第19章《四边形测试题》含答案

合集下载

人教版初中数学四边形基础测试题含答案

人教版初中数学四边形基础测试题含答案

人教版初中数学四边形基础测试题含答案一、选择题1.如图,正方形ABDC 中,AB =6,E 在CD 上,DE =2,将△ADE 沿AE 折叠至△AFE ,延长EF 交BC 于G ,连AG 、CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG ∥CF ;④S ∆FCG =3,其中正确的有( ).A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 利用折叠性质和HL 定理证明Rt △ABG ≌Rt △AFG ,从而判断①;设BG=FG=x ,则CG=6-x ,GE=x+2,根据勾股定理列方程求解,从而判断②;由②求得△FGC 为等腰三角形,由此推出1802FGC FCG -∠∠=o ,由①可得1802FGC AGB -∠∠=o ,从而判断③;过点F 作FM ⊥CE ,用平行线分线段成比例定理求得FM 的长,然后求得△ECF 和△EGC 的面积,从而求出△FCG 的面积,判断④.【详解】解:在正方形ABCD 中,由折叠性质可知DE=EF=2,AF=AD=AB=BC=CD=6,∠B=∠D=∠AFG=∠BCD=90°又∵AG=AG∴Rt △ABG ≌Rt △AFG ,故①正确;由Rt △ABG ≌Rt △AFG∴设BG=FG=x ,则CG=6-x ,GE=GF+EF=x+2,CE=CD-DE=4∴在Rt △EGC 中,222(6)4(2)x x -+=+解得:x=3∴BG =3,CG=6-3=3∴BG =CG ,故②正确;又BG =CG , ∴1802FGC FCG -∠∠=o 又∵Rt △ABG ≌Rt △AFG ∴1802FGC AGB -∠∠=o ∴∠FCG=∠AGB∴AG ∥CF ,故③正确;过点F 作FM ⊥CE ,∴FM ∥CG∴△EFM ∽△EGC ∴FM EF GC EG =即235FM = 解得65FM =∴S ∆FCG =116344 3.6225ECG ECF S S -=⨯⨯-⨯⨯=V V ,故④错误 正确的共3个故选:C .【点睛】 本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.2.已知,如图,在ABC V 中,90ACB ∠=︒,30A ∠=︒,求证:12BC AB =.在证明该结论时,需添加辅助线,则作法不正确的是( )A .延长BC 至点D ,使CD BC =,连接ADB .在ACB ∠中作BCE B ∠=∠,CE 交AB 于点EC .取AB 的中点P ,连接CPD .作ACB ∠的平分线CM ,交AB 于点M【答案】D【解析】【分析】分别根据各选项的要求进行证明,推出正确结论,则问题可解.【详解】解:选项A : 如图,由辅助线可知,ABC ADC ≅V ;,则有AB=AD ,再由90ACB ∠=︒,由30BAC ∠=︒,则60B ∠=︒,∴ABD △是等边三角形 ∴1122BC DB AB == 故选项A 正确;选项B:如图,由辅助线可知,EBD △是等边三角形则60BEC EAC ECA ∠=∠+∠=︒,BE=EC∵30A ∠=︒∴30ECA A ∠=∠=︒∴AE=EC∴12BC AB =故选项B 正确选项C 如图,有辅助线可知,CP 为直角三角形斜边上的中线∴AP=CP=BP∵30A ∠=︒∴60B ∠=︒∴PBC V 是等边三角形 ∴12BC BP AB ==综上可知选项D 错误故应选D【点睛】 此题主要考查了全等三角形的判定,等边三角形的判定与性质的综合应用,根据条件选择正确的证明方法是解题的关键.3.如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=o ,则AEF ∠=( )A .110°B .115°C .120°D .130°【答案】B【解析】【分析】根据翻折的性质可得∠2=∠3,再求出∠3,然后根据两直线平行,同旁内角互补列式计算即可得解.【详解】∵矩形ABCD 沿EF 对折后两部分重合,150∠=o , ∴∠3=∠2=180-502︒︒=65°, ∵矩形对边AD ∥BC , ∴∠AEF=180°-∠3=180°-65°=115°.故选:B .【点睛】本题考查了矩形中翻折的性质,两直线平行的性质,平角的定义,掌握翻折的性质是解题的关键.4.如图,四边形ABCD 是菱形,30ACD ∠=︒,2BD =,则AC 的长度为( )A .23B .22C .4D .2【答案】A【解析】【分析】 由菱形的性质,得到AC ⊥BD ,由直角三角形的性质,得到BO=1,BC=2,根据勾股定理求出CO ,即可求出AC 的长度.【详解】解,如图,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵2BD =,∴BO=1,在Rt △OBC 中,30BCO ACD ∠=∠=︒,∴BC=2,∴22213CO =-=;∴23AC =;故选:A.【点睛】本题考查了菱形的性质,勾股定理解直角三角形,解题的关键是熟练掌握菱形的性质,利用勾股定理求出OC 的长度.5.如图,若OABC Y 的顶点O ,A ,C 的坐标分别为(0,0),(4,0),(1,3),则顶点B 的坐标为( )A .(4,1)B .(5,3)C .(4,3)D .(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B 的坐标.【详解】解:∵四边形OABC 是平行四边形,∴OC ∥AB ,OA ∥BC ,∴点B 的纵坐标为3,∵点O 向右平移1个单位,向上平移3个单位得到点C ,∴点A 向右平移1个单位,向上平移3个单位得到点B ,∴点B 的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.6.如图,已知AD 是三角形纸片ABC 的高,将纸片沿直线EF 折叠,使点A 与点D 重合,给出下列判断:①EF 是ABC V 的中位线;②DEF V 的周长等于ABC V 周长的一半:③若四边形AEDF 是菱形,则AB AC =;④若BAC ∠是直角,则四边形AEDF 是矩形.其中正确的是( )A .①②③B .①②④C .②④D .①③④ 【答案】A【解析】【分析】根据折叠可得EF 是AD 的垂直平分线,再加上条件AD 是三角形纸片ABC 的高可以证明EF ∥BC ,进而可得△AEF ∽△ABC ,从而得12AE AF AO AB AC AD ===,进而得到EF 是△ABC 的中位线;再根据三角形的中位线定理可判断出△AEF 的周长是△ABC 的一半,进而得到△DEF 的周长等于△ABC 周长的一半;根据三角形中位线定理可得AE=12AB ,AF=12AC ,若四边形AEDF 是菱形则AE=AF ,即可得到AB=AC .【详解】解:∵AD 是△ABC 的高,∴AD ⊥BC ,∴∠ADC=90°,根据折叠可得:EF 是AD 的垂直平分线,∴AO=DO=12AD ,AD ⊥EF , ∴∠AOF=90°,∴∠AOF=∠ADC=90°,∴EF ∥BC ,∴△AEF ∽△ABC , 12AE AF AO AB AC AD ===, ∴EF 是△ABC 的中位线,故①正确;∵EF 是△ABC 的中位线,∴△AEF 的周长是△ABC 的一半,根据折叠可得△AEF ≌△DEF ,∴△DEF 的周长等于△ABC 周长的一半,故②正确;∵EF 是△ABC 的中位线,∴AE=12AB ,AF=12AC , 若四边形AEDF 是菱形,则AE=AF ,∴AB=AC ,故③正确; 根据折叠只能证明∠BAC=∠EDF=90°,不能确定∠AED 和∠AFD 的度数,故④错误;故选:A .【点睛】此题主要考查了图形的翻折变换,以及三角形中位线的性质,关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.7.如图1,点F 从菱形ABCD 的项点A 出发,沿A -D -B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (m 2)随时间x (s)变化的关系图象,则a 的值为( )A .5B .2C .52D .5【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴== ∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中,2222(5)21BE BD DE --=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+- 解得52a =故选:C.【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.8.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,且BE∥AC,CE∥DB,连接DE,则tan∠EDC=()A.14B.16C2D.310【答案】B【解析】【分析】过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.根据邻边相等的平行四边形是菱形即可判断四边形OBEC是菱形,则OE与BC垂直平分,易得EF=12 x,CF=x.再由锐角三角函数定义作答即可.【详解】解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,∴BC=AD,设AB=2x,则BC=x.如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,∴四边形BOCE是平行四边形,∵四边形ABCD是矩形,∴OB=OC,∴四边形BOCE是菱形.∴OE与BC垂直平分,∴EF=12AD=12x,OE∥AB,∴四边形AOEB是平行四边形,∴OE=AB=2x,∴CF=12OE=x.∴tan∠EDC=EFDF=122xx x+=16.故选:B.【点睛】本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.9.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【答案】B【解析】试题分析:设CH=x,因为BE:EC=2:1,BC=9,所以,EC=3,由折叠知,EH=DH=9-x,在Rt△ECH中,由勾股定理,得:222(9)3x x-=+,解得:x=4,即CH=4考点:(1)图形的折叠;(2)勾股定理10.一个多边形的每个内角均为108º,则这个多边形是()A.七边形 B.六边形 C.五边形 D.四边形【答案】C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.11.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC 长度2205OB C +=,∵O点为AB的中点,E点为AD的中点,∴OE为△ABD的中位线,即:OE=12 BD,∵D点是圆上的动点,由图可知,BD最小值即为BC长减去圆的半径,∴BD的最小值为4,∴OE=12BD=2,即OE的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.12.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD上的动点,P是线段BD上的一个动点,则PM+PN的最小值是()A.95B.125C.165D.245【答案】D【解析】【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP=NQ最小,NQ为所求,当NQ⊥AB时,NQ最小,继而利用面积法求出NQ长即可得答案.【详解】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP=NQ最小,NQ为所求,当NQ⊥AB时,NQ最小,∵四边形ABCD是菱形,AC=6,DB=8,∴OA=3,OB=4,AC⊥BD,在Rt△AOB中,AB=22OA OB+=5,∵S菱形ABCD=12AC BD AB NQ=g g,∴18652NQ ⨯⨯=,∴NQ=245,∴PM+PN的最小值为245,故选D.【点睛】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.13.如图,菱形ABCD中,对角线BD与AC交于点O, BD=8cm,AC=6cm,过点O作OH ⊥CB于点H,则OH的长为( )A.5cm B.52 cmC.125cm D.245cm【答案】C【解析】【分析】根据菱形的对角线互相垂直平分求出OB、OC,再利用勾股定理列式求出BC,然后根据△BOC的面积列式计算即可得解.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,111163,84 2222OC AC OB BD==⨯===⨯=在Rt△BOC中,由勾股定理得,2222345BC OB OC++=∵OH⊥BC,1122BOC S OC OB CB OH ∴=⋅=⋅V ∴1143522OH ⨯⨯=⨯ ∴125OH =故选C .【点睛】本题考查了菱形的性质,勾股定理,三角形的面积,熟记性质是解题的关键,难点在于利用两种方法表示△BOC 的面积列出方程.14.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-【答案】C【解析】【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q 四边形OABC 是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D ¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.15.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .18【答案】C【解析】【分析】 首先根据矩形的特点,可以得到S △ADC =S △ABC ,S △AMP =S △AEP ,S △PFC =S △PCN ,最终得到S 矩形EBNP = S 矩形MPFD ,即可得S △PEB =S △PFD ,从而得到阴影的面积.【详解】作PM ⊥AD 于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN ∴S矩形EBNP= S矩形MPFD ,又∵S△PBE= 12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.16.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴2AB,∵2AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB (对顶角相等), ∴∠OHE=∠AED ,∴OE=OH ,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH ,∴OH=OD ,∴OE=OD=OH ,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD ,又BE=DH ,∠AEB=∠HDF=45°∴△BEH ≌△HDF (ASA ),∴BH=HF ,HE=DF ,故③正确;由上述①、②、③可得CD=BE 、DF=EH=CE ,CF=CD-DF ,∴BC-CF=(CD+HE )-(CD-HE )=2HE ,所以④正确;∵AB=AH ,∠BAE=45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB≠HF ,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C .【点睛】 考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质17.如图,在ABCD Y 中,8AC =,6BD =,5AD =,则ABCD Y 的面积为( )A .6B .12C .24D .48【答案】C【解析】【分析】 由勾股定理的逆定理得出90AOD ∠=o ,即AC BD ⊥,得出ABCD Y 是菱形,由菱形面积公式即可得出结果.【详解】∵四边形ABCD 是平行四边形, ∴142OC OC AC ===,132OB OD BD ===, ∴22225OA OD AD +==,∴90AOD ∠=o ,即AC BD ⊥,∴ABCD Y 是菱形,∴ABCD Y 的面积11862422AC BD =⨯=⨯⨯=; 故选C .【点睛】本题考查平行四边形的性质、勾股定理的逆定理、菱形的判定与性质,熟练掌握平行四边形的性质,证明四边形ABCD 是菱形是解题的关键.18.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标轴为()4,1, 点D 的坐标为()0,1, 则菱形ABCD 的周长等于( )A 5B .3C .45D .20【答案】C【解析】【分析】 如下图,先求得点A 的坐标,然后根据点A 、D 的坐标刻碟AD 的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC 、BD ,交于点E∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴AD=()()2220015-+-=∴菱形ABCD 的周长为:45故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.19.如图,在□ABCD 中,延长CD 到E ,使DE =CD ,连接BE 交AD 于点F ,交AC 于点G .下列结论中:①DE =DF ;②AG =GF ;③AF =DF ;④BG =GC ;⑤BF =EF ,其中正确的有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 由AAS 证明△ABF ≌△DEF ,得出对应边相等AF=DF ,BF=EF ,即可得出结论,对于①②④不一定正确.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,即AB ∥CE ,∴∠ABF=∠E ,∵DE=CD ,∴AB=DE,在△ABF和△DEF中,∵===ABF EAFB DFE AB DE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABF≌△DEF(AAS),∴AF=DF,BF=EF;可得③⑤正确,故选:B.【点睛】此题考查平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.20.一个多边形的每一个外角都是72°,那么这个多边形的内角和为( )A.540°B.720°C.900°D.1080°【答案】A【解析】【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:3605 72=,∴该多边形的内角和为:(5-2)×180°=540°.故选A.【点睛】外角和是360°,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.。

人教版八年级数学第十九章四边形测试题

人教版八年级数学第十九章四边形测试题

人教版八年级数学(下)四边形测试题班级 姓名 座号 成绩 .一、选择题(每题3分,共24分)1.能判定四边形ABCD 为平行四边形的题设是( ).(A )AB ∥CD ,AD=BC; (B )∠A=∠B ,∠C=∠D; (C )AB=CD ,AD=BC; (D )AB=AD ,CB=CD2.在□ABCD 中,∠A 的平分线交DC 于E ,若∠DEA=30°,则∠B =( )A.100°B.120°C.135°D.150°3.顺次连结任意四边形各边中点所得四边形一定是 ( )A .平行四边形B .菱形C .矩形D .正方形4.平行四边形一边长为12cm ,那么它的两条对角线的长度可能是( ).(A )8cm 和14cm (B )10cm 和14cm (C )18cm 和20cm (D )10cm 和34cm5中,AB=2,BC=3,∠B=60的面积为( ).(A )6 (B (C )(D )3 6.菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( )A .24B .20C .10D .57.在矩形ABCD 中,AB=3,BC=4,则点A 到对角线BD 的距离为( ) A.512 B.2 C.25 D.513 8.如图1,在平行四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A = ∠,则BCE =∠( )A.55 B.35 C.25 D.30二、填空题(每题4分,共32分)9. 已知:平行四边形一边AB =12 cm,它的周长是60,则BC =______ cm,CD =______ cm.10.平行四边形的一组对角度数之和为100°,则平行四边形中较大的角为 .11.在平行四边形ABCD 中,若∠A-∠B=70°,则∠A=_______,∠B=_______,12.在□ABCD 中,AC ⊥BD ,相交于O ,AC=6,BD=8,则AB=________,BC= _________.13.若矩形的对角线长为8cm ,两条对角线的一个交角为600,则该矩形的面积为 _____________cm 2.14.如图,已知□ABCD 中,AB=4,BC=6,BC 边上的高AE=2,则DC 边上的高AF 的长是_____________ 。

中考数学复习《四边形》经典题型及测试题(含答案)

中考数学复习《四边形》经典题型及测试题(含答案)

