初中几何证明题公式
几何原本中勾股定理的证明
![几何原本中勾股定理的证明](https://img.taocdn.com/s3/m/78dc13390a4e767f5acfa1c7aa00b52acfc79c90.png)
几何原本中勾股定理的证明在数学中,勾股定理是一个经典的几何定理,它是被广泛接受的基本原理之一。
此定理在三角形中成立:斜边的平方等于两腰的平方之和。
这个公式可以写成a² + b² = c²的形式,其中a、b、c是三条边的长度。
许多人都熟悉勾股定理,然而,少有人了解它的证明。
下面我们来看看几何原本中勾股定理的证明。
证明一证明勾股定理的其中一种方法是使用尺规法。
这个证明起源于中国古代,然后传到了印度。
之后,它被许多数学家重新证明,其中包括欧几里德、泰勒和毕达哥拉斯等人。
事实上,这种证明被称为毕达哥拉斯定理。
这种状态可以概括为:在直角三角形中,斜边的平方等于两直角边平方之和。
证明二知道勾股定理的第二种方法是通过图形证明。
这种证明包括画一张类似于大写字母"T"的图像,然后将其旋转90度,使其看起来像一个直角三角形。
当你这样做时,你将会发现在上面的线段的平方等于下面的两段线段平方之和。
这个图形证明在很大程度上是基于物理直觉推导出的,因为我们都知道垂直的线段的长度相等。
证明三还有一种证明勾股定理的方法叫做代数证明。
这个证明通常可以使用代数符号解决问题。
假设三角形的三条边分别为a、b和c。
我们可以使用勾股定理的公式c² = a² + b²,然后将其重新排列为a² = c² - b²。
当我们将b定量时,我们可以使用这个公式来代替a。
这样c² = (c - b)² +b²。
然后,我们可以将这个公式继续展开,并判断a² + b²是否等于c²。
总结勾股定理的证明方法有多种,每一种都以其独特性而广为人知。
无论是尺规法、图形证明,还是代数证明,每一种都试图使我们对勾股定理更深入地了解。
一个好的数学家应该学习多种方法来理解这个定理。
勾股定理不仅是有用的数学工具,也可以让我们凭借对数学的掌握而增强我们的思维能力。
基本不等式几何证明
![基本不等式几何证明](https://img.taocdn.com/s3/m/d6fd1f7eb207e87101f69e3143323968001cf449.png)
基本不等式几何证明1. 引言基本不等式是初中数学中的重要概念之一,它是解决不等式问题的基础。
在几何中,我们可以通过基本不等式来证明一些关于线段、角度和面积的性质。
本文将介绍基本不等式在几何证明中的应用。
2. 基本不等式回顾在初中数学中,我们学习了以下两个基本不等式:•对于任意实数a和b,有a + b ≥ 2√(ab)。
•对于任意实数a和b,有a² + b² ≥ 2ab。
这两个不等式在解决一元二次方程、证明三角形性质以及推导其他数学公式时起到了重要作用。
3. 线段长度的比较基本不等式可以用来比较线段的长度。
考虑以下问题:已知直线上有三个点A、B和C,且B位于AC之间。
如何判断AB与BC的长度关系?我们可以使用基本不等式来解决这个问题。
设AB = a,BC = b,则根据基本不等式a + b ≥ 2√(ab)可得:AB + BC ≥ 2√(AB * BC)即a + b ≥ 2√(ab)。
若a + b > 2√(ab),则AB + BC > 2√(AB * BC),即AB + BC > AC;若a + b = 2√(ab),则AB + BC = 2√(AB * BC),即AB + BC = AC;若a + b < 2√(ab),则AB + BC < 2√(AB * BC),即AB + BC < AC。
因此,通过基本不等式的比较,我们可以得出线段长度的大小关系。
4. 角度的比较基本不等式还可以用来比较角度的大小。
考虑以下问题:已知有两条射线OA和OB,如何判断∠AOB与直角(90°)的大小关系?我们可以使用基本不等式来解决这个问题。
设∠AOB = θ,则根据余弦定理可得:cosθ = (OA² + OB² - AB²) / (2OA * OB)由于直角的余弦值为0,所以有:cos90° = (OA² + OB² - AB²) / (2OA * OB) ≤ 0化简可得:OA² + OB² - AB² ≤ 0即OA² + OB² ≤ AB²。
初中数学几何证明的公式
![初中数学几何证明的公式](https://img.taocdn.com/s3/m/aa2f5ce30129bd64783e0912a216147916117e6f.png)
初中数学几何证明的公式由于ABCD菱形所以AD=DC 角cdb=角adb由于AP=AP所以DCP全等 DAP所以PC=PA AP=PC 角DCP=角DAP2由于ABCD菱形所以DF平行ap所以角BAP=角F由于角DCP=角DAP所以角PCE=角BAP所以角F=角PCE由于角CPE=角 CPF所以三角形PCE相像于三角形PFC由于PC=AP所以AP2=PE*PF2CE=EF=4证明:由于:CE⊥AD所以:由于:AD平分∠CAB所以:在三角形AEC和三角形AEF中AE=AE所以:三角形AEC全等于三角形AEF所以:CE=EF由于,∠ACB=90°,CE⊥AD所以:三角形ACE相像于三角形DEC所以:CE*CE=AE*AD=16所以:CE=4所以:CE=EF=43D是RtΔABC的斜边BC上一点,且ΔABD与ΔACD的.内切圆相等,S表示RtΔABC的面积,中学几何证明。
求证:S=AD^2。
对于任意ΔABC,D是边BC上一点,假如ΔABD与ΔACD 的内切圆相等,那么有AD^2=[(CA+AB)^2-BC^2]/4 (1)下面先证这一命题,证明范文《中学几何证明》。
设AD=*,那么BD/CD=S(ABD)/S(ACD)=(AB+*+BD)/(CA+*+CD) (2)由余弦定理得:BD/CD=(*^2-AB^2+BD^2)/(-*^2+CA^2-CD^2) (3)又BD+CD=BC (4)依据以上三式,可推得(1)式.由于ΔABC是直角三角形,BC为斜边,由勾股定理得: BC^2=CA^2+AB^2, (5)又RtΔABC的面积S=CA*AB/2。
