初一数学《一元一次方程》试题1(苏教版)_题型归纳
苏教版-七年级上-一元一次方程应用汇总
一元一次方程方程应用题归类分析1. 和、差、倍、分问题:例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1 3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?分析:等量关系为: ()1366%9062000111-⨯=.年月底有的人数年月日人数解:设1990年6月底每10万人中约有x 人具有小学文化程度依题意得 (.1366%)35701-=x 解得 x ≈37057 答:1990年6月底每10万人中约有37057人具有小学文化程度.2. 等积变形问题:“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:状面积变了,周长没变;②原料体积=成品体积。
例2. 把直径6厘米,长16厘米的圆钢锻造成半径4厘米的圆钢,求锻造后的圆钢的长(不计加工余量)分析:等量关系:锻造前圆钢的体积=锻造后圆钢的体积解:设锻造后的圆钢的长为xcm依题意得 2261642x ππ⎛⎫⨯=• ⎪⎝⎭解得 9x = 答:锻造后的圆钢的长为9cm.3. 劳力调配问题:例3. 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?解:设安排x 名工人加工大齿轮,则安排()85-x 名工人加工小齿轮依题意得 31621085()[()]x x =- 解得 25x = ∴-=8560x 人答:安排25名工人加工大齿轮,安排60名工人加工小齿轮.4. 比例分配问题:这类问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
例4. 三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几?分析:等量关系:三个数的和是84解:设一份为x ,则三个数分别为x ,2x ,4x依题意得2484x x x ++= 解得 12x = 所以 224,448x x ==答:这三个数分别为12,24,48.5. 数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9)则这个三位数表示为:100a+10b+c 。
完整版苏科版七年级上册数学第4章 一元一次方程含答案
苏科版七年级上册数学第4章一元一次方程含答案一、单选题(共15题,共计45分)1、若不论k取什么实数,关于x的方程(a、b是常数)的解总是x=1,则a+b的值是( )A.﹣0.5B.0.5C.﹣1.5D.1.52、已知等式3a=2b,则下列等式中不一定成立的是()A.3a﹣1=2b﹣1B.3a+b=3bC.D.3ac=2bc3、如图,等腰△ ABC中,AB=AC,∠A=20°。
线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A.80°B.70°C.50°D.60°4、若直线y=ax+b的图象经过点(1,5),则关于的方程的解为()A. B. C. D.5、下面是一个被墨水污染过的方程:2x-,答案显示此方程的解是x=,被墨水遮盖的是一个常数,则这个常数是()A.2B.-2C.-D.6、根据等式的性质,下列变形正确的是()A.若2x=a,则x=2aB.若+ =1,则3x+2x=1C.若ab=bc,则a=cD.若= ,则a=b7、方程(x-3)(x+4)=(x+5)(x-6)的解是( )A.x=9B.x=-9C.x=6D.x=-68、下列各式中,是一次方程的是()A.2x+3-5B.1+2=3C.ax+b=c(a≠0)D.9、如图,EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90º,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN。
其中正确的结论有()A.4个B.3个C.2个D.1个10、下列方程的变形中,正确的是()A.由x=0,得x=3B.由6y=3,得y=2C.由x﹣5=﹣3,得x=5+3 D.由2=x﹣4,得x=4+211、整式mx+n的值随x的取值不同而不同,下表是当x取不同值时对应的整式的值,x ﹣2 ﹣1 0 1 2mx+n ﹣12 ﹣8 ﹣4 0 4则关于x的方程﹣mx﹣n=8的解为()A.﹣1B.0C.1D.212、下列方程中是一元一次方程的是()A.x+3=3﹣xB.x+3=y+2C. =1D.x 2﹣1=013、己知关于的方程是一元一次方程,则的取值是()A.±1B.1C.1D.以上答案都不对14、已知(a﹣2)x|a|﹣1=﹣2是关于x的一元一次方程,则a的值为()A.﹣2B.2C.±2D.±115、运用等式的性质,下列等式变形错误的是( )A.若x-1=3,则x=4B.若x-1= x,则x-1=2 xC.若x-3= y-3,则x = yD.若3 x=2 x+4,则3 x-2 x=4二、填空题(共10题,共计30分)16、关于x的方程x-3=kx+1的解是x=-8,则k=________.17、如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6 cm,动点P,Q分别从A,C同时出发,P以1 cm/s的速度由A向D运动,Q以2 cm/s的速度由C向B运动(Q 运动到B时两点同时停止运动),则________后四边形ABQP为平行四边形.18、在函数中使得函数值为0的自变量的值是________19、关于x的方程kx=4 – x的解是正整数,则整数k=________.20、如图,天平两边盘中标有相同字母的物体的质量相同,若A物体的质量为20g,当天平处于平衡状态时,B物体的质量为________g.21、已知(|m|-1)x2-(m-1)x+8=0是关于x的一元一次方程,则m的值为________.22、写出一个以x=-1为根的一元一次方程________.23、若x=2是关于x的方程2x+a-9=0的解,则a的值为________.24、若(m﹣2)x|2m﹣3|=6是一元一次方程,则m等于________.25、若关于x的方程2x+3a=4的解为最大负整数,则a的值为 ________ .三、解答题(共5题,共计25分)26、解方程:3﹣1.2x= x﹣12.27、已知关于x的方程﹣=m的解为负数,求m的取值范围.28、课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?29、解方程:(1)4x﹣3(5﹣x)=6;(2).30、已知方程=4与关于x的方程4x﹣=﹣2(x﹣1)的解相同,求a的值.参考答案一、单选题(共15题,共计45分)1、A2、C3、D4、C5、B6、D7、B8、C9、B10、D11、A12、A13、A14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
苏教版初一数学上册第二章一元一次方程复习练习卷及答案
第二章 一元一次方程复习(时间:100分钟 满分:100分)一、选择题(每题2分,计20分)1.若式子7—2x 和5—x 的值互为相反数,则x 的值为( ). A .4 B .2 C .29 D .272.解方程26231=+--x x ,去分母正确的是( ). A.2212=+--x x B. 12212=+--x xC.6222=---x xD. 12222=---x x 3.当x=-2时代数式2x 2-3x+Kx-10的值是0,则K 值是( ). A .-2 B .2 C .-4 D .44.有一个两位数,它的十位数字与个位数字之和为5,则符合条件的数有( )个. A. 4 B. 5 C. 6 D. 无数 5.方程2x+1=-3和方程2-3a x-=0的解相同,则a 值是( ). A .8 B .4 C .3 D .56.小明今年13岁,他的妈妈40岁.几年后,小明的年龄是他妈妈年龄的21?如果设x 年后小明的年龄是他妈妈年龄的21,由此可以得到方程( ). A .)40(2113x x +=+ B .)40(2113x x -=-C .x x +=+40)13(21D .x x -=-40)13(217.右边给出的是某月的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研 究,发现这三个数的和不可能是( ).A .69B .54C .27D .408.一个长方形周长是16cm ,长与宽的差是1cm ,那么长与宽分别为( ). A .3cm ,5cm B .3.5cm ,4.5cm C .4cm ,6cm D .10cm ,6cm9.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题共得70分,他做对了( )道题.A .17B .18C .19D .20()().1 41634115 , -=⎪⎭⎫ ⎝⎛-=---x x a x x a a 的解是方程为何值时10.某小组分若干本图书,若每人分给一本,则余一本,若每人分给2本,则缺3本,那么共有图书( ).A .6本B .5本C .4本D .3本 二、填空题(每题3分,计24分)11.|a +2b-1|+|2-b|=0,则(a b )b=______. 12.若(a +2)x |a |-1+3=-6是关于x 的一元一次方程,则a =________.13.