中考数学复习《四边形》经典题型及测试题(含答案)命题点分类集训命题点1 平行四边形的判定与计算【命题规律】1.考查内容:①平行四边形的性质及其相关计算;②平行四边形的判定.2.考查形式:①根据平行四边形的性质考查结论判断;②利用平行四边形的性质求角度、线段或面积;③添加条件使四边形为平行四边形.3.考查题型:性质在选择和填空题中考查居多,判定题近年来多在解答题中考查,有时会在二次函数压轴题中探究平行四边形的存在问题.【命题预测】平行四边形是四边形中主要的图形之一,性质与判定常常考查,是近年命题的重点. 1. 已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OC C . ∠BOE =∠OBA D . ∠OBE =∠OCE1. D第1题图 第2题图2. 如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC =2,▱ABCD 的周长是14,则DM 等于( )A . 1B . 2C . 3D . 42. C 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABM =∠CMB ,∵BM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠CBM =∠CMB ,∴CB =MC =2,∴AD =BC =2,∵▱ABCD 的周长是14,∴AB =CD =5,∴DM =DC -MC =3.3. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形. 3. AD ∥BC (答案不唯一)第3题图 第4题图 第5题图 4. 如图,▱ABCD 中,AC =8,BD =6,AD =a ,则a 的取值范围是________.4. 1<a <7 【解析】如解图,对角线AC ,BD 相交于点O ,则OA =12AC =4,OD =12BD =3,在△OAD中,OA -OD <AD <OA +OD ,即1<a <7.5. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________. 5. 50°6. 如图,将▱ABCD 的AD 边延长至点E ,使DE =12AD ,连接CE ,F 是BC 边的中点,连接FD.(1)求证:四边形CEDF 是平行四边形; (2)若AB =3,AD =4,∠A =60°,求CE 的长.6. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴DE ∥FC.∵F 是BC 的中点, ∴FC =12BC =12AD ,∵DE =12AD ,∴FC =DE ,∴四边形CEDF 是平行四边形. (2)解:如解图,过点D 作DH ⊥BC 于点H. 由(1)知四边形DECF 是平行四边形,∴DF =CE.∵四边形ABCD 是平行四边形,∠A =60°,AB =3,AD =4, ∴BC =4,CD =3,∠BCD =60°, 在Rt △DHC 中,HC =DC·cos ∠HCD =32,DH =DC ·sin ∠HCD =332,∵F 是BC 的中点, ∴FC =2,∴FH =FC -HC =2-32=12,在Rt △DFH 中,由勾股定理得DF =DH 2+FH 2=(332)2+(12)2=7,∴CE =7.命题点2 矩形的判定与计算【命题规律】考查形式:①利用矩形性质,结合勾股定理求线段长或面积;②矩形的判定,一般在解答题中考查,也常在二次函数综合题中考查矩形的存在性问题;③矩形折叠的相关计算与证明(见命题点6:图形折叠的相关计算).【命题预测】矩形性质将勾股定理、全等、相似等重要知识综合考查,是全国命题趋势之一. 7. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是( )A . △AFD ≌△DCEB . AF =12AD C . AB =AF D . BE =AD -DF7. B 【解析】逐项分析如下表:选项逐项分析正误A∵四边形ABCD 是矩形,AF ⊥DE ,∴∠C =90°=∠AFD ,AD ∥BC ,∴∠ADF =∠CED ,∵AD =DE ,∴△AFD ≌△DCE (AAS)√B只有当∠ADF =30°时,才有AF =12AD 成立×C由△AFD ≌△DCE 可知,AF =DC ,∵矩形ABCD 中,AB =DC ,∴AB =AF√D∵△AFD ≌△DCE ,∴DF =CE ,∴BE =BC -CE =AD -DF √8. 已知矩形的对角线AC 与BD 相交于点O ,若AO =1,那么BD =________. 8. 2第7题图 第8题图 第9题图 9. 如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是________.9. 3 【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3. 10. 如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线AF 交CE 的延长线于F ,且AF =BD ,连接BF. (1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.10. (1)证明:∵点E 是AD 的中点, ∴AE =DE. ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE , ∴△EAF ≌△EDC(AAS ), ∴AF =DC. ∵AF =BD , ∴BD =DC ,即D 是BC 的中点.(2)解:四边形AFBD 是矩形.证明如下: ∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形.∵AB =AC ,又由(1)可知D 是BC 的中点, ∴AD ⊥BC ,∴四边形AFBD 是矩形.11. 如图,点P 在矩形ABCD 的对角线AC 上,且不与点A ,C 重合,过点P 分别作边AB ,AD 的平行线,交两组对边于点E ,F 和点G ,H. (1)求证:△PHC≌△CFP;(2)证明四边形PEDH 和四边形PFBG 都是矩形,并直接写出它们面积之间的关系.11. (1)证明:∵四边形ABCD 是矩形,∴DC ∥AB ,AD ∥BC ,∠DCB =90°.∵EF ∥AB ,GH ∥AD ,∴EF ∥CD ,GH ∥BC , ∴四边形PFCH 是矩形, ∴∠PHC =∠PFC =90°,PH =CF ,HC =PF , ∴△PHC ≌△CFP(SAS ).(2)证明:由(1)知AB ∥EF ∥CD , AD ∥GH ∥BC ,∴四边形PEDH 和四边形PGBF 都是平行四边形, ∵四边形ABCD 是矩形, ∴∠D =∠B =90°,∴四边形PEDH 和四边形PGBF 都是矩形, ∴S 矩形PEDH =S 矩形PGBF .命题点3 菱形的判定与计算【命题规律】1.考查内容和形式:①根据菱形性质判断结论正误;②菱形的判定;③根据菱形的性质求角度、周长和面积;④与二次函数压轴题结合考查菱形的存在性问题.2.三大题型均会出现.【命题预测】菱形是特殊平行四边形中的重要内容,是中考常考知识,对菱形的性质与判定应做到牢固掌握.12. 如图,在▱ABCD 中,对角线AC 与BD 交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是( ) A . AB =AD B . AC ⊥BD C . AC =BD D . ∠BAC =∠DAC12. C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.第12题图 第13题图13. 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12) C . (65,35) D . (107,57)13. D 【解析】如解图,连接CA 、AD ,CA 与OB 相交于点E ,过点E 作EF ⊥OA ,交OA 于点F .由题知点C 关于OB 的对称点是点A ,AD 与BO 的交点即为点P .根据菱形的性质,菱形的对角线互相垂直且平分两组对角,可知△COE ∽△EOF ,∴CO EO =EO OF ,∵OC =OA =5,OE =OB 2=25,∴OF =OE 2CO =(25)25=4,根据勾股定理可得EF =OE 2-OF 2=(25)2-42=2,点E 的坐标为(4,2),易得直线OE 的函数解析式为y =12x ,直线AD 的函数解析式是y =-15x +1,联立得:⎩⎨⎧y =12x y =-15x +1,解得⎩⎨⎧x =107y =57,∴点P 的坐标为(107,57).14. 如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________. 14. 16 【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.第14题图 第15题图15. 如图,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是________.15. 24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB 中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD=12×8×6=24. 16. 在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为________.16. 105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°;(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.17. 如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF∥BC,连接DE 并延长交AF 于点F ,连接FC. 求证:四边形ADCF 是菱形.17. 证明:∵∠B =90°,AC =2AB , ∴sin ∠ACB =12,∴∠ACB =30°, ∴∠CAB =60°, ∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30°,∠CAD =∠ACD ,∴AD =CD , ∵AF ∥CD ,∴∠DCE =∠FAE ,∠AFE =∠CDE , 又∵AE =CE ,∴△AFE ≌△CDE(AAS ), ∴AF =CD , 又AF ∥CD ,∴四边形ADCF 是平行四边形, 又AD =CD ,∴四边形ADCF 是菱形.命题点4 正方形的判定与计算【命题规律】正方形的考查相对比较综合,难度较大,常在选择或填空的压轴题位置出现,考查知识点综合性强,涉及到正方形面积、边长和周长的计算.【命题预测】正方形综合了所有特殊四边形的性质,因此以正方形为背景出题更具有对知识的检验性,倍受命题人青睐,考生应加以关注.18. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为( )A . 2B . 2 2C . 2+1D . 22+118. B 【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF=(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2. 19. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC⊥BD,请添加一个条件:________,使得▱ABCD 为正方形. 19. ∠BAD =90°(答案不唯一)20. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS 正方形AEFG的值等于________.20. 89【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM=MB ,∴正方形MNPQ 的边长为a ,正方形AEFG 的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a ×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a 2=89.第20题图 第21题图21. 如图,正方形ABCD 的边长为22,对角线AC ,BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM⊥BE 于点M ,交BD 于点F ,则FM 的长为________. 21.55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO 中,⎩⎪⎨⎪⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO ,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD 的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM1=15,∴FM =55.22. 如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一条直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H. (1)求sin ∠EAC 的值; (2)求线段AH 的长.22.解:(1)由题意知EC =2,AE =10,如解图,过点E 作EM ⊥AC 于点M , ∴∠EMC =90°,易知∠ACD =45°, ∴△EMC 是等腰直角三角形, ∴EM =2,∴sin ∠EAC =EM AE =55.(2)在△GDC 与△EDA 中,⎩⎪⎨⎪⎧DG =DE ∠GDC =∠EDA DC =DA, ∴△GDC ≌△EDA(SAS ),∴∠GCD =∠EAD , 又∵∠HEC =∠DEA ,∴∠EHC =∠EDA =90°, ∴AH ⊥GC ,∵S △AGC =12×AG ×DC =12×GC ×AH ,∴12×4×3=12×10×AH , ∴AH =6510.命题点5 多边形及其性质【命题规律】1.考查内容:①多边形的内外角和公式;②正多边形的有关计算.2.考查形式:①已知正多边形一个内角或外角的度数或内角之间的关系求边数;②已知正多边形的边数求内角度数;③求多边形的内外角和.【命题预测】多边形是三角形和四边形的延伸拓展,也是中考命题不容忽视的知识点. 23. 六边形的内角和是( )A . 540°B . 720°C . 900°D . 1080°23. B24. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A . 7B . 7或8C . 8或9D . 7或8或924. D 【解析】分类讨论:(1)切去一个角,减少一条边,设减少一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是9;(2)切去一个角,增加一条边,设增加一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是7;(3)切去一个角,边数无改变,设边数没有改变时的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是8,综上所述,原多边形的边数是9,7,8都符合题意,答案选择D.25. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.25. 6 【解析】设这个多边形的边数为n ,则内角和为(n -2)·180°,外角和为360°,则根据题意有:(n -2)·180°=2×360°,解得n =6. 26. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.26. 8 【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.命题点6 图形折叠的相关证明与计算【命题规律】考查内容和形式:图形折叠计算以矩形折叠考查居多,常考查:①图形的折叠计算角度;②图形的折叠计算线段长或边长;③图形折叠的证明和计算结合;④图形折叠的操作探究.【命题预测】图形折叠将原有图形变得可操作化,且又很好地引入了对称知识,使问题升华,有效地考查学生的知识迁移能力和掌握程度,是全国命题的主流趋势之一,值得每位考生关注.27. 如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .∠DAB ′=∠CAB′ B .∠ACD =∠B′CDC .AD =AE D .AE =CE27. D28. 如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A . 2B . 3C . 2D . 128. B第28题图 第29题图29. 如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处.若∠2=40°,则图中∠1的度数为( )A . 115°B . 120°C . 130°D . 140°29. A 【解析】由折叠的性质知∠EA ′B ′=∠A =90°,∵∠2=40°,∴∠B ′A ′C =50°,∴∠EA ′D =40°,∠DEA ′=50°,∴∠AEA ′=130°,∴∠AEF =∠FEA ′=12∠AEA ′=65°,∵AD ∥BC ,∴∠1=180°-65°=115°.30. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°30. C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎪⎨⎪⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.第30题图 第31题图 第32题图31. 如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB =7,BC =6,则△BCD 的周长为________. 31. 13 【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC +CD +BD =BC +AD +BD =BC +BA =6+7=13.32. 如图,在▱ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,A D′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.32. 36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED=180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.33.如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.33. 解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,此时CE最小,且CE=CD=3;如解图②,当点G与点A重合时,CE最大.设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.34.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.34. (1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D=60°,由折叠性质可知,∠D=∠AD′E=60°,∴∠AD′E=∠B=60°,∴ED′∥BC,又∵EC∥D′B,∴四边形BCED′是平行四边形,∴ED′=BC=AD=1,∴DE=ED′=1,又DC=AB=2,∴EC =1, ∴EC =ED′,∴四边形BCED′是菱形. (2)解:如解图所示,由折叠性质PD′=PD ,BD 之长即为所求, 作DG ⊥BA 的延长线于点G , ∵∠DAB =120°, ∴∠DAG =60°, ∵∠G =90°, ∴∠ADG =30°,在Rt △ADG 中,AD =1, ∴AG =12,DG =32,∵AB =2, ∴BG =52,在Rt △BDG 中,由勾股定理得:BD 2=BG 2+DG 2=7, ∴BD =7,即PD′+PB 的最小值为7.方法指导“将军饮马”模型:直线同侧两定点,在直线上确定一点使该点到两定点的距离和最小.作法:作其中一点关于直线的对称点,连接另一点和对称点的线段即是最短距离和;最短距离计算方法:构造以最短距离线段为斜边的直角三角形,利用勾股定理求解.中考冲刺集训一、选择题1.关于▱ABCD 的叙述,正确的是( )A . 若A B⊥BC,则▱ABCD 是菱形B . 若AC⊥BD,则▱ABCD 是正方形C . 若AC =BD ,则▱ABCD 是矩形 D . 若AB =AD ,则▱ABCD 是正方形2.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A . a >bB . a =bC . a <bD . b =a +180°3.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m).则点E 的坐标是( )A . (2,-3)B . (2,3)C . (3,2)D . (3,-2)第3题图 第4题图4.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( )A . 10B . 14C . 20D . 225.菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AD ,CD 边上的中点,连接EF.若EF =2,BD =2,则菱形ABCD 的面积为( )A . 2 2B . 4 2C . 6 2D . 8 2第5题图 第6题图 第7题图6.如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( )A . 3 cmB . 4 cmC . 5 cmD . 8 cm7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE∶EC =2∶1,则线段CH 的长是( )A . 3B . 4C . 5D . 68.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF∥AD,与AC 、DC 分别交于点G 、F2H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题9.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为________.10.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =8,BD =6,则菱形ABCD 的高DH =________.第9题图 第10题图 第11题图11.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE.如果∠ADB=30°,则∠E=________度. 12.如图,正方形ABCO 的顶点C ,A 分别在x 轴,y 轴上,BC 是菱形BDCE 的对角线,若∠D=60°,BC =2,则点D 的坐标是________.第12题图 第13题图 第14题图 13.如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________°.14.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为________cm . 15.如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论: ①∠EBG =45°;②△DEF∽△ABG;③S △ABG =32S △FGH ;④AG +DF =FG.其中正确的是______________.(把所有正确结论的序号都选上)第15题图 第16题图16.如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm . 三、解答题17.如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF 、CE. 求证:AF∥CE.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形;(2)已知DE=4,FN=3,求BN的长.20.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ长.22.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.23.如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE,连接BD 、CE 交于点F. (1)求证:△AEC≌△ADB;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.24.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG. (1)求证:四边形EFDG 是菱形;(2)探究线段EG 、GF 、AF 之间的数量关系,并说明理由; (3)若AG =6,EG =25,求BE 的长.答案与解析:1. C2. B3. C4. B5. A 【解析】∵E ,F 分别是 AD ,CD 边上的中点,即EF 是△ACD 的中位线,∴AC =2EF =22,则菱形ABCD 的面积=12AC ·BD =12×22×2=2 2.6. B 【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.7. B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.8. D 【解析】逐项分析如下表:序号逐项分析正误难点突破对于多选项判断正误性的题目,几乎每个选项之间都是紧密联系的,单独判断其中每个的正误或跳跃式判断往往使题目变得复杂而无法求解,本题目难点在于④中,需将S △FDH 与已知条件AE AB =23联系起来,并用含相同未知数的代数式分别表示出S △EDH 和S △DHC ,继而求解.9. 110° 【解析】 ∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠CAB =∠1=20°,∵BE ⊥AB 交对角线AC 于点E ,∴∠ABE =90°,∴∠2=∠CAB +∠ABE =20°+90°=110°.10. 4.8 【解析】∵S =1AC·BD =2AB·DH ,∴AC ·BD =2AB·DH.∵四边形ABCD 是菱形,∴∠AOB =90°,AO =12AC =4,BO =12BD =3,∴在Rt △AOB 中,AB =42+32=5,∴DH =8×62×5=4.8.第11题解图11. 15 【解析】如解图,连接AC.∵四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又∵AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =∠ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =∠CAE =12∠ACB=15°.第12题解图12. (3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).13. 75 【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.第14题解图14. 13 【解析】如解图,连接AC 、BD 交于O ,则有12AC·BD =120,∴AC ·BD =240,又∵菱形对角线互相垂直平分,∴2OA ·2OB =240,∴ OA ·OB =60,∵AE 2=50, OA 2+OE 2= AE 2,OA =OE ,∴OA =5,∴OB =12,∴AB =OA 2+OB 2=122+52=13.15. ①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴ED FD =43≠ABAG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG =5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.第16题解图16.233或33【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎪⎨⎪⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm . 17. 证明:∵四边形ABCD 是平行四边形,第17题解图∴AD ∥BC ,AD =BC , ∴∠1=∠2, 又∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.∴△ADF ≌△CBE(SAS ). ∴∠AFD =∠CEB ,∴AF ∥CE.18. (1)【思路分析】根据四边形ABCD 是菱形,∠ABC ∶∠BAD =1∶2,可求出∠DBC 的度数,其正切值可求出.解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC ,∴∠ABC +∠BAD =180°, 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan 30°=33. (2)【思路分析】由BE ∥AC ,CE ∥BD 可知四边形BOCE 是平行四边形,再结合菱形对角线垂直的性质即可证明四边形BOCE 是矩形.证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,即∠BOC =90°, ∵BE ∥AC ,CE ∥BD , ∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,且∠BOC =90°,∴四边形OBEC 是矩形.19. (1)证明:∵AE ⊥BD ,CF ⊥BD , ∴AM ∥CN ,又∵四边形ABCD 是平行四边形, ∴MC ∥AN ,∴四边形CMAN 是平行四边形.(2)解:∵四边形ABCD 是平行四边形, ∴∠ADE =∠CBF ,AD =CB , 又∵∠AED =∠CFB =90°, ∴△AED ≌△CFB(AAS ), ∴DE =BF =4,∴在Rt △BFN 中,BN =32+42=5.20. (1)【思路分析】要证∠CEB =∠CBE ,结合CE ∥DB ,可得到∠CEB =∠DBE ,从而只需证明∠CBE =∠DBE ,结合△ABC ≌△ABD 即可得证.证明:∵△ABC ≌△ABD , ∴∠ABC =∠ABD , ∵CE ∥BD ,∴∠CEB =∠DBE ,∴∠CEB =∠CBE.(2)证明:∵△ABC ≌△ABD ,∴BC =BD , 由(1)得∠CEB =∠CBE , ∴CE =CB , ∴CE =BD , ∵CE ∥BD ,∴四边形BCED 是平行四边形, ∵BC =BD ,∴四边形BCED 是菱形.21. (1)证明:∵四边形ABCD 是正方形, ∴AB =AD, ∠BAQ +∠DAP =90°=∠DAB , ∵DP ⊥AQ ,∴∠DAP +∠ADP =90°, ∴∠BAQ =∠ADP.在△DAP 和△ABQ 中, ⎨⎪⎧∠APD =∠AQB =90°∠ADP =∠BAQ ,∴△DAP ≌△ABQ(AAS ),∴AP =BQ.(2)解:①AQ 和AP ;②DP 和AP ;③AQ 和BQ ;④DP 和BQ.【解法提示】①由题图直接得:AQ -AP =PQ ;②∵△ABQ ≌△DAP ,∴AQ =DP ,∴DP -AP = AQ -AP =PQ ;③∵△ABQ ≌△DAP ,∴BQ =AP ,∴AQ -BQ =AQ -AP =PQ ;④∵△ABQ ≌△DAP ,∴DP =AQ ,BQ =AP ,∴DP -BQ =AQ -AP =PQ.22. (1)证明:在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AB =AD ∠ABE =∠ADF =90°EB =FD, ∴△ADF ≌△ABE(SAS ).(2)解:∵AB =3,BE =1,∴AE =10,EC =4,∴ED =CD 2+EC 2=5,设AH =x ,EH =y ,在Rt △AHE 和Rt △AHD 中,⎩⎪⎨⎪⎧x 2+y 2=10x 2+(5-y )2=9, 解得,x =1.8,y =2.6,∴tan ∠AED =AH EH =x y =1.82.6=913. 23. (1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,AE =AC ,∠BAC =∠DAE ,∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB ,在△AEC 和△ADB 中∵⎩⎪⎨⎪⎧AD = AE ∠EAC =∠DAB AB =AC, ∴△AEC ≌△ADB(SAS ).(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF ,∴∠BAC =∠ABD ,又∵∠BAC =45°,∴∠ABD =45°,又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,∴∠DAB =90°,又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.24. (1)【思路分析】根据折叠的性质,易得DF =EF ,DG =EG ,∠AFD =∠AFE ,再由EG ∥DC ,可得∠EGF =∠AFD ,从而得出EG =EF.根据四条边都相等的四边形是菱形得证;证明:由折叠的性质可得,EF =FD ,∠AEF =∠ADF =90°,第24题解图∠EFA =∠DFA ,EG =GD.∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形.(2)【思路分析】由(1)可知EG =EF ,连接DE ,则DE 与GF 相互垂直平分,证得Rt △FHE ∽Rt △FEA ,列比例式,结合FH =12GF 得到EG 、GF 、AF 的关系; 解:如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE. ∵∠FEH =∠FAE =90°-∠EFA ,∴Rt △FEH ∽Rt △FAE ,∴EF FH =AF EF,即EF 2=FH·AF , ∴EG 2=12GF·AF. (3)【思路分析】把AG ,EG 代入(2)中的关系式,求得GF ,AF 的值,根据勾股定理求得AD ,DE ,再证Rt △ADF ∽Rt △DCE ,可求出EC ,从而可求出BE 的值.解:∵AG =6,EG =25,EG 2=12GF·AF , ∴(25)2=12(6+GF)·GF ,∴GF =4, ∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8. ∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∴Rt △ADF ∽Rt △DCE ,∴EC DF =DE AF ,即EC 25=810, ∴EC =855, ∴BE =BC -EC =AD -EC =45-855=1255.。

华东师大版八年级下学期《第19章矩形、菱形与正方形》2022年单元测试卷2

华东师大版八年级下学期《第19章矩形、菱形与正方形》2022年单元测试卷2

华东师大版八年级下学期《第19章矩形、菱形与正方形》2022年单元测试卷2一.菱形的性质(共3小题)1.如图,点E在菱形ABCD的AB边上,点F在BC边的延长线上,连接CE,DF,对于下列条件:①BE=CF;②CE⊥AB,DF⊥BC;③CE=DF;④∠BCE=∠CDF.只选取其中一条添加,不能确定△BCE≌△CDF的是()A.①B.②C.③D.④2.已知一个菱形的周长为8,有一个内角为120°,则该菱形较短的对角线长为()A.4B.2√3C.2D.13.如图,四边形ABCD是菱形,AE⊥BC,AF⊥CD,分别交CB、CD的延长线于点E、点F.(1)求证:△ABE≌△ADF;(2)若CD=5,AE=3,则四边形AECF的面积为.二.菱形的判定(共3小题)4.已知平行四边形ABCD的对角线相交于点O,补充下列四个条件,能使平行四边形ABCD 成为菱形的是()A.AB=BD B.AC=BD C.∠DAB=90°D.∠AOB=90°5.如图,▱ABCD的对角线AC、BD相交于点O,则添加一个适当的条件:可使其成为菱形(只填一个即可).6.在▱ABCD 中,对角线AC 、BD 交于点O ,E 是边BC 延长线上的动点,过点E 作EF ⊥BD 于F ,且与CD 、AD 分别交于点G 、H ,连接OH .(1)如图,若AC ⊥AB ,OF =OC ,求证:FG =CG ;(2)若在点E 运动的过程中,存在四边形OCGH 是菱形的情形,试探究▱ABCD 的边和角需要满足的条件.三.菱形的判定与性质(共3小题)7.如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是( )A .2B .√32C .1D .12 8.如图,△ABC 中,BC =2AB ,点D 、E 分别是BC 、AC 的中点,过点A 作AF ∥BC 交线段DE 的延长线于点F ,取AF 的中点G ,连结DG 交AE 于点H .(1)求证:四边形ABDF 是菱形;(2)连接BE 交DG 于点M ,若AC ⊥AB ,AC =6,求BM .9.如图,在平行四边形ABCD 中,∠BAD 的平分线AE 交BC 于点E ,∠ABC 的平分线BF交AD于点F,AE与BF相交于点O,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=3,BF=4,CE=2,求平行四边形ABCD的面积.四.矩形的性质(共3小题)10.如图,在矩形ABCD中,两条对角线AC与BD相交于点O,AB=3,OA=2,则AD 的长为()A.5B.√13C.√10D.√711.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若EF=6cm,则AC的长是.12.已知:如图,矩形ABCD的对角线AC的垂直平分线EF与AD、AC、BC分别交于点E、O、F.(1)求证:四边形AFCE是菱形;(2)若AB=5,BC=12,求菱形AFCE的面积.五.矩形的判定(共3小题)13.在平行四边形ABCD中,对角线AC和BD相交于点O,则下面条件能判定平行四边形ABCD是矩形的是()A.AC=BD B.AC⊥BD C.OA=OC D.AB=AD14.如图,工人师傅在贴长方形的瓷砖时,为了保证所贴瓷砖的外缘边与上一块瓷砖的两边互相平行,一般将两块瓷砖的一边重合,然后贴下去.这样做的数学依据是.15.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD、EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=40°,则当∠BOD=°时,四边形BECD是矩形.六.矩形的判定与性质(共3小题)16.如图,在△ABC中,AC=3、AB=4、BC=5,P为BC上一动点,PG⊥AC于点G,PH ⊥AB于点H,M是GH的中点,P在运动过程中PM的最小值为()A.2.4B.1.4C.1.3D.1.217.如图,在▱ABCD中,M为AD的中点,BM=CM.求证:(1)△ABM≌△DCM;(2)四边形ABCD是矩形.18.如图,在▱ABCD 中,AB >AD ,DE 平分∠ADC ,AF ⊥BC 于点F 交DE 于G 点,延长BC 至H 使CH =BF ,连接DH .(1)证明:四边形AFHD 是矩形;(2)当AE =AF 时,猜想线段AB 、AG 、BF 的数量关系,并证明.七.正方形的性质(共3小题)19.如图,在正方形ABCD 中,AB =6,点Q 是AB 边上的一个动点(点Q 不与点B 重合),点M ,N 分别是DQ ,BQ 的中点,则线段MN =( )A .3√2B .3√22C .3D .620.如图,工人师傅制作了一个正方形窗架,把窗架立在墙上之前,在上面钉了两块等长的木条GF 与GE ,E 、F 分别是AD 、BC 的中点.(1)钉这两块木条的作用是什么?(2)G 点一定是AB 的中点吗?说明理由.21.阅读分析过程,解决问题:如图,正方形ABCD(四条边都相等,四个角都是90°),点E、F在CD、BC上,并且∠EAF=45°,延长CD至点G,使DG=BF,并连接AG.(1)求证:EF=DE+BF;(2)若AB=2,则△EFC的周长=.八.正方形的判定(共3小题)22.如图,△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,DE⊥BC,DF⊥AC,垂足分别为E、F.问四边形CFDE是正方形吗?请说明理由.23.已知:如图,▱ABCD中,延长BC至点E,使CE=BC,连接AE交CD于点O.(1)求证:CO=DO;(2)取AB中点F,连接CF,△COE满足什么条件时,四边形AFCO是正方形?请说明理由.24.如图,在△ABC中,AB=AC,D是BC中点、F是AC中点,AN是△ABC的外角∠MAC 的平分线,延长DF交AN于点E.连接CE.(1)求证:四边形ADCE是矩形;(2)填空:①若AB=BC=3,则四边形ADCE的面积为;②当△ABC满足四边形ADCE是正方形.九.正方形的判定与性质(共3小题)25.在下列4个判断中正确的是()A.如果四边形的两组对角分别相等,那么这个四边形是矩形B.对角线互相垂直的四边形是菱形C.正方形具有矩形的性质,又具有菱形的性质D.四边相等的四边形是正方形26.如图,正方形ABCD边长为6.菱形EFGH的三个顶点E、G、H分别在正方形ABCD 的边AB、CD、DA上,且AH=2,连接CF.(1)当DG=2时,求证:菱形EFGH为正方形;(2)设DG=x,试用含x的代数式表示△FCG的面积.27.如图,已知点E,F,M,N分别是正方形ABCD四条边上的点,并且AE=BF=CM=DN.(1)求证:四边形EFMN是正方形;(2)若AB=4,当点E在什么位置时,四边形EFMN的周长最小?并求四边形EFMN 周长的最小值.。

