第四章纵断面设计4
第4章纵断面设计
(三)凹形竖曲线最小半径和最小长度
设置凹竖曲线的主要目的是缓和行车时的离心力
Lmin
2.当L>ST:
h1
d12 2R
,则d1
2Rh1
h2
d
2 2
2R
,则d
2
2Rh2
ST d1 d2 2R ( h1 h2 )
R
ST2
2( h1 h2 )
最小长度:
Lmin 2(
S 2
S 2
h1 h2 )2 4
最小半径:
Rmin
Lmin
凸形竖曲线最小半径和最小长度 :
竖曲线最小长度相当于各级道路计算行车速度 的3秒行程 。
山区公路可缩短里程,降低造价。
各级公路最大纵坡的规定(表4-3)
设计速度 (km/h)
120 100 80 60 40 30 20
最大纵坡(%)
345
6
7
8
9
城市道路最大纵坡约为按公路设计速度计算的最大纵坡 减少1%
1. 设计速度为120km/h、l00km/h、80km/h 的高速公路受地形条件或其他特殊情况限制时, 经技术经济论证,最大纵坡值可增加1%。
最小合成坡度不宜小于0.5%。
当合成坡度小于0.5时,应采取综合排水措施,以 保证路面排水畅通。
3. 合成坡度指标的控制作用 : 控制陡坡与急弯的重合; 平坡与设超高平曲线的配合问题。
当陡坡与小半径平曲线重合时,在条件许可的情 况下,以采用较小的合成坡度为宜。
▪ 特别是下述情况,其合成坡度必须小于8%。
一、纵坡设计的一般要求
1.纵坡设计必须满足《标准》的各项规定。 2.为保证车辆能以一定速度安全顺适地行驶,纵 坡应具有一定的平顺性,起伏不宜过大和过于频繁。
隧道工程4-2-1 隧道平纵横断面设计
第4页
2.隧道坡道形式
一般可采用单面坡或人字坡。
第5页
2.隧道坡道形式
两种不同的坡型适用于不同的隧道。
对位于紧坡地段,要争取高程的区段上 的隧道、位于越岭隧道两端展线上的隧道、 地下水不大的隧道,或是可以单口掘进的 短隧道,可以采用单面坡型;
第6页
2.隧道坡道形式
两种不同的坡型适用于不同的隧道。
第12页
3.隧道坡度大小
高速铁路中,由于行车速度快,对 于坡道的最大坡率做出了要求,正线 的最大坡度,一般条件下不应大于 20‰,困难条件下,经技术经济比较, 不应大于30‰。动车组走行线的最大 坡度不应大于35‰。
第13页
谢 谢!
第14页
第9页
3.隧道坡度大小
m的取值
第10页
3.隧道坡度大小
洞口外一段距离内,也要考虑相应的折 减。 当列车的机车一旦进入隧道,空气阻力 就增加,黏着系数也开始减少。所以在上 坡进洞前半个远期货物列车长度范围内, 也要按洞内一样予以折减。
第11页
3.隧道坡度大小
除了最大坡度的限制以外,还要限制最 小坡度。因为隧道内的水全靠排水沟向外 流出。《铁路隧道设计规范》规定,隧道 内线路不得设置平坡,最小的允许坡度不 宜小于3‰。
《铁路隧道》
第4章 隧道平纵横断面设计
• 第一节 隧道平面设计 • 第二节 隧道纵断面设计
• 第三节 隧道横断面设计
第2页
学习重点
• 隧道坡道形式及坡度大页
1.隧道纵断面概述
隧道纵断面是中心线展直后在垂直面上 的投影。纵断面设计主要包括隧道内线路 的坡道形式、坡度大小和折减、坡段长度 和坡段间的衔接等内容。
对于长大隧道、越岭隧道、地下水丰富 而抽水设备不足的隧道,宜采用人字坡型。
第4章城市快速路
第第二二节节横横断断面面设设
2020/3/6
五、横断面布置
第二节 横断面设 计
整体平地式(城区型)横断面
2020/3/6
整体平地式(郊区型) 横断面
五、横断面布置 计
最
4%
大
4.5%
坡
5%
长
5.5%
(m)6%Fra bibliotek6.5%
7%
2020/3/6
第四节 纵断面设计
快速路坡长
100
80
60
250
200
150
700
-
-
600
-
-
500
600
-
-
500
-
-
400
400
-
-
350
-
-
300
三、竖曲线
第四节 纵断面设计
快速路竖曲线半径及长度
计算行车速度(km/h)
100 80
凸形竖曲线 一般最小半径(m) 10000 4500
五、横断面布置
第二节 横断面设 计
路堑式断面
• 堑式快速路主路设置在地面以下双向行驶,辅路(地面道 路)应设置在主路两侧单向行驶或一侧双向行驶。
2020/3/6
五、横断面布置
第二节 横断面设 计
2020/3/6
五、横断面布置
第二节 横断面设 计
3. 高架分离式横断面
• 主路上、下行两个流向位于两个板块,不在同一平面位置 ,辅路在桥下或地面,
• 硬路肩宽度不小于2.5m,土路肩宽度不小于 0.75m。
第四章 线路平纵断面设计
第四章 铁路线路平面及纵断面设计第一节 设计的基本要求如图4—1所示,路基横断面上距外轨半个轨距的铅垂线AB 与路肩水平线CD 的交点O 在纵向上的连线,称为线路中心线。
线路的空间是由它的平面和纵断面决定的。
线路平面是线路中心线在水平面上的投影,表示线路平面位置;线路纵断面是沿线路中心线所作的铅垂剖面展直后线路中心线的立面图,表示线路起伏情况,其高程为路肩高程。
各设计阶段编制的线路平面图和纵断面图是线路设计的基本文件。
