数值第一次大作业
北航数值分析大作业 第一题 幂法与反幂法
数 值 分 析(B ) 大 作 业(一)姓名: 学号: 电话:1、算法设计:①求1λ、501λ和s λ的值:s λ:s λ表示矩阵的按模最小特征值,为求得s λ直接对待求矩阵A 应用反幂法即可。
1λ、501λ:若矩阵A 的特征值满足关系 1n λλ<<且1n λλ≠,要求1λ、及501λ时,可按如下方法求解: a . 对矩阵A 用幂法,求得按模最大的特征值1m λ。
b . 按平移量1m λ对矩阵A 进行原点平移得矩阵1m BA I λ=+,对矩阵B 用反幂法求得B 的按模最小特征值2m λ。
c . 321m m m λλλ=-则:113min(,)m m λλλ=,13max(,)n m m λλλ=即为所求。
②求和A 的与数5011140k k λλμλ-=+最接近的特征值ik λ(k=0,1,…39):求矩阵A 的特征值中与P 最接近的特征值的大小,采用原点平移的方法:先求矩阵 B=A-PI 对应的按模最小特征值k β,则k β+P 即为矩阵A 与P 最接近的特征值。
在本次计算实习中则是先求平移矩阵k B A I μ=-,对该矩阵应用反幂法求得s λ,则与k μ最接近的A 的特征值为:s P λ+重复以上过程39次即可求得ik λ(k=0,1,…39)的值。
③求A 的(谱范数)条件数2cond()A 和行列式det A :在(1)中用反幂法求矩阵A 的按模最小特征值时,要用到Doolittle 分解方法,在Doolittle 分解完成后得到的两个矩阵分别为L 和U ,则A 的行列式可由U 阵求出,即:det(A)=det(U)。
求得det(A)不为0,因此A 为非奇异的实对称矩阵,则: max 2()scond A λλ=,max λ和s λ分别为模最大特征值与模最小特征值。
2、程序源代码:#include "Stdio.h"#include "Conio.h"#include "math.h"//****************************************************************************// // 在存储带状矩阵时,下面的几个量在程序中反复用到,为方便编程故把它们定义成宏.// // M :转换后的矩阵的行数,M=R+S+1。
北航数理统计第一次大作业
数理统计第一次课程论文广州恒大队在2015赛季亚冠的进球数的多元线性回归模型学号: SY1527205姓名:郭谢有摘要本赛季亚洲冠军联赛,来自中国的球队广州恒大淘宝队最终在决赛中力克阿联酋的迪拜阿赫利队,三年之内第二次夺得亚冠冠军。
为了研究恒大的夺冠过程,本文选取了恒大该赛季亚冠总共15场比赛中的进球数为因变量,对可能影响进球数的射门数、射正数等7个自变量进行统计,并进一步利用统计软件SPSS对以上数据进行了多元逐步线性回归。
最终确定了进球数与各因素之间关系的“最优”回归方程。
关键词:多元线性回归,逐步回归法,广州恒大,SPSS目录摘要 (1)1.引言 (3)2.符号说明 (3)3.数据的采集和整理 (3)3.1数据的采集 (3)3.2建模 (4)4.数据分析及计算 (4)4.结论 (9)参考文献 (10)致谢 (10)1.引言一场足球比赛的进球数说明了一支球队攻击力的强弱,也是决定比赛胜负的至关因素,综合反映出这支球队的实际水平。
而作为竞技体育,足球场上影响进球数的因素很多,为了研究本赛季恒大在亚冠夺冠过程中的14场比赛中进球数与其他一些因素的关系,本论文从搜达足球和新浪体育数据库中查找了进球数和其他7个主要影响因素的数据,包括射门次数、射正次数、传球次数、传中次数、角球次数、抢断次数。
并进一步采用多元逐步回归分析方法对以上因素进行了显著性分析,从而确定了关于恒大在本赛季亚冠中进球数的最优多元线型回归方程。
2.符号说明3.数据的采集和整理3.1数据的采集本文统计数据时,查阅了搜达足球数据库,确定恒大在亚冠14场比赛中的进球数为因变量,并初步选取这14场比赛中的射门次数、射正次数、传球次数、传中次数、角球次数、抢断次数7因素为自变量,具体数据见下表1。
3.2建模本文选取了恒大在亚冠比赛中的进球数作为因变量y,并选取可能对进球数造成影响的因素为自变量,其中对应关系在符号说明中已经列举。
这里构建模型如下:7⋅X i+εy=β0+∑βii=1其中,其中ε为随机误差项,β0为常数项,βi为待估计的参数。
数值分析大作业一
数值分析大作业一一、算法设计方案1、求λ1和λ501的值:思路:采用幂法求出按模最大特征值λmax,该值必为λ1或λ501,若λmax小于0,则λmax=λ1;否则λmax=λ501。
再经过原点平移,使用幂法迭代出矩阵A-λmax I的特征值,此时求出的按模最大特征值即为λ1和λ501的另一个值。
2、求λs的值:采用反幂法求出按模最小的特征值λmin即为λs,其中的方程组采用LU分解法进行求解。
3、求与μk最接近的特征值:对矩阵A采用带原点平移的反幂法求解最小特征值,其中平移量为:μk。
4、A的条件数cond(A)=| λmax/λmin|;5、A的行列式的值:先将A进行LU分解,再求U矩阵对角元素的乘积即为A 行列式的值。
二、源程序#include<iostream>#include<iomanip>#include<math.h>#define N 501#define E 1.0e-12 //定义精度常量#define r 2#define s 2using namespace std;double a[N];double cc[5][N];void init();double mifa();double fmifa();int max(int aa,int bb);int min(int aa,int bb);int max_3(int aa,int bb,int cc);void LU();void main(){double a1,a2,d1,d501=0,ds,det=1,miu[39],lamta,cond;int i,k;init();/*************求λ1和λ501********************/a1=mifa();if(a1<0)d1=a1; //若小于0则表示λ1的值elsed501=a1; //若大于0则表示λ501的值for(i=0;i<N;i++)a[i]=a[i]-a1;a2=mifa()+a1;if(a2<0)d1=a2; //若小于0则表示λ1的值elsed501=a2; //若大于0则表示λ501的值cout<<"λ1="<<setiosflags(ios::scientific)<<setprecision(12)<<d1<<"\t";cout<<"λ501="<<setiosflags(ios::scientific)<<setprecision(12)<<d501<<endl;/**************求λs*****************/init();ds=fmifa();cout<<"λs="<<setiosflags(ios::scientific)<<setprecision(12)<<ds<<endl;/**************求与μk最接近的特征值λik**************/cout<<"与μk最接近的特征值λik:"<<endl;for(k=0;k<39;k++){miu[k]=d1+(k+1)*(d501-d1)/40;init();for(i=0;i<N;i++)a[i]=a[i]-miu[k];lamta=fmifa()+miu[k];cout<<"λi"<<k+1<<"\t\t"<<setiosflags(ios::scientific)<<setprecision(12)<<lamta<<en