华师大版初中数学八下第19章综合测试试题试卷含答案1

华师大版初中数学八下第19章综合测试试题试卷含答案1

第19章综合测试一、选择题(共10小题) 1.下列语句正确的是( ) A .对角线相等的四边形是矩形 B .一组邻边相等的四边形是菱形 C .对角线相等的四边形是正方形D .三个角是直角的四边形是矩形 2.已知矩形ABCD ,下列结论错误的是( )A .AB DC =B .AC BD =C .AC BD ⊥D .180A C ∠+∠=︒3.四边形ABCD 的对角线AC BD 、互相平分,要使它成为矩形,需要添加的条件是( ) A .AB CD =B .AC BD =C .AB BC =D .AC BD ⊥4.如下图,在菱形ABCD 中,AE AF ,分别垂直平分BC CD ,,垂足分别为E F ,,则EAF ∠的度数是( )A .90︒B .60︒C .45︒D .30︒5.已知四边形ABCD ,下列说法正确的是( ) A .当AD BC AB DC =,∥时,四边形ABCD 是平行四边形 B .当AD AB AB DC ==,时,四边形ABCD 是菱形C .当AC BD AC =,与BD 互相平分时,四边形ABCD 是矩形 D .当AC BD AC BD =⊥,时,四边形ABCD 是正方形6.如下图,在矩形ABCD 中,对角线AC BD ,交于点O ,以下说法错误的是( )A .90ABC ︒∠=B .AC BD =C .OA OB =D .OA AB =7.如下图,在菱形ABCD 中,5AB =,对角线6AC =.若过点A 作AE BC ⊥,垂足为E ,则AE 的长为( )A .4B .2.4C .4.8D .58.如下图,四边形ABCD 是菱形,对角线AC BD ,相交于点O DH AB ⊥,于点H ,连接OH ,若20DHO ︒∠=,则ADC ∠的度数是( )A .120︒B .130︒C .140︒D .150︒9.如下图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF BC ∥,分别交AB CD ,于E F ,,连接PB PD 、,若28AE PF ==,,则图中阴影部分的面积为( )A .18B .16C .12D .1010.如下图,矩形ABCD 中,104AB AD ==,,点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的左上方作正方形AEFG .同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当点F 落在直线MN 上,设运动的时间为t ,则t 的值为( )A .143B .103C .4D .1二、填空题(共6小题)11.如下图,小聪把一块含有30︒角的直角三角尺ABC 的两个顶点A C ,放在长方形纸片DEFG 的对边上,若AC 刚好平分BAE ∠,则DAC ∠的度数是________.12.如下图,在菱形ABCD 中,120BAD CE AD ︒∠=⊥,,且CE BC =,连接BE 交对角线AC 于点F ,则EFC ∠=________.13.如下图,在矩形ABCD 中,E F ,分别是AD BC ,的中点,M 是AF 和BE 的交点,N 是CE 和DF 的交点.若四边形EMFN 是正方形,则AB 与BC 之间的数量关系是________.14.如下图所示,直线经过正方形ABCD 的顶点A ,分别过正方形的顶点B D 、作BF a ⊥于点F DE a ⊥,于点E .若53DE BF ==,,则EF 的长为________.15.如下图,已知正方形ABCD 的边长为4,对角线AC 与BD 相交于点O ,点E 在DC 边的延长线上.若15CAE ︒∠=,则CE =________.16.如下图,在矩形ABCD 中,20cm BC =,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快________s 后,四边形ABPQ 成为矩形.三、解答题(共7小题)17.如下图,在四边形ABCD 中,AB CD AB AD =∥,,对角线AC BD 、交于点O AC ,平分BAD ∠.求证:四边形ABCD 为菱形.18.已知:如下图,AC BD 、相交于点O ,且点O 是AC BD 、的中点,点E 在四边形ABCD 的形外,且90AEC BED ︒∠=∠=.求证:四边形ABCD 是矩形.19.如下图,在矩形ABCD 中,点E F 、在BC 上,且BF CE AE DF =,、相交于点O . 求证:AE DF =.20.如下图,D 是ABC △的边AB 的中点,DE BC CE AB AC ∥,∥,与DE 相交于点F ,连接AB CD ,.(1)求证:AD CE =;(2)当ABC △满足什么条件时,四边形ADCE 是菱形?请说明理由.21.如下图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接BM DN ,.(1)求证:四边形BMDN 是菱形;(2)若48AB AD ==,,求菱形BMDN 的周长和对角线MN 的长.22.如下图,矩形ABCD ,延长CD 至点E ,使DE CD =,连接AC AE ,,过点C 作CF AE ∥交AD 的延长线于点F ,连接EF .(1)求证:四边形ACFE 是菱形;(2)连接BE 交AD 于点G .当230AB ACB ︒=∠=,时,求BG 的长.23.如下图,在ABC △中,AB AC AD =,是BC 边上的中线,点E 是AD 边上一点,过点B 作BF EC ∥,交AD 的延长线于点F ,连接BE CF ,.(1)求证:BDF CDE△≌△.(2)若12DE BC=,求证:四边形BECF是正方形.第19章综合测试答案解析一、 1.【答案】D【解析】解:A .对角线相等的平行四边形是矩形,故不符合题意; B .由菱形的定义可知:一组邻边相等的平行四边是菱形,故不符合题意; C .对角线相等平分且垂直的四边形是正方形,故不符合题意; D .三个角是直角的四边形是矩形,故符合题意; 故选:D . 2.【答案】C【解析】解:∵四边形ABCD 是矩形,90AB DC AC BD A B C D ︒==∠=∠=∠=∠=∴,,, 180A C ︒∠+∠=∴,只有AB BC =时,AC BD ⊥,∴A 、B 、D 不符合题意,只有C 符合题意,故选:C .3.【答案】B【解析】解:需要添加的条件是AC BD =;理由如下:∵四边形ABCD 的对角线AC BD 、互相平分, ∴四边形ABCD 是平行四边形,AC BD =∵,∴四边形ABCD 是矩形(对角线相等的平行四边形是矩形);故选:B . 4.【答案】B【解析】解:连接AC ,AE ∵垂直平分边BC ,AB AC =∴,又∵四边形ABCD 是菱形,AB BC =∴, AB AC BC ==∴,ABC ∴△是等边三角形,60B ︒∠=∴, 120BCD ︒∠=∴,又AF ∵垂直平分边CD ,∴在四边形AECF 中,36018012060EAF ︒︒︒︒∠=−−=.故选:B . 5.【答案】C【解析】解:∵一组对边平行且相等的四边形是平行四边形,∴A 不正确;∵两组对边分别相等的四边形是平行四边形, ∴B 不正确;∵对角线互相平分且相等的四边形是矩形, ∴C 正确;∵对角线互相垂直平分且相等的四边形是正方形, ∴D 不正确;故选:C . 6.【答案】D【解析】解:∵四边形ABCD 是矩形,90ABC AC BD OA OC OB OD ︒∠====∴,,,, OA OB =∴,故A 、B 、C 正确, 故错误的是D , 故选:D . 7.【答案】C【解析】解:连接BD ,交AC 于O 点,∵四边形ABCD 是菱形,5AB BC CD AD ====∴,122AC BD AO AC BD BO ⊥==∴,,,90AOB ︒∠=∴, 6AC =∵,3AO =∴,4BO ==∴,8DB =∴,∴菱形ABCD 的面积是11682422AC DB ⨯=⨯⨯=,24BC AE =∴, 5BC AB ==∵,244.85AE ==∴, 故选:C .8.【答案】C【解析】解:∵四边形ABCD 是菱形,OB OD AC BD ADC ABC =⊥∠=∠∴,,,DH AB ⊥∵, 12OH OB BD ==∴, 20DHO ︒∠=∵,9070OHB DHO ︒︒∠=−∠=∴, 70ABD OHB ︒∠=∠=∴,2140ADC ABC ABD ︒∠=∠=∠=∴,故选:C . 9.【答案】B【解析】解:作PM AD ⊥于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形,ADC ABC AMP AEP PBE PBN PFD PDM PFC PCN S S S S S S S S S S =====△△△△△△△△△△,,,,∴,12882DFP PBE S S ==⨯⨯=△△∴, 8816S =+=阴∴,故选:B . 10.【答案】A【解析】解:过点F 作FH CD ⊥,交直线CD 于点Q ,则90EHF ︒∠=,如下图所示:∵四边形ABCD 为矩形,90ADE ︒∠=∴,ADE EHF ∠=∠∴,∵在正方形AEFG 中,90AEF AE EF ︒∠==,,90AED HEF ︒∠+∠=∴, 90HEF EFH ︒∠+∠=∵,AED EFH ∠=∠∴,在ADE △和EHF △中,ADE EHF AED EFH AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE EHF AAS ∴△≌△,4AD EH ==∴,由题意得:2410t t +=+, 解得:143t =, 故选:A .二、11.【答案】150︒【解析】解:AC ∵平分BAE ∠,30CAE BAC ︒∠=∠=∴,180120DAB BAC CAE ︒︒∠=−∠−∠=∴,150DAC DAB BAC ︒∠=∠+∠=∴;故答案为:150︒.12.【答案】105︒【解析】解:∵菱形ABCD 中,120BAD ︒∠=1120602AB BC CD AD BCD ACB ACD BCD ︒︒===∠=∠=∠=∠=∴,,, ACD ∴△是等边三角形CE AD ⊥∵1302ACE ACD ︒∠=∠=∴ 90BCE ACB ACE ︒∠=∠+∠=∴CE BC =∵45E CBE ︒∠=∠=∴1801804530105EFC E ACE ︒︒︒︒︒∠=−∠−∠=−−=∴故答案为:105︒13.【答案】2BC AB =【解析】解:∵四边形ABCD 是矩形,90AB CD ABC DCB ︒=∠=∠=∴,,∵点F 是BC 中点,BF FC =∴,且90ABC DCB AB CD ︒∠=∠==,,()ABF DCF SAS ∴△≌△AFB DFC ∠=∠∴,∵四边形EMFN 是正方形,90AFD ︒∠=∴,90AFB DFC ︒∠+∠=∴,45AFB DFC ︒∠=∠=∴,且90ABF DCF ︒∠=∠=,4545AFB BAF DFC FDC ︒︒∠=∠=∠=∠=∴,,AB BF CD CF ==∴,,2BC AB =∴,故答案为:2BC AB =.14.【答案】8【解析】解:∵四边形ABCD 是正方形,90BAD AB AD ∠=︒=∴,,90BAF EAD ︒∠+∠=∴,BF a DE a ⊥⊥∵,,90AED AFB ︒∠=∠=∴90BAF ABF ︒∠+∠=∴,ABF EAD ∠=∠∴,AFB DEA ∴△≌△,53AF ED AE BF ====∴,,538EF AF AE =+=+=∴,故答案为:815.【答案】4−【解析】解:∵四边形ABCD 是正方形,45ACD ︒∠=∴,30E ACD CAE ︒∠=∠−∠=∴,28AE AD ==∴,DE ==∴4CE DE DC =−=−∴,故答案为:4−.16.【答案】4【解析】解;设最快x 秒,四边形ABPQ 成为矩形,由BP AQ =得3202x x =−.解得4x =,故答案为:4.三、17.【答案】证明:AB CD ∵∥,OAB DCA ∠=∠∴,AC ∵平分BAD ∠.OAB DAC ∠=∠∴,DCA DAC ∠=∠∴,CD AD AB ==∴,AB CD ∵∥,∴四边形ABCD 是平行四边形,AD AB =∵,∴四边形ABCD 是菱形.18.【答案】证明:连接EO ,如下图所示:O ∵是AC BD 、的中点,AO CO BO DO ==∴,,∴四边形ABCD 是平行四边形,在EBD Rt △中,O ∵为BD 中点,12EO BD =∴, 在AEC Rt △中,O ∵为AC 的中点,12EO AC =∴, AC BD =∴,又∵四边形ABCD 是平行四边形,∴平行四边形ABCD 是矩形.19.【答案】证明:∵四边形ABCD 是矩形,90B C AB DC ︒∠=∠==∴,,BF CE =∵,BF EF CE EF +=+∴,即BE CF =,在ABE △和DCF △中,AB DC B C BE CF =⎧⎪∠=∠⎨⎪=⎩,()ABE DCF SAS ∴△≌△,AE DF =∴.20.【答案】(1)证明:DE BC CE AB ∵∥,∥,∴四边形BCED 是平行四边形,BD CE =∴,D ∵是ABC △的边AB 的中点,AD BD =∴,AD CE =∴;(2)解:当ABC △满足ABC △是直角三角形,90ACB ︒∠=时,四边形ADCE 是菱形;理由如下: 由(1)得:AD CE AD CE =∥,,∴四边形ADCE 是平行四边形,90ACB D ∠=︒∵,是ABC △的边AB 的中点,12CD AB AD ==∴, ∴四边形ADCE 是菱形. 21.【答案】(1)证明:∵四边形ABCD 是矩形,90AD BC A OB OD ︒∠==∴∥,,,, MDO NBO DMO BNO ∠=∠∠=∠∴,.MN ∵是BD 的垂直平分线OD OB =∴,在DMO △和BNO △中,MDO NBO DMO BNO OD OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DMO BNO AAS ∴△≌△,OM ON =∴.OB OD =∵,∴四边形BMDN 是平行四边形.MN BD ⊥∵,∴四边形BMDN 是菱形.(2)解:设MD MB x ==,则8AM x =−.在AMB Rt △中,由勾股定理得:222(8)4x x =−+,解得:5x =.即5MB =,∴菱形BMDN 的周长为5420⨯=.在ABD Rt △中,由勾股定理得:BD ===,BO =∴在BOM Rt △中,由勾股定理得:OM ===,由(1)得:OM ON =,MN =∴.22.【答案】(1)证明:∵四边形ABCD 是矩形,90ADC ︒∠=∴,AF CE ⊥∴,CD DE =∵,AE AC EF CF ==∴,,EAD CAD ∠=∠∴,AE CF ∵∥,EAD AFC ∠=∠∴,CAD CFA ∠=∠∴,AC CF =∴,AE EF AC CF ===∴,∴四边形ACFE 是菱形;(2)解:如下图,∵四边形ABCD 是矩形,90ABC BCE CD AB ︒∠=∠==∴,,2AB CD DE ==∵,,4BC CE ==∴,BE ==∴,90AB CD DE BAE EDG AGB DGE ︒==∠=∠=∠=∠∵,,, ()ABG DEG AAS ∴△≌△,BG EG =∴,12BG BE ==∴23.【答案】(1)证明:AD ∵是BC 边上的中线,AB AC =, BD CD =∴,BF EC ∵∥,DBF DCE ∠=∠∴,BDF CDE ∠=∠∵,()BDF CDE ASA ∴△≌△;(2)证明:BDF CDE ∵△≌△,BF CE DE DF ==∴,,BF CE ∵∥,∴四边形BECF 是平行四边形,AB AC AD =∵,是中线,∴四边形BECF 是菱形,1122DE BC DE DF EF ===∵,,EF BC =∴,∴四边形BECF 是正方形.。

2019中考数学数学第一轮《四边形》单元测试卷含答案(1).docx

2019中考数学数学第一轮《四边形》单元测试卷含答案(1).docx

单元测试卷 ( 五)(测试范围:第五单元 (四边形 )题号一二三考试时间 :90 分钟总分总分人试卷满分核分人:100 分 )得分一、选择题 (本题共 12 小题 ,每小题 3 分 ,共 36 分 )1.将一个 n 边形变成 (n+ 1) 边形 ,内角和将()A.减少180 °B.增加 180 °C.增加90°D.增加360 °2.如图 D5- 1,在矩形 ABCD 中,对角线 AC,BD 相交于点O,∠ AOB= 60°,AC= 6 cm,则 AB 的长是()图D5-1A.3 cm C.10 cm B .6 cm D .12 cm3.如图D5- 2,在矩形ABCD中 ,AD= 3AB,点 G,H分别在AD ,BC上 ,连接BG,DH ,且BG∥ DH ,当=时 ,四边形 BHDG是菱形()图D5-2A. B. C. D.4.如图D5- 3,在平行四边形ABCD中 ,点E 在边DC上 ,DE ∶EC= 3∶1,连接AE交BD于点F,则△ DEF的面积与△ BAF 的面积之比为()图D5-3A.3∶4 B .9∶16C.9∶1 D .3∶15.如图 D5 -4,O 是矩形 ABCD 的对角线AC 的中点 ,M 是 AD 的中点 ,若 AB= 5,AD= 12,则四边形ABOM 的周长为()图D5-4A.17B.18C.19D.206.下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形7.如图 D5- 5,在 ?ABCD 中 ,连接 AC,∠ ABC= ∠ CAD= 45°,AB= 2,则 BC 的长是()图 D5-5A. B .2C.2 D.48.如图 D5-6,在矩形 ABCD 中 ,BC= 8,CD= 6,将△ ABE 沿 BE 折叠 ,使点 A 恰好落在对角线BD 上的点 F 处,则 DE 的长是()图D5-6A.3B.C.5D.9.如图 D5 -7,四边形 ABCD 是平行四边形 ,点 E 是边 CD 上的一点 ,且 BC=EC ,CF ⊥ BE 交 AB 于点 F,P 是 EB 延长线上一点 ,下列结论 :① BE 平分∠ CBF ;②CF 平分∠ DCB ;③BC=FB ;④PF=PC.其中正确的结论个数为()图D5-7A.1B.2C.3D.410.如图 D5-8,把矩形 ABCD 沿 EF 翻折 ,点 B 恰好落在 AD 边上的点 B'处 .若 AE= 2,DE= 6,∠EFB= 60°,则矩形 ABCD的面积是()图D5-8A.12 B .24 C.12 D.1611.如图D5 -9,矩形ABCD中,AB= 8,BC= 4.点 E 在AB 上 ,点F 在 CD上 ,点 G,H在对角线AC上 ,若四边形EGFH是菱形 ,则AE的长是()图 D5-9A.2 B .3 C.5 D.612.如图 D5 -10,在正方形 ABCD 中 ,△ BPC 是等边三角形 ,BP ,CP 的延长线分别交AD 于点 E,F,连接 BD ,DP ,BD 与CF 相交于点H ,给出下列结论2:① BE= 2AE;②△ DFP ∽△ BPH;③△ PFD ∽△ PDB ;④ DP =PH ·PC. 其中正确的是()图D5 -10A.①②③④C.①②④B.②③D.①③④二、填空题(本题共 4 小题 ,每小题 5 分 ,共20 分)13.如图D5-11,在?ABCD中 ,点E 在AB 上 ,点F 在CD上,则S△ABF S△CDE (填“>”“<”或“= ”).图D5 -1114.如图 D5-12,在菱形 ABCD 中 ,AB= 10,AC= 12,则它的面积是.图D5 -1215.如图 D5-13,E 为正方形ABCD 外一点 ,若△ ADE 为等边三角形 ,则∠ AEB=.图 D5 -1316.如图 D5 -14,已知四边形ABCD 是矩形 ,把矩形 ABCD 沿直线 AC 折叠 ,点 B 落在点 E 处 ,连接 DE. 若 DE ∶∶AC= 3 5,则的值为.图D5 -14三、解答题 (共 44 分 )17.(5 分 )如图 D5-15,在△ ABC 中,M 是 AC 边上的一点 ,连接 BM.将△ ABC 沿 AC 翻折 ,使点 B 落在点 D 处,当 DM ∥ AB 时 ,求证 :四边形 ABMD 是菱形 .图D5 -1518.(6 分 )如图 D5 -16,在 ?ABCD 中 ,∠ ABC= 60°.E,F 分别在 CD 和 BC 的延长线上 ,AE∥ BD,EF⊥ BC,EF=,求 AB 的长 .图D5 -1619.(6 分 )如图 D5 -17,在菱形 ABCD 中 ,∠A = 110 °,点 E 是菱形 ABCD 内一点 ,连接 CE,将线段 CE 绕点 C 顺时针旋转 110°,得到线段CF ,连接 BE,DF.若∠ E= 86°,求∠ F 的度数 .图D5 -1720.(7 分) 如图 D5 -18,四边形 ABCD 中 ,AC,BD 相交于点 O,O 是 AC 的中点 ,AD∥BC ,AC= 8,BD= 6.(1)求证 :四边形 ABCD 是平行四边形 ;(2)若 AC⊥ BD ,求平行四边形ABCD 的面积 .图D5 -1821.(10 分 )如图 D5 -19,在正方形ABCD 中 ,点 G 在对角线 BD 上 (不与点 B,D 重合 ),GE⊥ DC 于点 E,GF ⊥ BC 于点F,连接 AG.(1)写出线段AG,GE,GF 长度之间的数量关系,并说明理由 ;(2)若正方形ABCD 的边长为1,∠ AGF= 105 °,求线段 BG 的长 .图D5 -1922.(10 分 )已知正方形ABCD ,点 M 为边 AB 的中点 .(1)如图 D5-20① ,点 G 为线段 CM 上的一点 ,且∠ AGB= 90°,延长 AG,BG 分别与边 BC ,CD 交于 E,F. ①求证 :BE=CF ;②求证 :BE 2=BC ·CE.2(2)如图 D5 -20②,在边 BC 上取一点 E,满足 BE =BC ·CE,连接 AE 交 CM 于点 G,连接 BG 并延长交 CD 于点 F,求 tan∠CBF 的值 .图D5 -20参考答案1.B2.A [ 解析 ] 根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠ AOB= 60°,判断出△AOB 是等边三角形 ,根据等边三角形的性质求出AB 的长即可 .3.C4.B5.D6.C[ 解析 ]对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;一条对角线平分一组对角的平行四边形是菱形 ;对角线互相垂直的矩形是正方形,所以其中错误的为 C,故选 C.7.C[ 解析 ]∵ ? ABCD ,∴ AD ∥ BC ,∴∠ DAC= ∠ ACB= 45°= ∠ ABC, ∴∠ BAC= 90°,AB=AC= 2 , 由勾股定理得BC== = 2 ,选 C.8.C[ 解析 ]由 AB= 6,BC= 8,应用勾股定理 AB2 +AD 2=BD 2 ,得 :BD= 10,由折叠可知 BF=AB ,故 BF= 6,则 DF= 4.(法一 )∵∠ A= ∠ EFD ,∠ EDF= ∠ADB ,∴ △DEF ∽△ DBA ,∴ = ,即= ,∴DE= 5.(法二 )在 Rt△DEF 中 ,设 DE=x ,则 EF=AE= 8-x,应用勾股定理DE 2=EF 2 +DF 2,∴ x2= (8-x) 2+ 42 ,解得 x= 5.9.D [ 解析 ] ∵AB ∥CD,∴∠ ABE= ∠ BEC.∵ CE=CB ,∴∠ CBE= ∠ BEC.∴∠ CBE= ∠ ABE.即 BE 平分∠ ABC. 故①正确 ;∵ CE=CB ,CF ⊥ BE,∴ CF 平分∠ DCB. 故②正确 ;∵ AB∥ CD,∴∠ DCF= ∠ CFB. ∵∠ BCF= ∠ FCD ,∴∠ BCF=∠CFB,∴ BC=BF. 故③正确 ;∵ BF=CB ,CF ⊥ BE,∴ BE 垂直平分 CF ,∴ PF=PC. 故④正确 .10.D11.C12.C [解析 ] 在正方形 ABCD 中,∠ A= 90°;由△BPC 是等边三角形 ,可得∠ CBP= 60°,∴∠ ABP= 30°,∴ BE= 2AE,即①正确 ;由 BD 是正方形 ABCD 的对角线 ,可得△BCD 是等腰直角三角形 ,∴∠ CBD= ∠CDB= 45°,可得∠ PBD= 15°,∵ CD=CP=CB , ∠ PCD= 30°, 可得∠ CPD= ∠ CDP= 75°, ∴ ∠ BPD= 75°+60°= 135°, ∠ FDP= 90°-75°= 15°, ∠PFD= 90°-∠ PCD= 90°-30°= 60°,∠ FPD= 180 °-∠ CPD= 180 °-75°= 105 °,∴∠ PBD= ∠ PDF ,∠ BPH= ∠ DFP ,∴ △DFP ∽△ BPH ,即②正确 ;∵∠ BPD≠∠ DPF ,∴③ △PFD ∽△ PDB 错误 ;由∠ PDH= ∠PDC- ∠ CDB= 75°-45°= 30°= ∠PCD ,∠CPD= ∠DPH ,可得△PDC∽△ PHD ,∴ DP 2=PH ·PC,即④正确 . 13.= 14.96 15.15°16.[解析 ] 由折叠的性质可知∠ BAC= ∠ EAC.∵四边形 ABCD 是矩形 ,∴ AB∥ CD ,∴∠ DCA= ∠BAC,∴∠ EAC= ∠ DCA.设AE 与 CD 交于点 F,则 AF=CF ,∴ DF=EF ,又∠ DFE= ∠ AFC ,∴△ACF ∽△ EDF .∴= = ,设DF= 3x,则 CF= 5x,AB=DC= 8x.在 Rt△ADF 中 ,由勾股定理知 ,AD= 4x,∴= .17.证明 :如图 ,由折叠得 :AB=AD ,BM=DM ,∠ 1= ∠ 2,∵DM ∥ AB,∴∠ 1= ∠ 3,∴∠ 2= ∠ 3,∴ AD=DM ,∴AB=AD=BM=DM ,∴四边形 ABMD 是菱形 .18.解: ∵四边形 ABCD 是平行四边形 ,∴AB=DC , AB∥ EC.∵ AE∥BD ,∴四边形 ABDE 是平行四边形 .∴AB=DE=CD ,即 D 为 CE 中点 .∵EF⊥BC ,∴∠ EFC= 90°.∵AB∥CD ,∴∠ DCF= ∠ ABC= 60°.∵ EF=,∴ CE= 2.∴AB= 1.19.解: ∵四边形 ABCD 是菱形 ,∴∠ BCD= ∠A= 110°,BC=DC.由旋转可得 :∠ ECF= 110°,EC=FC ,∵∠ BCD= ∠BCE+ ∠ECD= 110°,∠ECF= ∠DCF+ ∠ECD= 110°,∴∠ BCE= ∠ DCF.又∵ BC=DC ,EC=FC ,∴△BCE≌ △ DCF ,∴∠ F= ∠E= 86°.20.解:(1) 证明 :∵ O 是 AC 的中点 ,∴ OA=OC ,∵AD∥BC,∴∠ ADO= ∠ CBO.在△AOD 和△COB 中 ,∵∴ △AOD≌△ COB(AAS), ∴ OD=OB ,∴四边形 ABCD 是平行四边形 .(2)∵四边形ABCD 是平行四边形,AC⊥ BD,∴四边形 ABCD 是菱形 ,∴S 菱形ABCD = AC ·BD= 24.21.解:(1) AG2=GE 2+GF 2.理由如下 :连接 GC,由正方形的性质知AD=CD ,∠ ADG= ∠CDG ,在△ADG 和△CDG 中,∴ △ADG≌△ CDG ,∴AG=CG ,由题意知∠ GEC= ∠GFC= ∠ DCB= 90°,∴四边形 GFCE 是矩形 ,∴GF=EC.222222在 Rt△GEC 中 ,根据勾股定理 ,得 GC=GE +EC ,∴ AG =GE +GF .(2)作 AH ⊥ BD 于点 H,由题意知∠ AGB= 60°,∠ ABG= 45°,∴ △ABH 为等腰直角三角形,△AGH 为含 30°角的直角三角形,∵AB= 1,∴ AH=BH= ,HG= ,∴ BG= + =.22.解:(1) ①证明 : 在△ABG 中 ,∵∠ AGB= 90°,∴∠ GAB+ ∠ABG= 90°,∵正方形 ABCD ,∴ AB=BC ,∠ ABC= ∠BCD= 90°,∴∠ ABC= ∠ABG+ ∠GBC= 90°,∴∠ GAB= ∠GBC,∴Rt△EAB≌Rt△FBC ,∴ BE=CF .②证明 :∵∠ AGB= 90°,点 M 是 AB 的中点 ,∴GM=AM=BM ,∴∠ GAB= ∠ AGM ,∵∠ AGM= ∠CGE ,由①得∠ GAB= ∠ CBG,∴∠ CGE= ∠CBG,又∵∠ GCB= ∠ BCG,∴ △GCE∽△ BCG,∴=,∴CG2=BC ·CE,∵∠ MBG= ∠ MGB= ∠CGF= ∠ CFG ,∴CG=CF ,由①得 BE=CF ,2∴ CG=CF=BE ,∴ BE =BC ·CE.(2)解法 1:如图① ,延长 AE,DC 交于点 K,∵DC∥AB,∴ △ABE∽△ KCE ,∴= ,∵BE 2=BC ·CE,∴= ,∴=,∵AB=BC ,∴CK=BE ,∵ AB∥DC ,∴= = =,∵AM=BM ,∴CF=CK=BE.∵ BE2=BC ·CE,∴ E 是 BC 上的黄金分割点,-∴=,-∴ tan∠CBF= = =.解法 2:如图② ,延长 CM ,BF 分别交直线AD 于点 S,K,易证 AS=BC=AB ,∵BE2=BC ·CE,∴点 E 是 BC 上的黄金分割点,-∴=,∵AD∥ BC,∴ tan∠CBF= tanK=-= = =.7、我们各种习气中再没有一种象克服骄傲那麽难的了。