定义a *b=a b+a +b +3,若—2* x =8,则x 的值是________.14.若一个数的平方是25,则这个数的立方是________.15.一个三位数,个位数字是x ,百位数字比个位数字大2,十位数字比个位数字小2,则这个三位数是_________________.1610时,则输入的x=________.17.已知线段AB 的长为18cm ,点C 在直线AB 上,且AC=BC 35,则线段BC=___. 18.若P 为正整数,当P=_______时,方程2x+P=3的解是正整数. 三、解答题(共56分)19.(4分)解方程:x x x x 47)2132(342=⎥⎦⎤⎢⎣⎡--+.20.(4分)21.(6分)用棋子摆下面一组正方形图案…① ② ③ (1)(2)照这样的规律摆下去,当每边有n 颗棋子时,这个图形所需要棋子总颗数是_____________,第100个图形需要的棋子颗数是_____________.22.(6分)一个人问:“尊敬的毕达哥拉斯,请你告诉我,有多少学生在你的学校里听你讲课?”,毕达哥拉斯回答说:“一共有这么多学生在听课,其中的21在学习数学,41学习音乐,71沉默无言,还有3名妇女.”请你算出共有多少学生. 23.(6分)甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?24.(6分)请联系你的学习和生活,编制一道实际问题,使列得的方程为51- x = 45 + x.25.(6分)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?26.(6分)阅读以下例题:解方程:|3x|=1.解:①当3x≥0时,原方程可化为一元一次方程3x=1,它的解是:x=1 3;②当3x<0时,原方程可化为一元一次方程-3x=1,它的解是:x=-1 3.∴原方程的解是:x1=-13,x2=13仿照例题解方程:|2x+1|=527.(6分)近年来,某市旅游事业蓬勃发展,吸引大批海内外游客前来观光旅游、购物度假.下面两图分别反映了该市2001-2004年游客总人数和旅游业总收入情况.根据统计图提供的信息,解答下列问题:(1)2004年游客总人数为 ________万人次,旅游业总收入为________万元;(2)在2002年,2003年,2004年这三年中,旅游业总收入增长幅度最大的是_________ 年,这一年的旅游业总收入比上一年增长的百分率为_______(精确到0.1℅);(3)2004年的游客中,国内游客为1200万人次,其余为海外游客,据统计,国内游客的人均消费约为700元,问海外游客的人均消费约为多少元?(注:旅游收入=游客人数×游客的人均消费)28.(6分)小红沿公路前进,对面来了一辆汽车,他问司机:“后面有一辆自行车吗?”司机回答:“10分钟前我超过一辆自行车.”小红又问:“你的车速是多少?”司机回答:“75千米/时”.小红继续走了20分钟就遇到了这辆自行车,小红估计自己步行的速度是3千米/时,你能帮助小红计算一下这辆自行车的速度吗?第二章 一元一次方程复习一、选择题1.A 2.D 3.B 4.B 5.B 6.A 7.D 8.B 9.C 10.B 二、填空题11.36 12.2 13.—7 14.±125 15.100(x+2)+10(x —2)+x 16.±2 17.cm cm 27,42718.1 三、解答题 19.712-=x 20.32=a 21.(1)4,5,6,11,12,16,20,40;(2)4(n —1),400 22.设有x 名学生,则28,3714121==+++x x x x x 23.设甲成本为x 元,则()[]200300500,300,500157%90%)401)(500(%501=-=+=⨯+-++x x x24.略25.(1)设购买乒乓球x 盒时,付款一样,则10%,90)5305()5(5305=⨯+⨯=-+⨯x x x ; (2)乙店26.2,—3 27.(1)1225,94000;(2)2004,41.4%;(3)4000 28.设自行车的速度为xkm/h ,则6010756010)3(6020⨯=++x x ,x=23。
苏科版七年级上册数学第四章《一元一次方程》复习卷及答案
第四章《一元一次方程》复习卷(满分:100分时间:90分钟)一、选择题(每题2分,共16分)1.下列结论不能由a+b=0得到的是( )A.a2=-a b B.a=b C.a =0,b =0 D.a2=b22.若代数式x+4的值是2,则x等于( )A.2 B.-2 C.6 D.-6 3.若关于x的方程2 x-a-5=0的解是x=-2,则a的值为( ) A.1 B.-1 C.9 D.-94.在解方程12x--233x+=1时,去分母正确的是( )A.3(x-1)-2(2+3x)=1 B.3(x-1)+2(2x+3)=1C.3(x-1)+2(2+3x)=6 D.3(x-1)-2(2x+3)=65.小明在做解方程作业时,不小心将方程中的一个常数污染了,看不清楚,被污染的方程是2y-12=12y-怎么办呢? 小明想了一想,便翻看书后答案,此方程的解是y=-53,于是很快就补好了这个常数,你能补出这个常数吗? 它应是( )A.4 B.3 C.2 D.16.小明在日历的某月上圈出五个数,呈十字框形,若它们的和是55,则中间的数是( )A.9 B.10 C.11 D.127.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍.小郑今年的年龄是( )A.7岁B.8岁C.9岁D.10岁8.已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元.”小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买的面包个数是( )A.38 B.39 C.40 D.41二、填空题(每题2分,共20分)9.若3x-5=0,则5x-3= .10.当m= 时,方程2x+m=x+l的解为x=-4.11.若4x2m-1 y n与-13xy2是同类项,则m+n= .12.当y= 时,代数式2(3y+4)的值比5 (2y-7) 的值大3.13.在如图所示的运算程序中,若输出的数y=7,则输入的数x= .14.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人.如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,那么正好送完.设敬老院有x位老人,依题意可列方程为.15.甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.16.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20 m3,则每立方米收费2元;若用水超过20 m3,则超过部分每立方米加收1元.若小明家5月份交水费64元,则他家该月用水m3.17.图1是边长为30 cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是cm3.18.某公路一侧原有路灯106盏,相邻两盏灯的距离为36 m,为节约用电,现计划全部更换为新型节能灯,且相邻两盏灯的距离变为54 m,则需更换新型节能灯盏.三、解答题(共64分)19.(本题8分) 解下列方程:(1) 5-15x+=x;(2)13(x-1)=17(2x-3);(3)0.60.4x-+x=0.110.3x+;(4)13(2x-5)=14( x-3)-112.20.(本题5分) 设a:b,c,d为有理数,现规定一种新的运算:a bc d=ad-b c,求满足等式13221xx+=1的x的值.21.(本题5分) 当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=3m的解大2 ?22.(本题5分) 如果代数式34a+的值比237a-的值多1,求a-2的值.23.(本题5分) 若关于x的方程23kx a+=2+6x bk-无论k为何值,方程的解总是x=1,求a,b的值.24.(本题6分) 把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.这个班有多少名学生?25.(本题8分) 某一天,一蔬菜经营户用114元从蔬菜批发市场购进黄瓜和土豆共40 kg 到菜市场去卖.黄瓜和土豆这一天的批发价和零售价(单位:元/kg)如下表所示:(1) 他当天购进了黄瓜和土豆各多少千克?(2) 如果黄瓜和土豆全部卖完,他能赚多少钱?26.(本题8分) 李华早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15 min,如果他骑自行车的平均速度是每分钟250 m,推车步行的平均速度是每分钟80 m,他家离学校的路程是2900 m,求他推车步行的时间.27.(本题12分) 某景区内的环形路是边长为800 m的正方形ABCD,如图1和图2所示.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车逆时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200 m/min.[探究]设行驶时间为t min.