(6)依据(1),(5),(6)式得:AD^2=[(CA+AB)^2-BC^2]/4=CA*AB/2=S4证明设S1,S2分别表示ΔABD与ΔACD的面积.作DE⊥AB于E,DF⊥CA于F。
设AB=c,CA=b,BD=n,CD=m。
由相像三角形知:DE=nb/(n+m), DF=mc/(n+m),在RtΔADE中,由勾股定理得:AD^2=(n^2*b^2+m^2*c^2)/(n+m)^2。
(完整版)初中常见定理证明
![(完整版)初中常见定理证明](https://img.taocdn.com/s3/m/36fa5efa79563c1ec4da7137.png)
初中常有定理的证明一、三角形1、运用你所学过的三角形全等的知识去证明定理:有两个角相等的三角形是等腰三角形.(用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依照)2、证明定理:等腰三角形的两个底角相等.(画出图形、写出已知、求证并证明)3、表达并证明三角形内角和定理.要求写出定理、已知、求证,画出图形,并写出证明过程4、我们知道,证明三角形内角和定理的一种思路是力求将三角形的三个内角转变到同一个极点的三个相邻的角,从而利用平角定义来得到结论,你能想出多少种不同样的方法呢?同学之间可相互交流.5、三角形中位线定理,是我们特别熟悉的定理.① 请你在下面的横线上,完满地表达出这个定理:② 依照这个定理画出图形,写出已知和求证,并对该定理给出证明.6、定理“直角三角形斜边上的中线等于斜边的一半”的逆命题是,这个命题正确吗?若正确,请你证明这个命题,若不正确请说明原由.7、用所学定理、定义证明命题证明:直角三角形斜边上的中线等于斜边的一半.8、同学们,这学期我们学过很多定理,你还记得“在直角三角形中,若是一个锐角等于 30 度,那么它所对的直角边等于斜边的一半”,请你写出它的抗命题,并证明它的真假.解:原命题的抗命题为:在直角三角形中,若是一条直角边等于斜边的一半,那么这条直角边所对的角是 30°.9、利用图( 1)或图( 2 )两个图形中的有关面积的等量关系都能证明数学中一个十分出名的定理,这个定理称为是,该定理的结论其数学表达式.10、利用图中图形的有关面积的等量关系都能证明数学中一个十分出名的定理,此证明方法就是美国第二十任总统伽菲尔德最先完成的,人们为了纪念他,把这一证法称为“ 总统” 证法.这个定理称为,该定理的结论其数学表达式是.11 、 [ 定理表述 ]请你根据图 1 中的直角三角形,写出勾股定理内容;[ 试一试证明 ]以图 1 中的直角三角形为基础,可以构造出以 a、 b 为底,以 a+b 为高的直角梯形(如图 2),请你利用图 2,验证勾股定理.定理表述:直角三角形中,两直角边的平方和等于斜边的平方.ab c2证明:∵ S 四边形ABCD =S△ABE +S△AED +S△CDE= 22 212 、如图,△ ABC 中,① AB=AC,② ∠ BAD=∠ CAD,③ BD=CD,④AD⊥BC.请你选择其中的两个作为条件,另两个作为结论,证明等腰三角形的“ 三线合一” 性质定理.13、课本指出:公认的真命题称为公义,除了公义外,其他的真命题(如推论、定理等)的正确性都需要经过推理的方法证实.( 1)表达三角形全等的判断方法中的推论 AAS;( 2)证明推论 AAS.要求:表达推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依照.14 、在数学课外活动中,某学习小组在谈论“导学案”上的一个作业题:已知:如图, OA均分∠ BAC,∠1=∠2.求证: AO⊥ BC.同学甲说:要作辅助线;同学乙说:要应用角均分线性质定理来解决:同学丙说:要应用等腰三角形“ 三线合一” 的性质定理来解决.若是你是这个学习小组的成员,请你结合同学们的谈论写出证明过程.15、证明:勾股定理逆定理已知:在 ABC中, AB=c,AC=b,BC=a ,若 c2 =a 2 + b 2求证:∠ C = 90 度证明:作 RT DEF,使∠ E=RT∠, DE=b ,EF=a在 RT2 2 2= a2 2 DEF中, DF = ED + EF +b因为 c2 =a 2 + b 2所以 DF =c所以 DF=AB,DE=AC,EF=BC所以 RT DFE≌Δ ABC(SSS)所以∠ C=∠E = RT∠二、四边形(一)梯形1、定理证明:“等腰梯形的两条对角线相等” .2、用两种方法证明等腰梯形判判定理:在同一底上的两个角相等的梯形是等腰梯形(要求:画出图形,写出已知、求证、证明).3、在梯形 ABCD中,如图所示, AD∥ BC,点 E、 F 分别是 AB、 CD的中点,连接 EF,EF 叫做梯形的中位线.观察 EF 的地址,联想三角形的中位线定理,请你猜想: EF 与 AD、 BC 有怎样的地址和数量关系并证明你的猜想.4、采用如图所示的方法,可以把梯形ABCD折叠成一个矩形EFNM(图中EF, FN, EM 为折痕),使得点 A 与 B、 C 与 D 分别重合于一点.请问,线段 EF 的位置如何确定;经过这种图形变化,你能看出哪些定理或公式(至少三个)?证明你的所有结论.解:可以看出梯形的中位线定理、面积公式、平行线的性质定理等.(二)平行四边形1、定理证明:一组对边平行且相等的四边形是平行四边形.2、定理求证:对角线互相均分的四边形是平行四边形.3、我们在几何的学习中能发现,很多图形的性质定理与判判定理之间有着一定的联系.例如:菱形的性质定理“ 菱形的对角线互相垂直” 和菱形的判判定理“ 对角线互相垂直的平行四边形是菱形” 就是这样.但是课本中对菱形的别的一个性质“ 菱形的对角线平分一组对角” 却没有给出近似的判判定理,请你利用如图所示图形研究一下这个问题.要求:若是有近似的判判定理,请写出已知、求证并证明.若是没有,请举出反例.(三)圆证明:一条弧所对圆周角等于它所对圆心角的一半。
证明几何图形的定理和定律
![证明几何图形的定理和定律](https://img.taocdn.com/s3/m/b19265afaff8941ea76e58fafab069dc502247bb.png)