精品试题沪科版八年级数学下册第19章 四边形达标测试试题(含答案解析)

精品试题沪科版八年级数学下册第19章 四边形达标测试试题(含答案解析)

沪科版八年级数学下册第19章 四边形达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在矩形ABCD 中,2,1AD CD ==,连接AC ,以对角线AC 为边,按逆时针方向作矩形ABCD 的相似矩形11AB C C ,再连接1AC ,以对角线1AC 为边作矩形11AB C C 的相似矩形221AB C C ,…按此规律继续下去,则矩形1n n n AB C C 的周长为( )A .3n ⨯⎝⎭B .13n -⨯⎝⎭C .6n ⨯⎝⎭D .16n -⨯⎝⎭2、将一块三角尺和一张矩形纸片如图排放,若∠1=25°,则∠2的大小为( )A .55°B .65°C .45°D .75°3、如图所示,公路AC、BC互相垂直,点M为公路AB的中点,为测量湖泊两侧C、M两点间的距离,若测得AB的长为6km,则M、C两点间的距离为()A.2.5km B.4.5km C.5km D.3km4、如图,把矩形纸片ABCD沿对角线折叠,若重叠部分为EBD∆,那么下列说法错误的是()A.EBD∆是等腰三角形B.EBA∆全等∆和EDC∠相等C.折叠后得到的图形是轴对称图形D.折叠后ABE∠和CBD5、如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是()A.A,B,C都不在B.只有BC.只有A,C D.A,B,C6、下图是文易同学答的试卷,文易同学应得()A.40分B.60分C.80分D.100分7、垦区小城镇建设如火如荼,小红家买了新楼.爸爸在正三角形、正方形、正五边形、正六边形四种瓷砖中,只购买一种瓷砖进行平铺,有几种购买方式()A.1种B.2种C.3种D.4种8、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是()A.菱形B.矩形C.正方形D.三角形9、在菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=6,过点D作AC的平行线交BC的延长线于点E,则△BDE的面积为()A.22 B.24 C.48 D.4410、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为()A .7B .6C .4D .8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在□ABCD 中,AC 与BD 相交于点O ,∠AOB =60°,BD =4,将△ABC 沿直线AC 翻折后,点B 落在点B ′处,那么DB ′的长为_________2、如图,每个小正方形的边长都为1,△ABC 是格点三角形,点D 为AC 的中点,则线段BD 的长为 _____.3、点D 、E 、F 分别是△ABC 三边的中点,△ABC 的周长为24,则△DEF 的周长为______.4、已知□ABCD 的周长是20cm ,且AB :BC =3:2,则AB =_______cm .5、如图,BE ,CD 是△ABC 的高,BE ,CD 相交于点O ,若BAC α∠=,则BOC ∠=_________.(用含α的式子表示)三、解答题(5小题,每小题10分,共计50分)1、如图,DE是ABC∆的中位线,延长DE到F,使EF DE=,连接BF.=.求证:BF DC2、如图,四边形ABCD是平行四边形,∠BAC=90°.(1)尺规作图:在BC上截取CE,使CE=CD,连接DE与AC交于点F,过点F作线段AD的垂线交AD 于点M;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论.3、已知:如图:五边形ABCDE的内角都相等,DF⊥AB.(1)则∠CDF=(2)若ED=CD,AE=BC,求证:AF=BF.4、如图, ABCD 的对角线AC 、 BD 相交于点O ,BD =12cm ,AC =6cm ,点E 在线段BO 上从点B 以1cm/s 的速度向点O 运动,点F 在线段OD 上从点O 以2cm /s 的速度向点D 运动.(1)若点E 、F 同时运动,设运动时间为t 秒,当t 为何值时,四边形AECF 是平行四边形.(2)在(1)的条件下,当AB 为何值时, AECF 是菱形;(3)求(2)中菱形AECF 的面积.5、已知平行四边形ABCD 的两邻边AB 、AD 的长是关于x 的方程 ()244210x mx m -+-=的两个实数根.(1)当m 为何值时,平行四边形ABCD 是菱形?(2)若AB 的长为2,那么平行四边形ABCD 的周长是多少?-参考答案-一、单选题1、C【分析】根据已知和矩形的性质可分别求得AC ,AC 1,AC 2的长,从而可发现规律,根据规律即可求得第n 个矩形的周长.【详解】∵四边形ABCD 是矩形,∴AD ⊥DC ,2,1AD CD ==∴AC =∵按逆时针方向作矩形ABCD 的相似矩形AB 1C 1C ,∴矩形AB 1C 1C 的边长和矩形ABCD 2∴矩形AB 1C 1C 的周长和矩形ABCD 2,∵矩形ABCD 的周长=(2+1)×2=6,∴矩形AB 1C 1C 的周长6,依此类推,矩形AB 2C 2C 1的周长和矩形AB 1C 1C 2∴矩形AB 2C 2C 1的周长=26⨯∴矩形AB 3C 3C 2的周长=36⨯ ……按此规律矩形1n n n AB C C 的周长为:6n ⨯ 故选:C .【点睛】 本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律.2、B【分析】延长CE,交矩形边于点B,利用三角形外角性质,平行线的性质计算.【详解】延长CE,交矩形边于点B,∴∠ABE=90°-∠1=65°,∵纸片是矩形,∴AB∥CD,∴∠ABE=∠2=65°,故选B.【点睛】本题考查了矩形的性质,平行线的性质,三角形外角的性质,三角板的特点,熟练掌握平行线的性质是解题的关键.3、D【详解】AB,即可求出CM.根据直角三角形斜边上的中线性质得出CM=12【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M为AB的中点,AB,∴CM=12∵AB=6km,∴CM=3km,即M,C两点间的距离为3km,故选:D.【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.4、D【分析】根据题意结合图形可以证明EB=ED,进而证明△ABE≌△CDE;此时可以判断选项A、B、D是成立的,问题即可解决.【详解】解:由题意得:△BCD≌△BFD,∴DC=DF,∠C=∠F=90°;∠CBD=∠FBD,又∵四边形ABCD为矩形,∴∠A=∠F=90°,DE∥BF,AB=DF,∴∠EDB=∠FBD,DC=AB,∴∠EDB=∠CBD,∴EB=ED,△EBD为等腰三角形;在△ABE与△CDE中,∵BE DE AB CD=⎧⎨=⎩,∴△ABE≌△CDE(HL);又∵△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形;综上所述,选项A、B、C成立,∴不能证明D是正确的,故说法错误的是D,故选:D.【点睛】本题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答.5、D【分析】根据三角形边长然后利用勾股定理逆定理可得ABC∆为直角三角形,由直角三角形斜边上的中线性质即可得.【详解】解:如图所示:连接BD,∵300AB =,400BC =,500AC =,∴222AC AB BC =+,∴ABC ∆为直角三角形,∵D 为AC 中点,∴250AD CD BD ===,∵覆盖半径为300 ,∴A 、B 、C 三个点都被覆盖,故选:D .【点睛】题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.6、B【分析】分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.【详解】解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,∴文易同学答对3道题,得60分,故选:B.【点睛】本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键7、C【分析】从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.【详解】解:正三角形每个内角是60°,能被360°整除,所以能单独镶嵌成一个平面;正方形每个内角是90°,能被360°整除,所以能单独镶嵌成一个平面;正五边形每个内角是108°,不能被360°整除,所以不能单独镶嵌成一个平面;正六边形每个内角是120°,能被360°整除,所以能单独镶嵌成一个平面.故只购买一种瓷砖进行平铺,有3种方式.故选:C.【点睛】本题主要考查了平面镶嵌.解这类题,根据组成平面镶嵌的条件,逐个排除求解.8、B【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.解:如图,∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH BD FG,EF AC HG,11,22FG BD EF AC==,∴四边形EFGH是平行四边形,∵AC BD⊥,∴EF FG⊥,∴平行四边形EFGH是矩形,又AC与BD不一定相等,EF∴与FG不一定相等,∴矩形EFGH不一定是正方形,故选:B.【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.9、B【分析】先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.解: 菱形ABCD ,6,AC =,3,2,5,,AD BC OA OC BD BO AB BC AD AC BD ∥在Rt △BCO 中,224,BOBC OC 即可得BD =8,,AC DE ∥ ∴四边形ACED 是平行四边形,∴AC =DE =6,5,CE AD∴ BE =BC +CE =10,222100,BE BD DE∴△BDE 是直角三角形,90,BDE ∠=︒∴S △BDE =12DE •BD =24.故选:B .【点睛】本题考查了菱形的性质,勾股定理的逆定理及三角形的面积,平行四边形的判定与性质,求出BD 的长度,判断△BDE 是直角三角形,是解答本题的关键.10、A【分析】如图所示,连接AC ,OB 交于点D ,先求出C 和A 的坐标,然后根据矩形的性质得到D 是AC 的中点,从而求出D 点坐标为(2,1),再由当直线32y x =+经过点D 时,可将矩形OABC 的面积平分,进行求解即可.【详解】解:如图所示,连接AC ,OB 交于点D ,∵C 是直线32y x =+与y 轴的交点,∴点C 的坐标为(0,2),∵OA =4,∴A 点坐标为(4,0),∵四边形OABC 是矩形,∴D 是AC 的中点,∴D 点坐标为(2,1),当直线32y x =+经过点D 时,可将矩形OABC 的面积平分,由题意得平移后的直线解析式为32y x m =+-,∴3221m ⨯+-=,∴7m =,故选A .【点睛】 本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.二、填空题1、2【分析】BD=2.连接B′O.证明△B′OD是等边三角形,即可求得B′D=OD=12【详解】解:如图,连接B′O.∵∠AOB=∠B′OA=60°,∴∠B′OD=60°,∵OB=OB′=OD,∴△B′OD是等边三角形,BD=2,∴B′D=OD=12故答案为:2.【点睛】本题考查了折叠变换的性质、平行四边形的性质以及等边三角形的判定和性质;熟练掌握翻折变换和平行四边形的性质是解题的关键.2##【分析】根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:3AB==BC===AC222AB BC AC∴+=,∴∠ABC=90°,∵点D为AC的中点,∴BD为AC边上的中线,∴BD=12AC=【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.3、12【分析】据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.【详解】解:∵如图所示,D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DF12=BC,FE12=AB,DE12=AC,∴△DEF 的周长=DF +FE +DE 12=BC 12+AB 12+AC 12=(AB +BC +CA )12=⨯24=12.故答案为:12.【点睛】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路. 4、6【分析】由平行四边形ABCD 的周长为20cm ,根据平行四边形的性质,即可求得AB +BC =10cm ,又由AB :BC =3:2,即可求得答案.【详解】解:∵平行四边形ABCD 的周长为20cm ,∴AB =CD ,AD =BC ,AB +BC +CD +AD =20cm ,∴AB +BC =10cm ,∵AB :BC =3:2, ∴3=106cm 32AB ⨯=+. 故答案为:6.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的性质.5、180°-α根据三角形的高的定义可得∠AEO=∠ADO=90°,再根据四边形在内角和为360°解答即可.【详解】解:∵BE,CD是△ABC的高,∴∠AEO=∠ADO=90°,又BACα∠=,∴∠BOC=∠DOE=360°-90°-90°-α=180°-α,故答案为:180°-α.【点睛】本题考查三角形的高、四边形的内角和、对顶角相等,熟知四边形在内角和为360°是解答的关键.三、解答题1、见解析【分析】由已知条件可得DF=AB及DF∥AB,从而可得四边形ABFD为平行四边形,则问题解决.【详解】∵DE是ABC∆的中位线∴DE∥AB,12DE AB=,AD=DC∴DF∥AB∵EF=DE∴DF=AB∴四边形ABFD为平行四边形∴AD=BF∴BF=DC本题主要考查了平行四边形的判定与性质、三角形中位线的性质定理,掌握它们是解答本题的关键.当然本题也可以用三角形全等的知识来解决.2、(1)图形见解析;(2)FM FC =,证明见解析【分析】(1)以C 为圆心CD 长为半径画弧于BC 交点即为E ;连DE 与AC 交点即为F ;过F 作AD 的垂直平分线与AD 交点即为M ;(2)证明DF 平分ADC ∠,再利用角平分线的性质判定即可.【详解】(1)图形如下:(2)FM FC =,证明如下:由(1)可得:90FMD ∠=︒,CE =CD∴CED CDE ∠=∠∵四边形ABCD 是平行四边形∴AD ∥BC ,AB ∥CD∴CED ADE ∠=∠,∴ADE CDE ∠=∠即DF 平分ADC ∠∵∠BAC =90°∴90ACD FMD ∠=∠=︒∴FM FC =【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定与性质.3、(1)54°;(2)见解析.【分析】(1)根据多边形内角和度数可得每一个角的度数,然后再利用四边形DFBC 内角和计算出∠CDF 的度数;(2)连接AD 、DB ,然后证明△DEA ≌△DCB 可得AD =DB ,再根据等腰三角形的性质可得AF =BF .【详解】解:(1)∵五边形ABCDE 的内角都相等,∴∠C =∠B =∠EDC =180°×(5﹣2)÷3=108°,∵DF ⊥AB ,∴∠DFB =90°,∴∠CDF =360°﹣90°﹣108°﹣108°=54°,故答案为:54°.(2)连接AD 、DB ,在△AED 和△BCD 中,DE DC E C AE BC =⎧⎪∠=∠⎨⎪=⎩, ∴△DEA ≌△DCB (SAS ),∴AD =DB ,∵DF ⊥AB ,∴AF =BF .【点睛】本题主要考查了多边形内角和公式,全等三角形的性质与判定,等腰三角形的性质与判定,熟练掌握多边形内角和公式是解题的关键.4、(1)t =2s ;(2)AB =(3)24【分析】(1)若是平行四边形,所以BD =12cm ,则BO =DO =6cm ,故有6-t=2t ,即可求得t 值;(2)若是菱形,则AC 垂直于BD ,即有222AO BO AB +=,故AB 可求;(3)根据四边形AECF 是菱形,求得BO AC OE OF ⊥=,,根据平行四边形的性质得到BO =OD ,求得BE =DF ,列方程到底BE =DF =2,求得EF =8,于是得到结论.【详解】解:(1)∵四边形ABCD 为平行四边形,∴AO =OC ,EO =OF ,∵BO =OD =6cm ,∴62EO t OF t -=,=,∴62t t -=,∴2t s =,∴当t 为2秒时,四边形AECF 是平行四边形;(2)若四边形AECF 是菱形,则AC BD ⊥,222AO BO AB ∴+=,B A ==∴当AB 为AECF 是菱形;(3)由(1)(2)可知当t =2s ,AB =AECF 是菱形,∴EO =6−t =4,∴EF =8,∴菱形AECF 的面积=11682422AC EF ⋅=⨯⨯=.【点睛】本题考查了平行四边形的判定和性质和菱形的判定和性质,勾股定理,菱形的面积的计算.5、(1)当m 为1时,四边形ABCD 是菱形.(2)▱ABCD 的周长是5.【分析】(1)根据一元二次方程有实根求出△=16(m -1)2≥0,结合根的判别式,当△=0时,AB =AD ,平行四边形ABCD 为菱形,得出16(m -1)2=0求出m 的值即可;(2)根据AB =2,AB 的长是关于x 的方程 ()244210x mx m -+-=的根,将x =2代入原方程可求出m 的值,将m 的值代入原方程,求出方程的另一根AD 的长,再根据平行四边形的周长公式即可求出▱ABCD 的周长.【详解】解:(1)∵平行四边形ABCD 的两邻边AB 、AD 的长是关于x 的方程()244210x mx m -+-=的两个实数根∴△=(-4m )2-4×4(21m -)=16(m -1)2≥0,当△=0时,AB =AD ,平行四边形ABCD 为菱形,∴16(m -1)2=0∴m =1,∴当m 为1时,四边形ABCD 是菱形.(2)∵AB =2,AB 的长是关于x 的方程 ()244210x mx m -+-=的根把x =2代入原方程,得:()4442210m m ⨯-⨯+-=解得:m =52.将m =52代入原方程,得:24104=0x x -+整理得2252=0x x -+,因式分解得()()2120x x --=∴x 1=2,x 2=12∴AD =12,∴▱ABCD 的周长是2×(2+12)=5.【点睛】本题考查一元二次方程的根的判别式,菱形的性质,平四边形周长,一元二次方程的解,解一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

2020年中考数学一轮复习基础考点题型练 《四边形》专题测试-提高 (含答案)