dl;}/**************求A的条件数**************/cout<<"矩阵A的条件式";cond=abs(max(abs(d1),abs(d501))/ds);cout<<"cond="<<setiosflags(ios::scientific)<<setprecision(12)<<cond<<endl;/**************求A的行列式**************/cout<<"矩阵A的行列式";init();LU();for(i=0;i<N;i++){det*=cc[2][i];}cout<<"det="<<setiosflags(ios::scientific)<<setprecision(12)<<det<<endl;system("pause");}/**************初始化函数,给a[N]赋值*************/void init(){int i;for(i=1;i<=501;i++)a[i-1]=(1.64-0.024*i)*sin((double)(0.2*i))-0.64*exp((double)(0.1/i)); }/**************幂法求最大绝对特征值**************/double mifa(){int i,k=0;double u[N],y[N]={0},b=0.16,c=-0.064,Beta_=0,error;for(i=0;i<501;i++)u[i]=1; //令u[N]=1for(k=1;k<2000;k++) //控制最大迭代次数为2000{/***求y(k-1)***/double sum_u=0,gh_sum_u;for(i=0;i<N;i++){sum_u+=u[i]*u[i]; }gh_sum_u=sqrt(sum_u);for(i=0;i<N;i++){y[i]=u[i]/gh_sum_u;}/****求新的uk****/u[0]=a[0]*y[0]+b*y[1]+c*y[2];u[1]=b*y[0]+a[1]*y[1]+b*y[2]+c*y[3]; //前两列和最后两列单独拿出来求中D间的循环求for(i=2;i<N-2;i++){u[i]=c*y[i-2]+b*y[i-1]+a[i]*y[i]+b*y[i+1]+c*y[i+2];}u[N-2]=c*y[N-4]+b*y[N-3]+a[N-2]*y[N-2]+b*y[N-1];u[N-1]=c*y[N-3]+b*y[N-2]+a[N-1]*y[N-1];/***求beta***/double Beta=0;for(i=0;i<N;i++){Beta+=y[i]*u[i];}//cout<<"Beta"<<k<<"="<<Beta<<"\t"; 输出每次迭代的beta /***求误差***/error=abs(Beta-Beta_)/abs(Beta);if(error<=E) //若迭代误差在精度水平内则可以停止迭代{return Beta;} //控制显示位数Beta_=Beta; //第个eta的值都要保存下来,为了与后个值进行误差计算 }if(k==2000){cout<<"error"<<endl;return 0;} //若在最大迭代次数范围内都不能满足精度要求说明不收敛}/**************反幂法求最小绝对特¬征值**************/double fmifa(){int i,k,t;double u[N],y[N]={0},yy[N]={0},b=0.16,c=-0.064,Beta_=0,error;for(i=0;i<501;i++)u[i]=1; //令u[N]=1for(k=1;k<2000;k++){double sum_u=0,gh_sum_u;for(i=0;i<N;i++){sum_u+=u[i]*u[i]; }gh_sum_u=sqrt(sum_u);for(i=0;i<N;i++){y[i]=u[i]/gh_sum_u;yy[i]=y[i]; //用重新赋值,避免求解方程组的时候改变y的值}/****LU分解法解方程组Au=y,求新的***/LU();for(i=2;i<=N;i++){double temp_b=0;for(t=max(1,i-r);t<=i-1;t++)temp_b+=cc[i-t+s][t-1]*yy[t-1];yy[i-1]=yy[i-1]-temp_b;}u[N-1]=yy[N-1]/cc[s][N-1];for(i=N-1;i>=1;i--){double temp_u=0;for(t=i+1;t<=min(i+s,N);t++)temp_u+=cc[i-t+s][t-1]*u[t-1];u[i-1]=(yy[i-1]-temp_u)/cc[s][i-1];}double Beta=0;for(i=0;i<N;i++){Beta+=y[i]*u[i];}error=abs(Beta-Beta_)/abs(Beta);if(error<=E){return (1/Beta);}Beta_=Beta;}if(k==2000){cout<<"error"<<endl;return 0;} }/**************求两数最大值的子程序**************/int max(int aa,int bb){return(aa>bb?aa:bb);}/**************求两数最小值的子程序**************/int min(int aa,int bb){return(aa<bb?aa:bb);}/**************求三数最大值的子程序**************/int max_3(int aa,int bb,int cc){ int tt;if(aa>bb)tt=aa;else tt=bb;if(tt<cc) tt=cc;return(tt);}/**************LU分解**************/void LU(){int i,j,k,t;double b=0.16,c=-0.064;/**赋值压缩后矩阵cc[5][501]**/for(i=2;i<N;i++)cc[0][i]=c;for(i=1;i<N;i++)cc[1][i]=b;for(i=0;i<N;i++)cc[2][i]=a[i];for(i=0;i<N-1;i++)cc[3][i]=b;for(i=0;i<N-2;i++)cc[4][i]=c;for(k=1;k<=N;k++){for(j=k;j<=min(k+s,N);j++){double temp=0;for(t=max_3(1,k-r,j-s);t<=k-1;t++)temp+=cc[k-t+s][t-1]*cc[t-j+s][j-1];cc[k-j+s][j-1]=cc[k-j+s][j-1]-temp;}//if(k<500){for(i=k+1;i<=min(k+r,N);i++){double temp2=0;for(t=max_3(1,i-r,k-s);t<=k-1;t++)temp2+=cc[i-t+s][t-1]*cc[t-k+s][k-1];cc[i-k+s][k-1]=(cc[i-k+s][k-1]-temp2)/cc[s][k-1];}}}}三、程序结果。
数值分析大作业
数值分析上机作业(一)一、算法的设计方案1、幂法求解λ1、λ501幂法主要用于计算矩阵的按模最大的特征值和相应的特征向量,即对于|λ1|≥|λ2|≥.....≥|λn|可以采用幂法直接求出λ1,但在本题中λ1≤λ2≤……≤λ501,我们无法判断按模最大的特征值。