(1) 当0≤t≤8时,分别用含t的代数式表示1号车、2号车在左半环线离出口A的路程y1,y2 (m),并求出当两车相距的路程是400 m时t的值;(2) 求当t 为何值时,1号车第三次恰好经过景点C ,并直接写出这一段时间内它与2号车相遇过的次数.[发现] 如图2,游客甲在BC 上的一点K (不与点B ,C 重合) 处候车,准备乘车到出口A . 设CK =x m .情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多.(含候车时间)参考答案一、选择题1.C 2.B 3.D 4.D 5.B 6.C 7.A 8.B二、填空题9.16310.5 11.3 12.10 13.27或28 14.2x +16=3x 15.20 16.28 17.1000 18.71三、解答题19.(1) x =4 (2) x =-2 (3) x =2919(4) x =2 20.由题意得2x -13x +×2=1,则x =-10 21.方程5m +3x =1+x 的解是x =152m -,方程2x +m =3m 的解是x =m .由题意可知152m --m =2,解得m =-37,即当m =-37时,关于x 的方程5m +3x =1+x 的解比关于x 的方程2x +m =3m 的解大222.由题意得34a +-237a -=1,解得a =5,则a -2的值为3 23.方程两边同时乘以6得4kx +2a =12+x -bk ,即(4k -1) x +2a +bk -12=0 ①.因为无论k 为何值时,它的解总是1,所以把x =1代入①,得4k -1+2a +bk -12=k (4+b )-13+2a =0,所以4+b =0,-13+2a =0,即b =-4,a =13224.设这个班有x 名学生,根据题意得3x +20=4x -25,解得x =45.答:这个班共有45名学生25.(1) 设购进黄瓜x kg ,则购进土豆(40-x ) kg ,根据题意得2.4x +3(40-x )=114,解得x =10,则40-x =30.答:他购进黄瓜10 kg ,购进土豆30 kg (2) 他能赚10×(4-2.4)+30×(5-3)=76 (元)26.设他推车步行了x min ,依题意得80x +250(15-x )=2900,解得x =5.答:他推车步行了5 min27.(1) y 1=200t (0≤t ≤8) y 2=1600-200t (0≤t ≤8) 当两车相距路程为400 m 时,应分两种情况:①当未相遇前,两车相距路程为400 m ,则有200t +200t +400=2×800,解得t =3.即当t =3时,两车相距的路程为400 m. ②当相遇之后,两车相距路程为400 m ,则有200t +200t =2×800+400,解得t =5.即当t =5时,两车相距的路程为400 m 综上所得,当t =3或5时,两车相距的路程为400 m (2) 当1号车第三次恰好经过景点C 时,它已经从A 点开始绕正方形2圈半,则可知2×800×4+800×2=200t ,解得t =40.即t =40时,1号车第三次恰好经过景点C ,且这段时间内它与2号车相遇了5次.[发现]情况一:若他刚好错过2号车,便搭乘即将到来的1号车时,从开始等车到到达出口A ,所用时间为 (16002200x -+1600200x +) min ,即(16-200x ) min ;情况二:若他刚好错过1号车,便搭乘即将到来的2号车时,从开始等车到到达出口A ,所用时间为 (16002200x ++1600200x -) min .即(16+200x ) min 因为16-200x <16+200x ( x >0),所以情况二用时较多。
苏科版数学七年级上册《第四章 一元一次方程应用题》类型归纳及练习及答案
苏科版数学七年级上册《第四章一元一次方程应用题》类型归纳及练习及答案一元一次方程应用题归类(典型例题、练)一、列方程解应用题的一般步骤(解题思路)1) 审题:仔细审题,理解题意,找到能够表示问题含义的等量关系。
2) 设定未知数:根据问题,巧妙地设定未知数。
3) 列出方程:设定未知数后,表示相关的含有字母的表达式,然后利用已知等量关系列出方程。
4) 解方程:解决所列方程,求出未知数的值。
5) 检验并写出答案:检验所求出的未知数是否是方程的解,是否符合实际情况,检验后写出答案(注意单位统一和书写规范)。
第一类:与数字、比例有关的问题:例1.比例分配问题:设其中一部分为x,利用已知比例,写出相应的代数式。
常用等量关系:各部分之和=总量。
甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?例2.数字问题:1.要搞清楚数字的表示方法:一个三位数,一般可以设百位数字为a,十位数字为b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,1≤b≤9,1≤c≤9),则这个三位数表示为:100a+10b+c。
2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n-1表示。
1) 有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
2) 一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个两位数的大6,求这个两位数。
第二类:与日历、调配有关的问题:例3.日历问题:探索日历问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题。
在日历上,三个相邻数(列)的和为54,求这三天分别是几号?变式:将连续的奇数1,3,5,7…排列成如下的数表用十字框框出5个数(如图)1.3.5.7.911.13.15.17.1921.23.25.27.2931.33.35.37.391.若将十字框上下左右平移,但一定要框住数列中的5个数,设中间的数为a,则十字框框住的5个数字之和为5a。
初一数学《一元一次方程》试题1(苏教版)
初一数学《一元一次方程》试题1(苏教版 )1.填空题 (24%)(l) 一次式 -3 中,常数项是 ___________.(2)长方形的长为 a 厘米,宽为 3 厘米,则长方形的周长为____________厘米 .(3)当 x=__________ 时,一次式 -x+4 的值是 -4.(4)某人骑车到外处参观,第一个小时走了x 千米,第二个小时比第一小时少走 3 千米,则两小时内共走了_________千米.(5)三个连续奇数,最小的一个为x,则其余两个的和为___________.(6)甲的速度为每小时x 千米,乙的速度是甲的速度的,两人同时同地出发,同向而行 3 小时后,他们两人间的距离为_________千米 .(7)某数的与某数的30%的和比某数小3,若设某数为x ,则可得方程 __________________.(8)若某种商品的售出单价为 a 元,毛利润是售价的35%,则买入单价是 _________元 .2.选择题(1)以下说法中正确的选项是()(A)a 是正数 (B)-a 是负数 (C)a 的系数是1(D)-a 的系数是 1(2)以低等式是一元一次方程的是()(A)x=y-2(B)23+1=7(C)×-5=3x(D)-1=x(3)若方程 ax+2=8x-6 的解是 x=-4 ,则 a 是 ()(A)160(B)(C)9(D)10(4)x=3 是下面哪个方程的解()(A)5x=7+4x(B)3(x-3)=2x-3(C)=10(x+2)(D)4(x-2)=5-x(5)化简 2x-2(1-x) 的结果是 ()(A)3x-2(B)-2(C)4x-2(D)4x教师范读的是阅读授课中不可以缺少的部分,我常采用范读,让少儿学习、模拟。
如领读,我读一句,让少儿读一句,边读边记;第二通读,我大声读,我大声读,少儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边少儿屡次倾听,在屡次倾听中体验、品味。
苏教版初一数学上册第二章一元一次方程练习卷及答案一