2020年中考数学一轮复习基础考点题型练 《四边形》专题测试-提高 (含答案)

专题:《四边形》(专题测试-提高)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(每题4分,共48分)1.若n边形的内角和等于外角和的3倍,则边数n为()A.n=6 B.n=7 C.n=8 D.n=92.如图,点P是四边形ABCD内的一点,AP平分∠DAB,BP平分∠ABC,设∠C+∠D 的大小为x,∠P的大小为y,则x,y的关系是()A.y=2x﹣180°B.y=x C.y=x D.y=180°﹣x 3.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B.C.D.44.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=1,则AB的长是()A.1 B.2 C.D.25.用边长为1的正方形做了一套七巧板,拼成如图所示的一座桥,则桥中阴影部分的面积为原正方形面积的()A.B.C.D.不能确定6.如图,在四边形ABCD中,E、F分别是边AD、BC的中点,连AC、BE、DF、CE,AC分别交BE、DF于G、E,判断下列结论:(1)BF=DE;(2)AG=GH=HC;(3)EG=BG;(4)S=6S△AGE,其中正确的结论有()△BCEA.1 B.2 C.3 D.47.如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,则下列说法正确的是()A.若四边形EFGH是平行四边形,则AC与BD相等B.若四边形EFGH是正方形,则AC与BD互相垂直且相等C.若AC=BD,则四边形EFGH是矩形D.若AC⊥BD,则四边形EFGH是菱形8.我们知道,勾股定理反映了直角三角形三条边的关系:a2+b2=c2,而a2,b2,c2又可以看成是以a,b,c为边长的正方形的面积.如图,在Rt△ABC中,∠ACB=90°,BC=a,AC=b,O为AB的中点分别以AC,BC为边向△ABC外作正方形ACFG,BCED,连结OF,EF,OE,则△OEF的面积为()A.B.C.D.9.如图,四边形ABCD是平行四边形,点E在BC的延长线上,且CE=BC,AE=AB,AE、DC相交于点O,连接DE.若∠AOD=120°,AC=4,则CD的大小为()A.8 B.4C.8D.610.如图,正方形ABCD的边长为2,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.B.2C.2D.11.下列图形中有大小不同的平行四边形,第一幅图中有1个平行四边形,第二幅图中有3个平行四边形,第三幅图中有5个平行四边形,则第6幅和第7幅图中合计有()个平行四边形.A.22 B.24 C.26 D.2812.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB于点E,点F、G分别是AD、BC的中点,连接CF、EF、FG,下列结论:①CE⊥FG;②四边形ABGF是菱形;③EF=CF;④∠EFC=2∠CFD.其中正确的个数是()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)二.填空题(每题4分,共20分)13.如果梯形两底分别为4和6,高为2,那么两腰延长线的交点到这个梯形的较大底边的距离是.14.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,外角∠1,∠2,∠3,∠4的和等于220°,则∠BOD的度数是度.15.如图,在矩形ABCD中,已知AB=2,点E是BC边的中点,连接AE,△AB′E和△ABE关于AE所在直线对称,若△B′CD是直角三角形,则BC边的长为.16.小明用四根长度相同的木条制作了能够活动的菱形学具,他先把活动学具制作成图1所示菱形,并测得∠B=60°,接着活动学具制作成图2所示正方形,并测得正方形的对角线AC=acm,则图1中对角线AC的长为cm.17.一组正方形按如图所示放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C…在x轴上.已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,3则正方形A2019B2019C2019D2019的边长是.三.解答题(每题8分,共32分)18.如图,△ABC中,∠C=90°,AC=20,BC=10,动点D从A出发,以每秒10个单位长度的速度向终点C运动.过点D作DF⊥AC交AB于点F,过点D做AB的平行线,与过点F且与AB垂直的直线交于点E,设点D的运动时间为t(秒)(>0)(1)用含t的代数式表示线段DE的长;(2)求当点E落在BC边上时t的值;(3)设△DEF与△ABC重合部分图形的面积为S(平方单位),求S与t的函数关系式;(4)连结EC,若将△DEC沿它自身的某边翻折,翻折前后的两个三角形能形成菱形直接写出此时t的值.19.已知:如图,▱ABCD的对角线AC、BD相交于点O,∠BDC=45°,过点B作BH⊥DC交DC的延长线于点H,在DC上取DE=CH,延长BH至F,使FH=CH,连接DF、EF.(1)若AB=2,AD=,求BH的值;(2)求证:AC=EF.20.如图,在正方形ABCD中,对角线AC、BD相交于点O,E为OC上动点(与点O 不重合),作AF⊥BE,垂足为G,交BC于F,交BO于H,连接OG,CG.(1)求证:AH=BE;(2)试探究:∠AGO的度数是否为定值?请说明理由;的值.(3)若OG⊥CG,BG=2,求S21.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在D的右侧作正方形ADEF,解答下列问题:(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图2,线段CF,BD之间的位置关系为,数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动(如图4)当∠ACB=时,CF⊥BC(点C,F重合除外)?(3)若AC=4,BC=3.在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.参考答案一.选择题1.解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.2.解:∵四边形ABCD,∠C+∠D的大小为x,∴∠DAB+∠ABC=360°﹣x,∵AP平分∠DAB,BP平分∠ABC,∴∠PAB+∠PBA=,∵∠P的大小为y,∴∠P=180°﹣(∠PAB+∠PBA),即y=180°﹣(360°﹣x)=x,故选:B.3.解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.4.解:在矩形ABCD中,OA=OB=OD,∵∠AOD=60°,∴△AOD是等边三角形,∴OD=AD=1,∴BD=1+1=2,由勾股定理得,AB===.故选:C.5.解:读图可得,阴影部分的面积为原正方形的面积的一半,则阴影部分的面积为1×1÷2=;是原正方形的面积的一半;故选A.6.解:(1)∵▱ABCD,∴AD=BC,AD∥BC.∵E、F分别是边AD、BC的中点,∴BF∥DE,BF=DE.∴BEDF为平行四边形,BE=DF.故正确;(2)根据平行线等分线段定理可得AG=GH=HC.故正确;(3)∵AD∥BC,AE=AD=BC,∴△AGE∽△CGB,AE:BC=EG:BG=1:2,∴EG=BG.故正确.(4)∵BG=2EG,∴△ABG的面积=△AGE面积×2,∴S△ABE=3S△AGE.又∵S△BCE=2S△ABE.∴S△BCE=6S△AGE.故正确.故选:D.7.解:∵E、F分别是边AB、BC的中点,∴EF∥AC,EF=AC,同理可知,HG∥AC,HG=AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,AC与BD不一定相等,A说法错误;四边形EFGH是正方形时,AC与BD互相垂直且相等,B说法正确;若AC=BD,则四边形EFGH是菱形,C说法错误;若AC⊥BD,则四边形EFGH是矩形,D说法错误;故选:B.8.解:如图,过点O作OH⊥AC于点H,∵∠ACB=90°∴OH∥BC设OF与AC交于点G,∴=∵O为AB的中点,∴H为AC的中点,∴OH BC=a,AH=AC=b,设CG=x,则GH=b﹣x,∴=解得x=∴S△OEF=(EC+CG)•(FC+OH)=(a+)•(b+a)=(a2+2ab+b2)=(a+b)2故选:D.9.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,AB=DC,∵CE=BC,∴AD=CE,AD∥CE,∴四边形ACED是平行四边形,∵AB=DC,AE=AB,∴AE=DC,∴四边形ACED是矩形;∴OA=AE,OC=CD,AE=CD,∴OA=OC,∵∠AOC=180°﹣∠AOD=180°﹣120°=60°,∴△AOC是等边三角形,∴OC=AC=4,∴CD=2OC=8;故选:A.10.解:设EF=x,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,∴BD=AB=2,EF=BF=x,∴BE=x,∵∠BAE=22.5°,∴∠DAE=90°﹣22.5°=67.5°,∴∠AED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠DAE,∴AD=ED,∴BD=BE+ED=x+2=2,解得:x=2﹣,即EF=2﹣;故选:B.11.解:根据图形分析可知:第1幅时,有2×1﹣1=1个平行四边形;第2幅时,有2×2﹣1=3个平行四边形;第3幅时,有2×3﹣1=5个平行四边形;第4幅时,有2×4﹣1=7个平行四边形;…;第n幅时,有2×n﹣1=2n﹣1个平行四边形;∴第6幅图时,有2×6﹣1=11个平行四边形,第7幅图,有2×7﹣1=13个平行四边形,∴第6幅和第7幅图中合计有11+13=24个平行四边形;故选:B.12.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点F、G分别是AD、BC的中点,∴AF=AD,BG=BC,∴AF=BG,∵AF∥BG,∴四边形ABGF是平行四边形,∴AB∥FG,∵CE⊥AB,∴CE⊥FG;故①正确;∵AD=2AB,AD=2AF,∴AB=AF,∴四边形ABGF是菱形,故②正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=EF=FM,故③正确;∴∠FCD=∠M,∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M+∠FCD=2∠CFD;故④正确,故选:D.二.填空题(共5小题)13.解:在梯形BCED中,作AG⊥BC于G,交DE于F,如图所示:∵DE∥BC,∴△ADE∽△ABC,∴===,解得:AF=4,∴AG=AF+GF=4+2=6.故答案为:6.14.解:在DO延长线上找一点M,如图所示.∵多边形的外角和为360°,∴∠BOM=360°﹣220°=140°.∵∠BOD+∠BOM=180°,∴∠BOD=180°﹣∠BOM=180°﹣140°=40°.故答案为:4015.解:连接BB′,∵BE=B′E=EC,∴∠BB′C=90°,∴∠B′CD<90°,(1)如图1,∠B′DC=90°,则四边形ABEB′和ECDB′是正方形,∴BC=2AB=4,(2)如图2,∠CB′D=90°,则B,B′D三点共线,设AE,BB′交于F,则F,B′是对角线BD的三等分点,∵△BCB′∽△CDB′,∴==,∴=, ∴BC =CD =2,故答案为:4或2.16.解:如图1,2中,连接AC .在图2中,∵四边形ABCD 是正方形,∴AB =BC ,∠B =90°,∵AC =a ,∴AB =BC =a ,在图1中,∵∠B =60°,BA =BC ,∴△ABC 是等边三角形,∴AC =BC =a ,故答案为:a ,17.解:∵∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3,∴∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,1111则B2C2===()1,同理可得:B3C3==()2,故正方形A n B n∁n D n的边长是:()n﹣1.则正方形A2019B2019C2019D2019的边长是:()2018.故答案为:()2018.三.解答题(共4小题)18.解:(1)∵DF⊥AC,∴∠ADF=∠C=90°,∴tan∠A====,∵AD=t,∴DF=t,∵EF⊥AB,∴∠EFD+∠AFD=90°,又∵∠AFD+∠A=90°,∴∠EFD=∠A,在Rt△ABC中,AB==10,sin∠A====,∴sin∠EFD==,∴DE=DF=t;(2)当点E落在BC边上时,如图1,∵DE∥AB,∴∠EDC=∠A,∴EC=DE=t,∵DE∥BF,BE∥DF,∴四边形DEBF为平行四边形,∴BE=DF=t,∵BE+CE=BC=10,∴t+t=10,解得,t=;(3)当0<t≤时,△DEF在△ABC内部,∴△DEF的面积即为△DEF与△ABC重合部分图形的面积,∴S=S△DEF=DE•EF=×t×t=t2;当<t≤20时,如图2所示,过点E作EH⊥AD交AD的延长线于点H,则EH=DE=t,∴DH=2EH=t,∵DC=AC﹣AD=20﹣t,∴CH=DH﹣DC=t﹣20,∵MN∥ED,∴△EMN∽△EFD,∴==,∵=t2,∴=t2﹣60t+500,∴S四边形MNDF=S△DEF﹣S△EMN=t2﹣(t2﹣60t+500)=﹣t2+60t﹣500,综上所述,S=;(3)当△DEC是等腰三角形时,沿着它的底边翻折,翻折前后的两个三角形形成的四边形的四边相等,即为菱形,①如图3﹣1,当ED=DC时,沿DC翻折,得到菱形EDPC,连接EP交DC于O,则EO=DE=t,∴DO=2EO=t,DC=2DC=t,∵DC=AC﹣AD,∴t=20﹣t,∴t=;②如图3﹣2,当DE=DC时,沿EC翻折,得到菱形EDCP,则DC=DE=t,∵DC=AC﹣AD,∴t=20﹣t,∴t=;③如图3﹣3,当CD=CE时,沿延DE翻折,得到菱形EPDC,连接PC,交DE于O,∵DE=t,∴DO=DE=t,∴OC=DO=t,DC=OC=t,∵DC=AC﹣AD,∴t=20﹣t,∴t=,综上所述,t的值为或或.19.(1)解:过点A作AN⊥BD于N,如图1所示:∵四边形ABCD为平行四边形,∴AB∥CD,∴∠ABD=∠BDC=45°,∵AN⊥BD,∴△ABN是等腰直角三角形,∵AB=2,∴AN=BN=AB=,DN===2,∴BD=BN+DN=+2=3,∵BH⊥DC,∴△BDH是等腰直角三角形,∴BH=DH=BD=×3=3;(2)证明:取DH的中点M,连接OM,如图2所示:∵四边形ABCD是平行四边形,∴OB=OD,∴OM是△BDH的中位线,∴OM∥BH,OM=BH=DH=DM,设DE=a,CE=b,则CH=FH=a,CD=EH=CE+CH=a+b,BH=DH=DE+CE+CH =2a+b,∴OM=DM=(2a+b),∴CM=CD﹣DM=a+b﹣(2a+b)=b,在Rt△OMC中,由勾股定理得:OC2=OM2+CM2=(2a+b)2+b2=AC2,∴AC2=(2a+b)2+b2=4a2+4ab+2b2=2(2a2+2ab+b2),在Rt△EHF中,由勾股定理得:EF2=EH2+FH2=(a+b)2+a2=2a2+2ab+b2,∴AC2=2EF2,∴AC=EF.20.(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠AOB=∠BOE=90°,∵AF⊥BE,∴∠GAE+∠AEG=∠OBE+∠AEG=90°.∴∠GAE=∠OBE,在△AOH和△BOE中,,∴△AOH≌△BOE(ASA),∴AH=BE.(2)解:∠AGO的度数为定值,理由如下:∵∠AOH=∠BGH=90°,∠AHO=∠BHG,∴△AOH∽△BGH,∴=,∴=,∵∠OHG=∠AHB,∴△OHG∽△AHB,∴∠AGO=∠ABO=45°,即∠AGO的度数为定值.(3)解:∵∠ABC=90°,AF⊥BE,∴∠BA G=∠FBG,∠AGB=∠BGF=90°,∴△ABG∽△BFG,∴=,∴AG•GF=BG2=20,∵△AHB∽△OHG,∴∠BAH=∠GOH=∠GBF.∵∠AOB=∠BGF=90°,∴∠AOG=∠GFC,∵∠AGO=45°,CG⊥GO,∴∠AGO=∠FGC=45°.∴△AGO∽△CGF,∴=,∴GO•CG=AG•GF=20.∴S△OGC=CG•GO=10.21.解:(1)CF⊥BD,CF=BD,理由如下:∵四边形ADEF是正方形,∴∠DAF=90°,AD=AF,∵AB=AC,∠BAC=90°,∴∠BAD+∠DAC=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴CF=BD,∴∠B=∠ACF,∴∠B+∠BCA=90°,∴∠BCA+∠ACF=90°,即CF⊥BD;故答案为:CF⊥BD,CF=BD;②当点D在BC的延长线上时,①的结论仍成立.如图2,由正方形ADEF得:AD=AF,∠DAF=90°.∵∠BAC=90°,∴∠DAF=∠BAC.∴∠DAB=∠FAC.又∵AB=AC,∴△DAB≌△FAC(SAS).∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠A CF=45°.∴∠BCF=∠ACB+∠ACF=90°,∴CF⊥BD;(2)当∠BCA=45°时,CF⊥BD;理由如下:如图3,过点A作AC的垂线与CB所在直线交于G,∵∠ACB=45°,∴△AGC等腰直角三角形,∴AG=AC,∠AGC=∠ACG=45°,∵AG=AC,AD=AF,∵∠GAD=∠GAC﹣∠DAC=90°﹣∠DAC,∠FAC=∠FAD﹣∠DAC=90°﹣∠DAC,∴∠GAD=∠FAC,∴△GAD≌△CAF(SAS),∴∠ACF=∠AGD=45°,∴∠GCF=∠GCA+∠ACF=90°,∴CF⊥BC;故答案为:45°;(3)过点A作AQ⊥BC交CB的延长线于点Q,如图4所示:∵DE与CF交于点P时,此时点D位于线段CQ上,∵∠BCA=45°,AC=4,∴△ACQ是等腰直角三角形,∴AQ=CQ=4.设CD=x,则DQ=4﹣x,∵∠ADB+∠ADE+∠PDC=180°且∠ADE=90°,∴∠ADQ+∠PDC=90°,又∵在直角△PCD中,∠PDC+∠DPC=90°∴∠ADQ=∠DPC,∵∠AQD=∠DCP=90°∴△AQD∽△DCP,∴=,即=.解得:CP=﹣x2+x=﹣(x﹣1)2+1.∵0<x≤3,∴当x=1时,CP有最大值1,即线段CP长的最大值为1.。

《四边形》测试题

《四边形》测试题
维普资讯
四 边
( 间 时
江 西 省 宜


选 择题 ( 每小题 2 , 2 分 共 0分 )
判定 自己完成 了这个任务 . 小 虎用另一种方法 检验 : 他量 的不 是边 , 而是对角线 , 发现对 角线 是相等 的 , 虎于是 小 也 认为 自己正确地剪 出了正方形 .
l . 个对 角线互相 垂直的等腰梯形形状 9一
的风 筝 , 面积 为 4 0 m , 其 5 c 则对 角线所 用 的竹
条至少需 — — c m. 2. 图 1, 0如 1 在菱形 A C 中, =6 。 , BD / _B 0
点 E、 F分别从 点 、 D出发 以同样 的速度沿 边 B 、 C向点 C运动 . 出以下 四个说法 : E CD 给 ①4

) .
图4
A/ C .l F使 B A= D C E、 E F
B . 、 F分别平分 /B D、 B D E C _ A / C _
c E、 分 别是 B 、 . F CAD的中点
1 1
D. E=÷ BC, - 导 D AF
) 3

二 、 空题 ( 填 每小题 3分 , 3 分 ) 共 0
1. 1 如图 5 在 ̄A C , B D中 , AG平分 /B AD 交B C边 于 G 厶 =6 。A , 0 , B=6 C , G=3 则 ,
 ̄A C B D的周长是一
语数 外学 习 (
维普资讯
l . 图 l , 知 4 B. A=O 点 E 8如 0已 O O B, 在O B边上 , 四边形 AE F是 平行 四边形 . B 请你 只用 无刻度 的直尺 在 图中画 出 厶4 的平分 D 线( 请保 留画图痕 迹 ) .

电白县十中八年级数学下册第19章四边形单元综合测试题新版沪科版

电白县十中八年级数学下册第19章四边形单元综合测试题新版沪科版
∴△AEB≌△AEC(SAS), ∴BE=CE, ∴四边形BECF是菱形.
11.解 : ∵四边形ABCD是菱形,
∴AC⊥BD , DO=BO.
∵AB=5, AO=4,
∴BO= = =3,
∴BD=2BO=6.
12.解 : (1)证明 : ∵AB=AC, AD是BC边上的中线,
∴AD⊥BC ,
∴∠ADB=90°.
四边形测试题
(一)选择题(本大题共5小题,每道题5分,共25分 ; 在每道题列出的四个选项中,只有一项符合题意)
1.假设菱形的周长为48cm ,那么其边长是( )
A.24 cm
B.12cm
C.8 cm
D.4 cm
2.如以下图3-G-1,在矩形ABCD中,対角线AC,BD相交于点O, ∠ACB=30° ,那么∠AOB的大小为( )
图3-G-9
14.(12分)如以下图3-G-10,在四边形ABCD中,対角线AC, BD相交于点O, AO=CO, BO=DO,且∠ABC+∠ADC=180°.
(1)求证 : 四边形ABCD是矩形.
(2)假设∠ADF∶∠FDC=3∶2, DF⊥AC ,那么∠BDF的度数是多少 ?
图3-G-10
15.(12分)如以下图3-G-11,▱ABCD的対角线AC, BD相交于点O, BD=12cm, AC=6cm,点E在线段BO上从点B以1cm/s的速度运动,点F在线段OD上从点O以2cm/s的速度运动.
∵四边形ADBE是平行四边形,
∴▱ADBE是矩形.
(2)∵AB=AC=5, BC=6, AD是BC边上的中线,
∴BD=DC=6× =3.
在Rt△ACD中,
AD= = =4,
∴S矩形ADBE=BD·AD=3×4=12.

