7甲、乙、丙三辆车同时从A 地出发到B 地去,甲、乙两车的速5精心整理
度分别为60 千米/时和48 千米/时。

有一辆迎面开来的卡车分别在他们出发后6 时、7 时、8 时先后与甲、乙、丙三辆车相遇。

求丙车的速度。

8一个圆的圆周长为米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行。

这两只蚂蚁每秒钟分别爬行厘米和厘米,在运动过程中它们不断地调头。

如果把出发算作第零次调头,那么相邻两次调头的时间间隔顺次是1 秒、3 秒、5秒、⋯⋯,即是一个由连续奇数组成的数列。

问它们相遇时,已爬行的时间是多少秒
9甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的倍,而且甲比乙速度快。

两人出发后1 小时,甲与乙在离山顶600 米处相遇,当乙到达山顶时,甲恰好到半山腰。

那么甲回到出发点共用多少小时
10一艘轮船顺流航行120千米,逆流航行80千米共用16 时;顺流航行60 千米,逆流航行120 千米也用16 时。

求水流的速度。

11某河有相距45 千米的上下两港,每天定时有甲乙两船速相同的客轮分别从两港同时出发相向而行,这天甲船从上港出发掉下一物,此物浮于水面顺水漂下,4 分钟后与甲船相距1 千米,预计乙船出发后几小时可与此物相遇。

12甲轮船和自漂水流测试仪同时从上游的A站顺水向下游的B 站驶去,与此同时乙轮船自B 站出发逆水向A 站驶来。

时后乙轮船与自漂水流测试仪相遇。

已知甲轮船与自漂水流测试仪时后相距千米,甲、乙两船航速相等,求A,B 两站的距离。

13江上有甲、乙两码头,相距15千米,甲码头在乙码头的上游,
6精心整理一艘货船和一艘游船同时从甲码头和乙码头出发向下游行驶,5 小时后货船追上游船。

又行驶了1 小时,货船上有一物品落入江中(该物品可以浮在水面上),6 分钟后货船上的人发现了,便掉转船头去找,找到时恰好又和游船相遇。

则游船在静水中的速度为每小时多少千米
14一只小船从甲地到乙地往返一次共用2 时,回来时顺水,比去时每时多行驶8 千米,因此第2时比第1 时多行驶6千米。

求甲、乙两地的距离。

7精心整理。

相关文档
最新文档