但是由矩阵A的特征值条件可知|λ1|和|λ501|之间必然有一个是最大的,通过对矩阵A使用幂法迭代一定次数后得到满足精度ε=10−12的特征值λ0,然后在对矩阵A做如下的平移:B=A-λ0I由线性代数(A-PI)x=(λ-p)x可得矩阵B的特征值为:λ1-λ0、λ2-λ0…….λ501-λ0。
对B矩阵采用幂法求出B矩阵按模最大的特征值为λ∗=λ501-λ0,所以λ501=λ∗+λ0,比较λ0与λ501的大小,若λ0>λ501则λ1=λ501,λ501=λ0;若λ0<λ501,则令t=λ501,λ1=λ0,λ501=t。
求矩阵M按模最大的特征值λ的具体算法如下:任取非零向量u0∈R nηk−1=u T(k−1)∗u k−1y k−1=u k−1ηk−1u k=Ay k−1βk=y Tk−1u k(k=1,2,3……)当|βk−βk−1||βk|≤ε=10−12时,迭终终止,并且令λ1=βk2、反幂法计算λs和λik由已知条件可知λs是矩阵A 按模最小的特征值,可以应用反幂法直接求解出λs。
使用带偏移量的反幂法求解λik,其中偏移量为μk=λ1+kλ501−λ140(k=1,2,3…39),构造矩阵C=A-μk I,矩阵C的特征值为λik−μk,对矩阵C使用反幂法求得按模最小特征值λ0,则有λik=1λ0+μk。
求解矩阵M按模最小特征值的具体算法如下:任取非零向量u 0∈R n ηk−1= u T (k−1)∗u k−1y k−1=u k−1ηk−1 Au k =y k−1βk =y T k−1u k (k=1,2,3……)在反幂法中每一次迭代都要求解线性方程组Au k =y k−1,当K 足够大时,取λn =1βk 。
(完整版)数值分析第一次作业
问题1:20.给定数据如下表:试求三次样条插值S(x),并满足条件 (1)S`(0.25)=1.0000,S`(0.53)=0.6868; (2)S ’’(0.25)=S ’’(0.53)=0。
分析:本问题是已知五个点,由这五个点求一三次样条插值函数。
边界条件有两种,(1)是已知一阶倒数,(2)是已知自然边界条件。
对于第一种边界(已知边界的一阶倒数值),可写出下面的矩阵方程。
⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡432104321034322110d M M M M M 200020000020022d d d d λμμλμλμλ其中μj =j1-j 1-j h h h +,λi=j1-j j h h h +,dj=6f[x j-1,x j ,x j+1], μn =1,λ0=1对于第一种边界条件d 0=0h 6(f[x 0,x 1]-f 0`),d n =1-n h 6(f`n-f `[x n-1,x n ]) 解:由matlab 计算得:由此得矩阵形式的线性方程组为:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡ 2.1150-2.4286-3.2667-4.3143-5.5200-M M M M M 25714.00001204286.000004000.026000.0006429.023571.0001243210解得 M 0=-2.0286;M 1=-1.4627;M 2= -1.0333; M 3= -0.8058; M 4=-0.6546S(x)=⎪⎪⎩⎪⎪⎨⎧∈-+-+-∈-+-+-∈-+-+-∈-+-+-]53.0,45.0[x 5.40x 9.1087x 35.03956.8.450-x 1.3637-x .5301.67881- ]45.0,39.0[x 9.30x 11.188x 54.010.418793.0-x 2.2384-x .450(2.87040-]39.0,30.0[x 03.0x 6.9544x 9.30 6.107503.0-x 1.9136-x .3902.708779-]30.0,25.0[x 5.20x 10.9662x 0.3010.01695.20-x 4.8758-x .3006.76209-33333333),()()()(),()()()),()()()(),()()()(Matlab 程序代码如下:function tgsanci(n,s,t) %n代表元素数,s,t代表端点的一阶导。
第一次大作业习题2016
第一次大作业考核规则:(1)每题10分,共10题;(2)10人一组,组员是任课教师随机组合;(3)每组的考核方式:每名组员通过抽签独立完成一道题目(纸质书写相应题目代码),本组的分数是10名学生各自得分总和;(4)考核时间和地点,任课教师自行安排;注意:(1)题目求解的参考代码,请每组通过相互协作完成;(2)每名组员要求10道题目均要掌握(抽签随机,为了保证团体成绩,请组员主动学习,相互帮助、交流)。
1.编写一个程序,求出200到300之间同时满足以下条件的数:(1)三个数字之积为42;(2)三个数字之和为12。
要求每一行显示5个数,并且统计满足条件的数字个数。
2.编写程序求出满足下列条件的四位数:(1)该数是个完全平方数;(2)千位、十位数字之和为10且百位、个位数字之积为12。
要求每一行显示5个数,并且统计满足条件的数字个数。
3.若一个四位数等于其各位上数字的四方和,则称这个四位数为四叶玫瑰花数。
例如1634是一个四叶玫瑰花数,因为1634=14+64+34+44。
编写一个程序,输出所有的四叶玫瑰花数,要求每一行显示5个数,并且统计满足条件的数字个数。
4. 编写一个程序,统计并输出100~700之间素数。
要求每一行显示5个数,并且统计素数的个数。
5.输出显示1~100之间可以被n整除的所有整数,运行时n由键盘输入。
要求每一行显示5个数,并且统计一共有多少个整数能被n整除。
6. 使用循环语句输出以下图形7. 求100以内能被3整除且个位数字为9的所有正整数。
要求每一行显示5个数,并且统计一共有多少个正整数满足条件。
8.一个四位数具有以下特点:(1)前两位相同,后两位相同,但与前两位不同;(2)这个四位数正好是某位整数的平方;编程求解该四位数字是?9.输入一行字符,分别统计出其中英文字母、空格、数字和其他字符的个数。
10.编写程序,输出从公元1600到公元2016年所有的闰年年号,并且每输出5个年号换一行。
北航数值分析全部三次大作业
北航数值分析全部三次大作业第一次大作业是关于解线性方程组的数值方法。
我们被要求实现各种常用的线性方程组求解算法,例如高斯消元法、LU分解法和迭代法等。
我首先学习了这些算法的原理和实现方法,并借助Python编程语言编写了这些算法的代码。
在实验中,我们使用了不同规模和条件的线性方程组进行测试,并比较了不同算法的性能和精度。
通过这个作业,我深入了解了线性方程组求解的原理和方法,提高了我的编程和数值计算能力。
第二次大作业是关于数值积分的方法。
数值积分是数值分析中的重要内容,它可以用于计算曲线的长度、函数的面积以及求解微分方程等问题。
在这个作业中,我们需要实现不同的数值积分算法,例如矩形法、梯形法和辛普森法等。
我学习了这些算法的原理和实现方法,并使用Python编写了它们的代码。
在实验中,我们计算了不同函数的积分值,并对比了不同算法的精度和效率。
通过这个作业,我深入了解了数值积分的原理和方法,提高了我的编程和数学建模能力。
第三次大作业是关于常微分方程的数值解法。
常微分方程是数值分析中的核心内容之一,它可以用于描述众多物理、化学和生物现象。
在这个作业中,我们需要实现不同的常微分方程求解算法,例如欧拉法、龙格-库塔法和Adams法等。
我学习了这些算法的原理和实现方法,并使用Python编写了它们的代码。