各设计阶段的定线要求不同,平面图和纵断面图的详细程度也各有区别,绘制时应遵循铁路行业制定的线路标准图式。
图4—2为新建铁路简明的线路平面图和纵断面图,可应用于线路方案研究或(预)可行性研究阶段中的概略定线。
简明平面图中,等高线表示地形和地貌特征,村镇、道路等表示地物特征。
图中粗线表示线路平面、标出里程、曲线要素(转角α、曲线半径R )、车站、桥隧特征等资料。
简明断面图的上半部为线路纵断面示意图;下半部为线路基础数据,自下而上顺序标出:线路平面、里程、设计坡度、路肩设计高程、工程地质概况等栏目。
线路平面和纵断面设计必须满足以下三方面的基本要求: 1.必须保证行车安全和平顺主要指:不脱钩、不断钩、不脱轨、不途停、不运缓与旅客乘车舒适等,这些要求反映在《铁路线路设计规范》(简称《线规》)规定的技术标准中,设计要遵守《线规》规定。
2.应力争节约资金即既要力争减少工程数量、降低工程造价;又要考虑为施工、运营、维修提供有利条件,节约运营支出。
从降低工程造价考虑,线路最好顺地面爬行,但因起伏弯曲太大,给运营造成困难,导致运营支出增大;从节约运营支出考虑,线路最好又平又直,但势必增大工程数量,提高工程造价。
因此,设计时必须根据设计线的特点,分析设计路段的具体情况,综合考虑工程和运营的要求、通过方案比较,正确处理两者之间的矛盾。
3.既要满足各类建筑物的技术要求,还要保证它们协调配合、总体布置合理铁路上要修建车站、桥涵、隧道、路基、道口和支挡、防护等大量建筑物,线路平面和纵断面设计不但关系到这些建筑物的类型选择和工程数量,并且影响其安全稳定和运营条件。
城市轨道交通第四章 线路与车站的规划与设计
15
4.3 车站规划与设计
2.车站的组成
大型轨道交通系统的车站一般由四部分组成:
1)车站大厅及广场,是乘客、游客和商人聚集的地方;
2)售票大厅,为乘客出售列车客票;
3)站台,直接供乘客乘降车使用;
4)旅客不能到达的地方,如车站办公室、仓库、维修设施及铁路股道等。
对城市轨道交通来说,车站一般由车站主体、出入口及通道、通风道及 风亭(地下)和其它附属建筑物组成。
3)城市道路网及建设状况
4)线路敷设方式及技术条件
5)与城市发展的尽远期结合
6)其他因素
2
4.1 线路规划
2、分析方法 一般在1/5000~1/10000地形图上进行,特殊地段采用1/2000
地形图,提出2~3个方案作为比选和论证的基础。 1)客流吸引条件; 2)线路条件; 3)施工条件; 4)对城市环境的影响; 5)费用和工期
2、主要技术标准
国家住房与城乡建设部2008年颁布的《城市轨道交通工程项目建设标准》 中,将城轨交通系统按线路工程标准分为五种类型,主要技术指标包括: 最小曲线半径、最大坡度、竖曲线半径、钢轨和道岔,具体参数详见下表。
8
基本类型
A
B
C/D
L
单轨
正线
300~350
250~300
50~100
150
100
3)按车站结构形式和施工方法分为明挖站、暗挖站等; 4)按车站站台形式分为岛式车站、侧式车站、一岛一侧、一岛两侧等车 站形式。
5)按车站服务的对象及功能可以分为城市标志(landmark)站(作为城市的象
征或著名建筑物)、与干线或机场等交通连接的换乘枢纽站(完成与机场或其他
交通方式的接续运输过程)、市郊地区车站、农村地区车站等。
第4章 纵断面设计
2)标准规定
《标准》规定各级公路最大坡长限制。
2008年6月12日4时20 分
12
2.最大坡长限制 城市道路最大坡长按表4.2.5选用。
城市道路非机动车车行道纵坡限制坡长(m)
2008年6月12日4时20 分
13
2.最小坡长限制 1)限制理由: (1)若其长度过短,就会使变坡点个 数增加,行车时颠簸频繁; (2)当坡度差较大时还容易造成视线的 中断、视距不良,从而影响到行车的平衡 性和安全性; (3)若坡长过短,则不能满足设置最短 竖曲线这一几何条件的要求,故应对纵坡 的最小长度做出限制。
2008年6月12日4时20 分 30
平原微丘区地下水埋深较浅,或池塘、 湖泊分布较广,纵坡除应满足最小纵坡 要求外,还应满足最小填土高度要求, 保证路基稳定。 对连接段纵坡,如大、中桥引道及隧道 两端接线等,纵坡应和缓、避免产生突 变。交叉处前后的纵坡应平缓一些, (6)纵坡设计应根据公路沿线的实际情 况,充分考虑通道、农业机械、农田水 利等方面的要求。
2.最大纵坡标准的制定 1)计算法 2)调查法 《标准》在制定路线最大纵坡时主要考虑了以下三方 面的因素: (1)汽车下坡行驶安全。 从汽车爬坡能力考虑对最大纵坡加以限制。 最大纵坡的制定应从下坡安全来考虑,其最大值控制 在8 %为宜。 (2)拖挂车的要求。 (3)考虑兽力车及雨雪冰滑时汽车上下坡的行驶要求。 对城市道路来讲,其最大纵坡的制定除了考虑上述因 素以外,还应考虑非机动车特别是自行车的行驶要求。
2008年6月12日4时20 分 22
5.桥上及桥头纵坡 《公路路线设计规范》对桥上及桥头纵 坡的规定如下: (1)小桥与涵洞处的纵坡与路线相同; (2)大中桥上的纵坡不宜大于4 %,桥 头引道纵坡以不宜大于5 %; (3)位于市镇附近非汽车交通较多的地 段,桥上及桥头引道纵坡均不得大于3 %; (4)紧接大中桥桥头两端引道的纵坡应 与25