华东师大版初中八年级数学下册第19章单元测试卷含答案(2套)

华东师大版初中八年级数学下册第19章单元测试卷含答案(2套)

第19章矩形、菱形、正方形单元检测题时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列命题中正确的是( B )A.有一组邻边相等的四边形是菱形 B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形 D.一组对边平行的四边形是平行四边形2.如图,在矩形ABCD中,AC与BD相交于点O,若∠DBC=30°,则∠AOB等于( D )A.120° B.15° C.30° D.60°3.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连结AE,CF,则四边形AECF是( C )A.梯形 B.矩形 C.菱形 D.正方形,第2题图),第3题图),第5题图),第6题图) 4.一个菱形的周长为8 cm,高为1 cm,则这个菱形的两邻角的度数之比为( D )A.2∶1 B.3∶1 C.4∶1 D.5∶15.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断中不正确的是( D )A .四边形AEDF 是平行四边形B .如果∠BAC =90°,那么四边形AEDF 是矩形C .如果AD 平分∠BAC ,那么四边形AEDF 是菱形D .如果AD ⊥BC 且AB =AC ,那么四边形AEDF 是正方形6.如图,矩形纸片ABCD 中,AB =4,BC =8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( D )A .AF =AEB .△ABE ≌△AGFC .EF =2 5D .AF =EF7.如图,一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是21 cm 2,则该矩形的面积为( A )A .60 cm 2B .70 cm 2C .120 cm 2D .140 cm 28.如图,正方形ABCD 的边长为1,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( C )A .1 B. 2 C .1-22D.2-4 ,第7题图),第8题图),第9题图),第10题图)9.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,∠BOC =60°,顶点C 的坐标为(m ,32),反比例函数y =k x的图象与菱形对角线AO 交于D 点,连结BD ,当DB ⊥x轴时,k的值是( D )A.1 B.-1 C. 3 D.- 310.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG,CF.则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正确的个数是( C )A.2 B.3 C.4 D.5二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,E为BC的中点,且∠AED=90°,AD=10,则AB的长为__5__.,第11题图) ,第13题图),第14题图) ,第15题图) 12.在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是__20__.13.如图,▱ABCD的顶点B在矩形AEFC的边EF上,点B与点E,F不重合,已知△ACD的面积为3,则图中阴影部分两个三角形的面积和为__3__.14.如图,▱ABCD的两条对角线AC,BD相交于点O,AB=5,AC=4,BD=2,小明说:“这个四边形是菱形.”他说这话的根据是__对角线互相垂直的平行四边形是菱形__.15.▱ABCD中,给出下列四个条件:①AC⊥BD;②∠ADC=90°;③BC=CD;④AC=BD.其中选两个条件能使▱ABCD是正方形的有__①②、①④、②③、③④__.(填上所有正确结果的序号)16.如图,在矩形纸片ABCD 中,AB =12,BC =5,点E 在AB 上,将△DAE 沿DE 折叠,使点A 落在对角线BD 上的点A ′处,则AE 的长为__103__. ,第16题图) ,第17题图),第18题图)17.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF ,若菱形ABCD 的边长为2 cm ,∠A =120°,则EF =18.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =kx +b(k >0)和x轴上,已知点B 1(1,1),B 2(3,2),则点B n 的坐标为__(2n -1,2n -1)__.三、解答题(共66分)19.(8分)如图,在矩形ABCD 中,两条对角线AC ,BD 相交于点O ,E 是AC 上的一点,且BO =2AE ,∠AOD =120°,求证:BE ⊥AC.解:∵四边形ABCD 是矩形,∴OB =OA ,又∵OB =2AE ,∴AE =OE ,又∵∠AOD =120°,∴∠AOB =60°,∴△ABO 是等边三角形.又∵AE =OE ,∴BE ⊥AO ,即BE ⊥AC20.(8分)如图,在菱形ABCD中,AC为对角线,点E,F分别是边BC,AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=2,求线段AE的长.解:(1)用SAS证△ABE≌△CDF (2)∵∠B=60°,∴△ABC是等边三角形,∴BE=CE=1,AE⊥BC,∴AE=AB2-BE2=22-12= 321.(10分)如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连结DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连结AE,试判断AE与DF的位置关系,并说明理由.解:(1)△ADC≌△ABC,△ADF≌△ABF,△CDF≌△CBF (2)AE ⊥DF.理由如下:设AE与DF相交于点H,易证△ADF≌△ABF,∴∠ADF=∠ABF,再证△ADE≌△BCE,∴∠DAE=∠CBE,∵∠ABF+∠CBE =90°,∴∠ADF+∠DAE=90°,∴∠DHA=90°,∴AE⊥DF22.(9分)如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE 于点F,FG∥AC交CD于点G.求证:四边形ACGF是菱形.解:易证四边形ACGF是平行四边形,再证AC=AF,故四边形ACGF 是菱形23.(9分)如图,△ABC中,AB=AC,D是BC的中点,DE∥AB交AC于点E,DF∥AC交AB于点F.(1)求证:四边形AFDE是菱形;(2)当∠ABC等于多少度时,四边形AFDE是正方形?请说明理由.解:(1)易证四边形AFDE是平行四边形,∵D为BC中点,DE∥AB,DF∥AC,∴DE=12AB,DF=12AC,∵AB=AC,∴DE=DF,∴四边形AFDE是菱形(2)当∠ABC=45°时,四边形AFDE是正方形,理由略24.(10分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连结DO并延长到点E,使OE=OD,连结AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.解:(1)∵OA=OB,OE=OD,∴四边形AEBD为平行四边形,∵AB =AC,AD平分∠BAC,∴AD⊥BC,即∠ADB=90°,∴四边形AEBD为矩形(2)当∠BAC=90°时,四边形AEBD为正方形,理由如下:∵∠BAC=90°,AD平分∠BAC,AD⊥BC,∴∠DAB=∠DBA=45°,∴BD=AD,∴矩形AEBD为正方形25.(12分)已知,在△ABC 中,∠BAC =90°,∠ABC =45°,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边作正方形ADEF ,连结CF.(1)如图①,当点D 在线段BC 上时,求证:CF +CD =BC ;(2)如图②,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CF ,BC ,CD 三条线段之间的关系;(3)如图③,当点D 在线段BC 的反向延长线上时,且点A ,F 分别在直线BC 的两侧,其他条件不变:①请直接写出CF ,BC ,CD 三条线段之间的关系;②若正方形ADEF 的边长为2,对角线AE ,DF 相交于点O ,连结OC ,求OC 的长度.解:(1)∵∠BAC =90°,∠ABC =45°,∴∠ACB =∠ABC =45°,∴AB =AC ,可证△BAD ≌△CAF(SSS),∴BD =CF ,∵BC =BD +CD ,∴CF +CD =BC (2)BC =CF -CD (3)①CD -CF =BC ②由题知,∠BAC =90°,∠ABC =45°,∵四边形ADEF 是正方形,∴AD =AF ,∠DAF =90°,∵∠BAD =90°-∠BAF ,∠CAF =90°-∠BAF ,∴∠BAD =∠CAF ,又∵AB =AC ,∴△BAD ≌△CAF(SAS),∴∠ACF =∠ABD ,∵∠ABC =45°,∴∠ABD =135°,∴∠ACF =∠ABD =135°,∴∠FCD =90°,∴△FCD 为直角三角形,∵DE =2,∴DF =2DE =22,∴OC =12DF = 2四边形测试题一、选择题(本大题共5小题,每小题5分,共25分;在每小题列出的四个选项中,只有一项符合题意)1.若菱形的周长为48 cm,则其边长是()A.24 cmB.12 cmC.8 cmD.4 cm2.如图3-G-1,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()图3-G-1A.30°B.60°C.90°D.120°3.如图3-G-2所示,在菱形ABCD中,不一定成立的是()图3-G-2A.四边形ABCD是平行四边形B.AC⊥BDC.△ABD是等边三角形D.∠CAB=∠CAD4.如图3-G-3,在矩形ABCD中,O是对角线AC,BD的交点,点E,F分别是OD,OC的中点.如果AC=10,BC=8,那么EF的长为()A.6 B.5 C.4 D.3图3-G-35.如图3-G-4,菱形ABCD的周长为16,∠ABC=120°,则AC的长为()图3-G-4A.4 3B.4C.2 3D.2二、填空题(本大题共5小题,每小题5分,共25分)6.在菱形ABCD中,若对角线AC=8 cm,BD=6 cm,则边长AB=________ cm.7.矩形两对角线的夹角为120°,矩形的宽为3,则矩形的面积为__________.8.如图3-G-5所示,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD,BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为________.图3-G-59.已知菱形ABCD的面积为24 cm2,若对角线AC=6 cm,则这个菱形的边长为________cm.10.如图3-G-6,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是________(只填写序号).图3-G-6三、解答题(本大题共5小题,共50分)11.(6分)如图3-G-7所示,已知四边形ABCD是菱形,对角线AC与BD相交于点O,AB=5,AO=4,求BD的长.图3-G-712.(8分)如图3-G-8,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.图3-G-813.(12分)如图3-G-9①,在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠DCE =90°,AB与CE交于点F,ED与AB,BC分别交于M,H.(1)求证:CF=CH;(2)如图②,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM 是什么四边形?并证明你的结论.图3-G-914.(12分)如图3-G-10,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF∶∠FDC=3∶2,DF⊥AC,则∠BDF的度数是多少?图3-G-1015.(12分)如图3-G-11,▱ABCD的对角线AC,BD相交于点O,BD=12 cm,AC =6 cm,点E在线段BO上从点B以1 cm/s的速度运动,点F在线段OD上从点O以2 cm/s 的速度运动.(1)若点E,F同时运动,设运动时间为t秒,当t为何值时,四边形AECF是平行四边形?(2)在(1)的条件下,①当AB为何值时,四边形AECF是菱形?②四边形AECF可以是矩形吗?为什么?图3-G-111.B 2.B3.C [解析] 灵活掌握菱形的性质定理即可判断. 4.D [解析] ∵四边形ABCD 是矩形,∴AB =CD ,∠ABC =90°.∵AC =10,BC =8,由勾股定理得AB =102-82=6,∴CD =AB =6.∵点E ,F 分别是OD ,OC 的中点,∴EF =12CD =3.故选D . 5.A [解析] 设AC 与BD 交于点E ,则∠ABE =60°.根据菱形的周长求出AB =16÷4=4.在Rt △ABE 中,求出BE =2,根据勾股定理求出AE =42-22=2 3,故可得AC =2AE =4 3.6.5 [解析] 如图,∵在菱形ABCD 中,对角线AC =8 cm ,BD =6 cm ,∴AO =12AC=4 cm ,BO =12BD =3 cm .∵菱形的对角线互相垂直,∴在Rt △AOB 中,AB =AO 2+BO 2=42+32=5(cm ).7.9 3 [解析] 根据勾股定理求得矩形的另一边长为3 3,所以面积是9 3.8.3 [解析] 可证得△AOE ≌△COF ,所以阴影部分的面积就是△BCD 的面积,即矩形面积的一半.9.5 [解析] 菱形ABCD 的面积=12AC·BD.∵菱形ABCD 的面积是24 cm 2,其中一条对角线AC 长6 cm ,∴另一条对角线BD 的长为8 cm .边长=32+42=5 (cm ).10.③ [解析] 由题意得BD =CD ,ED =FD ,∴四边形EBFC 是平行四边形.①BE ⊥EC ,根据这个条件只能得出四边形EBFC 是矩形;②BF ∥CE ,根据EBFC 是平行四边形已可以得出BF ∥CE ,因此不能根据此条件得出▱EBFC 是菱形;③AB =AC ,∵⎩⎨⎧AB =AC ,DB =DC ,AD =AD ,∴△ADB ≌△ADC(SSS),∴∠BAD =∠CAD ,∴△AEB ≌△AEC(SAS),∴BE =CE ,∴四边形BECF 是菱形. 11.解:∵四边形ABCD 是菱形, ∴AC ⊥BD ,DO =BO. ∵AB =5,AO =4,∴BO =AB 2-AO 2=52-42=3, ∴BD =2BO =6.12.解:(1)证明:∵AB =AC ,AD 是BC 边上的中线,∴AD ⊥BC , ∴∠ADB =90°.∵四边形ADBE 是平行四边形, ∴▱ADBE 是矩形.(2)∵AB =AC =5,BC =6,AD 是BC 边上的中线,∴BD =DC =6×12=3.在Rt △ACD 中,AD =AC 2-DC 2=52-32=4, ∴S 矩形ADBE =BD·AD =3×4=12.13.解:(1)证明:∵AC =CE =CB =CD ,∠ACB =∠ECD =90°, ∴∠A =∠B =∠D =∠E =45°. 在△BCF 和△ECH 中, ⎩⎨⎧∠B =∠E ,BC =EC ,∠BCF =∠ECH ,∴△BCF ≌△ECH(ASA), ∴CF =CH.(2)四边形ACDM 是菱形.证明:∵∠ACB =∠DCE =90°,∠BCE =45°, ∴∠ACE =∠DCH =45°.∵∠E =45°,∴∠ACE =∠E ,∴AC ∥DE , ∴∠AMH =180°-∠A =135°=∠ACD. 又∵∠A =∠D =45°,∴四边形ACDM 是平行四边形. ∵AC =CD ,∴四边形ACDM 是菱形.14.解:(1)证明:∵AO =CO ,BO =DO , ∴四边形ABCD 是平行四边形, ∴∠ABC =∠ADC.∵∠ABC +∠ADC =180°, ∴∠ABC =∠ADC =90°, ∴四边形ABCD 是矩形.(2)∵∠ADC =90°,∠ADF ∶∠FDC =3∶2, ∴∠FDC =36°.∵DF ⊥AC ,∴∠DCO =90°-36°=54°. ∵四边形ABCD 是矩形,∴OC =OD ,∴∠ODC =54°, ∴∠BDF =∠ODC -∠FDC =18°.15.解:(1)若四边形AECF 是平行四边形, 则AO =OC ,EO =OF.∵四边形ABCD 是平行四边形, ∴BO =OD =6 cm , ∴EO =6-t ,OF =2t , ∴6-t =2t ,∴t =2,∴当t =2时,四边形AECF 是平行四边形. (2)①若四边形AECF 是菱形, ∴AC ⊥BD ,∴AO 2+BO 2=AB 2,∴AB =36+9=3 5, 即当AB =3 5时,四边形AECF 是菱形. ②不可以.理由:若四边形AECF 是矩形,则EF =AC , ∴6-t +2t =6,∴t =0,则此时点E 在点B 处,点F 在点O 处, 显然四边形AECF 不可以是矩形.四边形全章综合测试1.如图,E F 、是ABCD 对角线AC 上两点,且AE CF =,连结DE 、BF ,则图中共有全等三角形的对数是( )A.1对B.2对C.3对D.4对2.如图,在在平行四边形ABCD 中,对角线AC BD ,相交于点O ,E F ,是对角线AC 上的两点,当E F ,满足下列哪个条件时,四边形DEBF 不一定是是平行四边形( ) A.OE OF = B.DE BF = C.ADE CBF ∠=∠ D.ABE CDF ∠=∠ABF ECD3.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量一组对角线是否都为直角D .测量其中三角形是否都为直角4.如果一个四边形绕对角线的交点旋转90,所得的图形与原来的图形重合,那么这个四边形一定是( ) A.平行四边形B.矩形C.菱形D.正方形5. 已知点(20)A ,、点B (12-,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,在平行四边形ABCD 中,AC BD ,相交于点O .下列结论:①OA OC =,②BAD BCD ∠=∠,③AC BD ⊥,④180BAD ABC ∠+∠=.其中,正确的个数有( ) A.1个B.2个C.3个D.4个7.如图,平行四边形ABCD 中,AB3=,5BC =,AC 的垂直平分线交AD 于E ,则CDE △的周长是() A.6B.8C.9D.108.把长为10cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,如果剪掉..部分的面积为12cm 2,则打开后梯形的周长是 ( )A 、(10+25)cmB 、(12+25)cmC 、22cmD 、20cm9.如图,正方形ABCD 的边长为2,点E 在AB 边上,四边形EFGB 也为正方形,设AFC △的面积为S ,则( )A.2S =B. 2.4S = C.4S =D.S 与BE 长度有关10.梯形ABCD 中,AD ∥BC ,E 、F 为BC 上点,且DE ∥AB ,AF ∥DC ,DE ⊥AF 于G ,若AG =3,DG =4,四边形ABED 的面积为36,则梯形ABCD 的周长为( )A .49B .43C .41D .4611. 已知:如图,正方形ABCD ,AC 、BD 相交于点O ,E 、F 分别为BC 、CD 上的两点,BE=CF ,AE 、BF 分别交BD 、AC 于M 、N 两点, 连结OE 、OF.下列结论,其中正确的是( ).①AE=BF ;②AE ⊥BF ;③OM=ON=12DF ;④CE+CF=22AC .(A )①②④ (B )①②(C )①②③④(D )②③④12.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =23,那么AP 的长为 .13.(7分)如图,在ABC △中,AB BC =,D、E、F分别是BC 、AC 、AB 边上的中点.(1) 求证:四边形BDEF 是菱形;(2) 若12AB =cm ,求菱形BDEF 的周长.AFBDCEGBF A E ABCDOMENFACE GF EDCBA14.(7分)如图,将一张矩形纸片A B C D ''''沿EF 折叠,使点B '落在A D '' 边上的点B 处;沿BG 折叠,使点D '落在点D 处,且BD 过F 点.⑴试判断四边形BEFG 的形状,并证明你的结论. ⑵当∠BFE 为多少度时,四边形BEFG 是菱形.15.(7分)如图,四边形ABCD 为平行四边形,E 为AD 上的一点,连接EB 并延长,使BF=BE ,连接EC 并延长,使CG=CE ,连接FG .H 为FG 的中点,连接DH . (1) 求证:四边形AFHD 为平行四边形;(2)若CB=CE ,∠BAE=600 ,∠DCE=200 求∠CBE 的度数.16.(7分)如图,梯形ABCD 中,120AD BC AB DC ADC =∠=∥,,,对角线CA平分DCB ∠,E 为BC 的中点,试求DCE △与四边形ABED 面积的比.17.(8分)在矩形纸片ABCD 中,33AB =,6BC =,沿EF 折叠后,点C 落在AB 边上的点P处,点D 落在点Q 处,AD 与PQ 相交于点H ,30BPE ∠=.ADBEC(1)求BE 、QF 的长; (2)求四边形PEFH 的面积.18.(本题12分)如图,四边形ABCD 位于平面直角坐标系的第一象限,B 、C 在x 轴上,A 点函数xy 2上,且AB ∥CD ∥y 轴,AD ∥x 轴,B (1,0)、C (3,0)。

四边形经典测试题含答案

四边形经典测试题含答案
为顶点画平行四边形,则第四个顶点不可能在().
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】C
【解析】
A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C
8.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是( )
四边形经典测试题含答案
一、选择题
1.如图,在平行四边形ABCD中,将 沿AC折叠后,点D恰好落在DC的延长线上的点E处.若 ,AB=3,则 的周长为()
A.12B.15C.18D.2
【答案】C
【解析】
【分析】
依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为6×3=18.
∴∠OHD=∠ODH,
∴OH=OD,
∴OE=OD=OH,故②正确;
∵∠EBH=90°﹣67.5°=22.5°,
∴∠EBH=∠OHD,
又BE=DH,∠AEB=∠HDF=45°
∴△BEH≌△HDF(ASA),
∴BH=HF,HE=DF,故③正确;
由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,
A.5B.2C. D.2
【答案】C
【解析】
【分析】
过点 作 于点 由图象可知,点 由点 到点 用时为 , 的面积为 .求出DE=2,再由图像得 ,进而求出BE=1,再在 根据勾股定理构造方程,即可求解.
【详解】
解:过点 作 于点

沪科版八年级数学下第19章《四边形》测试题(含答案)

沪科版八年级数学下第19章《四边形》测试题(含答案)

第19章四边形测试题一、选择题(本大题共6小题,每小题4分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形2.若一个正多边形的每个外角都等于45°,则它是()A.正六边形B.正八边形C.正十边形D.正十二边形3.若一个多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有()A.7条B.8条C.9条D.10条4.如图2-G-1所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B 两点间的距离,但绳子不够长.一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10 m,则A,B间的距离为()图2-G-1A.15 mB.20 mC.25 mD.30 m5.如图2-G-2,在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()图2-G-2A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC6.如图2-G-3所示,在▱ABCD中,CE⊥AB,E为垂足.若∠A=125°,则∠BCE图2-G-3A.55°B.35°C.30°D.25°二、填空题(本大题共6小题,每小题4分,共24分)7.如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数n=__________.8.如果一个四边形三个内角度数之比为2∶1∶3,第四个内角为60°,那么这三个内角的度数分别为______________________.9.正八边形一个内角的度数为________.10.如图2-G-4所示,若▱ABCD与▱EBCF关于BC所在的直线对称,∠ABE=90°,则∠F=________.图2-G-411.如图2-G-5,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等________.图2-G-512.如图2-G-6,点D,E,F分别是△ABC各边的中点,连接DE,EF,DF.若△ABC 的周长为10,则△DEF的周长为________.图2-G-6三、解答题(本大题共5小题,共52分)13.(6分)如果某个多边形的各个内角都相等,且它的每个内角比其外角大100°,那么这个多边形的边数是多少?14.(10分)如图2-G-7所示,△ABC的中线BD,CE相交于点O,F,G分别是BO,求证:四边形DEFG是平行四边形.图2-G-715.(10分)如图2-G-8,在▱ABCD中,点E,F在对角线BD上,且BE=DF.求证:(1)AE=CF;(2)四边形AECF是平行四边形.图2-G-816.(12分)如图2-G-9,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.图2-G-917.(14分)(1)如图2-G-10①,在△ABC中,D,E分别为AB,AC的中点.请说明DE与BC的数量关系;(不必说明理由)图2-G-10(2)如图2-G-10②,点O是△ABC所在平面内一动点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接.如果点D,E,F,G能构成四边形,根据问题(1)的结论,判断四边形DEFG是否为平行四边形,请说明理由;(3)当点O移动到△ABC外时,(2)中的结论是否仍然成立?画出图形,不必说明理由.详答1.B[解析] 本题主要考查n边形的内角和公式(n-2)·180°,由(n-2)·180°=540°,得n =5.本题也用到方程的解题思想.2.B3.C [解析] 由题意求得该多边形的每一个外角为180°-150°=30°,所以这个多边形的边数为360°÷30°=12,所以从一个顶点出发引出的对角线有12-3=9(条).4.B5.D [解析] A 项,由“AB ∥DC ,AD ∥BC ”可知,四边形ABCD 的两组对边互相平行,所以该四边形是平行四边形.故本选项不符合题意;B 项,由“AB =DC ,AD =BC ”可知,四边形ABCD 的两组对边分别相等,所以该四边形是平行四边形.故本选项不符合题意;C 项,由“AO =CO ,BO =DO ”可知,四边形ABCD 的两条对角线互相平分,所以该四边形是平行四边形.故本选项不符合题意;D 项,由“AB ∥DC ,AD =BC ”可知,四边形ABCD 的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D .6.B [解析] 根据平行四边形的性质得∠B =180°-∠A =55°.在Rt △BCE 中,∠BCE =90°-∠B =35°.故选B.7.8 [解析] 由题意,得(n -2)·180°=360°×3,解得n =8.8.100°,50°,150° [解析] 设这三个内角的度数分别为2x ,x ,3x ,则有2x +x +3x =360°-60°,解得x =50°,则2x =100°,3x =150°. 故答案为100°,50°,150°.9.135° [解析] 正八边形的内角和为(8-2)×180°=1080°,每一个内角的度数为18×1080°=135°.10.45° [解析] 根据轴对称的性质,得∠EBC =∠ABC =45°,因为平行四边形的对角相等,所以∠F =∠EBC =45°.11.20 [解析] ∵四边形ABCD 为平行四边形,∴AE ∥BC ,AD =BC ,AB =CD ,∴∠AEB =∠EBC .∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠ABE =∠AEB ,∴AB =AE ,∴AE +DE =AD =BC =6,∴AE =4,∴AB =CD =4,∴▱ABCD 的周长=4+4+6+6=20.12.5 [解析] ∵D ,E 分别是AB ,BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AC ,同理有EF =12AB ,DF =12BC ,∴△DEF 的周长=12(AC +BC +AB )=12×10=5.13.解:设每个内角的度数为x ,边数为n . 则x -(180°-x )=100°,解得x =140°. ∴(n -2)·180°=140°·n ,解得n =9. 即这个多边形的边数是9.14.证明:∵E ,D 分别是AB ,AC 的中点, ∴DE 是△ABC 的中位线,∴DE ∥BC ,DE =12BC .又∵F ,G 分别是OB ,OC 的中点, ∴FG 是△OBC 的中位线,∴FG ∥BC ,FG =12BC .∴DE ∥FG ,DE =FG ,∴四边形DEFG 是平行四边形.15.证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD , ∴∠ABE =∠CDF .在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF (SAS ), ∴AE =CF .(2)∵△ABE ≌△CDF , ∴∠AEB =∠CFD , ∴∠AEF =∠CFE , ∴AE ∥CF . ∵AE =CF ,∴四边形AECF 是平行四边形.16.证明:(1)∵四边形ABCD 是平行四边形, ∴AD =CB ,∠A =∠C ,AD ∥CB , ∴∠ADB =∠CBD .∵ED ⊥DB ,FB ⊥BD , ∴∠EDB =∠FBD =90°, ∴∠ADE =∠CBF ,在△AED 和△CFB 中,⎩⎨⎧∠ADE =∠CBF ,AD =CB ,∠A =∠C ,∴△AED ≌△CFB (ASA ). (2)作DH ⊥AB ,垂足为H ,在Rt △ADH 中,∠A =30°,∴AD =2DH . 在Rt △DEB 中,∠DEB =45°, ∴EB =2DH ,∴AD =EB . ∵△AED ≌△CFB , ∴DE =BF .∵∠EDB =∠DBF =90˚, ∴ED ∥BF ,∴四边形EBFD 为平行四边形, ∴FD =EB ,∴DA =DF .17.解:(1)根据三角形的中位线定理得DE =12BC .(2)四边形DEFG 是平行四边形.理由如下:∵D ,G 分别为AB ,AC 的中点, ∴DG 是△ABC 的中位线,∴DG ∥BC 且DG =12BC .∵E ,F 分别为OB ,OC 的中点, ∴EF 是△OBC 的中位线,∴EF ∥BC 且EF =12BC ,∴DG ∥EF 且DG =EF ,∴四边形DEFG 是平行四边形.(3)(2)中的结论仍然成立,如图所示.。