证明几何图形的定理和定律1.三角形的内角和定理:三角形的三个内角之和等于180度。
2.三角形的两边之和大于第三边。
3.三角形的两边之差小于第三边。
4.等腰三角形的性质:两腰相等,底角相等。
5.等边三角形的性质:三边相等,三角相等。
6.直角三角形的性质:有一个90度的角,斜边大于其他两边。
7.勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
8.四边形的内角和定理:四边形的四个内角之和等于360度。
9.平行四边形的性质:对边平行且相等,对角相等。
10.矩形的性质:四个角都是直角,对边平行且相等。
11.菱形的性质:四条边相等,对角相等。
12.正方形的性质:四条边相等,四个角都是直角。
13.梯形的性质:一组对边平行,一组对边不平行。
14.圆的定义:平面上所有到圆心距离相等的点的集合。
15.圆的性质:圆心到圆上任意一点的距离等于半径。
16.圆的周长公式:C = 2πr,其中C为周长,r为半径。
17.圆的面积公式:A = πr²,其中A为面积,r为半径。
18.弧的性质:圆上任意两点间的部分。
19.弦的性质:圆上任意两点间的线段。
20.圆心角的性质:圆心所对的角等于它所对的弧的两倍。
四、相似图形1.相似图形的定义:形状相同,大小不同的图形。
2.相似图形的性质:对应角相等,对应边成比例。
3.相似三角形的性质:对应角相等,对应边成比例。
4.相似四边形的性质:对应角相等,对应边成比例。
五、全等图形1.全等图形的定义:形状和大小都相同的图形。
2.全等图形的性质:对应边相等,对应角相等。
3.全等三角形的性质:对应边相等,对应角相等。
4.全等四边形的性质:对应边相等,对应角相等。
六、几何图形的变换1.平移:在平面内,将一个图形上的所有点按照某个方向作相同距离的移动。
2.旋转:在平面内,将一个图形绕着某一点转动一个角度的图形变换。
3.轴对称:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。
初中几何证明题(精选多篇)
![初中几何证明题(精选多篇)](https://img.taocdn.com/s3/m/d1d0321ef8c75fbfc67db2b8.png)
初中几何证明题(精选多篇)第一篇:初中几何证明题初中几何证明题己知m是△abc边bc上的中点,,d,e分别为ab,ac上的点,且dm⊥em。
求证:bd+ce≥de。
1.延长em至f,使mf=em,连bf.∵bm=cm,∠bmf=∠cme,∴△bfm≌△cem(sas),∴bf=ce,又dm⊥em,mf=em,∴de=df而∠dbf=∠abc+∠mbf=∠abc+∠acb<180°,∴bd+bf>df,∴bd+ce>de。
2.己知m是△abc边bc上的中点,,d,e分别为ab,ac上的点,且dm⊥em。
求证:bd+ce≥de如图过点c作ab的平行线,交dm的延长线于点f;连接ef因为cf//ab所以,∠b=∠fcm已知m为bc中点,所以bm=cm又,∠bmd=∠cmf所以,△bmd≌△cmf(asa)所以,bd=cf那么,bd+ce=cf+ce (1)且,dm=fm而,em⊥dm所以,em为线段df的中垂线所以,de=ef在△cef中,很明显有ce+cf>ef (2)所以,bd+ce>de当点d与点b重合,或者点e与点c重合时,仍然采用上述方法,可以得到bd+ce=de综上就有:bd+ce≥de。
3.证明因为∠dme=90°,∠bmd<90°,过m作∠bmd=∠fmd,则∠cme=∠fme。
截取bf=bc/2=bm=cm。
连结df,ef。
易证△bmd≌△fmd,△cme≌△fme所以bd=df,ce=ef。
在△dfe中,df+ef≥de,即bd+ce≥de。
当f点落在de时取等号。
另证延长em到f使mf=me,连结df,bf。
∵mb=mc,∠bmf=∠cme,∴△mbf≌△mce,∴bf=ce,df=de,在三角形bdf中,bd+bf≥df,即bd+ce≥de。
分析已知、求证与图形,探索证明的思路。
对于证明题,有三种思考方式:(1)正向思维。
初中高中数学定理公式大全(超全)
![初中高中数学定理公式大全(超全)](https://img.taocdn.com/s3/m/a4ccc66a1611cc7931b765ce05087632311274bc.png)
初中⾼中数学定理公式⼤全(超全)初中⾼中数学定理公式⼤全(超全)1 过两点有且只有⼀条直线2 两点之间线段最短3 同⾓或等⾓的补⾓相等4 同⾓或等⾓的余⾓相等5 过⼀点有且只有⼀条直线和已知直线垂直6 直线外⼀点与直线上各点连接的所有线段中,垂线段最短7 平⾏公理经过直线外⼀点,有且只有⼀条直线与这条直线平⾏8 如果两条直线都和第三条直线平⾏,这两条直线也互相平⾏9 同位⾓相等,两直线平⾏10 内错⾓相等,两直线平⾏11 同旁内⾓互补,两直线平⾏12 两直线平⾏,同位⾓相等13 两直线平⾏,内错⾓相等14 两直线平⾏,同旁内⾓互补15 定理三⾓形两边的和⼤于第三边16 推论三⾓形两边的差⼩于第三边17 三⾓形内⾓和定理三⾓形三个内⾓的和等于180°18 推论1 直⾓三⾓形的两个锐⾓互余19 推论2 三⾓形的⼀个外⾓等于和它不相邻的两个内⾓的和20 推论3 三⾓形的⼀个外⾓⼤于任何⼀个和它不相邻的内⾓21 全等三⾓形的对应边、对应⾓相等22边⾓边公理(SAS) 有两边和它们的夹⾓对应相等的两个三⾓形全等23 ⾓边⾓公理( ASA)有两⾓和它们的夹边对应相等的两个三⾓形全等24 推论(AAS) 有两⾓和其中⼀⾓的对边对应相等的两个三⾓形全等25 边边边公理(SSS) 有三边对应相等的两个三⾓形全等26 斜边、直⾓边公理(HL) 有斜边和⼀条直⾓边对应相等的两个直⾓三⾓形全等27 定理1 在⾓的平分线上的点到这个⾓的两边的距离相等28 定理2 到⼀个⾓的两边的距离相同的点,在这个⾓的平分线上29 ⾓的平分线是到⾓的两边距离相等的所有点的集合30 等腰三⾓形的性质定理等腰三⾓形的两个底⾓相等(即等边对等⾓)31 推论1 等腰三⾓形顶⾓的平分线平分底边并且垂直于底边32 等腰三⾓形的顶⾓平分线、底边上的中线和底边上的⾼互相重合33 