第四章-纵断面设计
第四章纵断面设计一、填空题1、在公路路线纵断面图上,有两条主要的线:一条是();另一条是()。
2、纵断面的设计线是由()和()组成的。
3、纵坡度表征匀坡路段纵坡度的大小,它是以路线()和()之比的百分数来度量的。
4、新建公路路基设计标高即纵断面图上设计标高是指:高速、一级公路为()标高;二、三、四级公路为()标高。
5、纵断面线型的布置包括()的控制,()和()的决定。
6、缓和坡段的纵坡不应大于(),且坡长不得()最小坡长的规定值。
7、二、三、四级公路越岭路线的平均坡度,一般使以接近()和()为宜,并注意任何相连3KM路段的平均纵坡不宜大于()。
8、转坡点是相邻纵坡设计线的(),两坡转点之间的距离称为()。
9、在凸形竖曲线的顶部或凹形竖曲线的底部应避免插入()平曲线,或将这些顶点作为反向平曲线的()。
10、纵断面设计的最后成果,主要反映在路线()图和()表上。
二、选择题1、二、三、四级公路的路基设计标高一般是指()。
A 路基中线标高B 路面边缘标高C 路基边缘标高 D路基坡角标高2、设有中间带的高速公路和一级公路,其路基设计标高为()。
A 路面中线标高B 路面边缘标高C 路缘带外侧边缘标高D 中央分隔带外侧边缘标高3、凸形竖曲线最小长度和最小半径地确定,主要根据()来选取其中较大值。
A 行程时间,离心力和视距B 行车时间和离心力C 行车时间和视距D 视距和理性加速度4、竖曲线起终点对应的里程桩号之差为竖曲线的()。
A切线长 B 切曲差 C 曲线长5、平原微丘区一级公路合成坡度的限制值为10%,设计中某一路段,按平曲线半径设置超高横坡度达到10%则此路段纵坡度只能用到( ).A 0%B 0.3% C2% D3%6、最大纵坡的限制主要是考虑()时汽车行驶的安全。
A 上坡B 下坡C 平坡7、确定路线最小纵坡的依据是()。
A 汽车动力性能B 公路等级C 自然因素D 排水要求8、公路的最小坡长通常是以设计车速行驶()的行程来规定的。
第四章纵断面设计
第四章纵断面设计第一节概述沿着道路中线竖直剖开,然后在展开即为路线纵断面,见图4-1。
由于自然因素的影响以及经济性的要求,路线纵断面总是一条有起伏的空间线。
一、纵断面设计主要任务与目的纵断面设计主要任务就是根据汽车的动力特性、道路等级、当地的自然地理条件以及工程经济性等,研究起伏空间线的几何构成与要素,以便达到行车安全迅速、运输经济合理及乘客舒适的目的。
二、地面线与设计线纵断面图是道路纵断面设计的主要成果,也是道路设计的重要技术文件之一。
把道路纵断面图与平面图结合起来,就能准确地定出道路的空间位置。
在纵断面图上有两条主要的线:一条是地面线,另一条是设计线。
1 地面线它是根据中线上各桩点的高程而点绘的一条不规则的折线,反映了地面的起伏与变化情况。
2 设计线它是综合考虑技术、经济和美学等诸因素之后,人为定出的一条具有规则形状的几何线,反映了道路的起伏变化情况。
纵断面设计线是由直线和竖曲线组成的。
(1)直线(均匀坡度线)直线有上坡和下坡之分,是用高差和水平长度表示的。
105(2)竖曲线在直线的坡度转折处为平顺过渡要设置竖曲线,按坡度转折形式不同,竖曲线有凹有凸,其大小用半径和水平长度表示。
第二节纵坡及坡长设计一、纵坡设计的一般要求为使纵坡设计经济合理,必须在全面掌握勘测资料的基础上,经过综合分析、反复比较定出设计纵坡。
纵坡设计的一般要求为:1纵坡设计必须满足《标准》的各项规定;2应具有一定的平顺性,起伏不宜过大和过于频繁。
为保证车辆能以一定速度安全、顺适地行驶,纵坡应具有一定的平顺性,起伏不宜过大或过于频繁。
尽量避免采用极限纵坡值,合理安排缓和坡段,不宜连续采用极限长度的陡坡夹最短长度的缓坡。
连续上坡和下坡路段,应避免设置反坡段。
3 纵坡设计应对沿线的地形、地下管线、地质、水文、气候、排水等方面综合考虑,视具体情况妥善处理,以保证道路的稳定与畅通。
4 纵坡设计应考虑填挖平衡,减少借方和废方,以降低工程造价和节省用地。
第四章-道路纵断面设计
二、行驶力学 1.汽车的行驶阻力
汽车行驶阻力:空气阻力、道路阻力(滚动阻力、坡度阻力) 和惯性阻力。
空气阻力Rw(N):汽车在行驶中,由于迎面空气质点的压力, 车后的真空吸力及空气质点与车身表面的摩擦力阻碍汽车前进, 总称为空气阻力。由空气动力学:
Rw = K·A·V2/21.15
道路阻力RR (N):由弹性轮胎变形和道路的不同路面类型及纵坡 度而产生的阻力,包括滚动阻力和坡度阻力。
RR=G·(f + i) 汽车在坡度i(倾角α)的道路上行驶时,车重G在平行于路面 方向的分力为G·sinα=G·i,上坡时它与汽车前进方向相反,阻 碍汽车行驶;而下坡时与前进方向相同,助推汽车行驶。
2、纵坡一般值(不限长度纵坡) 小客车能以平坦地形路段小客车的平均行驶速度匀速 上坡 普通载重车能以设计速度的1/2速度上坡(匀速)