第二章 一元一次方程A 练习(时间:100分钟 满分:100分)一、选择题(每题2分,计20分)1.下列说法正确的是( ).A. 含有一个未知数的等式叫一元一次方程B. 未知数的次数是1的方程叫一元一次方程C. 含有一个未知数,并且未知数的次数是1 的式子就是一元一次方程D.11=+xx 不是一元一次方程 2.x=2是下列方程( )的解.A .3x+1=2x-1B .3x-2x+2=0C .3x-1=2x+1D .3x=2x-23.如果2005200.520.05x -=-,那么x 等于( ).A .1814.55B .1824.55C .1774.45D .1784.454.已知关于x 的方程)(22x m mx -=+的解满足方程0|1|=-x ,则m 的值是( ). A.21 B. 4 C.23 D. 3 5.一个同学在日历纵列上圈出三个数,算出它们的和,其和只可能是( ).A.30B.31C.32D.296.已知矩形周长为20cm ,设长为x cm ,则宽为 ( ).A.x -20B.x -10C.x 220-D. 220x - 7.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( ).A.不赚不亏B.赚8元C.亏8元D. 赚18元8.某商场上月的营业额是a 万元,本月比上月增长15%,那么本月的营业额是( )A .%15)1(⨯+a 万元B .a %15万元C .a %)151(+万元D .a %)151(-万元9.为了节约用水,某市规定:每户居民用水不超过20m 3,按每立方米2元收费;超过20 m 3,则超出部分按每立方米4元收费.某户居民五月份交水费72元,则该户居民五月份实际用水为( )m 3.A.8B.18C.28D.3610.对于未知数为x 的方程x ax 21=+,当a 满足( )时,方程有唯一解.A .21=B .21≠ C .=2 D .≠2二、填空题(每题3分,计24分)11.关于x 的方程04=-mx1210时,则输入的x=________.13.写出一个解为t=21-的一元一次方程 . 14.如果7x+2y=4,那么7x=4—__________,理由是_____________________________.15.把150分成两个数,且两数的比是7:3,则这两数是______________.16.含糖10%的糖水1500kg ,其中糖是__________kg .17.若方程323223+-=--a x a x 的解是a x =,则=a _______. 18.小华的妈妈为爸爸买了一件衣服和一条裤子,共用306元. 其中衣服按标价打七折,裤子按标价打八折,衣服的标价为300元,则裤子的标价为 ________ 元.三、解答题(共56分)19.(4分)设某数为x ,用方程表示下列数量关系:(1)某数的3倍比4小8; (2) 某数的21 与3的和等于17; (3) 某数与3的差的2倍等于它与6的和;(4) 某数与2的差的平方恰好是它的3倍减2.20.(6分)解方程.2(2x -1)-3(2x+1)=7-x .21.(6分)解方程.161241=--+x x .22.(4分)小华在解方程4334+=+x x 时,给出的过程如下: 34)1(3)1(433444334:=-=--=-+=+x x x x x x 解 小华无法找出其中的错误,你能吗?并求出方程的解.23.(6分)小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染了:213521-=--+ x x ,“□”是被污染的内容.他很着急,翻开书后面的答案,这道题的解是x=2,你能帮助他补上“□”的内容吗?说出你的方法.24.(6分)已知方程:423523-=-x x . (1)求方程的解;(2)若上述方程与关于x 的方程3a +8=3(x +a )-2a 的解相同,求a 的值;(3)在(2)的条件下,a 、b 在数轴上对应的点在原点的两侧,且原点的距离相等,c 是倒数等于本身的数,求(a+b+c )2006.25.(6分)某中学需要添置某种教学仪器,方案1:到商家购买,每件需要8元;方案2:学校自己制作,每件4元,另外需要制作工具的租用费120元;设需要仪器x 件,方案1与方案2的费用分别为:1y 、2y (元).(1)分别写出1y 、2y 的表达式;(2)当购制仪器多少件时,两种方案的费用相同?(3)若学校需要仪器50件,问采用哪种方案便宜?请说明理由.26.(6分)从2004年4月18日零时起,全国铁路实施第五次提速,从绵阳到成都的某次该次列车现在提速后,每小时比提速前快20 km,终到时刻提前到9:30,那么绵阳与成都相距多少千米?27.(6分)小强买了张50元的乘车IC卡,如果他乘车的次数用m表示,则记录他每次乘车(1)写出用乘车的次数m表示余额n的关系式.(2)利用上述关系式计算小强乘了13次车还剩下多少元?(3)小强最多能乘几次车?28.(6分)第二章 一元一次方程A一、选择题1.D 2.C 3.B 4.B 5.A 6.B 7.C 8.C 9.C 10.D二、填空题11.≠0 12.4 13.021=+t 14.2y ,在等式两边同时减去2y 15.45,105 16.150 17.6.5 18.120三、解答题19.(1)843-=x ;(2)17321=+x ;(3)()632+=-x x ;(4)()2322-=-x x 20.x=—13 21.x=—7 22.在方程的两边不可以同除以(x —1),x=123.设□内的数为y ,则4,2131023=-=--y y 24.(1)x=4;(2)a=2;(3)b=—2,c=1或—1,原式=125.(1)y 1=8x ,y 2=4x+120;(2)30;(3)方案226.设原速为xkm/h ,()()120260,60,2320810=⨯=⨯+=-x x x 27.(1)m n 8.050-=;(2)39.6;(3)6228.设一本笔记本为x 元,则()46,2,1864=-==-+x x x x。
七年级苏教版数学复习要点考点专题三:一元一次方程有关概念(教师用,附答案分析)
七年级苏教版数学复习要点考点专题三:一元一次方程有关概念知识点一一元一次方程的概念1.一元一次方程只含有一个未知数(元),未知数的次数都是1(次),像这样的方程叫做一元一次方程.一元一次方程的标准形式:0+=(0a≠,a,b是已知数).ax b注意:(1)方程两边都是整式(即分母中不能出现未知数);(2)只含有一个未知数;(3)未知数的次数都是1;(4)化为最简形式后,含未知数的项的系数不能为0.例1(徐州期末)下列方程中,是一元一次方程的是()A.x+y=2 B.x2=1 C.πx=2 D. 1【解答】解:x+y=2是二元一次方程,故选项A错误;x2=1时一元二次方程,故选项B错误;πx=2是一元一次方程,故选项C正确;是分式方程,故选项D错误;故选:C.例2(秦淮区期末)如果方程(m﹣1)x2|m|﹣1+2=0是一个关于x的一元一次方程,那么m的值是.【解答】解:由题意得,m﹣1≠0,2|m|﹣1=1,解得,m=﹣1,故答案为:﹣1.知识点二一元一次方程的解1.方程的解能使方程两边的值相等的未知数的值叫做方程的解.2.解方程求方程的解的过程叫做解方程.注意:方程的解和解方程是两个不同的概念,方程的解是一个数值,而解方程是求这个数值的过程. 例1(常熟市期末)已知关于x的方程2x﹣a+5=0的解是x=﹣2,则a的值为()A .﹣2B .﹣1C .1D .2【解答】解:由方程2x ﹣a +5=0的解是x =﹣2,故将x =﹣2代入方程得:2×(﹣2)﹣a +5=0, 解得:a =1.故选:C .知识点三 等式的性质1.等式的性质等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.如果a b =,那么a c b c ±=±.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.如果a b =,那么ac bc =;如果a b =(0c ≠),那么a b c c =; 注意:(1)等式两边都要参加运算,并且是作同一种运算;(2)等式两边加或减、乘或除以的数一定是同一个数或同一个式子;(3)等式两边不能都除以0,即0不能作除数或分母.例1(海安市期末)下列各式进行的变形中,不正确的是( )A .若32a b =,则3222a b +=+B .若32a b =,则3525a b -=-C .若32a b =,则94a b =D .若32a b =,则23a b = 【解答】解:32a b =,3222a b ∴+=+,∴选项A 不符合题意;32a b =,3525a b ∴-=-,∴选项B 不符合题意;32a b =,96a b ∴=,∴选项C 符合题意;32a b =,∴23a b =,∴选项D 不符合题意.故选:C .【提优训练】一、单选题(共6小题)1.(无锡期末)下列方程为一元一次方程的是( )A .﹣x ﹣3=4B .x 2+3=x +2C .1=2D .2y ﹣3x =2【解答】解:B 是二次的,C 不是整式方程,D 含有两个未知数,它们都不符合一元一次方程的定义. 只有A 符合一元一次方程的定义.故选:A .2.(姑苏区期末)①x ﹣2;②0.3x =1;③x 2﹣4x =3;④5x ﹣1;⑤x =6;⑥x +2y =0.其中一元一次方程的个数是( )A .2B .3C .4D .5 【解答】解:一元一次方程有②0.3x =1;④5x ﹣1;⑤x =6;其中共有3个,故选:B . 3.(无为县期末)下列方程中,解为2x =-的方程是( )A .251x x +=-B .32(1)7x x --=-C .55x x -=-D .13144x x -= 【解答】解:A 、把2x =-代入方程,左边1=≠右边,因而不是方程的解,故本选项不符合题意; B 、把2x =-代入方程,左边9==右边,因而是方程的解,故本选项符合题意;C 、把2x =-代入方程,左边7=-≠右边,因而不是方程的解,故本选项不符合题意;D 、把2x =-代入方程,左边112=≠右边,因而不是方程的解,故本选项不符合题意.故选:B . 4.(姑苏区期末)若x =1是方程2x +m ﹣6=0的解,则m 的值是( )A .﹣4B .4C .﹣8D .8【解答】解:根据题意,得2×1+m ﹣6=0,即﹣4+m =0,解得m =4.故选:B .5.(江都区期末)已知(0,0)34a b a b =≠≠,下列变形错误的是( ) A .34a b = B .34a b =C .43b a =D .43a b = 【解答】解:由34a b =得,43a b =, A 、由等式性质可得:43a b =,原变形正确,故这个选项不符合题意;B 、由等式性质不可以得到34a b =,原变形错误,故这个选项符合题意;C 、由等式性质可得:43a b =,原变形正确,故这个选项不符合题意;D 、由等式性质可得:43a b =,原变形正确,故这个选项不符合题意;故选:B .6.