推论3 等边三⾓形的各⾓都相等,并且每⼀个⾓都等于60°34 等腰三⾓形的判定定理如果⼀个三⾓形有两个⾓相等,那么这两个⾓所对的边也相等(等⾓对等边)35 推论1 三个⾓都相等的三⾓形是等边三⾓形36 推论2 有⼀个⾓等于60°的等腰三⾓形是等边三⾓形37 在直⾓三⾓形中,如果⼀个锐⾓等于30°那么它所对的直⾓边等于斜边的⼀半38 直⾓三⾓形斜边上的中线等于斜边上的⼀半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和⼀条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同⼀条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直⾓三⾓形两直⾓边a、b的平⽅和、等于斜边c的平⽅,即a2+b2=c247 勾股定理的逆定理如果三⾓形的三边长a、b、c有关系a2+b2=c2,那么这个三⾓形是直⾓三⾓形48 定理四边形的内⾓和等于360°49 四边形的外⾓和等于360°50 多边形内⾓和定理n边形的内⾓的和等于(n-2)×180°51 推论任意多边的外⾓和等于360°52 平⾏四边形性质定理1 平⾏四边形的对⾓相等53 平⾏四边形性质定理2 平⾏四边形的对边相等54 推论夹在两条平⾏线间的平⾏线段相等55 平⾏四边形性质定理3 平⾏四边形的对⾓线互相平分56 平⾏四边形判定定理1 两组对⾓分别相等的四边形是平⾏四边形57 平⾏四边形判定定理2 两组对边分别相等的四边形是平⾏四边形58 平⾏四边形判定定理3 对⾓线互相平分的四边形是平⾏四边形59 平⾏四边形判定定理4 ⼀组对边平⾏相等的四边形是平⾏四边形60 矩形性质定理1 矩形的四个⾓都是直⾓61 矩形性质定理2 矩形的对⾓线相等62 矩形判定定理1 有三个⾓是直⾓的四边形是矩形63 矩形判定定理2 对⾓线相等的平⾏四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对⾓线互相垂直,并且每⼀条对⾓线平分⼀组对⾓66 菱形⾯积=对⾓线乘积的⼀半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对⾓线互相垂直的平⾏四边形是菱形69 正⽅形性质定理1 正⽅形的四个⾓都是直⾓,四条边都相等70 正⽅形性质定理2正⽅形的两条对⾓线相等,并且互相垂直平分,每条对⾓线平分⼀组对⾓71 定理1 关于中⼼对称的两个图形是全等的72 定理2 关于中⼼对称的两个图形,对称点连线都经过对称中⼼,并且被对称中⼼平分73 逆定理如果两个图形的对应点连线都经过某⼀点,并且被这⼀点平分,那么这两个图形关于这⼀点对称74 等腰梯形性质定理等腰梯形在同⼀底上的两个⾓相等75 等腰梯形的两条对⾓线相等76 等腰梯形判定定理在同⼀底上的两个⾓相等的梯形是等腰梯形77 对⾓线相等的梯形是等腰梯形78 平⾏线等分线段定理如果⼀组平⾏线在⼀条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形⼀腰的中点与底平⾏的直线,必平分另⼀腰80 推论2 经过三⾓形⼀边的中点与另⼀边平⾏的直线,必平分第三边81 三⾓形中位线定理三⾓形的中位线平⾏于第三边,并且等于它的⼀半82 梯形中位线定理梯形的中位线平⾏于两底,并且等于两底和的⼀半L=(a+b)÷2 S=L×h83 (1)⽐例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合⽐性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等⽐性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平⾏线分线段成⽐例定理三条平⾏线截两条直线,所得的对应线段成⽐例87 推论平⾏于三⾓形⼀边的直线截其他两边(或两边的延长线),所得的对应线段成⽐例88 定理如果⼀条直线截三⾓形的两边(或两边的延长线)所得的对应线段成⽐例,那么这条直线平⾏于三⾓形的第三边89 平⾏于三⾓形的⼀边,并且和其他两边相交的直线,所截得的三⾓形的三边与原三⾓形三边对应成⽐例90 定理平⾏于三⾓形⼀边的直线和其他两边(或两边的延长线)相交,所构成的三⾓形与原三⾓形相似91 相似三⾓形判定定理1 两⾓对应相等,两三⾓形相似(ASA)92 直⾓三⾓形被斜边上的⾼分成的两个直⾓三⾓形和原三⾓形相似93 判定定理2 两边对应成⽐例且夹⾓相等,两三⾓形相似(SAS)94 判定定理3 三边对应成⽐例,两三⾓形相似(SSS)95 定理如果⼀个直⾓三⾓形的斜边和⼀条直⾓边与另⼀个直⾓三⾓形的斜边和⼀条直⾓边对应成⽐例,那么这两个直⾓三⾓形相似96 性质定理1 相似三⾓形对应⾼的⽐,对应中线的⽐与对应⾓平分线的⽐都等于相似⽐97 性质定理2 相似三⾓形周长的⽐等于相似⽐98 性质定理3 相似三⾓形⾯积的⽐等于相似⽐的平⽅99 任意锐⾓的正弦值等于它的余⾓的余弦值,任意锐⾓的余弦值等于它的余⾓的正弦值100 任意锐⾓的正切值等于它的余⾓的余切值,任意锐⾓的余切值等于它的余⾓的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆⼼的距离⼩于半径的点的集合103 圆的外部可以看作是圆⼼的距离⼤于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆⼼,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知⾓的两边距离相等的点的轨迹,是这个⾓的平分线108 到两条平⾏线距离相等的点的轨迹,是和这两条平⾏线平⾏且距离相等的⼀条直线109 定理不在同⼀直线上的三点确定⼀个圆。
初中几何公式定理大全146条
![初中几何公式定理大全146条](https://img.taocdn.com/s3/m/e3cda1c38662caaedd3383c4bb4cf7ec4afeb6da.png)