在实验中,我们解决了一些具体的常微分方程问题,并比较了不同算法的精度和效率。
通过这个作业,我深入了解了常微分方程的原理和方法,提高了我的编程和问题求解能力。
总的来说,北航数值分析课程的三次大作业非常有挑战性,但也非常有意义。
通过这些作业,我在数值计算和编程方面得到了很大的提升,也更加深入地了解了数值分析的理论和方法。
虽然这些作业需要大量的时间和精力,但我相信这些努力将会对我未来的学习和工作产生积极的影响。
北航数值分析大作业一
北京航空航天大学数值分析大作业一学院名称自动化专业方向控制工程学号ZY*******学生姓名许阳教师孙玉泉日期2021 年11月26 日设有501501⨯的实对称矩阵A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=5011A a b c b c c b c b a其中,064.0,16.0),501,,2,1(64.0)2.0sin()024.064.1(1.0-==⋅⋅⋅=--=c b i e i i a ii 。
矩阵A 的特征值为)501,,2,1(⋅⋅⋅=i i λ,并且有||min ||,501150121i i s λλλλλ≤≤=≤⋅⋅⋅≤≤1λ,501λ和s λ的值。
A 的与数4015011λλλμ-+=kk 最接近的特征值)39,,2,1(⋅⋅⋅=k k i λ。
A 的(谱范数)条件数2)A (cond 和行列式detA 。
一 方案设计1 求1λ,501λ和s λ的值。
s λ为按模最小特征值,||min ||5011i i s λλ≤≤=。
可使用反幂法求得。
1λ,501λ分别为最大特征值及最小特征值。
可使用幂法求出按模最大特征值,如结果为正,即为501λ,结果为负,那么为1λ。
使用位移的方式求得另一特征值即可。
2 求A 的与数4015011λλλμ-+=kk 最接近的特征值)39,...,2,1(=k k i λ。
题目可看成求以k μ为偏移量后,按模最小的特征值。
即以k μ为偏移量做位移,使用反幂法求出按模最小特征值后,加上k μ,即为所求。
3 求A 的(谱范数)条件数2)(A cond 和行列式detA 。
矩阵A 为非奇异对称矩阵,可知,||)(min max2λλ=A cond(1-1)其中m ax λ为按模最大特征值,min λ为按模最小特征值。
detA 可由LU 分解得到。
因LU 均为三角阵,那么其主对角线乘积即为A 的行列式。
二 算法实现1 幂法使用如下迭代格式:⎪⎪⎩⎪⎪⎨⎧⋅===⋅⋅⋅=------||max |)|sgn(max ||max /),,(111111)0()0(10k k k k k k k k Tn u u Ay u u u y u u u β任取非零向量 (2-1)终止迭代的控制理论使用εβββ≤--||/||1k k k , 实际使用εβββ≤--||/||||||1k k k(2-2)由于不保存A 矩阵中的零元素,只保存主对角元素a[501]及b,c 值。
北航研究生数值分析编程大作业1
数值分析大作业一、算法设计方案1、矩阵初始化矩阵[]501501⨯=ij a A 的下半带宽r=2,上半带宽s=2,设置矩阵[][]5011++s r C ,在矩阵C 中检索矩阵A 中的带内元素ij a 的方法是:j s j i ij c a ,1++-=。
这样所需要的存储单元数大大减少,从而极大提高了运算效率。
2、利用幂法求出5011λλ,幂法迭代格式:0111111nk k k k kk T k k k u R y u u Ay y u ηηβ------⎧∈⎪⎪=⎪=⎨⎪=⎪⎪=⎩非零向量 当1210/-≤-k k βββ时,迭代终止。
首先对于矩阵A 利用幂法迭代求出一个λ,然后求出矩阵B ,其中I A B λ-=(I 为单位矩阵),对矩阵B 进行幂法迭代,求出λ',之后令λλλ+'='',比较的大小与λλ'',大者为501λ,小者为1λ。
3、利用反幂法求出iks λλ,反幂法迭代格式:0111111nk k k k kk T k k k u R y u Au y y u ηηβ------⎧∈⎪⎪=⎪=⎨⎪=⎪⎪=⎩非零向量 当1210/-≤-k k βββ时,迭代终止,1s k λβ=。
每迭代一次都要求解一次线性方程组1-=k k y Au ,求解过程为:(1)作分解LU A =对于n k ,...,2,1=执行[][]s k n r k k k i c c c c c n s k k k j c cc c k s ks k t k s k r i t t s t i k s k i k s k i js j t k s j r k t t s t k j s j k j s j k <+++=-=++=-=+++----=++-++-++-++----=++-++-++-∑∑);,min(,...,2,1/)(:),min(,...,1,:,1,11),,1max(,1,1,1,11),,1max(,1,1,1(2)求解y Ux b Ly ==,(数组b 先是存放原方程组右端向量,后来存放中间向量y))1,...,2,1(/)(:/:),...,3,2(:,1),min(1.1.11),1max(,1--=-===-=+++-++-+--=++-∑∑n n i c x c b x c b x n i b c b b i s t n s i i t t s t i i i ns n n ti r i t t s t i i i使用反幂法,直接可以求得矩阵按模最小的特征值s λ。
数值分析第一次作业答案
作业1.用如下数值表构造不超过3次的插值多项式2. P55 11题.给出概率积分⎰-=xxdxey 022π的数据表用2次插值计算,试问:(1) 当x = 0.472时,积分值等于多少? (2) 当x 为何值时,积分值等于0.5? 解:(1) 取x 0 = 0.47, x 1 = 0.48, x 2 = 0.4980.4955530040.04093346-80.1809899240.355496540.51166830.50274980.4937452=+=----⨯+----⨯+----⨯==----+----+----≈)48.049.0)(47.049.0()48.0472.0)(47.0472.0()49.048.0)(47.048.0()49.0472.0)(47.0472.0()49.0472.0)(48.047.0()49.0472.0)(48.0472.0()472.0())(())(())(())(())(())(()472.0(2120210221120121210y Lxx xx xxy x x x x x x y x x x x x x x x x x x x y(2)90.4769359350.05272367-80.4362204360.093439170.50274980.51166830.49374520.51166830.50274980.49374520.49 0.51166830.50274980.49374520.50274980.51166830.49374520.48 0.51166830.49374520.50274980.49374520.51166830.50274980.47=+=----⨯+----⨯+----⨯==----+----+----≈))(()5.0)(5.0())(()5.0)(5.0())(()5.0)(5.0()5.0())(())(())(())(())(())(()5.0(212210221120121210Lyyy y yy xy y yy y y xyyyy yy xy y y y y y x3. 