汽车在大于不限长度的纵坡上行驶,必然减速,减速 值的大小不仅与坡度大小有关,也V=与V0=.5其VV平d长(均 设度计有速关度),需 要研究汽车的动力性能、爬坡过程中速度与坡度大小 及坡长的关系。
距离(m) 标准载重车(120kg/kw)加速行驶速度-距离曲线图(上、下坡)
七、平均纵坡
平均纵坡:一定长度的路段纵向所克服的高差与路线长度之比
它是衡量纵面线形质量的一个重要指标
ip
H L
1、限制平均纵坡的意义
水 平 距 离
4、关于设计标高
(1)新建公路设计标高 高速公路和一级公路的设计高程以中央分隔带的外侧边 缘标高为基准
二、三、四级公路采用路基边缘高程(在设置超高、 加宽地段为设超高、加宽前该处边缘高程)
(2)改建公路的设计高程 一般按新建公路的规定办理,也可视具体情况而采 用行车道中线处的高程。
《道路工程》第4章 纵断面设计
6、缓和坡段
如前所述,凡大于理想的最大纵披i1的坡度均属陡 坡。在纵断面设计中,当陡坡大于限制坡长时,应 设<3%的缓和坡段,其长度应大于最小坡长。
7、平均纵坡
定义:某段路线高差与水平距离之比。i平=H/L(%)
作用: ①.衡量纵断面线型质量。 ②.可供放坡定线参考。
规定:①.越岭线高差200~500m时,取5.5%为宜。 ②.越岭线高差>500m时,取5.0%为宜。 ②.任何连续3km内,i平≤5.5%。 ④.要考虑公路编辑等课件级影响。
编辑课件
四、爬坡车道
2.设置条件
城市道路: ①.快速路及V≥60km/h的主干道,i>5%的路段。 ②.大车V下降,80→50、 60→40 ③. 上坡路段混入大型车辆的干扰降低通行能力时。 ④.经综合分析认为设置爬坡车道比降低纵坡经济
合理时。爬坡车道宽3.5m。
编辑课件
3.爬坡车道横断面设计
➢ 爬坡车道设于上坡方向正线行车道右侧。 ➢爬坡车道宽度一般为3.5m(含左侧路缘带宽度0.5m。 ➢爬坡车道的路肩和正线一样仍由硬、土路肩组成。 ➢由于爬坡车道上车的速度较低,硬路肩宽度可不按正 线设计,一般取1.0m。土路肩宽度以按正线要求设计。 ➢长而连续的爬坡车道路肩窄,右侧应设紧急停车带
编辑课件
最大纵坡的总结:
A,城市道路为公路按设计车速的最大纵坡-1。 B,大、中桥≯4% C,非机动车≯ 2.5%,>2.5%时有坡长限制。 D,隧道≯3% E, 海拔:公路:2000m以上,i≯8%。
3000m以上,比正常值减1~3%。 F,高寒冰冻:公路:i≯8%, 城市道路:i≯6%
编辑课件
编辑课件
纵断面定义:沿着道路中心线竖直剖切开的断 面即为线路纵断面。 绘制纵断面的目的:主要反映路线的起伏、纵 坡以及与原地面的填挖情况。 纵断面设计:就是根据汽车的动力特性、道路 等级和自然地形,研究道路起伏的坡度和长度, 以便达到行车的安全、舒适迅速和经济合理的 目的。
城市道路与交通规划第四章
并相应设置坡度不大于2~3%的缓和坡段; 当城市交通干道的缓和坡段长度不宜小于100m,
对居住区道路及其他区干道,亦不得小于50m。
精选课件
第4章 城市道路纵断面线形规划设计
4.2.1.3 坡长限制 道路纵坡的坡长限制可参见下表:
锯齿形街沟设置方法:
在保持侧石顶面线与路中心线平行(即两者纵坡 相等)的条件下,交替改变侧石顶面线与平石 (或路面边缘)之间的高度,及交替改变侧石外 露于路面的高度。
在最低处设雨水进水口,使进水口处的路面横坡 大于正常横坡,而在两相邻近进水口之间的分水 点的路面横坡小于正常横坡。
雨水由分水点流向两旁低处进水口,街沟纵坡交 替升降,成锯齿形。
城市道路机动车道较大纵坡坡长限制值
非机动车车行道纵坡度宜小于2.5%。大于或等 于2.5%时,应按下表规定限制坡长。
精选课件
第4章 城市道路纵断面线形规划设计
4.2.1.3 坡长限制 坡长既不宜过长,但也不宜过短。
过短的破段,路线起伏频繁,对行车、道路视距 及临街建筑布置均不利,一般其最小长度应不小 于相邻两竖曲线切线长度之和。
的起止长度。 道路纵坡的大小关系到交通条件、排水状况与
工程经济。
精选课件
第4章 城市道路纵断面线形规划设计
4.2.1.1 影响因素 一条道路的容许最大设计纵坡,要考虑行车技术
要求、工程经济等因素,同时还必须根据道路类 型、交通性质、当地自然环境以及临街建筑规划 布置要求等,来拟定相应的技术标准。 考虑各种机动车辆的动力要求 汽车的动力因数:当车辆驶上较大的纵坡时,必 然要降低车速,增加车流密度。因此,为了保证 一定的设计行车速度,道路的纵坡就不能过大。 一般情况,机动车道的最大纵坡多不超过8%。
[理学]道路交通设计4第四章 道路纵断面线形1
1、沿上坡方向载重汽车的运行速度降低到表4.6的容许 最低速度以下时,宜设置爬坡车道。
表4.6 上坡方向容许最低速度
设计速度(km/h) 120 100 80 60 40
容许最低速度 (km/h)
60
55
50
40
25
2、上坡路段的设计通行能力小于设计小时交通量时, 宜设置爬坡车道。
高速公路、一级公路爬坡车道长度大于500m时, 应在其右侧按规定设置紧急停车带。 爬坡车道的长度应与主线相应纵坡长度一致。 爬坡车道起点、终点处应按规定设置分流、合流 渐变段
6