一、直线和角度1. 直线的性质2. 同位角、内错角、同旁内角、同旁外角、相交线性质3. 平行线性质4. 角的度量5. 角的性质6. 垂直角与互补角7. 角平分线的性质8. 三角形内角和为180°9. 三角形外角和等于对应的内角和二、平行四边形10. 平行四边形的性质11. 平行四边形对角线的性质12. 平行四边形的判定定理13. 等腰平行四边形性质三、三角形14. 三角形的定义15. 三角形的分类16. 三角形的内角和17. 三角形的外角和18. 等腰三角形的性质19. 等边三角形的性质20. 直角三角形的性质21. 斜角三角形的性质22. 三角形内心、外心、重心、垂心23. 三角形中位线定理24. 三角形的中线定理25. 三角形的高定理26. 三角形的中线定理27. 三角形的角平分线定理28. 三角形的正弦定理29. 三角形的余弦定理30. 三角形的海伦公式四、全等三角形31. 全等三角形的性质32. 三角形全等条件33. 全等三角形的判定定理五、相似三角形34. 相似三角形的性质35. 相似三角形的判定定理36. 相似三角形的应用六、勾股定理和勾股数37. 勾股定理的条件38. 勾股定理的应用39. 勾股数的构造和性质40. 勾股数的判定定理七、平面图形41. 正方形的性质42. 长方形的性质43. 菱形的性质44. 梯形的性质45. 正多边形的性质46. 圆的性质47. 圆的切线定理48. 圆的切割定理49. 圆的弦理论50. 圆的扇形面积八、平行线与比例51. 平行线分线段52. 线段比例定理53. 平行线的中位线定理54. 平行线的高度定理九、数学建模55. 数学建模的概念56. 数学建模的解题步骤57. 数学建模的应用实例十、平面几何命题证明58. 角平分线的性质证明59. 平行线性质证明60. 直角三角形的性质证明61. 狄尼茨定理证明62. 三等分角定理证明63. 正多边形内角和公式证明十一、解决几何问题64. 几何问题的解决方法65. 几何问题的三步走解题法66. 几何问题的类比辅助法67. 几何问题的逆向方法十二、空间图形68. 空间图形的概念69. 空间图形的分类70. 空间图形的性质71. 空间图形的体积公式十三、平面与立体坐标系72. 平面直角坐标系73. 立体坐标系74. 坐标变换定理十四、等差数列和等比数列75. 等差数列的性质76. 等差数列的应用77. 等比数列的性质78. 等比数列的应用十五、向量79. 向量的概念80. 向量的性质81. 向量的加法和减法82. 向量的数量积83. 向量的叉积84. 向量的应用十六、向量的平面几何应用85. 向量的平移86. 向量的夹角87. 向量的垂直和平行88. 向量作为平行四边形的对角线十七、圆锥曲线的方程89. 圆的方程90. 椭圆的方程91. 双曲线的方程92. 抛物线的方程十八、解析几何命题证明93. 直线的方程证明94. 圆的方程证明95. 椭圆的方程证明96. 双曲线的方程证明97. 抛物线的方程证明十九、三角函数98. 三角函数的概念99. 三角函数的正弦、余弦、正切、余切100. 三角函数的性质101. 三角函数的定义域和值域102. 三角函数图像二十、三角函数的一般式103. 三角函数的和差化积104. 三角函数的倍角公式105. 三角函数的半角公式106. 三角函数的和角公式107. 三角函数的差角公式108. 三角函数的积化和差二十一、三角函数的应用109. 三角函数的变量代换110. 三角函数的方程解法111. 三角函数的不等式解法112. 三角函数的应用实例二十二、立体几何113. 立体几何的基本概念114. 立体几何的三视图115. 立体几何的截面图116. 立体几何的投影图二十三、立体几何命题证明117. 立体几何的平行轴定理证明118. 立体几何的旋转定理证明119. 立体几何的平移定理证明120. 立体几何的镜像对称定理证明二十四、空间向量121. 空间向量的概念122. 空间向量的性质123. 空间向量的共线124. 空间向量的垂直125. 空间向量的平行二十五、空间向量运算126. 空间向量的和127. 空间向量的差128. 空间向量的数量积129. 空间向量的叉积二十六、立体几何和向量130. 空间平面的方程131. 空间直线的方程132. 空间平面和直线的位置关系133. 空间立体几何和向量的应用二十七、立体图形的几何性质134. 立体图形的视图和截面135. 立体图形的平面和直线位置关系136. 立体图形的边和面的关系137. 立体图形的三视图和投影图二十八、三视图的绘制138. 正交三视图的绘制139. 斜投影三视图的绘制140. 立体图形的三视图应用二十九、空间几何建模141. 空间几何建模的概念142. 空间几何建模的三步走解题法143. 空间几何建模的应用实例三十、空间曲面的方程144. 圆锥曲线的方程证明145. 曲面的方程证明146. 空间曲面的方程应用在初中阶段,学习几何公式定理是非常重要的,因为它为理解和解决各种几何问题打下了坚实的基础。
初中数学-三角形公式大全
![初中数学-三角形公式大全](https://img.taocdn.com/s3/m/1d699f9727fff705cc1755270722192e453658c0.png)
abCBc A。
ABC”三角形“读作,ABC 的三角形记作△C 、B 、A 来表示,顶点是”△“记法:三角形用符号1.5角:相邻两条边所组成的角,叫作三角形的内角,简称三角形的角。
1.4顶点:相邻两边的公共端点叫作三角形的顶点。
1.3。
BC 、AB 、AC 或c 、b 、a 形的边可以用一个小写字母或两个大写字母表示,如:边:组成三角形的线段叫作三角形的边.组成三角形的三条线段叫做三角形的三条边,三角1.2三角形:由不在同一条直线上的三条线段顺次首尾相接所组成的图形。
1.1相关概念3分类2定义1。
”内心“)三角形的三条角平分的交点是三角形的2( )三角形的角平分线、中线和高都有三条;1( 【注意】)高:从三角形的一个顶点向它的对边作垂线,顶点与垂足之间的线段叫做三角形的高。