(2018秋•宜兴市期末)整式2mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值,则关于x 的方程22mx n --=的解为( ) x 2-1- 0 1 2 2mx n + 20 2- 4- 6- A .1-B .2-C .0D .无法计算 【解答】解:22mx n --=,22mx n ∴+=-,根据表可以得到当0x =时,22mx n +=-,即22mx n --=.二、填空题(共5小题)7.(无锡期末)写出一个解为1的一元一次方程 .【解答】解:设a =1,则方程可化为:x +b =0;把x =1代入上式得到:1+b =0,解得b =﹣1; 所以,方程是:x ﹣1=0.8.(苏州期末)若x =﹣2是关于x 的方程的解,则a 的值为 . 【解答】解:∵x =﹣2是关于x 的方程的解,∴2, ∴2+a =﹣6,解得a =﹣8.故答案为:﹣8.9.(大丰区期末)若x =2是关于x 的方程mx ﹣4=3m 的解,则m = .【解答】解:把x =2代入方程得:2m ﹣4=3m ,解得:m =﹣4,10.(揭西县期末)若2x =是方程3100ax bx +-=的解,则39a b +的值为 .【解答】解:把2x =代入方程3100ax bx +-=得:2610a b +=,即35a b +=,所以393515a b +=⨯=,11.(扬州期末)已知关于x 的一元一次方程3=2019x +m 的解为x =2,那么关于y 的一元一次方程2019(y ﹣1)=m ﹣3的解y = .【解答】解:根据题意得: 方程3=2019x +m 可整理得:2019x =m ﹣3,则该方程的解为x =2, 方程2019(y ﹣1)=m ﹣3可整理得:2019(1﹣y )=m ﹣3, 令n =1﹣y ,则原方程可整理得:2019n =m ﹣3,则n =2,即1﹣y =2,解得:y =﹣1. 三、解答题(共2小题)12.(扬州市期末)已知,2x =是方程12()23m x x --=的解,求代数式2(62)m m -+的值. 【解答】解:把2x =代入方程得:12(2)43m --=,解得:4m =-,则2(62)m m -+16(242)=--+38=. 13.(崇川区校级月考)我们规定,若关于x 的一元一次方程ax b =的解为x b a =-,则称该方程的为差解方程,例如:932x =的解为32x =且39322=-,则该方程932x =就是差解方程. 请根据以上规定解答下列问题:(1)若关于x 的一元一次方程51x m -=+是差解方程,则m = .(2)若关于x 的一元一次方程231x ab a =++是差解方程,且它的解为x a =,求代数式2019(2)ab +的值.【解答】解:(1)解51x m -=+得,15m x +=-,一元一次方程51x m -=+是差解方程,1(1)55m m +∴-=++, 解得:316m =-,故答案为316-; (2)一元一次方程231x ab a =++是差解方程,312x ab a ∴=++-,又x a =,312a ab a ∴=++-,12ab a ∴=-, 把x a =,12mn a =-代回原方程得:21231a a a =-++,2a ∴=,将2a =代入12ab a =-中,得32b =-,201920193(2)[2()2]12ab ∴+=⨯-+=-.。
苏科版七年级数学第一学期期末复习三 :一元一次方程(有答案)
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯苏科版七年级数学第一学期期末复习三一元一次方程一、选择题1. 在①2x+1;②1+7=15-8+1;③1- x=x-1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个2. 下列方程是一元一次方程的是()A.-2=0B.2x=1C.x+2y=5D.-1=2x3.某制衣店现购买蓝色、黑色两种布料共138m,共花费540元.其中蓝色布料每米3元,黑色布料每米5元,两种布料各买多少米?设买蓝色布料x米,则依题意可列方程()A.3x+5(138-x)=540B.5x+3(138-x)=540C.3x+5(138+x)=540D.5x+3(138+x)=5404. 若关于x的一元一次方程m(x+4)-3m-x=5的解为x=3,则m的值是()A.-2B.2C.D.-5. 如果与互为倒数,那么x的值为()A.x=B.x=10C.x=-6D.x=6.若方程3x+6=12的解也是方程6x+3a=24的解,则a的值为()A. B.4 C.12 D.27. 方程|2x+1|=7的解是()A.x=3B.x=3或x=-3C.x=3或x=-4D.x=-48. 下列解方程过程正确的是()A.2x=1系数化为1,得x=2B.x-2=0解得x=2C.3x-2=2x-3移项得3x-2x=-3-2D.x-(3-2x)=2(x+1)去括号得x-3-2x=2x+19.解一元一次方程-2= - ,去分母正确的是()A.5(3x+1)-2=(3x-2)-2(2x+3)B.5(3x+1)-20=(3x-2)-2(2x+3)C.5(3x+1)-20=(3x-2)-(2x+3)D.5(3x+1)-20=3x-2-4x+610.某组织去乡村慰问留守儿童,为他们送去一些图书,每人分8本图书,还少5本,每人分7本图书,还多6本,则该村留守儿童有()A.10名B.11名C.12名D.13名11.一艘轮船在A、B两港口之间匀速行驶,顺水航行需要6h,逆水航行需要8h,水流速度为5km/h,则A、B两地之间的路程是()A.200kmB.240kmC.300kmD.320km12.一项工作,甲单独做要20天完成,乙独做要12天完成.若先由甲做若干天,然后由乙继续做完,从开始到完成共用14天,则这项工作由甲先做()天.A. B.5 C.4 D.613. 某市出租车收费标准是:起步价8元(即行驶距离不超过3km,付8元车费),超过3km,每增加1km收1.6元(不足1km按1km计),小梅从家到图书馆的路程为xkm,出租车车费为24元,那么x的值可能是()A.10B.13C.16D.18二、填空题14. 已知5+3=1是关于x的一元一次方程,则m=_____.15.x的3倍与4的和等于x的5倍与2的差,方程可列为_____.16. 某件商品,以原价的出售,现售价是300元,则原价是_____元.17. 有一列数,按一定的规律排列成,-1,3,-9,27,-81,….若其中某三个相邻数的和是-567,则这三个数中第一个数是_____.18. 由3x=2x-1得3x-2x=-1,在此变形中,方程两边同时_____.19. 当x=_____时,代数式2x+1与5x-6的值互为相反数.20.已知关于x的方程2x+a=x-1的解和方程2x+4=x+1的解相同,则a=_____.21.若x=2是方程3x-4=-a的解,则+的值是_____.22.已知方程|2x-1|=2-x,那么方程的解是_____.23.某项工程,甲单独完成要12天,乙单独完成要18天,甲先做了7天后乙来支援,由甲乙合作完成剩下的工程,则甲共做了_____天.24.小张有三种邮票共18枚,它们的数量之比为1:2:3,则最多的一种邮票有_____枚.三、解答题25. 解方程:(1)2x+3=11-6x;(2)(3x-6)=x-3.26. 已知代数式M=3(a-2b)-(b+2a).(1)化简M;(2)如果(a+1)+4-3=0是关于x的一元一次方程,求M的值.27.列方程解应用题:某商场第一季度销售甲、乙两种冰箱若干台,其中乙种冰箱的数量比甲种冰箱多销售40台,第二季度甲种冰箱的销量比第一季度增加10%,乙种冰箱的销量比第一季度增加20%,且两种冰箱的总销量达到554台.求:(1)该商场第一季度销售甲种冰箱多少台?(2)若每台甲种冰箱的利润为200元,每台乙种冰箱的利润为300元,则该商场第二季度销售冰箱的总利润是多少元?28. 列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服.下面是某服装厂给出的运动服价格表:购买服装数量(套)1~3536~6061及61以上每套服装价格(元)605040已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元.问七年级一班和七年级二班各有学生多少人?29. (2分)已知点A在数轴上对应的数为a,点B对应的数为b,且(a+4+|b-11|=0,G为线段AB上一点,M,N两点分别从G,B点沿BA方向同时运动,设M点的运动速度为1cm/s,N点的运动速度为2cm/s,运动时间为ts.(1)A点对应的数为_____,B点对应的数为_____;(2)若AB=2AG,试求t为多少s时,M,N两点的距离为2.5cm;(3)若AB=mAG,点H为数轴上任意一点,且AH-BH=GH,请直接写出的值.