500 600 700 700 800
7
500 500 600
8
300 300 400
9
200 300
10
200
三、平均纵坡
越岭路线连续上坡(或下坡)路段,相对高 差为200~500m时平均纵坡不应大于5.5%;相对 高差大于500m时平均纵坡不应大于5%,且任意 连续3km路段的平均纵坡不应大于5.5%。
1、高速公路、一级公路,由几个连续上坡(或下 坡)路段组合而成时,应采用平均纵坡进行检验。
2、公路连续上坡或下坡,连续纵坡大于5%时应在 不大于表4.4所规定的纵坡长度范围内设置缓和坡 段。缓和坡段的纵坡应不大于3%,其长度应符合 表4.4最小坡长的规定。
表4.5 公路缓和纵坡最小坡长
设计速度(km/h) 120 100 80 60 40 30 20
120
100
80
60
40
30
20
最大纵坡(%) 3 4 5 6 7 8 9
1 、公路最大纵坡
1)设计速度为120km/h、100km/h、80km/h的高速公路受 地形条件或其它特殊情况限制时,经技术经济论证,最大 纵坡可增加1%。
4铁路线路纵断面
2.所需数据的调整:由于此图从右开始向左 绘制,数据的方向需要在图中向左,所以必须将数 据颠倒。
3.抬降量分列:在图中抬降量各有一行,而 表格中只有一列,必须将抬降量分开。在表格中用 判断语句可将其分开。
4.CAD中数据的调整
粘贴到图中的数据是一个整体,可以通过调整 其列间距(10),角度(90),字高(2.5), 宽度(10),对齐方式(中下)既可以准确地放入 数据。
图中0.838为:设计钢轨高度+垫板厚度+轨枕高 度值+道床厚度
外包线是以宁抬勿降的原则来选择既有和设计轨 面标高而计算。
设计轨面高程是在给定一个设计坡度后而得到的计算 值。注意设计起点不变,即起点的设计轨面高等于既有 轨面高。图中1877.76也是既有轨面高。设计坡度时注 意上面所提到的设计要求。
1 .选定初始点(按实测轨面标高)定分 割区间(D=0.2)[ H a , H b]
H a H i 0.05 Hb Hi 0.50
② 建立(0.618)法单谷函数曲线(四个点):
Sa
,
S
a
,
Sb
,
Sb
③ 取消目标函数S 最大点,重新定出 单谷函数曲线
④ 判断
S
a
大坡度值减缓。具体折减方法在资料中可查。
(三)桥涵
有碴桥涵梁上,一般应该按计算轨面高程设计纵
断面。通常不允许落低既有线高程,以免因降低墩台顶
面高程引起施工困难,此时需加高粱的边墙,以免道碴
溢出。轨面抬高值一般在10~15cm ,以免加厚道碴后影
响桥梁的应力与稳定性。当抬高值较大时,则需要加高
此外应考虑路堑边坡的稳定与地下水位的影响。如设
第四章 纵、横断面数据准备与纵断面设计绘图
第四章 纵、横断面数据准备与纵断面设计绘图4.1 纵断面地面线数据输入纬地系统开发了专门的纵、横断面地面线数据输入程序,推荐用户使用它们进行纵、横断面地面线数据输入(特别是对于横断面地面线数据),以便将许多类似键入手误、桩号不匹配、桩号顺序颠倒、格式不符等错误排除在数据录入阶段。
纵、横断面地面线数据均为纯文本文件格式,用户也可以使用写字板、edit 、Word 及Excel 等文本编辑器编辑修改,但请注意保存为纯文本格式。
菜单:数据——纵断数据输入命令:DATTOOL纵断数据输入对话框如图4-1所示,系统可自动根据用户在“文件”菜单“设定桩号间隔”设定按固定间距提示下一输入桩号(自动提示里程桩号),用户可以修改提示桩号,之后键入回车,输入高程数据,完成后再回车,系统自动下增一行,光标也调至下一行,如此循环到输入完成。
输入完成后,用鼠标点击最后一行的序号,选中该行,点按图标工具中的“剪刀”,便可删去最后一行多余的桩号。
当用户需要在某一行插入一行时,先将光标移到该行,再点按图标工具中的“插入”按钮。
系统会自动检查用户输入的每一桩号的顺序,错误时会自动提示。
输入完成,点击“存盘”按钮,系统便将地面线数据写入到用户指定的数据文件中,并自动添加到项目管理器中。
纵断面数据格式请参见数据文件介绍一章的相关内容。
图4-14.2 横断面地面线数据输入菜单:数据——横断数据输入命令:HDMTOOL横断数据输入对话框如图4-2和图4-3所示,系统提供两种方式的桩号提示:按桩号间距或根据纵断面地面线数据的桩号。
一般用户选择后一种,这样可以方便地避免出现纵、横断数据不匹配的情况。
在图4-3的输入界面中,每三行为一组,分别为桩号、左侧数据、右侧数据。
用户在输入桩号后回车,光标自动跳至第二行开始输入左侧数据,每组数据包括两项,即平距和高差,这里的平距和高差既可以是相对于前一点的,也可以是相对于中桩的(输入完成后,可以通过“横断面数据转换”中的“相对中桩→相对前点”转化为纬地系统需用的相对前点数据)。
道路勘测设计各章习题及答案
-可编辑修改-第一章 绪论一、填空题1、现代交通运输由( )、( )、( )、航空、管道等五种运输方式组成。
2、根据我国高速公路网规划,未来我国将建成布局为“7918”的高速公路网络。
其中“7918”是指( )、( )、( )。