3( )中线:连接一个顶点与对边中点的线段叫做三角形的中线;2( 叫做三角形的角平分线;)角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段1( 三条重要的线3.1)顶点是直角的等腰三角形叫做等腰直角三角形。
3( )等边三角形是特殊的等腰三角形;2( )任何一个三角形最多有三个锐角,最少有两个锐角,最多有一个钝角,最多有一个直角;1( 【注意】按边分:不等边三角形、等腰三角形、等边三角形。
2.2按角分:锐角三角形、直角三角形、钝角三角形。
2.1三角形AD BC 2=12BD=DC= BC12BDCBDC212C BAA∠180°+2=∠1+∠BOC∠C=∠B+∠A+∠OCBAD∠C+∠B=∠A+∠ODCBA14313221A ABDCA)BC=2BD=2DC (或所以的中线,ABC 是△AD 因为是BAC ∠∠1=所以∠(已知),的角平分线ABC 是△AD 因为是)ADC=ADB=90°(或∠D 于点所以的高(已知)ABC 是△AD 因为是几何语言定义名称图形三角形的中线三角形的角平分线交点叫作三角形的重心,形的三条中线相交于一点叫作三角形的中线.三角点和它的对边中点的线段在三角形中,连接一个顶线段叫作三角形的角平分线这个角的顶点与交点之间的,分线与这个角的对边相交在三角形中,一个内角的平形的高。
初中数学竞赛经典几何定理
![初中数学竞赛经典几何定理](https://img.taocdn.com/s3/m/cdf90e52e53a580217fcfebd.png)
AB2 = BD2 + AD2
= BD2 +( AC - CD)2
= BD2 + AC2 + CD2 - 2 AC ⋅ CD
= BC2 + AC2 - 2AC ⋅ CD
= a2 + b2 - 2ab ⋅ cosC
即
c2 = a2 + b2 - 2ab ⋅ cosC
那么(*)式得证,则同理其余两式亦得证.
OP2
=
ìïïïïïíïïïïïîRRR222
- PA⋅ PB ( 当P在圆内) ( 当P在圆上) + PA⋅ PB ( 当P在圆外)
证明
作 OK ^ AB 于 K,连 OB,则由垂径定理知 BK = AK ,当 P 在圆内时,
R2 - OP2 = BO2 - OP2 = BK 2 - PK 2
= (BK - PK )( AK + PK )
BD ⋅ AE ⋅ CF =1 AD CE BF
时,可延长 DE 交 BC 的延长线于 F’,那么由 Menelaus
定理
BD AD
⋅
AE CE
⋅
CF BF
' '
=
1
可知
CF = CF ' BF BF '
CF CF '
=
BF BF '
CF CF '
=
BF BF '
=
BF - CF BF '- CF
(中线长公式) (角平分线长公式)
(圆幂定理)
7. 共边比例定理 如图1,△XAB 和△YAB 具有公共边 AB,△XYA 和△XYB 具有公共边 XY,XY 交 AB 于
关于向量的几何证明
![关于向量的几何证明](https://img.taocdn.com/s3/m/f071e300bceb19e8b9f6ba2b.png)
关于向量的几何证明周翔例1 用向量证明三角公式:cos()cos cos sin sin .αβαβαβ+=-证明:如图3,作一个单位圆,取平面上的两个单位向量b 、a 使它们与x 轴上的单位向量i 形成α、β-角,即 .,b OB a OA ==),cos()cos(βαβα+=+⋅⋅=⋅b a b a{}{},sin ,cos ,sin ,cos ββαα-==b a 又,sin sin cos cos βαβα-=⋅∴b a.sin sin cos cos )cos(βαβαβα-=+∴图3评析:该公式在教材中采用构造法证明,先构造一个单位圆,再在单位圆上构造四点,形成两个全等三角形,利用两点间的距离公式证得.这种方法在构造图形上要求太高,很难与我们学过的知识相联系起来.当我们学过平面向量后,可以简洁地将此公式证明.同法,我们可以证明:例2 []1cos cos cos()cos().2αβαβαβ=++- 证明:设三个单位向量:{}{}{},sin ,cos ,sin ,cos ,sin ,cos ββββαα-===c b a),cos(sin sin cos cos βαβαβα-=+=⋅b a Θ).cos(sin sin cos cos βαβαβα+=-=⋅c a).cos()cos(βαβα-++=⋅+⋅∴c a b a)(c b a c a b a +⋅=⋅+⋅Θ又,{},0,cos 2β=+c b Θβαcos cos 2=+⋅∴)(c b a .综上所述,可得: []1cos cos cos()cos().2αβαβαβ=++-例3、向量方法证明三角形中的射影定理在△ABC 中,设三内角A 、B 、C 的对边分别是a 、b 、c .∵AC u u u r +CB u u u r =AB u u u r , ∴()AC AC CB AB AC ⋅+=⋅u u u r u u u r u u u r u u u r u u u r∴2||AC AC CB AB AC +⋅=⋅u u u r u u u r u u u r u u u r u u u r∴2||||||cos()||||cos AC AC CB C AB AC A π+⋅-=⋅u u u r u u u r u u u r u u u r u u u r∴||||cos ||cos AC CB C AB A -=u u u r u u u r u u u r∴b -a cos C =c cos A 即b =c cos A +a cos C …………………① 类似地有 c =a cos B +b cos A , …………………②a =b cos C +c cos B . …………………③上述三式称为三角形中的射影定理.例4、用向量法证明三角形面积的海伦公式三角形面积的海伦公式: ()()()S p p a p b p c ---, 式中c b a ,,为三条边的边长, )(21c b a p ++=, S 为三角形的面积. 