期末复习三答案1、B2、B3、A4、B5、B6、B7、C8、 B9、B10、B11、B12、B13、B14、-115、3x+4=5x-216、37517、设这三个数中的第⼀个数为x,则另外两个数分别为-3x,9x,依题意,得:x-3x+9x=-567,解得:x=-8118、减2X519、720、2x+4=x+1, 2x-x=1-4, x=-3,把x=-3代入解得:a=1021、-222、解:由|2x-1|=2-x,可得:2-x=±(2x-1),当2-x=2x-1,解得:x=1,当2-x=-2x+1,解得:x=-1,所以方程的解为x=±123、1024、解:设数量最少的邮票有x枚,则另两种分别有2x枚和3x枚,依题意,得:x+2x+3x=18,解得:x=3,∴3x=9故答案为:925、(1)2x+3=11-6x,移项,得2x+6x=11-3,合并同类项,得8x=8,系数化1,得x=127、(1)设第⼀季度甲种冰箱销量为x台,根据题意得:(1+10%)x+(1+20%)(x+40)=554解之得:x=220答:第⼀季度甲种冰箱的销量为220台.(2)第⼀季度甲种冰箱的利润为:220×(1+10%)×200=48400(元)第⼀季度⼀种冰箱的利润为:(220+40)×(1+20%)×300=93600(元)所以第⼀季度的总利润为48400+93600=142000(元)28、解:∵67×60=4020(元),4020>3650,∴⼀定有⼀个班的人数大于35人.设大于35人的班有学生x人,则另⼀班有学生(67-x)⼀,依题意,得:50x+60(67-x)=3650,解得:x=37,∴67-x=3029、解:(1)∵(a+4)2+|b-11|=0,∴a+4=0,b-11=0,∴a=-4,b=11,故答案为:-4;11;∴M点对应的数为:3.5-t,N点对应的数为11-2t,∴MN=|(3.5-t)-(11-2t)|=|t-7.5|=2.5,∴t=5或10,答:t为5或10s时,M,N两点的距离为2.5cm(3)①当H在A与B之间时,若H点不在G点左边,如图,∵AH-BH=GH,∴AG+GH-BG+GH=GH,∴AG-BG+GH=0,∴AG-AB+AG+GH=0,∵AB=mAG,∴GH=(m-2)AG若H点在G点左边,如图,∵AH-BH=GH,∴AG-GH-BG-GH=GH,∴AG-BG-3GH=0,∴AG-AB+AG-3GH=0,∵AB=mAG,②当H与B重合时,则BH=0,∵AH-BH=GH,∴AH=GH,即A与G重合,∵AB=mAG=0,与已知AB=15相⼀盾,不合题意,应舍去;③当H在AB的延长线上时,∵AH-BH=GH,∴AB=GH,此时G与B重合一天,毕达哥拉斯应邀到朋友家做客。
最新苏科版七年级数学上册 一元一次方程单元复习练习(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。
(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。
(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。
苏教版七年级上册数学[实际问题与一元一次方程(一)(基础)知识点整理及重点题型梳理]
苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习实际问题与一元一次方程(一)(基础)知识讲解【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】知识点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.知识点二、常见列方程解应用题的几种类型(待续)1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1.(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?【思路点拨】设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇.结合七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,即可列出关于x的一元一次方程,解方程即可得出结论.【答案与解析】解:设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇,依题意得:(x+2)×2=118﹣x,解得:x=38.答:七年级收到的征文有38篇.【总结升华】本题考查了一元一次方程的应用,解题的关键是列出方程(x+2)×2=118﹣x.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.举一反三:【变式】(2015•南充)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()A. 25台B. 50台C. 75台D. 100台【答案】C.解:设今年购置计算机的数量是x台,去年购置计算机的数量是(100﹣x)台,根据题意可得:x=3(100﹣x),解得:x=75.类型二、行程问题1.一般问题2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?【答案与解析】解:设小山娃预订的时间为x 小时,由题意得:4x+0.5=5(x-0.5),解得x =3.所以4x+0.5=4×3+0.5=12.5(千米).答:学校到县城的距离是12.5千米.【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.举一反三:【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.【答案】解:设这段坡路长为a 千米,汽车的平均速度为x 千米/时,则上坡行驶的时间为10a 小时,下坡行驶的时间为20a 小时.依题意,得:21020a a x a ⎛⎫+= ⎪⎝⎭, 化简得: 340ax a =.显然a ≠0,解得1133x =. 答:汽车的平均速度为1133千米/时.2.相遇问题(相向问题) 【实际问题与一元一次方程(一) 388410 相遇问题】3. A 、B 两地相距100km ,甲、乙两人骑自行车分别从A 、B 两地出发相向而行,甲的速度是23km/h ,乙的速度是21km/h ,甲骑了1h 后,乙从B 地出发,问甲经过多少时间与乙相遇?【答案与解析】解:设甲经过x 小时与乙相遇.由题意得:()2312321(1)100x ⨯++-=.解得,x=2.75.答:甲经过2.75小时与乙相遇.【总结升华】等量关系:甲走的路程+乙走的路程=100km举一反三:【变式】甲、乙两人骑自行车,同时从相距45km 的两地相向而行,2小时相遇,每小时甲比乙多走2.5km ,求甲、乙每小时各行驶多少千米?【答案】解:设乙每小时行驶x 千米,则甲每小时行驶(x +2.5)千米,根据题意,得:2( 2.5)245x x ++=.解得:10x =.2.510 2.512.5x +=+=(千米)答:甲每小时行驶12.5千米,乙每小时行驶10千米3.追及问题(同向问题)4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?【答案与解析】解:设通讯员x 小时可以追上学生队伍,则根据题意, 得18145560x x =⨯+. 得:16x =, 16小时=10分钟. 答:通讯员用10分钟可以追上学生队伍.【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x 表示小时,18表示分钟,两边单位不一致,应先统一单位.4.航行问题(顺逆流问题)5.一艘船航行于A 、B 两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离.【答案与解析】解法1:设船在静水中速度为x 千米/时,则船顺水航行的速度为(x+4)千米/时,逆水航行的速度为(x-4)千米/时,由两码头的距离不变得方程:3(x+4)=5(x-4),解得:x=16,(16+4)×3=60(千米).答:两码头之间的距离为60千米.解法2:设A 、B 两码头之间的距离为x 千米,则船顺水航行时速度为3x 千米/时,逆水航行时速度为5x 千米/时,由船在静水中的速度不变得方程:4435x x -=+,解得:60x =. 答:两码头之间的距离为60千米.【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类似地,当物体在空中飞翔时,常会遇到顺风逆风问题,解题思路类似顺逆流问题.类型三、工程问题6.一个水池有两个注水管,两个水管同时注水,10小时可以注满水池;甲管单独开15小时可以注满水池,现两管同时注水7小时,关掉甲管,单独开乙管注水,还需要几小时能注满水池?【思路点拨】视水管的蓄水量为“1”,设乙管还需x 小时可以注满水池;那么甲乙合注1小时注水池的110,甲管单独注水每小时注水池的115,合注7小时注水池的710,乙管每小时注水池的111015⎛⎫- ⎪⎝⎭. 【答案与解析】解:设乙管还需x 小时才能注满水池.由题意得方程:1171101510x ⎛⎫-=- ⎪⎝⎭. 解此方程得:x =9.答:单独开乙管,还需9小时可以注满水池.【总结升华】工作效率×工作时间=工作量,如果没有具体的工作量,一般视总的工作量为“1” .举一反三:【变式】修建某处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合作,但乙中途离开了一段时间,后两天由乙、丙合作完成问乙中途离开了几天?【答案】解:设乙中途离开x 天,由题意得:1117(72)21141812x ⨯+-++⨯=. 解得:3x =.答:乙中途离开了3天.类型四、调配问题(比例问题、劳动力调配问题)7.(2015春•衡阳校级月考)某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人,则可列方程( )A . 22+x=2×26B . 22+x=2(26﹣x )C . 2(22+x )=26﹣xD . 22=2(26﹣x )【思路点拨】设抽调x 人,则调后一组有(22+x )人,第二组有(26﹣x )人,根据关键语句:使第一组的人数是第二组的2倍列出方程即可.【答案】B .【解析】解:设抽调x 人,由题意得:(22+x )=2(26﹣x ),【总结升华】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,表示出调后两个组的人数.举一反三:【实际问题与一元一次方程(一) 388410调配问题】【变式】甲队有72人,乙队有68人,需要从甲队调出多少人到乙队,才能使甲队恰好是乙队人数的34. 解:设从甲队调出x 人到乙队.由题意得, ()372684x x -=+. 解得,x=12. 答:需要从甲队调出 12人到乙队,才能使甲队恰好是乙队人数的34 .。