证明方程e x +10x -2=0在区间[0,1]内有一个根,如果使用二分法求该区间内的根,且误差不超过10-6,试问需要二分区间[0,1]多少次?4. 设x t =451.01为准确值,x a =451.023为x t 的近似值,试求出x a 有效数字的位数及相对误差 作业答案1.解:N 2(x ) = f (0)+f [0,1](x -0)+ f [0,1,2](x -0) (x -1) 1+1×(x -0) +3×(x -0) (x -1)=3x 2-2x +1 为求得P 3(x ),根据插值条件知,P 3(x )应具有下面的形式 P 3(x )=N 2(x )+k (x -0) (x -1) (x -2),这样的P 3(x )自然满足:P 3(x i )= f (x i )由P 3’(1 )=3P 3’(1 )= N 2’(1 )+k (1-0) (1-2) =N 2’(1 )-k = 4-k=3∴ k =1∴ P 3(x )=N 2(x )+ (x -0) (x -1) (x -2)=x 3+1 3. 证明 令f (x )=e x +10x -2,∵ f (0)=-1<0,f (1)=e+8> 0∴ f (x )= e x +10x -2 =0在[0,1]有根。
数值分析(宋)第1次大作业Hilbert矩阵病态问题研究
Hilbert 矩阵病态问题研究 (数值分析第一次大作业) 姓名:** 学号:** 班级:**1)Hilbert 矩阵的阶数n 与ln(())n cond H 的关系猜想:ln(())n cond H 与n 呈线性关系,其中()n cond H 按2范数计算。
绘制ln(())n cond H n 曲线。
分别取11050500n ≤≤、、,得到ln(())n cond H n 曲线如图1-1、图1-2及图1-3所示。
程序详见附录1。
图1-1. 110n ≤≤由图1-1可知,110n ≤≤,ln(())n cond H 是n 的线性函数,猜想正确。
图1-2. 150n ≤≤由图1-2知,当15n >时,ln(())n cond H 与n 之间的线性关系已经不存在,而且ln(())n cond H 的值大致在(40,50)内间波动,猜想与实际不完全相符。
图1-3. 1500n ≤≤图1-3进一步说明了ln(())n cond H 与n 之间的变化关系:当n 小于某一值(设该值为k )时,ln(())n cond H 是n 的线性函数,而当n 大于k 时,随着n 的增大,ln(())n cond H 与n 间的线性关系不再成立,且其值在某一区间内波动。
为进一步确定k 的大小,绘制114n ≤≤时的曲线,如图1-4所示,可知k 的取值应为13。
图1-4. 114n ≤≤2)由n H 至ˆnH 的预处理 绘制ˆln(()/())n n cond H cond H n 曲线。
其中11ˆn nH D H D --=,D 为由n H 的对角元素开方构成的对角矩阵。
条件数按2范数计算。
程序详见附录2。
分别取11350500n ≤≤、、,得到如图2-1、图2-2和图2-3所示曲线。
由曲线图像可知:当Hilbert 矩阵的阶数12n ≤时,ˆln(()/())n ncond H cond H 随n 增大而逐渐减小,而n 继续增大时,ˆln(()/())n n cond H cond H 的取值将在区间(-7,4)内波动,且主要集中在(0,-3)区间内。
数字逻辑第一次大作业
..一.“七段数码管字形发生器”真值表(支持共阴极,1亮0灭)二.卡诺图化简:..(1)a函数:(2)b函数:.... (4)d函数.. (6)f函数图,设定I/O,编译纠错第一次编译出错,Input与Output中部分名称重复,改Input中“A”为“In-A”,B、C、D同理。
第二次编译通过。
四.在Quartus中,对所设计的电路进行整体功能仿真:五.仅采用与非门实现的解决方案:根据摩根代换定律,将a~f的表达式改为与非式,在Quartus中重新用原理图的方法画出整体电路图,设定I/O,根据新表达式在电路中适当添加非门,编译纠错。
并对电路功能进行整体仿真。
六.支持共阳极数码管的解决方案:将a~f的输出信号按位取反。
即在各信号输出之前添加非门。
七.填写真值表:八.自定义三个4变量功能函数(不能重复前面的三变量函数功能),填写真值表:九.小结:首先明白了数码管工作原理后,通过写出a~f输出变量的表达式熟练了将真值表在卡诺图上表示的方法。
(由于BD字样不易显示,选用小写b和d)之后在摸索中掌握了Quartus中原理图的使用方法。
第一次编译得知在定义名称时字母不区分大写小写,A与a将被视为重复命名。
第二次只是有几个warnings,给忽略了。
进行仿真时,由于和原理图设计是分两次进行的,在选择“Node Finder...”插入节点时系统没有自动选中我之前保存的bdf文件,显示“No node available”。
重新打开之前的工程文件重试后成功。
在仿真时不知道是否应该将ABCD连续设置16次分别观察是否显示0~F,还是将输入信号设为随即信号,整体观察。
后来一想没啥区别,后者逐个信号竖向观察就能知道显示的数字对不对,还更方便。
观察仿真波形发现,在固定输入信号时,确实输出的信号符合要求。
选做题没想出好方法,觉得只有同时连两条线路才可实现。
其实已开始对这个软件真是无从下手。
多亏几个朋友对我的帮助,我才掌握了基本使用方法。
北航硕士研究生数值分析大作业一
数值分析—计算实习作业一学院:17系专业:精密仪器及机械姓名:张大军学号:DY14171142014-11-11数值分析计算实现第一题报告一、算法方案算法方案如图1所示。
(此算法设计实现完全由本人独立完成)图1算法方案流程图二、全部源程序全部源程序如下所示#include <iostream.h>#include <iomanip.h>#include <math.h>int main(){double a[501];double vv[5][501];double d=0;double r[3];double uu;int i,k;double mifayunsuan(double *a,double weiyi);double fanmifayunsuan(double *a,double weiyi);void yasuo(double *A,double (*C)[501]);void LUfenjie(double (*C)[501]);//赋值语句for(i=1;i<=501;i++){a[i-1]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i);}//程序一:使用幂方法求绝对值最大的特征值r[0]=mifayunsuan(a,d);//程序二:使用幂方法求求平移λ[0]后绝对值最大的λ,得到原矩阵中与最大特征值相距最远的特征值d=r[0];r[1]=mifayunsuan(a,d);//比较λ与λ-λ[0]的大小,由已知得if(r[0]>r[1]){d=r[0];r[0]=r[1];r[1]=d;}//程序三:使用反幂法求λr[2]=fanmifayunsuan(a,0);cout<<setiosflags(ios::right);cout<<"λ["<<1<<"]="<<setiosflags(ios::scientific)<<setprecision(12)<<r[0]<<endl;cout<<"λ["<<501<<"]="<<setiosflags(ios::scientific)<<setprecision(12)<<r[1]<<endl;cout<<"λ[s]="<<setiosflags(ios::scientific)<<setprecision(12)<<r[2]<<endl;//程序四:求A的与数u最接近的特征值for(k=1;k<40;k++){uu=r[0]+k*(r[1]-r[0])/40;cout<<"最接近u["<<k<<"]"<<"的特征值为"<<setiosflags(ios::scientific)<<setprecision(12)<<fanmifayunsuan(a,uu)<<endl;}//程序五:谱范数的条件数是绝对值最大的特征值除以绝对值最小的特征值的绝对值cout<<"cond(A)2="<<fabs(r[0]/r[2])<<endl;//程序六:A的行列式的值就是A分解成LU之U的对角线的乘积yasuo(a,vv);LUfenjie(vv);uu=1;for(i=0;i<501;i++){uu=uu*vv[2][i];}cout<<"Det(A)="<<uu<<endl;return 