3、《公路工程技术标准》(JTG B01—2003)规定:公路根据功能和适应的交通量分为( )、( )、( )、( )、( )五个等级。
4、各级公路能适应的年平均日交通量均指将各种汽车折合成( )的交通量。
5、高速公路为专供汽车( )、( )行驶并应( )出入的多车道公路。
6、高速公路和具有干线功能的一级公路的设计交通量应按( )年预测;具有集散功能的一级公路和二、三级公路的设计交通量应按( )年预测。
7、设计交通量预测的起算年应为该项目可行性研究报告中的( )通车年。
8、我国《公路工程技术标准》将设计车辆分为( )、( )和( )三种。
9、设计速度是确定公路( )的最关键参数。
10、《公路工程技术标准》(JTG B01—2003)将公路服务水平划分为( )级。
其中高速、一级公路以( )作为划分服务水平的主要指标,设计时采用( )级。
11、《公路工程技术标准》(JTG B01—2003)规定二、三级公路以( )和( )作为划分服务水平的主要指标,设计时采用( )级。
12、公路勘测设计的阶段可根据公路的性质和设计要求分为( )、( )和( )三种。
二、选择题1、高速公路和一级公路容许的交通组成是( )。
混合交通行专供小客车行驶 C 混合交通行A 专供汽车行驶B 专供小客车行驶驶2、《公路工程技术标准》中规定的各级公路所能适应的交通量是指( )。
日平均小时交通量 C最大交通量A 年平均昼夜交通量B 日平均小时交通量3、公路设计交通量是指( )。
A 公路设计时的交通量 B公路竣工开放交通时的交通量 C设计年限末的交通量4、双车道二级公路应能适应将各种汽车折合成小客车的年平均日交通流量为( )。
第四章 线路平面和纵断面设计
n来表示。
图4-8 外轨最大超高计算图
令 n S1 2e
当n=1时,即e=S1/2 ,R1 指向内轨断面中心线,属
于临界状态;当n<1时,即e>S1/2 ,车辆丧失稳定而顿覆;属于临
界状态;当n>1时,即e<S1/2 ,车辆处于稳定状态,n值愈大,稳
定性愈好。
4.未被平衡超高允许值
当通过列车速度V不等于VJF时,就会产生未被平衡的离心力, 相应产生未被平衡的超高:
客货共线最小曲线半径
路段旅客列车设计行车速 度(km/h)
200
160
140
120
100
80
采用的 Rmin(m)
工程 一般 3500 2000 1600 1200 800 600
条件 困难 2800 1600 1200 800 600 500
40
改建既有线或增建第二线时的最小曲线半径应结合 既有线标准比选确定。一般条件下不应小于上表的规定, 困难条件下,如按上述标准改建引起巨大工程时,可经 技术经济比选确定合理的改建方案,以节约工程投资。 此时根据线路具体情况确定该路段旅客列车设计行车速 度。
第四章 线路平面和纵 断面设计
本章主要内容:
平面设计 纵断面设计 特殊地段平纵断面设计 线路平面图和详细纵断面图
1
第一节 概述
一、认识线路平、纵、横断面的对应关系
如图所示,路基横断面上距外轨半个轨距的铅垂线
AB与路肩水平线CD的交点O在纵向上的连线,称为线
路中心线。
路基宽度
图4—1 路基横断面 2
线路位置示意图
3
二、线路中线
首先来看一个线路走向的例子:
4
三、线路平纵断面设计的基本要求
4 纵断面设计
§4.2 纵坡设计
(2)最小纵坡(minimum longitudinal gradient)长路堑地段 以及其它横向排水不畅的路段,为了保证排水,均应设置不 小于0.3%的纵坡。 (否则,采取措施。边沟应作纵向排水设计,设置锯齿形
街沟或采取其它排水措施来处理)
§4.2 纵坡设计
(3)平均纵坡(average gradient) 1)平均纵坡----指一定路线长度范围内,路线两端点的 高差与路线长度的比值。 二、三、四级公路越岭线的平均纵坡: 2)相关规定 ① 相对高差200~500m 不应大于 5.5% ② 相对高差>500m 不应大于 5% 注意: 任何相连3km路段的平均纵不应大于5.5%。
1). 计算切线高程
H1 H0 x i H1——计算点切线高程 H0——变坡点高程 i ——计算点处的纵坡度 x ————计算点至变坡点的平距
±——当切线高于变坡点时取“+”,反之取“–”。
2). 计算设计高程 H H1 y ±——当为凹形竖曲线时取“+”,
当为凸形竖曲线时取“–”。
道路勘测设计
第4章
纵断面设计
§4.1 概述 §4.2 纵坡设计 §4.3 竖曲线设计 §4.4 高等级道路上的爬坡车道 §4.5 平、纵面线形组合设计 §4.6纵断面设计方法与纵断面设计图
第4章 纵断面设计
本章要求: 1. 掌握纵坡的基本概念。 2. 了解现行技术标准对纵坡的各项规定。 3. 掌握平面及纵面线形组合原则。 4. 掌握纵断面设计、计算方法。 5. 掌握纵断面图绘制方法。
6)纵坡设计应结合道路沿线的实际情况和具体条件
进行设计,并适当照顾农业机械、农田水利等方面
的要求。
§4.2 纵坡设计
道路交通设计4第四章 道路纵断面线形
4 700 800 900 1000 1100 1100 1200
5
600 700 800 900 900 1000