证明: 证明: 在三角形ABC 中, 设BC a =u u u r r , CA b =u u u r r , AB c =u u u r r , a a =ρ, b b =ρ, c c =ρ因为:ABC ∆的面积为: 1sin 2S ab C =所以: 222222211||||sin ||||(1cos )44S a b C a b C ==-r r r r2222211||||||||cos 44a b a b C =-r r r r =2221(||||())4a b a b -⋅r r r r ………………(1) 因为: 0ρρρρ=++c b a , 所以: c b a ρρρ-=+, 所以: 22)(c b a ρρρ=+,所以: )(21222b a c b a ρρρρρ--=⋅…………………… (2) 将(2)式代入(1)式, 并化简得:).22()22()22(2161))()()((161])(][)[(161)](2)][(2[161])(41[4122222222222222222a p b p c p p b a c b a c c b a c b a b a c c b a b a c ab b a c ab b a c b a S -⋅-⋅-⋅⋅=+--+-+++=---+=--+---=---= 化简即得 ))()((2c p b p a p p S ---=.所以S =例5、用向量解决平行四边形与三角形面积的计算公式如图,在直角坐标系中,已知12(,)OA a a a ==u u u r r ,12(,)OB b b b ==u u u r r ,以线段OA 、OB 为邻边作平行四边形OACB ,那么平行四边形的面积1221||S a b a b =-,三角形OAB 的面积12211||2OAB S a b a b ∆=- 证明:设,a b α<>=r r ,那么可以得出 ||||sin OACB S a b α=r r ,由于cos ||||a b a b α⋅=r r r r 所以222sin 1cos 1()||||a b a b αα⋅=-=-r r r r 2222221122122111221221222222222222121212121212()2()1()()()()()()a b a b a b a b a b a b a b a b a a b b a a b b a a b b ++--=-==++++++所以sin α=所以1221||OACB S a b a b =-,因此12211||2OAB S a b a b ∆=-。
人教版八年级上册数学专题复习证明三角形全等的常见题型
![人教版八年级上册数学专题复习证明三角形全等的常见题型](https://img.taocdn.com/s3/m/41c41095b84ae45c3a358ccb.png)
证明三角形全等的常见题型全等三角形是初中几何的重要内容之一,全等三角形的学习是几何入门最关键的一步,这部分内容学习的好坏直接影响着今后的学习。
而一些初学的同学,虽然学习了几种判定三角形全等的公理和推论,但往往仍不知如何根据已知条件证明两个三角形全等。
在辅导时可以抓住以下几种证明三角形全等的常见题型,进行分析。
一、已知一边与其一邻角对应相等1.证已知角的另一边对应相等,再用SAS证全等。
例1已知:如图1,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE。
证明∵BE=CF(已知),∴BE+ EF=CF+EF,即 BF=CE。
在△ABF和△DCE中,∴△ABF≌△DCE(SAS)。
∴ AF=DE(全等三角形对应边相等)。
2.证已知边的另一邻角对应相等,再用ASA证全等。
例2已知:如图2,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB。
求证:AE=CE。
证明∵ FC∥AB(已知),∴∠ADE=∠CFE(两直线平行,内错角相等)。
在△ADE和△CFE中,∴△ADE≌△CFE(ASA).∴ AE=CE(全等三角形对应边相等)3.证已知边的对角对应相等,再用AAS证全等。
例3(同例2).证明∵ FC∥AB(已知),∴∠A=∠ECF(两直线平行,内错角相等).在△ADE和△CFE中,∴△ADE≌△CFE(AAS).∴ AE=CE(全等三角形对应边相等)。
二、已知两边对应相等1.证两已知边的夹角对应相等,再用SAS证等。
例4已知:如图3,AD=AE,点D、E在BCBD=CE,∠1=∠2。
求证:△ABD≌△ACE.证明∵∠1=∠2(已知),∠ADB=180°-∠1,∠AEC=180°-∠2(邻补角定义),∴∠ADB = ∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).2.证第三边对应相等,再用SSS证全等。
例5已知:如图4,点A、C、B、D在同一直线AC=BD,AM=CN, BM=DN。
初等几何图形定义与计算公式大全(平面图形、立体图形等)+适合小学初中高中中及数学爱好者
![初等几何图形定义与计算公式大全(平面图形、立体图形等)+适合小学初中高中中及数学爱好者](https://img.taocdn.com/s3/m/6b86fef952ea551811a68795.png)
几何图形定义与计算公式大全重点介绍两类常用的几何图形:一是平面图形,如三角形、四边形、正多边形以及与圆有关的各种图形;另一是空间立体图形,如正方体、长方体、球体、锥体、圆柱体以及各种正多面体.这里较详细地收集了它们的面积、体积、侧面积、表面积、重心和转动惯量等计算公式.另外,还介绍了一些图形(如正多边形)的作图方法,对于生产实践中常用的椭圆作图法和圆弧放样法也作了简要的说明.同时,明确指出了在百余年前已经严格证明了的所谓“几何三大问题”不能用尺规作图.§1 三角形与四边形一、 三角形各元素的计算1. 三角形各元素图 2.1 图 2.2a,b,c 为三角形三边 R 为外接圆半径 A,B,C 为三个角 r 为内切圆半径AD 为a 边上的高 H 为垂心(三条高的交点) AF 为A 角的平分线 G 为重心(三条中线的交点)AE ()a m =为a 边上的中线 为内心(三条角平分线的交点)p 为半周长 为外心(三条垂直平分线的交点) S 为ABC ∆的面积2. 