1;}double mifayunsuan(double *a,double weiyi){int i,k;double b=0.16;double c=-0.064;double ee,w,v1,v2,mm,sum;double u[501];double y[505]={0};for(i=0;i<501;i++)u[i]=1;//给u赋初值if (weiyi!=0){for (i=0;i<501;i++)a[i]-=weiyi;}ee=1;k=0;//使得初始计算时进入循环语句while(ee>1e-12){mm=0;for(i=0;i<501;i++){mm=mm+u[i]*u[i];}w=sqrt(mm);for(i=0;i<501;i++){y[i+2]=u[i]/w;//注意此处编程与书上不同,之后会解释它的巧妙之处1 }for(i=0;i<501;i++){u[i]=c*y[i]+b*y[i+1]+a[i]*y[i+2]+b*y[i+3]+c*y[i+4];//1显然巧妙之处凸显出来}sum=0;for(i=0;i<501;i++){sum+=y[i+2]*u[i];}v1=v2;v2=sum;//去除特殊情况,减少漏洞if(k==0){k++;}else{ee=fabs(v2-v1)/fabs(v2);}}if (weiyi!=0){for (i=0;i<501;i++)a[i]+=weiyi;}//还原A矩阵return (v2+weiyi);}double fanmifayunsuan(double *a,double weiyi){int i,k;double b=0.16;double c=-0.064;double ee,w,v1,v2,mm,sum;double u[501];double y[501];double C[5][501];void yasuo(double *A,double (*C)[501]);void LUfenjie(double (*C)[501]);void qiuU(double (*C)[501],double *y,double *u);//把A阵压缩到C阵中for(i=0;i<501;i++)u[i]=1;//给u赋初值if (weiyi!=0){for (i=0;i<501;i++)a[i]-=weiyi;}yasuo(a,C);LUfenjie(C);ee=1;k=0; //使得初始计算时进入循环语句while(ee>1e-12){mm=0;for(i=0;i<501;i++){mm=mm+u[i]*u[i];}w=sqrt(mm);for(i=0;i<501;i++){y[i]=u[i]/w;}qiuU(C,y,u);sum=0;for(i=0;i<501;i++){sum+=y[i]*u[i];}v1=v2;v2=sum;//去除特殊情况,减少漏洞if(k==0){k++;}else{ee=fabs(1/v2-1/v1)/fabs(1/v2);}}if (weiyi!=0){for (i=0;i<501;i++)a[i]+=weiyi;}//还原A矩阵return (1/v2+weiyi);}void yasuo(double *A,double (*C)[501]){double b=0.16;double c=-0.064;int i;for(i=0;i<501;i++){C[0][i]=c;C[1][i]=b;C[2][i]=A[i];C[3][i]=b;C[4][i]=c;}}void LUfenjie(double (*C)[501]){int k,t,j;int r=2,s=2;double sum;int minn(int ,int );int maxx(int ,int );for(k=0;k<501;k++){for(j=k;j<=minn(k+s,501-1);j++){if(k==0)sum=0;else{sum=0;for(t=maxx(k-r,j-s);t<k;t++){sum=sum+C[k-t+s][t]*C[t-j+s][j];}}C[k-j+s][j]=C[k-j+s][j]-sum;}for(j=k+1;j<=minn(k+r,501-1);j++){if(k<501-1){if(k==0)sum=0;else{sum=0;for(t=maxx(j-r,k-s);t<k;t++){sum=sum+C[j-t+s][t]*C[t-k+s][k];}}C[j-k+s][k]=(C[j-k+s][k]-sum)/C[s][k];}}}}void qiuU(double (*C)[501],double *y,double *u){int i,t;double b[501];double sum;int r=2,s=2;int minn(int ,int );int maxx(int ,int );for(i=0;i<501;i++){b[i]=y[i];}for(i=1;i<501;i++){sum=0;for(t=maxx(0,i-r);t<i;t++){sum=sum+C[i-t+s][t]*b[t];}b[i]=b[i]-sum;}u[500]=b[500]/C[s][500];for(i=501-2;i>=0;i--){sum=0;for(t=i+1;t<=minn(i+s,500);t++){sum=sum+C[i-t+s][t]*u[t];}u[i]=(b[i]-sum)/C[s][i];}}int minn(int x,int y){int min;if(x>y)min=y;elsemin=x;return min;}int maxx(int b,int c){int max;if(b>c){if(b>0)max=b;elsemax=0;}else{if(c>0)max=c;elsemax=0;}return max;}三、特征值以及的值λ[1]=-1.070011361502e+001 