初一数学《一元一次方程》测试题1(苏教版)
?一、填空题
(1)假设4是关于x的方程3a-5x=3(x+a)+2a的解,那么a=_______。
(2)关于y的方程的解是y=-8,那么的值_______。
(3)x=_______时,单项式与是同类项。
(4)a是_______时,关于x的方程是一元一次方程。
(A)3x-2=10与2x-1=3(x+1)
(B)4x-3=2x-1与3(1-x)=0
(C)与3x+1-2x=6
(D)-4x-1=x与5x=1
(4)以下方程去括号正确的选项是()。ቤተ መጻሕፍቲ ባይዱ
(A)由2x-3(4-2x)=5得x-12-2x=5
(B)由2x-3(4-2x)=5得2x-12-6x=5
(C)由2x-3(4-2x)=5得2x-12+6x=5
(5)m为_______时,2是关于x的方程的解。
二、选择题
(1)以下各式中是一元一次方程的为()。
(A)3x-7
(B)2=2
(C)4
(D)4x-3=2(x+1)
(2)用方程表示〝比x大5的数等于2〞的数量关系正确的选项是()。
(A)2+x=5
(B)x-5=2
(C)x+5=2
(D)5-x=2
(3)以下各组的两个方程的解相反的是()。
其实,任何一门学科都离不开融会贯串,关键是记忆有技巧,〝死记〞之后会〝活用〞。不记住那些基础知识,怎样会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高先生的写作水平,单靠剖析文章的写作技巧是远远不够的,必需从基础知识抓起,每天挤一点时间让先生〝死记〞名篇佳句、名言警句,以及丰厚的词语、新颖的资料等。这样,就会在有限的时间、空间里给先生的脑海里注入有限的内容。日积月累,集腋成裘,从而收到水滴石穿,绳锯木断的成效。
最新苏科版数学七年级上册 一元一次方程(基础篇)(Word版 含解析)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.甲、乙两班学生到集市上购买苹果,苹果的价格如下:购苹果数不超过10千克超过10千克但不超过20千克超过20千克每千克价格10元9元8元苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为多少千克;②甲班第一次、第二次分别购买多少千克?【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,∴乙班比甲班少付出256-240=16元(2)解:①甲班第二次购买的苹果为(30-x)千克;②若x≤10,则10x+(30-x)×8=256,解得:x=8若10<x≤15,则9x+(30-x)×9=256无解.故甲班第一次购买8千克,第二次购买22千克【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.3.对于任意有理数,我们规定 =ad-bc.例如 =1×4-2×3=-2(1)按照这个规定,当a=3时,请你计算(2)按照这个规定,若 =1,求x的值。
最新苏科版七年级上册数学 一元一次方程(基础篇)(Word版 含解析)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。
(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。
(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。
初一数学《一元一次方程》整章测试题1(苏教版)
初一数学《一元一次方程》整章测试题1(苏教版)一元一次方程整章测试题1〔含答案苏教版〕一、填空题〔1〕假设4是关于x的方程3a-5x=3〔x+a〕+2a的解,那么a=_______。
〔2〕关于y的方程的解是y=-8,那么的值_______。
〔3〕x=_______时,单项式与是同类项。
〔4〕a是_______时,关于x的方程是一元一次方程。
〔5〕m为_______时,2是关于x的方程的解。
二、选择题〔1〕以下各式中是一元一次方程的为〔〕。
〔A〕3x-7〔B〕〔C〕〔D〕4x-3=2〔x+1〕〔2〕用方程表示〝比x大5的数等于2〞的数量关系正确的选项是〔〕。
〔A〕2+x=5〔B〕x-5=2〔C〕x+5=2〔D〕5-x=2〔3〕以下各组的两个方程的解相反的是〔〕。
〔A〕3x-2=10与2x-1=3〔x+1〕〔B〕4x-3=2x-1与3〔1-x〕=0〔C〕与3x+1-2x=6〔D〕-4x-1=x与5x=1〔4〕以下方程去括号正确的选项是〔〕。
〔A〕由2x-3〔4-2x〕=5得x-12-2x=5〔B〕由2x-3〔4-2x〕=5得2x-12-6x=5〔C〕由2x-3〔4-2x〕=5得2x-12+6x=5〔D〕由2x-3〔4-2x〕=5得2x-3+6x=5三、解以下方程〔1〕。
〔2〕。
〔3〕。
〔4〕。
〔5〕。
〔6〕解关于x的方程5〔x+2a〕-a=2〔b-2x〕+4a四、解答题〔1〕x=2时,代数式的值是10,求x=-2时代数式的值。
〔2〕假定|2〔x-3〕-〔3x+4〕|=5,求x的值。
〔3〕,求证:x=y。
答案与提示一、〔1〕a=-16;〔2〕a=14,;〔3〕x=2;〔4〕;〔5〕m=±4。
二、〔1〕D;〔2〕C;〔3〕B;〔4〕C。
三、〔1〕;〔2〕x=1;〔3〕;〔4〕;〔5〕;〔6〕;四、〔1〕-2;〔2〕x=15或x=-5;〔3〕略。
苏教版七年级上册数学[《一元一次方程》全章复习与巩固(基础)知识点整理及重点题型梳理]
苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习《一元一次方程》全章复习与巩固(基础)知识讲解【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b(a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的概念1.(2016春•南江县期末)在下列方程中①x 2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有( )个.A .1B .2C .3D .4【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】解:①x 2+2x=1,最高次数是2次;②﹣3x=9,分母上含有字母,不是整式方程;③x=0,是一元一次方程;④3﹣=2,是一个等式,不是方程;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B.【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.凡是分母中含有未知数的方程一定不是一元一次方程.举一反三:【一元一次方程复习 393349 等式和方程例(1)】【变式】下列说法中正确的是( ).A.2a-a=a不是等式 B.x2-2x-3是方程 C.方程是等式 D.等式是方程【答案】C2. 若方程3(x-1)+8=2x+3与方程253x k x+-=的解相同,求k的值.【答案与解析】解:解方程3(x-1)+8=2x+3,得x=-2.将x=-2代入方程253x k x+-=中,得22253k-++=.解这个关于k的方程,得263k=.所以,k的值是263k=.【总结升华】由于两个方程的解相同,所以可以将其中一个方程的解代入另一个方程中,从而求得问题的答案.举一反三:【变式】(2015春•泉州期中)当x= 时,代数式2x+1与5x﹣8的值相等.【答案】3.解:根据题意得:2x+1=5x﹣8,∴2x﹣5x=﹣8﹣1,∴﹣3x=﹣9,∴x=3.类型二、一元一次方程的解法3.解方程2351 46y y+--=【思路点拨】通过方程的同解原理(去分母,去括号,合并同类项,系数化为1),一步一步将一个复杂的方程转化成与它同解的最简的方程,从而达到求解的目的.【答案与解析】解:去分母,得3(y+2)-2(3-5y)=12去括号,得3y+6-6+10y=12合并同类项,得13y=12未知数的系数化为1,得1213 y=【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.4.