6
500 600 700 700 800
7
500 500 600
8
300 300 400
9
200 300
10
200
编辑ppt
三、平均纵坡
越岭路线连续上坡(或下坡)路段,相对高 差为200~500m时平均纵坡不应大于5.5%;相对 高差大于500m时平均纵坡不应大于5%,且任意 连续3km路段的平均纵坡不应大于5.5%。
竖曲线要素包括:竖曲线长度L、切线长度T、外距E。
T R
ω E L ω
图4.2 竖曲线要素
编辑ppt
三、竖曲线上的视距保证
夜间汽车在小半径凸形竖曲线上行驶时, 很难照到高 度较低的路面障碍物;而在小半径的凹形竖曲线上行驶时, 车头灯照在路面上的照距很短,也影响了视距。因此,在 夜间交通密度较大的道路,应采用大竖曲线半径。
1、确定最优路线; 2、确定设计速度并制定采用的平纵线形技术标准; 3、规划设计道路中心线; 4、重视环境保护。
编辑ppt
二、平、纵线形的配合
1、平、纵配合的原则 线形能自然诱导驾驶人视线,保持视觉连续性; 平纵线形技术指标均衡; 合成坡度组合适当,利于排水和行车安全。
平纵线形组合设计应注意与自然环境和景观 的配合与协调。
编辑ppt
1、高速公路、一级公路,由几个连续上坡(或下坡) 路段组合而成时,应采用平均纵坡进行检验。
2、公路连续上坡或下坡,连续纵坡大于5%时应在 不大于表4.4所规定的纵坡长度范围内设置缓和坡 段。缓和坡段的纵坡应不大于3%,其长度应符合 表4.4最小坡长的规定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下部:主要用来填写有关内容 自下而上:超高;直线及平曲线;里程桩号;坡度及坡长;地面高程;设 计高程;填、挖高度;土壤地质说明。
结
论
平原、微丘地形:应保证最小填土高度,作包线设计。 山岭、重丘地形:按纵向填挖平衡设计,并利用挖方就近作为填方,以减轻 对自然地面横坡与环境的影响。
1. 结合地形条件,纵断面设计的基本原则:
绘图作业:
图1. 按1:2000比例尺展绘《教材》图3.7.1的平面图。
要求:①用A3幅面的标准图式进行展绘,地形及地物; ②每页绘制700m路线;
③每页路线起终点保持在同一条水平线上;
④使路中线位于图面的中央。
补充数据:起点坐标:K2+000,x-40452.257,y-91297.811 终点坐标:K3+430, x-40090.600 y-92546.480
图2. 按《教材》图3.7.1的地形图及路线中线方案,点绘纵断面地面线, 并进行纵断面设计。 要求:按50m整桩号及曲线主点从图上查地面高程,绘纵断面图。 用A3横幅绘制(标准图式,1mm网格),每页绘700m。
2. 纵坡设计应注意的问题
(1) 设置回头曲线地段,拉坡时应按回头曲线技术标准先定出该地段的 纵坡,然后从两端接坡,应注意在回头曲线地段不宜设竖曲线。 (2) 大、中桥上不宜设置竖曲线(特别是凹竖曲线),桥头两端竖曲线 的起、终点应设在桥头 10m 以外。但特殊大桥为保证纵向排水,可在桥 上设置凸竖曲线。
2. 竖曲线半径指标:
竖曲线半径指标有极限最小值、一般最小值、满足视觉条件的最小值。
3. 合理运用半径指标的要求:
竖曲线应选用较大的半径。有条件时宜采用大于或等于视觉所需要的竖曲线 半径度值。当条件受限制时,宜采用大于或接近于竖曲线最小半径的“一般 值”;地形条件特殊困难而不得已时,方可采用竖曲线最小半径的“极限值”。
山区道路的“经济点”或“挖方点”等。
(2)标注高程控制点:
①路线起、终点;②越岭哑口;③重要桥涵;④最小填土高度;⑤最大 挖深;⑥沿溪线的洪水位;⑦隧道进出口;⑧平面交叉和立体交叉点;⑨铁 路道口;⑩城镇规划控制标高以及受其它因素限制路线必须通过的标高控制 点等。
山区道路的“经济点”或“挖方点”等。
JD5 R= Ls=
JD6 R= Ls=
JD5 R=
Ls=
(3)试坡:根据地形起伏情况及高程控制点,初拟纵坡线。 (4)调整:按平纵配合要求及《标准》执行情况等进行检查调整。
(5)核对:典型横断面核对。 (6)定坡:确定变坡点位置及变坡点高程或纵坡度。 (7)竖曲线设计:确定半径、计算竖曲线要素
R= T= E =
JD6 R= Ls=
JD5 R=
Ls=
(3)试坡:根据地形起伏情况及高程控制点,初拟纵坡线。 (4)调整:按平纵配合要求及《标准》执行情况等进行检查调整。 (5)核对:典型横断面核对。 (6)定坡:确定变坡点位置及变坡点高程或纵坡度。 精度要求: 变坡点桩号:一般要调整到10m的整桩号上 坡度值:精确到小数点两位,即0.00% 变坡点高程:精确到小数点三位,即0.000 中桩高程:精确到小数点两位,即0.00
4.6
纵断面设计方法及纵断面图
(第14讲)
教学内容:
1. 纵断面设计要点 2. 纵断面设计方法与步骤 3. 纵坡设计应注意的问题
重点解决的问题: 结合地形条件纵断面设计的基本原则是什么? 竖曲线半径指标有几个?应如何合理运用这些指标? 纵断面设计(拉坡)操作的关键思路有哪些? 纵断面设计的关键步骤有哪些?