λ[501]=9.724634098777e+000λ[s]=-5.557910794230e-003最接近u[1]的特征值为-1.018293403315e+001最接近u[2]的特征值为-9.585707425068e+000最接近u[3]的特征值为-9.172672423928e+000最接近u[4]的特征值为-8.652284007898e+000最接近u[5]的特征值为-8.0934********e+000最接近u[6]的特征值为-7.659405407692e+000最接近u[7]的特征值为-7.119684648691e+000最接近u[8]的特征值为-6.611764339397e+000最接近u[9]的特征值为-6.0661********e+000最接近u[10]的特征值为-5.585101052628e+000最接近u[11]的特征值为-5.114083529812e+000最接近u[12]的特征值为-4.578872176865e+000最接近u[13]的特征值为-4.096470926260e+000最接近u[14]的特征值为-3.554211215751e+000最接近u[15]的特征值为-3.0410********e+000最接近u[16]的特征值为-2.533970311130e+000最接近u[17]的特征值为-2.003230769563e+000最接近u[18]的特征值为-1.503557611227e+000最接近u[19]的特征值为-9.935586060075e-001最接近u[20]的特征值为-4.870426738850e-001最接近u[21]的特征值为2.231736249575e-002最接近u[22]的特征值为5.324174742069e-001最接近u[23]的特征值为1.052898962693e+000最接近u[24]的特征值为1.589445881881e+000最接近u[25]的特征值为2.060330460274e+000最接近u[26]的特征值为2.558075597073e+000最接近u[27]的特征值为3.080240509307e+000最接近u[28]的特征值为3.613620867692e+000最接近u[29]的特征值为4.0913********e+000最接近u[30]的特征值为4.603035378279e+000最接近u[31]的特征值为5.132924283898e+000最接近u[32]的特征值为5.594906348083e+000最接近u[33]的特征值为6.080933857027e+000最接近u[34]的特征值为6.680354092112e+000最接近u[35]的特征值为7.293877448127e+000最接近u[36]的特征值为7.717111714236e+000最接近u[37]的特征值为8.225220014050e+000最接近u[38]的特征值为8.648666065193e+000最接近u[39]的特征值为9.254200344575e+000cond(A)2=1.925204273902e+003 Det(A)=2.772786141752e+118四、现象讨论在大作业的程序设计过程当中,初始向量的赋值我顺其自然的设为第一个分量为1,其它分量为0的向量,计算结果与参考答案存在很大差别,计算结果对比如下图2所示(左侧为正确结果,右侧为错误结果),导致了我花了很多的时间去检查程序算法。
北航数值分析第一次大作业(幂法反幂法)
一、问题分析及算法描述1. 问题的提出:(1)用幂法、反幂法求矩阵A =[a ij ]20×20的按摸最大和最小特征值,并求出相应的特征向量。
其中 a ij ={sin (0.5i +0.2j ) i ≠j 1.5cos (i +1.2j ) i =j要求:迭代精度达到10−12。
(2)用带双步位移的QR 法求上述的全部特征值,并求出每一个实特征值相应的特征向量。
2. 算法的描述:(1) 幂法幂法主要用于计算矩阵的按摸为最大的特征值和相应的特征向量。
其迭代格式为:{ 任取非零向量u 0=(h 1(0),⋯,h n (0))T|h r (k−1)|=max 1≤j≤n |h r (k−1)| y ⃑ k−1=u ⃑ k−1|h r (k−1)| u ⃑ k =Ay ⃑ k−1=(h 1(k ),⋯,h n (k ))T βk =sgn (h r (k−1))h r (k ) (k =1,2,⋯) 终止迭代的控制选用≤ε。
幂法的使用条件为n ×n 实矩阵A 具有n 个线性无关的特征向量x 1,x 2,⋯,x n ,其相应的特征值λ1,λ2,⋯,λn 满足不等式|λ1|>|λ2|≥|λ3|≥⋯≥|λn |或λ1=λ2=⋯=λm|λ1|>|λm+1|≥|λm+2|≥⋯≥|λn |幂法收敛速度与比值|λ2λ1|或|λm+1λ1|有关,比值越小,收敛速度越快。
(2) 反幂法反幂法用于计算n ×n 实矩阵A 按摸最小的特征值,其迭代格式为:{任取非零向量u 0∈R nηk−1=√u ⃑ k−1T u ⃑ k−1 y ⃑ k−1=u ⃑ k−1ηk−1⁄ Au ⃑ k =y ⃑ k−1 βk =y ⃑ k−1u ⃑ k (k =1,2,⋯) 每迭代一次都要求解一次线性方程组Au ⃑ k =y ⃑ k−1。
当k 足够大时,λn ≈1βk ,y ⃑ k−1可近似的作为矩阵A 的属于λn 的特征向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数值分析B》计算实习题第一题姓名:乔迈学号:SY1004319学院:能源与动力工程学院一、算法的设计方案:1、首先创建原矩阵,对矩阵A进行幂法运算,得出按模最大的特征值。
2、由于λ1‹λ2‹…‹λ501,所以在以所有特征值建立的数轴上,λ1、λ501位于数轴的两端,两者之一必为按模最大。
利用幂法,可以求出来按模最大的特征值,但该值可能为λ1也可能为λ501;判断该特征值的符号,若为正,则为λ501,否则,为λ1。
3、A平移,再用幂法,即可得另一个最大或最小的特征值。
4、对矩阵A进行反幂法运算,得出按模最小的特征值λs。
5、A平移相应量μk,进行反幂法运算,即可得相应的特征值λik,但是反幂法中要用到线性方程组的求解,而原矩阵A又是带状矩阵,采用LU分解。
6、A的谱范数条件数cond(A)为按模最大的特征值与按模最小的特征值之比按模最大的特征值与按模最小的特征值已分别在前面求出。
7、detA为LU分解后U的对角线元素的乘积。
二、源程序:#include<stdio.h>#include<math.h>#include<iostream.h>#define N 501/*定义全局变量*/double a[5][N];double u[N],y[N];/*定义函数*/void input_a() //输入矩阵A{int i;for(i=2;i<N;i++)a[0][i]=-0.064;for(i=1;i<N;i++)a[1][i]=0.16;for(i=1;i<=N;i++)a[2][i-1]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i);for(i=0;i<N-1;i++)a[3][i]=0.16;for(i=0;i<N-2;i++)a[4][i]=-0.064;}void input_u() //输入初始向量u{for(int i=0;i<N;i++)u[i]=1;}int max(int a,int b) //求最大值{if(a>b) return a;else return b;}int min(int a,int b) //求最小值{if(a<b) return a;else return b;}void matrix_pingyi(double fun_a[5][N],double b) //矩阵的主对角线元素平移{for(int i=0;i<N;i++)a[2][i]=a[2][i]-b;}void doolittle(double fun_a[N][N],double fun_b[N]) //Doolittle分解{int k,i,j,t;int m,l;/*分解*/for(k=0;k<N;k++){m=min(k+2,N-1);for(j=k;j<=m;j++){double