华师大版八年级数学下册:第19章《矩形、菱形与正方形》章末检测(2)及答案.docx

华师大版八年级数学下册:第19章《矩形、菱形与正方形》章末检测(2)及答案.docx

第十九章矩形,菱形与正方形章末测试(二)总分120分120分钟农安县合隆中学徐亚惠一.选择题(共8小题,每题3分)1.对角线相等且互相平分的四边形是()A.一般四边形B.平行四边形C.矩形 D.菱形2.下列说法中不能判定四边形是矩形的是()A.四个角都相等的四边形 B.有一个角为90°的平行四边形C.对角线相等的平行四边形D.对角线互相平分的四边形3.已知,在等腰△ABC中,AB=AC,分别延长BA,CA到D,E点,使DA=AB,EA=CA,则四边形BCDE是()A.任意四边形B.矩形 C.菱形 D.正方形4.在平行四边形ABCD中,增加一个条件能使它成为矩形,则增加的条件是()A.对角线互相平分B.AB=BC C.AB=AC D.∠A+∠C=180°5.如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是()A.2 B.C.1 D.6.下列条件中,不能判定四边形ABCD为菱形的是()A.AC⊥BD,AC与BD互相平分B.AB=BC=CD=DAC.AB=BC,AD=CD,AC⊥BD D.AB=CD,AD=BC,AC⊥BD7.已知四边形ABCD是平行四边形,若要使它成为正方形,则应增加的条件是()A.AC⊥BD B.AC=BD C.AC=BD且AC⊥BD D.AC平分∠BAD8.△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10cm,BC=8cm,AC=6cm,则点O到三边AB、AC、BC的距离为()A.2cm,2cm,2cm B.3cm,3cm,3cm C.4cm,4cm,4cm D.2cm,3cm,5cm二.填空题(共6小题,每题3分)9.如图,在四边形ABCD中,AD∥BC,且AD=BC,若再补充一个条件,如∠A= _________ 度时,就能推出四边形ABCD是矩形.10.如图,已知MN∥PQ,EF与MN,PQ分别交于A、C两点,过A、C两点作两组内错角的平分线,分别交于点B、D,则四边形ABCD是_________ .11.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是_________ .12.在四边形ABCD中,∠A=∠B=∠C=∠D,则四边形ABCD是_________ .13.一组邻边相等的_________ 是正方形,有一个角是_________ 角的菱形是正方形.14.如图,在△ABC中,点D是边BC上一动点,DE∥AC,DF∥AB,对△ABC及线段AD添加条件_________ 使得四边形AEFD是正方形.三.解答题(共11小题)15.(6分)如图,∠CAE是△ABC的外角,AD平分∠EAC,且AD∥BC.过点C作CG⊥AD,垂足为G,AF是BC边上的中线,连接FG.(1)求证:AC=FG.(2)当AC⊥FG时,△ABC应是怎样的三角形?为什么?16.(6分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形:△ABD,△BCE,△ACF,请解答下列问题:(1)求证:四边形AFED是平行四边形;(2)当△ABC满足什么条件时,四边形AFED是矩形?(3)当△ABC满足什么条件时,四边形AFED是菱形?(4)对于任意△ABC,▱AFED是否总存在?17.(6分)如图,BC是等腰三角形BED底边DE上的高,四边形ABEC是平行四边形.判断四边形ABCD的形状,并说明理由.18.(6分)如图,将平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:AC=BE;(2)若∠AFC=2∠D,连接AC,BE.求证:四边形ABEC是矩形.19.(6分)已知:如图,在△ABC中,AB=AC,M是BC的中点,MD⊥AB,ME⊥AC,DF⊥AC,EG⊥AB,垂足分别为点D、E、F、G,DF、EG相交于点P.判断四边形MDPE的形状,并说明理由.20.(8分)如图:在平行四边形ABCD中,AC的垂直平分线分别交CD、AB于E、F两点,交AC于O点,试判断四边形AECF的形状,并说明理由.21.(8分)如图所示,▱ABCD的对角线AC的垂直平分线EF与AD、BC、AC分别交于点E、F、O,连接AF,EC,则四边形AFCE是菱形吗?为什么?22.(8分)在△ABC中,点O是AC边上一动点,点P在BC延长线上,过点O的直线DE∥BC交∠ACB与∠ACP的平分线于点D、E.(1)点O在什么位置时,四边形ADCE是矩形?说明理由.(2)在(1)的条件下,当AC与BC满足什么条件时,四边形ADCE是正方形?为什么?23.(8分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.(3)当点O在边AC上运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?24.(8分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF会是正方形.25.(8分)(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由。

平行四边形的判定测试题(含答案)

平行四边形的判定测试题(含答案)

19.1.2 平行四边形的判定一、选择题1.不能判断四边形ABCD是平行四边形的是( )A.AB=CD,AD=BCB.AB=CD,AB∥CDC.AB=CD,AD∥BCD.AB∥CD,AD∥BC2.下列给出的条件中,能判定四边形ABCD是平行四边形的是( )A.AB∥CD,AD=BCB.AB=AD,CB=CDC.AB=CD,AD=BCD.∠B=∠C,∠A=∠D3.如图1,已知AD∥BC,要使四边形ABCD为平行四边形,需添加一个条件为______________.图1 图2 图34.如图2,在△ABC中,D、E分别是AB、AC边的中点,且DE=6 cm,则BC=____________.二、填空题1.如图3,在ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB2.如图4,AB DC,DC=EF=10,DE=CF=8,则图中的平行四边形有_________________,理由分别是_________________、____________________.图4 图5 图63.如图5,E、F是平行四边形ABCD对角线BD上的两点,请你添加一个适当的条件:__________,使四边形AECF是平行四边形.4.如图6,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是:______ ________.5.如图,在ABCD中,已知M和N分别是边AB、DC的中点,试说明四边形BMDN也是平行四边形.三、综合题1.以不在同一直线上的三个点为顶点作平行四边形最多能作( )A.4个B.3个C.2个D.1个2.下面给出了四边形ABCD中∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD 是平行四边形的是( )A.1∶2∶3∶4B.2∶2∶3∶3C.2∶3∶3∶2D.2∶3∶2∶33.九根火柴棒排成如右图形状,图中_____个平行四边形,你判断的根据是________________.4.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC.(1)从以上5个条件中任意选取2个条件,能推出四边形ABCD是平行四边形的有(用序号表示):_____________________________;(2)对由以上5个条件中任意选取2个条件,不能推出四边形ABCD是平行四边形的,请选取一种情形举出反例说明.5.若三条线段的长分别为20 cm,14 cm,16 cm,以其中两条为对角线,另一条为一边,是否可以画平行四边形?6.如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE ,DF=BE ,DF ∥BE.求证:(1)△AFD ≌△CEB; (2)四边形ABCD 是平行四边形.7.如图,已知DC ∥AB ,且DC=21AB ,E 为AB 的中点. (1)求证:△AED ≌△EBC ;(2)观察图形,在不添加辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形(直接写出结果,不要求证明):______________________________.8.如图,已知ABCD中DE⊥AC,BF⊥AC,证明四边形DEBF为平行四边形.9.如图,已知ABCD中,E、F分别是AB、CD的中点.求证:(1)△AFD≌△CEB;(2)四边形AECF是平行四边形.参考答案一、课前预习(5分钟训练)1.不能判断四边形ABCD是平行四边形的是( )A.AB=CD,AD=BCB.AB=CD,AB∥CDC.AB=CD,AD∥BCD.AB∥CD,AD∥BC答案:C2.下列给出的条件中,能判定四边形ABCD是平行四边形的是( )A.AB∥CD,AD=BCB.AB=AD,CB=CDC.AB=CD,AD=BCD.∠B=∠C,∠A=∠D答案:C3.如图,已知AD∥BC,要使四边形ABCD为平行四边形,需添加一个条件为______________.答案:提示:添加AB∥DC,AD=BC等都可以.4.如图,在△ABC中,D、E分别是AB、AC边的中点,且DE=6 cm,则BC=____________.解析:根据三角形的中位线平行于第三边,并且等于第三边的一半,可知BC=2DE=12 cm.答案:12 cm二、课中强化(10分钟训练)1.如图,在ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F 满足下列哪个条件时,四边形DEBF不一定是平行四边形( )A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB解析:当E、F满足AE=CF时,由平行四边形的对角线相等知OB=OD,OA=OC,故OE=OF.可知四边形DEBF是平行四边形.当E、F满足∠ADE=∠CBF时,因为AD∥BC,所以∠DAE=∠BCF.又AD=BC,可证出△ADE≌△CBF,所以DE=BF,∠DEA=∠BFC.故∠DEF=∠BFE.因此DE∥BF,可知四边形DEBF是平行四边形.类似地可说明D也可以.答案:B2.如图,AB DC,DC=EF=10,DE=CF=8,则图中的平行四边形有_________________,理由分别是_________________、____________________.解析:因为AB DC,根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD是平行四边形;DC=EF,DE=CF,根据两组对边分别相等的四边形是平行四边形可判定四边形CDEF是平行四边形.答案:四边形ABCD,四边形CDEF 一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形3.如图,E、F是平行四边形ABCD对角线BD上的两点,请你添加一个适当的条件:__________,使四边形AECF是平行四边形.解析:根据平行四边形的定义和判定方法可填BE=DF;∠BAE=∠CDF等.答案:BE=DF或∠BAE=∠CDF等任何一个均可4.如图,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是:______ ________.解析:根据平行四边形的判定定理,知可填①AD ∥BC,②AB=CD,③∠A+∠B=180°,④∠C+∠D=180°等. 答案:不唯一,以上几个均可. 5.如图,在ABCD 中,已知M 和N 分别是边AB 、DC 的中点,试说明四边形BMDN 也是平行四边形.答案:证明:∵ABCD,∴AB CD.∵M 、N 是中点, ∴BM=21AB,DN=21CD. ∴BM DN.∴四边形BMDN 也是平行四边形. 三、课后巩固(30分钟训练)1.以不在同一直线上的三个点为顶点作平行四边形最多能作( )A.4个B.3个C.2个D.1个解析:要求最多能作几个,只要连结起三个顶点后构成三角形,分别以其中一边作为对角线,另两边作为平行四边形的邻边作图,即可得出三种. 答案:B2.下面给出了四边形ABCD 中∠A 、∠B 、∠C 、∠D 的度数之比,其中能判定四边形ABCD 是平行四边形的是( )A.1∶2∶3∶4B.2∶2∶3∶3C.2∶3∶3∶2D.2∶3∶2∶3 解析:由两组对角分别相等的四边形是平行四边形易知,要使四边形ABCD 是平行四边形需满足∠A=∠C ,∠B=∠D ,因此∠A 与∠C ,∠B 与∠D 所占的份数分别相等. 答案:D3.九根火柴棒排成如右图形状,图中_____个平行四边形,你判断的根据是________________.答案:有3 两组对边分别相等的四边形是平行四边形4.已知四边形ABCD 的对角线AC 、BD 相交于点O ,给出下列5个条件:①AB ∥CD ;②OA=OC ;③AB=CD ;④∠BAD=∠DCB ;⑤AD ∥BC.(1)从以上5个条件中任意选取2个条件,能推出四边形ABCD是平行四边形的有(用序号表示):_____________________________;(2)对由以上5个条件中任意选取2个条件,不能推出四边形ABCD是平行四边形的,请选取一种情形举出反例说明.解析:本题是条件开放性试题,要使四边形ABCD是平行四边形,从边、角、对角线上考虑共有5种判定方法,因此只需将任意两个条件组合加以评砼卸?答案:(1)①与②;①与③;①与④;①与⑤;②与⑤;④与⑤(2)③与⑤两个条件不能推出四边形ABCD是平行四边形.如图,AB=CD且AD∥BC,而四边形ABCD不是平行四边形.5.若三条线段的长分别为20 cm,14 cm,16 cm,以其中两条为对角线,另一条为一边,是否可以画平行四边形?解析:由平行四边形对角线互相平分,能否画平行四边形,应以任两条的一半和第三边为三边,看是否能构成三角形即可.20,16或20,14为对角线,另一条为一边可画平行四边形.6.如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.答案:证明:(1)∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB.(2)由(1)△AFD≌△CEB知AD=BC,∠DAF=∠BCE,∴AD∥BC.∴四边形ABCD是平行四边形.7.如图,已知DC ∥AB ,且DC=21AB ,E 为AB 的中点. (1)求证:△AED ≌△EBC ;(2)观察图形,在不添加辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形(直接写出结果,不要求证明):______________________________.答案:证明:(1)∵E 为AB 的中点, ∴AE=EB=21AB. ∵DC=21AB ,DC ∥AB , ∴AE DC ,EB DC.∴四边形AECD 和四边形EBCD 都是平行四边形. ∴AD=EC ,ED=BC. 又∵AE=BE , ∴△AED ≌△EBC.(2)△ACD ,△ACE ,△CDE(写出其中两个三角形即可) 8.如图,已知ABCD 中DE ⊥AC,BF ⊥AC,证明四边形DEBF 为平行四边形.答案:证明:在ABCD 中,AD=BC,AD ∥BC,∴∠DAC=∠BCA. 又∵∠DEA=∠BFC=90°, ∴Rt △ADE ≌Rt △CBF. ∴DE=BF. 同理,可证DF=BE.∴四边形DEBF 为平行四边形. 9.(2010江苏南京模拟,19)如图,已知ABCD 中,E 、F 分别是AB 、CD 的中点.求证:(1)△AFD ≌△CEB;(2)四边形AECF 是平行四边形.答案:证明:(1)在ABCD 中,AD=CB,AB=CD,∠D=∠B.∵E 、F 分别是AB 、CD 的中点, ∴DF=21CD,BE=21AB. ∴DF=BE. ∴△AFD ≌△CEB. (2)在ABCD 中,AB=CD,AB ∥CD.由(1)得BE=DF,∴AE=CF. ∴四边形AECF 是平行四边形.。

四边形章节测试题含答案

四边形章节测试题含答案

四边形章节测试姓名 成绩一、选择题(本大题共12小题,每小题3分,共36分) 1、如图,E F 、是ABCD 对角线AC 上两点,且AE CF =,连结DE 、BF ,则图中共有全等三角形的对数是( )A.1对B.2对C.3对D.4对2、如图,在在平行四边形ABCD 中,对角线AC BD ,相交于点O ,E F ,是对角线AC 上的两点,当E F ,满足下列哪个条件时,四边形DEBF 不一定是是平行四边形( )A.OEOF =B.DEBF =C.ADE CBF ∠=∠D.ABE CDF ∠=∠3、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量一组对角线是否都为直角D .测量其中三角形是否都为直角4、如果一个四边形绕对角线的交点旋转90,所得的图形与原来的图形重合,那么这个四边形一定是( ) A.平行四边形 B.矩形 C.菱形 D.正方形5、下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是A B C D 6. 已知点(20)A ,、点B (12-,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、如图,在平行四边形ABCD 中,AC BD ,相交于点O .下列结论:①OA OC =,②BAD BCD ∠=∠,③AC BD ⊥,④180BAD ABC ∠+∠=.其中,正确的个数有( ) A.1个 B.2个C.3个D.4个8、如图,平行四边形ABCD 中,AB 3=,5BC =,AC 的垂直平分线交AD 于E ,则CDE △的周长是( ) A.6 B.8C.9D.109、把长为10cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,如果剪掉..部分的面积为12cm 2,则打开后梯形的周长是 ( )中点 中点 中点ABF ECDDCABOFEABCDOAB CDEA 、(10+25)cm B 、(12+25)cm C 、22cm D 、20cm10、如图,正方形ABCD 的边长为2,点E 在AB 边 上,四边形EFGB 也为正方形,设AFC △的面积为 S ,则( ) A.2S = B. 2.4S = C.4S = D.S 与BE 长度有关11、梯形ABCD 中,AD ∥BC ,E 、F 为BC 上点,且DE ∥AB ,AF ∥DC ,DE ⊥AF 于G ,若AG =3,DG =4,四边形ABED 的面积为36,则梯形ABCD 的周长为( )A .49B .43C .41D .4612、 已知:如图,正方形ABCD ,AC 、BD 相交于点O ,E 、F 分别 为BC 、CD 上的两点,BE=CF ,AE 、BF 分别交BD 、AC 于M 、N 两点, 连结OE 、OF.下列结论,其中正确的是( ).①AE=BF ;②AE ⊥BF ;③OM=ON=12DF ;④CE+CF=22AC .(A )①②④ (B )①②(C )①②③④(D )②③④二、填空题(本大题共4小题,每小题3分,共12分) 13、已知任意直线l把ABCD 分成两部分,要使这两部分的面积相等,直线l 所在的位置需满足的条件是_______________________________________________________________________________________________________. (只要填上一个你认为合适的条件).14、已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =23,那么AP 的长为.15、在四边形ABCD 中,对角线AC 、BD 交于点O ,从(1)AB CD =;(2)AB CD ∥;(3)OA OC =;(4)OB OD =;(5)AC BD ⊥;(6)AC 平分BAD ∠这六个条件中,选取三个推出四边形ABCD 是菱形.如(1)(2)(5)⇒ABCD 是菱形,再写出符合要求的两个: ⇒A B C D 是菱形; ⇒A B C D 是菱形. 16、如下图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k = .三、解答题(本大题共8小题,其中第17、18、19、20、21、22小题每题7分,第23小题8分、第24小题10分、第25小题12分,共72分,)17、(7分)已知任意..四边形ABCD ,且线段AB 、BC 、CD 、DA 、AC 、BD 的中点分别是E 、F 、G 、H 、P 、Q .(1)若四边形ABCD 如图①,判断下列结论是否正确(正确的在括号里填“√”,错误的在括号里填“×”). 甲:顺次连接EF 、FG 、GH 、HE 一定得到平行四边形;( ) 乙:顺次连接EQ 、QG 、GP 、PE 一定得到平行四边形.( )(2)请选择甲、乙中的一个,证明你对它的判断. (3)若四边形ABCD 如图②,请你判断(1)中的两个结论是否成立?DCFD C HPGQGCDBF A E ABCDO M ENF ……GF EDCBA18、(7分)如图,已知四边形纸片ABCD ,现需将该纸片剪拼成一个与它面积相等的平行四边形纸片.如果限定裁剪线最多有两条,能否做到: (用“能”或“不能”填空).若填“能”,请确定裁剪线的位置,并说明拼接方法;若填“不能”,请简要说明理由.答案:能 如图,取四边形ABCD 各边的中点E G F H ,,,,连接EF GH ,,则EF GH ,为裁剪线.EF GH ,将四边形ABCD 分成1,2,3,4四个部分,拼接时,图中的1不动,将2,4分别绕点H F ,各旋转180,3平移,拼成的四边形满足条件.直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形.方法如下:请你用上面图示的方法,解答下列问题:(1)对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形.(2)对任意四边形,设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.ABCDA BCD H F GE1 2 3 4A BCD HFGE12 343中点中点 ① ②③ ①②③19、(7分)如图,在ABC △中,AB BC =,D、E、F分别是BC 、AC 、AB 边上的中点.(1) 求证:四边形BDEF 是菱形;(2) 若12AB =cm ,求菱形BDEF 的周长.20、(7分)如图,将一张矩形纸片A B C D ''''沿EF 折叠,使点B '落在A D '' 边上的点B 处;沿BG 折叠,使点D '落在点D处,且BD 过F 点.⑴试判断四边形BEFG 的形状,并证明你的结论. ⑵当∠BFE 为多少度时,四边形BEFG 是菱形.21、(7分)如图,四边形ABCD 为平行四边形,E 为AD 上的一点,连接EB 并延长,使BF=BE ,连接EC 并延长,使CG=CE ,连接FG .H 为FG 的中点,连接DH . (1) 求证:四边形AFHD 为平行四边形;(2)若CB=CE ,∠BAE=600 ,∠DCE=200 求∠CBE 的度数.22、(7分)如图,梯形ABCD 中,120AD BC AB DC ADC =∠= ∥,,,对角线CA 平分DCB ∠,E 为BC 的中点,试求DCE △与四边形ABED 面积的比.AFBDCEADBEC23、(8分)在矩形纸片ABCD 中,33AB =,6BC =,沿EF 折叠后,点C 落在AB 边上的点P 处,点D 落在点Q 处,AD 与PQ 相交于点H ,30BPE ∠= .(1)求BE 、QF 的长; (2)求四边形PEFH 的面积.24、(本小题10分)如图1,在正方形ABCD 中,点E 、F 分别为边BC 、CD 的中点,AF 、DE 相交于点G ,则可得结论:①AF=DE ,②AF ⊥DE (不须证明).(1)如图②,若点E 、F 不是正方形ABCD 的边BC 、CD 的中点,但满足CE=DF ,则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”) (2)如图③,若点E 、F 分别在正方形ABCD 的边CB 的延长线和DC 的延长线上,且CE=DF ,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图④,在(2)的基础上,连接AE 和EF ,若点M 、N 、P 、Q 分别为AE 、EF 、FD 、AD 的中点,请先判断四边形MNPQ 是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.25、(本题12分)如图,四边形ABCD 位于平面直角坐标系的第一象限,B 、C 在x 轴上,A 点函数xy 2=上,且AB ∥CD ∥y轴,AD ∥x 轴,B (1,0)、C (3,0)。