解方程:113(1)(1)2(1)(1)22x x x x+--=--+【思路点拨】本题按常规方法求解,比较繁锁,如能根据题目的特点,巧用“整体思维”,就能算得又快又对,起到事半功倍的效果.【答案与解析】解:113(1)(1)2(1)(1)22x x x x+++=-+-75(1)(1)22x x+=-7(1)5(1)x x+=-7755x x+=-212x=-x=-6【总结升华】直接去括号太繁琐,若将(x+1)及(x-1)看作一个整体,并移项合并同类项,解答十分巧妙,可免去去分母的步骤及简化去括号的过程.举一反三:【变式】解方程:278(x-4)-463(8-2x)-888(7x-28)=0【答案】解:原方程可化为278(x-4)+463×2(x-4)-888×7(x-4)=0(x-4)(278+463×2-888×7)=0x-4=0x=4类型三、一元一次方程的应用5.甲车从A地出发以60 km/h的速度沿公路匀速行驶,0.5 h后,乙车也从A地出发,以80 km/h的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车.【答案与解析】解:设乙车出发后x小时追上甲车,依题意得60×0.5+60x=80x,解得x=1.5.答:乙车出发后1.5小时追上甲车.【总结升华】此题的等量关系为:甲前0.5 h的行程+甲后来的行程=乙的行程.6.(2015•东城区一模)列方程或方程组解应用题:2015年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元?【答案与解析】解:设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x﹣5)元,根据题意,列方程得:200x=120(2x﹣5),解得:x=15.答:每棵柏树苗的进价是15元.【总结升华】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.举一反三:【一元一次方程复习 393349 一元一次方程的解法和应用例6】【变式】某文具店为促销X型计算器,优惠条件是一次购买不超过10个,每个38元,超过10个,超过部分每个让利2元(即每个36元),问李老师用812元共买了多少个?【答案】解:设李老师用812元共买了x个,依题意可得:⨯+⨯-=x381036(10)812x=解得:22答:李老师用812元共买了22个.。
苏教版初一上册用一元一次方程解决问题知识汇总及专项练习
用一元一次方程解决问题的一般步骤:审清题意、设未知数(元)、列出方程、解方程、写出答案。
关键在于抓住问题中的数量之间的相等关系,列出方程。
【题型1】月历中数之间的关系问题:同一横行中,后一个数比前一个数多1,同一竖列中,下一个数比上一个多7。
【题型2】比赛问题:胜、负、平局。
【题型3】年龄问题:随着年龄变化但年龄差始终不变。
【题型4】等积变形问题:变形前的体积=变形后的体积:【题型5】盈余"和"不足"问题:用两种不同的方法描述量。
基本相等关系是:盈时的总量一盈的数量=亏时的总量+亏的数量。
【题型6】行程问题:(1)相遇、追及问题:甲的行程+乙的行程=甲、乙两人总的行程追者的路程=前者的路程+原本的路程(2)顺流与逆流问题:顺流速度=静水速度+水流速度逆流速度=静水速度一水流速度【题型7】工作总量问题:若问题中没有具体的工作总量,往往把全部工作量看成1。
工作总量=工作效率×工作时间各部工作分量之和=总量【题型8】配套问题:列比例式构造方程。
(通过比例关系明确数量之间的关系。
)【题型9】售价(标价)、成本(进价)、利润的关系:商品的利润=商品的售价一商品的成本 商品的售价=商品的成本×(1±盈利%/亏损%) 利润率=(商品的利润/商品的成本)x100% 商品的利润=商品的成本×利润率商品打X 折(10X%)后的售价=商品的标价x 折扣(10X )。
【题型10】银行储蓄问题:年存储利息=本金X 年利率X 年数【题型11】数字问题:两位数的数字之和=十位的数字×10+个位的数字。
【题型12】和差倍分问题:利用和倍差倍解方程。
【题型13】分量与总量问题:各分量之和=总量【题型14】分段收费【题型15】方案问题【题型1】月历中数之间的关系问题例1:某月的月历上竖列相邻的三个数的和是39,则该列的第一个数是( )。
A.6B.12C.13D.14例2:小丽在2月的月历上圈出5 个数,呈“十字框”形,它们的和是 55,则中间的数是( )。
苏科版七年级上册数学第4章 一元一次方程 含答案
苏科版七年级上册数学第4章一元一次方程含答案一、单选题(共15题,共计45分)1、如果x=﹣2是方程2x+m﹣4=0的解,那么m的值为()A.-8B.0C.2D.82、已知x=y,则下列各式中,不一定成立的是()A.x﹣2=y﹣2B.C.﹣3x=﹣3yD.3、下列方程中,是一元一次方程的是()A. B. C. D.4、下列哪个是一元一次方程()A. B. C. D.5、若代数式与的值相等,则的值是()A.1B.C.D.26、已知关于x的方程的解是,则a的值为()A.2B.3C.4D.57、若x=1是方程ax+3x=2的解,则a的值是()A.-1B.1C.5D.-58、下列方程中,解为x=2的方程是()A.x﹣3=﹣1B.C.D.9、解方程−=1时,去分母正确的是()A.2x+1-(10x+1)=1B.4x+1-10x+1=6C.4x+2-10x-1=6D.2(2x+1)-(10x+1)=110、关于x的方程有负整数解,则所有符合条件的整数m 的和为()A.5B.4C.1D.-111、方程1﹣= 的解为()A.x=﹣B.x=C.x=D.x=112、若方程:的解互为相反数,则a的值为()A. B. C. D.-113、如果是关于的方程的解,那么的值为()A.3B.C.D.14、把1400元的奖金按两种奖给22名学生,其中一等奖每人200元,二等奖每人50元,设获一等奖的学生有x人,则下列方程错误的是()A. B. C.D.15、如果y﹣x﹣2=0,那么用含有y的代数式表示3x﹣1应该为()A.3y﹣1B.3y+1C.3y﹣7D.3y+7二、填空题(共10题,共计30分)16、x=________时,式子与互为相反数.17、关于的方程是一元一次方程,则的取值是________。
18、当x=________时,整式3x﹣1与2x+1互为相反数.19、已知方程(a-2)x|a|-1=1是一元一次方程,则a=________,x=________ .20、已知关于x的方程2x+a=0的解比方程3x-a=0的解大5,则a=________.21、如图,CD//AB,若∠ECB=92°,∠B=57°,则∠1=________°22、若(a﹣1)x|a|+3=6是关于x的一元一次方程,则a=________.23、若是关于的一元一次方程,那么这个方程的解为________.24、若是关于的一元一次方程,则的值为________.25、如图是一个正方体的表面展开图,如果正方体相对的面上标注的值相等,那么x+2y=________.三、解答题(共5题,共计25分)26、解方程:4+x=3x﹣2.27、检验方程后面的数是不是它的解.2x+1=3x﹣1(x=﹣1,x=2)28、已知关于X的方程+=x-4与方程(x-16)=-6的解相同,求m的值.29、已知不等式的最小整数解为方程的解,求代数式的值.30、小明在解方程,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m 的值和原方程正确的解.参考答案一、单选题(共15题,共计45分)1、D2、D4、A5、B6、B7、A8、A9、C10、D11、B12、A13、A14、C15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学《一元一次方程》试题1(苏教版)_题型归纳
1.填空题(24%)
(l)一次式-3中,常数项是___________.
(2)长方形的长为a厘米,宽为3厘米,则长方形的周长为____________厘米.
(3)当x=__________时,一次式-x+4的值是-4.
(4)某人骑车到外地参观,第一个小时走了x千米,第二个小时比第一小时少走3千米,则两小时内共走了_________千米.
(5)三个连续奇数,最小的一个为x,则其余两个的和为___________.
(6)甲的速度为每小时x千米,乙的速度是甲的速度的,两人同时同地出发,同向而行3小时后,他们两人间的距离为_________千米.
(7)某数的与某数的30%的和比某数小3,若设某数为x,则可得方程__________________.
(8)若某种商品的售出单价为a元,毛利润是售价的35%,则买入单价是_________元.
2.选择题
(1)下列说法中正确的是()
(A)a是正数(B)-a是负数(C)a的系数是1(D)-a的系数是1
(2)下列等式是一元一次方程的是()
(A)x=y-2(B)2×3+1=7(C)-5=3x(D)-1=x
(3)若方程ax+2=8x-6的解是x=-4,则a是()
(A)160(B)(C)9(D)10
(4)x=3是下面哪个方程的解()
(A)5x=7+4x(B)3(x-3)=2x-3
(C)=10(x+2)(D)4(x-2)=5-x
(5)化简2x-2(1-x)的结果是()
(A)3x-2(B)-2(C)4x-2(D)4x
(6)把108册课外读物按2∶3∶4的比例分给初一(1)班、初一(2)班和初一(3)班的学生,则初一(2)班得到的课外读物为()。