sum=0;l=max(max(0,k-2),j-2);for(t=l;t<=k-1;t++)sum+=fun_a[k-t+2][t]*fun_a[t-j+2][j];fun_a[k-j+2][j]=fun_a[k-j+2][j]-sum;}if(k<N-1){m=min(k+2,N-1);for(i=k+1;i<=m;i++){double sum=0;l=max(max(0,i-2),k-2);for(t=l;t<=k-1;t++)sum+=fun_a[i-t+2][t]*fun_a[t-k+2][k];fun_a[i-k+2][k]=(fun_a[i-k+2][k]-sum)/fun_a[2][k];}}}/*求解*/double copy_b[N];for(i=0;i<N;i++)copy_b[i]=fun_b[i];for(i=1;i<N;i++){double sum=0;m=max(0,i-2);for(t=m;t<=i-1;t++)sum+=fun_a[i-t+2][t]*copy_b[t];copy_b[i]=copy_b[i]-sum;}u[N-1]=copy_b[N-1]/fun_a[2][N-1];for(i=N-2;i>=0;i--){double sum=0;l=min(i+2,N-1);for(t=i+1;t<=l;t++)sum+=fun_a[i-t+2][t]*u[t];u[i]=(copy_b[i]-sum)/fun_a[2][i];}}double vector_chengji(double fun_a[N],double fun_b[N]) //计算向量乘积{double sum=0;for(int i=0;i<N;i++)sum=sum+fun_a[i]*fun_b[i];return sum;}void vector_bianxing(double fun_a[N],double b) //向量变形{for(int i=0;i<N;i++)y[i]=fun_a[i]/b;}void matix_vector(double fun_a[5][N],double fun_b[N]) //计算矩阵与向量的乘积{int i,j;double m;for(i=0;i<N;i++)u[i]=0;for(i=0;i<N;i++){m=max(0,i-2);for(j=min(i+2,N-1);j>=m;j--)u[i]+=a[i+2-j][j]*y[j];}/*for(i=0;i<2;i++){for(j=i+2;j>=0;j--)u[i]=u[i]+a[i+2-j][j]*y[j];}for(i=2;i<N-2;i++){for(j=i+2;j>=i-2;j--)u[i]+=a[i+2-j][j]*y[j];}for(i=N-2;i<N;i++){for(j=N-1;j>=i-2;j--)u[i]=u[i]+a[i+2-j][j]*y[j];}*/}double mifa(double a[5][N]) //幂法{double v0=0,v1;double v_middle;double xiangdui;input_u();for(int k=0;;k++){v_middle=vector_chengji(u,u);v_middle=sqrt(v_middle);vector_bianxing(u,v_middle);matix_vector(a,y);v1=vector_chengji(y,u);xiangdui=fabs(v1-v0)/fabs(v1);v0=v1;if(xiangdui<=1.0e-12)break;}return v1;}double fanmifa(double a[5][N],double b) //反幂法{double v0=0,v1;double v_middle;double xiangdui;input_u();for(int k=0;;k++){v_middle=vector_chengji(u,u);v_middle=sqrt(v_middle);vector_bianxing(u,v_middle);input_a();matrix_pingyi(a,b);doolittle(a,y);v1=vector_chengji(y,u);v1=1/v1;xiangdui=fabs(v1-v0)/fabs(v1);v0=v1;if(xiangdui<=1.0e-12)break;}return v1;}double det(double fun_a[5][N]) //求行列式的值{int k,i,j,t;int m,l;for(k=0;k<N;k++){m=min(k+2,N-1);for(j=k;j<=m;j++){double sum=0;l=max(max(0,k-2),j-2);for(t=l;t<=k-1;t++)sum+=fun_a[k-t+2][t]*fun_a[t-j+2][j];fun_a[k-j+2][j]=fun_a[k-j+2][j]-sum;}if(k<N-1){m=min(k+2,N-1);for(i=k+1;i<=m;i++){double sum=0;l=max(max(0,i-2),k-2);for(t=l;t<=k-1;t++)sum+=fun_a[i-t+2][t]*fun_a[t-k+2][k];fun_a[i-k+2][k]=(fun_a[i-k+2][k]-sum)/fun_a[2][k];}}}double sum=1;for(j=0;j<N;j++)sum=sum*a[2][j];return sum;}/*定义主函数*/int main(int argc, char* argv[]){printf("\n");printf("第1题答案是:\n");printf("\n");double t_max,t_min,t_s;input_a();t_max=mifa(a);matrix_pingyi(a,t_max);t_min=mifa(a);if(t_max>=0){t_min=t_min+t_max;}else{double t;t=t_max;t_max=t_min+t_max;t_min=t;}printf("矩阵的最小特征值λ1=%.11e\n",t_min);printf("矩阵的最大特征值λ501=%.11e\n",t_max);t_s=fanmifa(a,0);printf("矩阵的按模最小特征值λs=%.11e\n",t_s);printf("\n");printf("第2题答案是:\n");printf("\n");double miu[39];for(int k=1;k<=39;k++){double l;l=t_min+k*(t_max-t_min)/40;miu[k-1]=fanmifa(a,l)+l;printf("与%.11e 最接近的特征值λ%2d=%.11e\n",l,k,miu[k-1]);}printf("\n");printf("第3题答案是:\n");printf("\n");double cond;if(fabs(t_min)>fabs(t_max))cond=fabs(t_min);elsecond=fabs(t_max);cond=cond/fabs(t_s);printf("矩阵A的条件数cond(A)=%.11e\n",cond);input_a();printf("矩阵的行列式值detA=%.11e\n",det(a));printf("\n");return 0;}三、计算结果:四.讨论迭代初始向量的选取对于计算结果的影响:1.影响迭代速度。