沪科版2019-2020学年八年级数学下册第19章《四边形》单元测试卷(含答案)

沪科版2019-2020学年八年级数学下册第19章《四边形》单元测试卷(含答案)

密学校 班级姓名 学号密 封 线 内 不 得 答 题沪科版8年级数学(下)第19章《四边形》单元测试卷满分:150分,一、单选题(共10题;共40分)1.下列给出的条件中,能识别一个四边形是菱形的是( )A. 有一组对边平行且相等,有一个角是直角B. 两组对边分别相等,且有一组邻角相等C. 有一组对边平行,另一组对边相等,且对角线互相垂直D. 有一组对边平行且相等,且有一条对角线平分一个内角2.下列条件不能判定四边形ABCD 为平行四边形的是( )A. AB=CD,AD=BC B. AB ∥CD ,AB=CD C. AB=CD ,AD ∥BC D. AB ∥CD ,AD ∥BC 3.如图,在四边形ABCD 中,对角线AC 与BD 交于点O ,下列条件中不一定能判定这个四边形是平行四边形的是( )A. AB ∥DC ,AD=BCB. AD ∥BC ,AB ∥DCC. AB=DC ,AD=BCD. OA=OC ,OB=OD 4.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =120°,AD =2,点E 是BC 的中点,连结OE ,则OE 的长是( )A.B. 2C. 2D. 45.已知一个多边形的内角和是900°,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形 6.下列条件中,不能判定四边形ABCD 是平行四边形的是( )A. ∠A=∠C ,∠B=∠DB. AB ∥CD ,AB=CD C. AB ∥CD ,AD ∥BC D. AB=CD ,AD ∥BC 7.菱形ABCD 中,已知AC=6,BD=8,则此菱形的周长为( )A. 5B. 10C. 20D. 408.如图,过平行四边形ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的过平行四边形AEMG 的面积S 1与▱HCFM 的面积S 2的大小关系是( )A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 不能确定 9.下列图中不是凸多边形的是( )A. B. C. D.10.一个多边形的内角和与外角和为540°,则它是( )边形。

人教版八年级数学第十九章四边形测试题

人教版八年级数学第十九章四边形测试题

人教版八年级数学第十九章四边形测试题人教版八年级数学第十九章四边形试题一、多项选择题(本大题共有10个子题,每个子题得3分,共计30分)1.□abcd中,∠a比∠b大40°,则∠c的度数为()a、60°b.70°c.100°d.110°2.□abcd的周长为40cm,△abc的周长为25cm,则对角线ac长为()a.5cmb.6cmc.8cmd.10cm3.在□ ABCD,∠ a=43°,交叉点a作为BC和CD的垂直线,则这两条垂直线的夹角为()a.113°b.115°c.137°d.90°4,如图所示,在□ ABCD,EF穿过对角线o的交点,ab=4,ad=3,of=1.3,则四边形bcef的周长为()deca.8.3b.9.6c.12.6d.13.6o5.下列命题:①一组对边平行,另一组对边相等的四边形ab是平行四边形;②对角线互相平分的四边形是平行四边形;f第4题图③在四边形abcd中,ab=ad,bc=dc,那么这个四边形abcd是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确命题的个数是()a.0个b.1个c.3个d.4个6.四边形的三个内角的度数如下,其中平行四边形的度数为()a.88°、108°、88°b.88°、104°、108°c.88°、92°、92°d.88°、92°、88°7矩形具有一般平行四边形不一定具有的特征()a.对角相等b.对角线互相平分c.对角线相等d.对边相等8.如图,矩形abcd沿ae折叠,使d点落在bc边上的f点处,如果∠ BFA=30°,则∠ C EF等于20°b.30°c.45°d.60°9.菱形具有而一般平行四边形不一定具有的特征是()ea。

安徽专版八年级数学下册第19章四边形达标测试卷新版沪科版(含答案)

安徽专版八年级数学下册第19章四边形达标测试卷新版沪科版(含答案)

八年级数学下册新版沪科版:第19章达标测试卷一、选择题(每题3分,共30分)1.下列图形中不是凸多边形的是( )2.一个多边形的内角和与外角和的和为540°,则它是( )A.五边形B.四边形C.三角形D.无法确定3.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为( )A.40 B.24 C.20 D.15(第3题) (第5题) (第7题) (第8题)4.下列条件中,不能判定四边形ABCD是平行四边形的是( )A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CDC.AB∥CD,AD∥BC D.AB=CD,AD∥BC5.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P是BC边上的一点,作PE⊥AB于点E,PF⊥AC于点F,则EF的最小值是( )A.2 B.2.2 C.2.4 D.2.56.设四边形的内角和等于a,六边形的外角和等于b,则a-b等于( ) A.180° B.-180° C.0° D.360°7.如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD必定满足( )A.BD<2 B.BD=2 C.BD>2 D.BD=38.如图,矩形ABCD的面积为20 cm2,对角线交于点O;以AB,AO为邻边作平行四边形AOC1B,对角线交于点O1,以AB,AO1为邻边作平行四边形AO1C2B,对角线交于点O2,…,以此类推,则平行四边形AO n C n+1B的面积为( )A.52n-2cm2 B.52n-1cm2C.52ncm2 D.52n+2cm29.如图,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE =∠FEA.若∠ACB=21°,则∠ECD的度数是( )A. 7° B.21° C.23° D.24°(第9题) (第10题) (第12题) (第13题)10.如图是一个由五张纸片拼成的平行四边形ABCD,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张矩形纸片EFGH的面积为S3,FH与GE相交于点O.当△AEO,△BFO,△CGO,△DHO的面积相等时,下列结论一定成立的是( )A.S1=S2B.S1=S3C.AB=AD D.EH=GH二、填空题(每题3分,共18分)11.用正多边形镶嵌一个平面,若每个顶点周围有m个正方形,n个正八边形,则m+n=________.12.如图,在▱ABCD中,对角线AC,BD相交于点O,点E是AB的中点,OE=5 cm,则AD的长为________cm.13.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为________.14.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上G点处,并使折痕经过点A,展平纸片后∠DAG的大小为________.(第14题) (第15题) (第16题)15.如图,在边长为6的正方形ABCD中,点E是边AB上一动点(不与A,B两点重合),过点E作EF⊥AB交对角线AC于点F,连接DF.当△ADF是等腰三角形时,AE的长度等于____________.16.小亮用正三角形、正六边形和平行四边形拼成如图所示的正三角形ABC,若△ABC的面积为75,则图中阴影部分的面积为________.三、解答题(17~18题每题7分,19~20题每题8分,21题10分,22题12分,共52分) 17.如果某个多边形的各个内角都相等,且它的每个内角比其外角大100°,那么这个多边形的边数是多少?18.如图,在▱ABCD中,AC,BD相交于点O,点E在AB上,点F在CD上,EF经过点O.求证:四边形BEDF是平行四边形.(第18题)19.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC,BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=5,AC=2,求OE的长.(第19题) 20.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC的外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.(第20题) 21.操作与证明:如图,把一个含45°角的直角三角尺ECF和一个正方形ABCD摆放在一起,使三角尺的直角顶点和正方形的顶点C重合,点E,F分别在正方形的边CB,CD上,连接AC,AE,AF.其中AC与EF交于点N,取AF的中点M,连接MD,MN.(1)求证:△AEF是等腰三角形;(2)请判断MD,MN的数量关系和位置关系,并给出证明.(第21题) 22.在矩形ABCD中,AB=CD=6 cm,BC=10 cm,点P从点B出发,以2 cm/s的速度沿BC向点C运动,如图①.设点P的运动时间为t s.(第22题)(1)PC=________cm(用含t的代数式表示);(2)当t为何值时,△ABP≌△DCP?请说明理由;(3)如图②,当点P从点B开始运动的同时,点Q从点C出发,以v cm/s的速度沿CD向点D运动.是否存在这样的v,使△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.答案一、1.A 2.C 3.B 4.D 5.C 6.C7.A 点拨:∵AE=AB,∴∠ABE=∠AEB,同理∠CBD=∠CDB.∵∠DBE =∠ABE +∠CBD , ∴∠DBE =∠AEB +∠CDB , ∴∠AED +∠CDE =180°, ∴AE ∥CD .∵AE =CD , ∴四边形AEDC 为平行四边形. ∴BC =CD =DE =AC =1. 在△BCD 中,∵BD <BC +CD , ∴BD <2.故选A. 8.B9.C 点拨:在矩形ABCD 中,AB ∥CD ,∠BCD =90°,所以∠FEA =∠ECD ,∠ACD =90°-∠ACB =69°.因为∠ACF =∠AFC ,∠FAE =∠FEA ,∠AFC =∠FAE +∠FEA ,所以∠ACF =2∠FEA ,所以∠ACD =∠ACF +∠ECD =3∠ECD =69°,所以∠ECD =23°.故选C.10.A二、11.3 12.10 13.5 14.60° 点拨:如图所示:(第14题)由题意易得∠1=∠2,AN =MN , ∠MGA =90°, ∴NG =12AM ,∴AN =NG ,∴∠2=∠4. ∵EF ∥AB , ∴∠4=∠3,∴∠1=∠2=∠3=13×90°=30°,∴∠DAG =60°.15.3 2或3 点拨:①当AF =AD =6时,易知AF =2AE ,∴AE =3 2;②当AF =DF 时,△ADF 是等腰直角三角形,∴AD =2AF =6,∴AF =3 2.在等腰直角三角形AEF 中,AF=2AE ,∴AE =3;③当AD =DF 时,∠AFD =45°,此时点F 与点C 重合,点E 与点B 重合,不符合题意.综上所述,当△ADF 是等腰三角形时,AE 的长度等于3 2或3. 16.26三、17.解:设每个内角的度数为x ,边数为n ,则x -(180°-x )=100°,解得x =140°.∴(n -2)·180°=140°·n , 解得n =9.即这个多边形的边数是9. 18.证明:在▱ABCD 中,DC ∥AB ,OD =OB ,∴∠FDO =∠EBO ,∠DFO =∠BEO . ∴△ODF ≌△OBE ,∴OF =OE , ∴四边形BEDF 是平行四边形. 19.(1)证明:∵AD ∥BC ,∴∠ADB =∠CBD . ∵BD 平分∠ABC , ∴∠ABD =∠CBD , ∴∠ADB =∠ABD , ∴AD =AB . ∵AB =BC , ∴AD =BC . 又∵AD ∥BC ,∴四边形ABCD 是平行四边形. 又∵AB =BC ,∴四边形ABCD 是菱形. (2)解:∵四边形ABCD 是菱形, ∴AC ⊥BD ,OB =OD ,OA =OC =12AC =1.在Rt △OCD 中,由勾股定理得OD =CD 2-OC 2=2, ∴BD =2OD =4.∵DE ⊥BC , ∴∠DEB =90°. ∵OB =OD , ∴OE =12BD =2.20.(1)证明:∵在△ABC 中,AB =AC ,AD ⊥BC ,∴∠BAD =∠DAC .∵AN 是△ABC 的外角∠CAM 的平分线, ∴∠MAE =∠CAE ,∴∠DAE =∠DAC +∠CAE =12×180°=90°.又∵AD ⊥BC ,CE ⊥AN , ∴∠ADC =∠CEA =90°, ∴四边形ADCE 为矩形.(2)解:当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形.证明如下: 由(1)知∠BAD =∠DAC ,四边形ADCE 是矩形. ∵∠BAC =90°, ∴∠DAC =45°, ∴∠DCA =45°, ∴DC =AD .∴四边形ADCE 是正方形.21.(1)证明:∵四边形ABCD 是正方形,∴AB =AD =BC =CD ,∠ABE =∠ADF =90°. ∵△EFC 是等腰直角三角形, ∴CE =CF ,∴BE =DF , ∴△ABE ≌△ADF , ∴AE =AF ,∴△AEF 是等腰三角形. (2)解:MD =MN ,且MD ⊥MN . 证明:在Rt △ADF 中, ∵M 是AF 的中点,∴DM =12AF .∵EC =FC ,CA 平分∠ECF , ∴AC ⊥EF ,EN =FN , ∴∠ANF =90°, ∴MN =12AF ,∴MD =MN .由(1)知△ABE ≌△ADF , ∴∠BAE =∠FAD . ∵DM =12AF =AM ,∴∠FAD =∠ADM ,∴∠FMD =∠FAD +∠ADM =2∠FAD . ∵AM =FM ,EN =FN , ∴MN ∥AE ,∴∠FMN =∠EAF .∵∠BAD =∠EAF +∠BAE +∠FAD =∠EAF +2∠FAD =90°, ∴∠DMN =∠FMN +∠FMD =∠EAF +2∠FAD =90°, ∴MD ⊥MN . 22.解:(1)(10-2t )(2)当t =2.5时,△ABP ≌△DCP . 理由如下:当t =2.5时,BP =2×2.5=5(cm),∴PC =10-5=5(cm).∴BP =PC . 在△ABP 和△DCP 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C =90°,BP =CP ,∴△ABP ≌△DCP (SAS). (3)存在.①当△ABP ≌△PCQ 时,AB =PC ,BP =CQ .即10-2t =6,2t =vt .解得t=2,v=2.②当△ABP≌△QCP时,AB=QC,BP=CP.即vt=6,2t=10-2t.解得t=2.5,v=2.4.综上所述,v=2或2.4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A BC D M N(图1)(图2)《四边形》测试题一.选择题(每题2分,共30分)1、一组对边平行,并且对角线互相垂直相等的四边形是 ( )A 、菱形或矩形B 、正方形或等腰梯形C 、矩形或等腰梯形D 、菱形或直角梯形 2、用一块等边三角形的硬纸片(如图1)做一个底面为等边三角形且高相等的无盖的盒子(边缝忽略不计,如图2),在△ABC 的每个顶点处各需剪掉一个四边形,其中四边形AMDN 中,∠MDN 的度数为( ) A. 100OB. 110OC. 120OD. 130O3、如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连结DF ,则∠CDF 等于( ) A 、60° B 、65° C 、70° D 、80°(第2题) (第3题) (第4题)4、如图,在平行四边形ABCD 中,EF ∥BC ,GH ∥AB ,EF 、GH 的交点P 在BD 上,图中面积相等的四边形共有( )A .2对;B .3对;C .4对;D .5对.5、如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处。

已知BC=12,∠B=30º,则DE 的长是( )A 、6B 、4C 、3 D 、2AB C DED ABC(第5题) (第6题) ( 第9题) (第10题)6、如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠B=60º,BC=3,△ABE 的周长为6,则等腰梯形的周长是 ( ) A 、8 B 、10 C 、12 D 、167、.梯形ABCD 中,AD //BC ,BD 为对角线,中位线EF 交BD 于O 点,若FO -EO =3,则BC -AD 等于 ( )A .4B .6C .8D .108.某城市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖, 有人提出了4种地砖的形状供设计选用:①正三角形,②正四边形,③正五边形,④正六边形.其中不能进行密铺的地砖的形状是( ).(A) ① (B) ② (C) ③ (D) ④9.如图,等腰梯形ABCD 中,AB ∥DC ,AD=BC=8,AB=10,CD=6,则梯形ABCD 的面积是 【 】 A 、1516 B 、516 C 、1532 D 、171610.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是 【 】A 、2B 、3C 、4D 、511、如下图,在平行四边形ABCD 中,∠DAB =60°,AB =5,BC =3,点P 从起点D 出发,沿DC 、CB 向终点B 匀速运动。

设点P 所走过的路程为x ,点P 所经过的线段与线段AD 、AP 所围成图形的面积为y ,y 随x 的变化而变化。

在下列图象中,能正确反映y 与x 的函数关系的是( )ABCD E12.如图5,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地. 根据图中数据,计算耕地的面积为A.600m2B.551m2C.550 m 2D.500m213、如图,将一个边长分别为4、8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是( )A.3B.23C.5D.2514、在下面图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是( )15.如图,是由两个正方形组成的长方形花坛ABCD,小明从顶点A沿着花坛间小路直到走到长边中点O,再从中点O走到正方形OCDF的中心O1,再从中心O1走到正方形O1GFH 的中心O2,又从中心O2走到正方形O2IHJ的中心O3,再从中心O3走2走到正方形O3KJP 的中心O4,一共走了31 2 m,则长方形花坛ABCD的周长是_______m。

A、36B、48C、96D、60二.填空题(每题2分,共30分)FEDCBA第13题图(第12题)1m1m30m20m(第15题)16、如果正多边形的一个外角为72°,那么它的边数是_____。

17、如图,E 、F 是Y ABCD 对角线BD 上的两点,请你添加一个适当的条件: ,使四边形AECF 是平行四边形.(第17题) (第18题) (第19题) (第20题)18、如图,在□ABCD 中,E 、F 分别是边AD 、BC 的中点,AC 分别交BE 、DF 于G 、H ,试判断下列结论:①ΔABE ≌ΔCDF ;②AG=GH=HC ;③EG=;21BG ④S ΔABE =S ΔAGE ,其中正确的结论是__个19、如图,已知任意直线l 把□ABCD 分成两部分,要使这两部分的面积相等,直线l 所在位置需满足的条件是 _________20、如图,口ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为__。

21、如图是一个俱乐部的徽章.徽章的图案是一个金色的圆圈,中间是一个矩形,矩形中间又有一个蓝色的菱形,徽章的直径为2cm ,则徽章内的菱形的边长为____cm.(第21题) (第22题) (第23题) (第24题) 22、如图是某广告公司为某种商品设计的商标图案,若图中每个小长方形的面积都是1,则阴影部分的面积是______23、用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,则每块地砖的长为____________,宽等于_________。

A E DH CB FGBACDEF60cmFCB24、如图,已知图中每个小方格的边长为1,则点C 到AB 所在直线的距离等于_______25.若梯形的面积为6㎝2,高为2㎝,则此梯形地中位线长为 ㎝.26、如图,梯形ABCD 中,BC AD //,1===AD CD AB ,︒=∠60B 直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PD PC +的最小值 。

27、如图,将一块边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使DE=5,这痕为PQ ,则PQ 的长为_______28、在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点. 观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有_____个.29、如图,把矩形ABCD 沿EF 折叠,使点C 落在点A 处,点D 落在点G 处,若∠CFE=60o,且DE=1,则边BC 的长为 .30、如图,正方形ABCD 的周长为16cm ,顺次连接正方形ABCD 各边的中点,得到四边形EFGH ,则四边形EFGH 的周长等于 cm ,四边形2 第26题(第28题)ABC DEG(第29题) (第30题) 三、作图题(4分)31、如图,Rt ΔABC 中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形的等腰三角形。

(保留作图痕迹,不要求写作法和证明)四、解答题(10分+12分+14分)32.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角。

例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90°。

(1) 判断下列命题的真假(在相应的括号内填上“真”或“假”)。

①等腰梯形是旋转对称图形,它有一个旋转角为180°。

( ) ② 矩形是旋转对称图形,它有一个旋转角为180°( )(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是 (写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形 。

(3)写出两个多边形,它们都是旋转对图形,都有一个旋转角为72°,并且分别满足下列条件①是轴对称图形,但不是中心对称图形:②既是轴对称图形,又是中心对称图形:33、在△ABC 中,借助作图工具可以作出中位线EF ,沿着中位线EF 一刀剪切后,用得到的△AEF 和四边形EBCF 可以拼成平行四边形EBCP ,剪切线与拼图如图示1,仿上述的方法,按要求完成下列操作设计,并在规定位置画出图示,⑴在△ABC 中,增加条件_____,沿着_____一刀剪切后可以拼成矩形,剪切线与拼图画在图示2的位置;⑵在△ABC 中,增加条件______,沿着_____一刀剪切后可以拼成菱形,剪切线与拼图画在图示3的位置;⑶在△ABC 中,增加条件_______,沿着_____一刀剪切后可以拼成正方形,剪切线与拼图画在图示4的位置⑷在△ABC (AB ≠AC )中,一刀剪切后也可以拼成等腰梯形,首先要确定剪切线,其操作过程(剪切线的作法)是:_______________________________________________________________________然后,沿着剪切线一刀剪切后可以拼成等腰梯形,剪切线与拼图画在图示5的位置.图示1A BC P FE(E )(A )图示2图示3图示4图示5AB C P FE(E )(A )34.如图1,操作:把正方形CGEF 的对角线CE 放在正方形ABCD 的边BC 的延长线上(CG >BC ), 取线段AE 的中点M 。

(1)(10分)探究:线段MD 、MF说明:(1)如果你经历反复探索,没有找到解决问题 的方法,请你把探索过程中的某种思路写出来(要求 至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件, 完成你的证明。

注意:选取①完成证明得10分;选取②完成证明得 7分;选取③完成证明得5分。

① DM的延长线交CE 于点N ,且AD =NE ; ② 将正方形CGEF 绕点C 逆时针旋转45°(如图2), 其他条件不变;③在②的条件下且CF =2AD 。

(2)(4分)将正方形CGEF 绕点C 旋转任意角度后 (如图3),其他条件不变。

探究:线段MD 、 MF 的关系,并加以证明。

参考答案:1~5、BCADB 6~10、ABCAB 11~15、CBDDC 16、5 17、BE =DF (答案图1图2EGG图3不唯一)18、3 19、直线l经过两对角线的交点20、7 21、1 22、6.5 23、45,15 24、25、3 2627、13 28、40 29、3 30、8 31、略32、(1)①假②真;(2)①、③;(3)①如正五边形,正十五边形;②如正十边形,正二十边形33、⑴方法一:∠B=90°,中位线EF,如图示2-1.方法二:AB=AC,中线(或高)AD,如图示2-2.⑵AB=2BC(或者∠C=90°,∠A=30°),中位线EF,如图示3.⑶方法一:∠B=90°且AB=2BC,中位线EF,如图示4-1.方法二:AB=AC且∠BAC=90°,中线(或高)AD,如图示4-2.⑷方法一:不妨设∠B>∠C,在BC边上取一点D,作∠GDB=∠B交AB于G,过AC的中点E作EF∥GD交BC于F,则EF为剪切线.如图示5-1.方法二:不妨设∠B>∠C,分别取AB、AC的中点D、E,过D、E作BC的垂线,G、H 为垂足,在HC上截取HF=GB,连结EF,则EF为剪切线.如图示5-2.方法三:不妨设∠B>∠C,作高AD,在DC上截取DG=DB,连结AG,过AC的中点E作EF∥AG交BC于F,则EF为剪切线.如图示5-2.34、(1)关系是:MD=MF ,MD ⊥MF 。

相关文档
最新文档