(3)小桥涵允许设在斜坡地段或竖曲线上,为保证行车平顺,应尽量避免 在小桥涵处出现“陀峰式”纵坡。
2. 纵坡设计应注意的问题
(1) 设置回头曲线地段,拉坡时应按回头曲线技术标准先定出该地段的 纵坡,然后从两端接坡,应注意在回头曲线地段不宜设竖曲线。 (2) 大、中桥上不宜设置竖曲线(特别是凹竖曲线),桥头两端竖曲线 的起、终点应设在桥头 10m 以外。但特殊大桥为保证纵向排水,可在桥 上设置凸竖曲线。
4. 纵断面设计(拉坡)操作的关键思路:
纵面线形应平顺、圆滑、视觉连续,并与地形相适应,与周围环境相协调。 在满足纵坡要求的情况下,纵坡线宜与地面线接近平行或与地面线夹角尽量 小,以保持与地形相适应。 设计线的高度应结合地形条件,满足最小填土高度或满足纵向填挖平衡。 避免出现地面线下坡,而设计线为上坡的“反坡”设计。 坡长应满足最小坡长要求,应结合地形适时变坡,不宜过分追求长坡,导致 填挖方量过分增加。
JD5 R= Ls=
JD6 R= Ls=
JD5 R=
Ls=
(3)试坡:根据地形起伏情况及高程控制点,初拟纵坡线。
JD5 R= Ls=
JD6 R= Ls=
JD5 R=
Ls=
(3)试坡:根据地形起伏情况及高程控制点,初拟纵坡线。 (4)调整:按平纵配合要求及《标准》执行情况等进行检查调整。
JD5 R= Ls=
反向曲线:相邻反向竖曲线之间,为使增重与减重间和缓过渡,中间最 好插入一段直坡段。若两竖曲线半径接近极限值时,这段直坡段至少应为 设计速度的3s行程。当半径比较大时,亦可直接连接。
4.6.2 纵断面设计方法步骤及注意问题
1. 纵断面设计方法与步骤 (1)准备工作:应收集有关设计资料:①里程桩号和地面高程;②平面 设计成果;③沿线地质资料等。 点绘地面线,填写有关内容。
4. 关于竖曲线半径的选用
一般情况下:竖曲线应选用较大半径为宜。 坡差小时:应尽量采用大的竖曲线半径。 条件受限制时:可采用一般最小值 特殊困难情况下:方可用极限最小值。 有条件时:宜采用下表规定的满足视觉要求的最小半径。
设 计 速 度
5. 关于相邻竖曲线的衔接 同向曲线:相邻两个同向凹形或凸形竖曲线,特别是同向凹形竖曲线之 间,如直坡段不长应合并为单曲线或复T=
E=
R=
T=
E=
JD5 R= Ls=
JD6 R= Ls=
JD5 R=
Ls=
(3)试坡:根据地形起伏情况及高程控制点,初拟纵坡线。 (4)调整:按平纵配合要求及《标准》执行情况等进行检查调整。 (5)核对:典型横断面核对。 (6)定坡:确定变坡点位置及变坡点高程或纵坡度。 (7)竖曲线设计:确定半径、计算竖曲线要素 (8)设计高程计算:从起点由纵坡度连续推算变坡点设计高程; 逐桩计算设计高程。 纵断面设计成果 变坡点桩号 BPD 变坡点设计高程 H 竖曲线半径 R
(3)小桥涵允许设在斜坡地段或竖曲线上,为保证行车平顺,应尽量避免 在小桥涵处出现“陀峰式”纵坡。
(4)注意平面交叉口纵坡及两端接线要求。道路与道路交叉时,一般宜 设在水平坡段,其长度应不小于最短坡长规定。两端接线纵坡应不大 于3%,山区工程艰巨地段不大于5%。
3. 纵断面图的绘制
比例尺:横坐标采用1:2000(城市道路采用1:500~1:1000)
R
H
2. 纵坡设计应注意的问题
(1) 设置回头曲线地段,拉坡时应按回头曲线技术标准先定出该地段的 纵坡,然后从两端接坡,应注意在回头曲线地段不宜设竖曲线。 (2) 大、中桥上不宜设置竖曲线(特别是凹竖曲线),桥头两端竖曲线 的起、终点应设在桥头 10m 以外。但特殊大桥为保证纵向排水,可在桥 上设置凸竖曲线。
JD5 R= Ls=
JD6 R= Ls=
JD5 R=
Ls=
4.6.2 纵断面设计方法步骤及注意问题
1. 纵断面设计方法与步骤 (1)准备工作:应收集有关设计资料:①里程桩号和地面高程;②平面 设计成果;③沿线地质资料等。 点绘地面线,填写有关内容。 (2)标注高程控制点: ①路线起、终点;②越岭哑口;③重要桥涵;④最小填土高度;⑤最大 挖深;⑥沿溪线的洪水位;⑦隧道进出口;⑧平面交叉和立体交叉点;⑨铁 路道口;⑩城镇规划控制标高以及受其它因素限制路线必须通过的标高控制 点等。
纵坐标采用1:200(城市道路为1:50~1:100)。
3. 纵断面图的绘制
比例尺:横坐标采用1:2000(城市道路采用1:500~1:1000)
纵坐标采用1:200(城市道路为1:50~1:100)。 纵断面图组成:
上部:主要用来绘制地面线和纵坡设计线。 标注竖曲线及其要素;沿线桥涵及人工构造物的位置、结构类型、 孔数和孔径;与道路、铁路交叉的桩号及路名;沿线跨越的河流名称、 桩号、常水位和最高洪水位;水准点位置、编号和标高;断链桩位置、 桩号及长短链关系等。
4.6
纵断面设计方法及纵断面图
4.6.1 纵断面设计要点
1.关于纵坡极限值的运用 设计时不可轻易采用极限值,应留有余地。 纵坡缓些为好,但为了路面和边沟排水,最小纵坡不应低于0.3%~0.5%。 2.关于最短坡长 坡长不宜过短,以不小于设计速度2.5倍(9秒的行程)为宜。 对连续起伏的路段,坡度应尽量小,坡长和竖曲线应争取到极限值的一倍 或二倍以上,避免锯齿形的纵断面。 3. 各种地形条件下的纵坡设计 (1)平原、微丘地形:保证最小填土高度,作包线设计。 山岭、重丘地形:按纵向填挖平衡设计。 (2)山岭、重丘地形的沿河线应尽量采用平缓纵坡,坡长不应超过限制 长度, 纵坡不宜大于6%, 注意路基控制标高的要求。 (3)越岭线的纵坡应力求均匀,尽量不采用极限坡度 。越岭路线一般不应 设置反坡。