三角形各元素计算公式[高][中线] Abc c b a c b m a cos 221)(22122222++=-+=)180( =++C B A )(a h =)(a t =内O ⎪⎭⎫⎝⎛++=)(21c b a p 外O 222222sin ⎪⎪⎭⎫ ⎝⎛-+-==a c b a b C b h a[角分线][面积][外接圆半径][内切圆半径] 2sin 2sin 2sin 4222))()((C B A R C tg B tg A p tg p c p b p a p p S r ==---==二、 三角形和四边形的面积、几何重心、转动惯量计算公式图形表中m 为物体的质量,物体都为匀质.一般物体的转动惯量计算公式见第六章,§3,五. 2cos 2])[(122Ac b bc a c b bc c b t a +=-++=Rabcrp ah C B A R c p b p a p p C ab S a 421sin sin sin 2))()((sin 212====---==S abc C c B b A a R 4sin 2sin 2sin 2====*[任意三角形]a,b,c 为三边,为a 边上的高[等腰三角形]b 为两腰,a 为底边,为a 边上高a h a ha,b 为邻边,d 为对角线, 为对角线的夹角a 为边长,为顶角,为两对角线ϕα21,d d图形面积S 、几何重心G 与转动惯量J a,b 为邻边,h 为对边距,为顶角,为两对角线,为两对角线夹角a,b 为上下底,h 为高,l 为两腰中点连线a,b,c,d 为四边长,为两对角线,为两对角线夹角 面积重心 G 在对角线交点上面积重心转动惯量转轴通过重心,且平行于上下底 (图(a ))当a=b 时(平行四边形)面积()()()()α2cos abcd d p c p b p a p -----=或α21,d d ϕ21,d d ϕαsin ab bh S ==ϕsin 2121d d =lh h b a S =+=)(21)(2sin 3b a ba h GQ ++=αb a ba h GP ++=2sin 3α),,,(AB CF CD AE QD CQ PB AP ====)(36)4(223b a b ab a h J +++=m h a h J 121223==)(21sin 2121221h h d d d S +==ϕ)(21d c b a p +++=)(21C A ∠+∠=α)(21D B ∠+∠=§2 圆与正多边形一、 与圆有关的各量计算公式⌒AMB BCA BAT 21=∠=∠=α式中⌒AMB 表示AMB 弧所对应的圆心角∠AOB 的角度(下同),C 为ANB 弧上的任意点.[两割线及其夹角γ])(21⌒⌒AC BD -=γAE ·BE= CE ·DE=ET 2⎪⎭⎫ ⎝⎛+=∠=⌒⌒BD AC AEC 21βAE ·BE= CE ·DE=r 2-OE 2 式中r 为圆的半径.)(21''⌒⌒TAT TBT -=δ [圆内接四边形面积S ]O为圆心,r为半径,d为直径O为圆心,r为半径,d为直径r 为半径,b 为弦长,为弧s 所对应的圆心角的度数,为其弧度数,O 为圆心θα图形r 为半径,b 为弦长(b=2a ),h 为拱高,为圆心角度数,为圆心角弧度数,s 为弧长,O 为圆心R 为外半径,r 为内半径,D 为外直径,d 为内直径,O 为圆心 θα同前,为所对应的圆心角的度数,为其弧度数r 为半径,d 为直径,l 为圆心距,O O ',为新月形张开角度,为其弧度数 面积重心转动惯量 转轴与GO 重合(图(a ))面积 式中重心0.10.2 0.3 0.4 0.399 0.795 1.182 1.5560.5 0.6 0.7 0.8 0.91.9132.2472.5512.8153.024三、 正多边形各量换算公式与比例系数表n 为边数 R 为外接圆半径 R t r R ,,,θαθαR t r R S 180)(36022πθπθ=-=t R α=22sin322233ααr R r R GO --=22sin197.382233θθr R r R --≈)sin (844αα--=r R J m r R )sin (422ααα-+=)sin 180(2θπθπ+-=r S )sin (2ααπ+-=r η2r =θπθπηsin 180+-=l GO ηηπ23-=l GO ηηπ2'-=d l ηdl η为圆心角 S 为多边形面积重心G 与外接圆心O 重合正三角形 正方形 正五边形 正六边形正n 边形2233RRa2tan2αnr2cot 2αa正多边形各量比例系数表α⎪⎪⎭⎫⎝⎛=n 360α243a 2433R 233r R 3a 33a 632a 22R 24r R 2a 22a 2125102541a +R 521021-a 5521021+a 552521+2233a 232r a 23αsin 22R n 2sin2αR 2sin2αa§3 实用几何作图一、 正多边形作图[已知边长作正三角形] 已知AB 等于边长.分别以A,B 为圆心,AB 为半径画弧交于C ,连接AC ,BC ,即为所求正三角形(图2.3).[已知边长作正方形] 已知AB 等于边长.以AB 外任一点O 为圆心,OA 为半径画圆交AB 于E .连接EO 并延长交圆于F ,连接AF 并延长截取AD=AB .分别以B ,D 为圆心,AB 为半径画弧交于C ,连接BC ,DC ,□ABCD 即为所求正方形(图2.4).[已知外接圆作正五边形] 过圆心O 作互相垂直的直径AB ,CD ,平分OB 于E ,以E 为圆心,EC 为半径画弧交OA 于F ,以CF 为半径在圆周上顺次截段并连接各点,即为所求正五边形(图 2.5).也可参考正十边形作法(见图 2.11中的虚线).[已知边长作正五边形] 已知AB 等于边长.以A ,B 为圆心,AB 为半径画两圆交于C ,D ,连接CD .以D 为圆心,AB 为半径画圆,交CD 于E ,交A 圆于F ,交B 圆于G ,连接FE ,GE ,并延长交B ,A 圆于H ,I .分别以H ,I 为圆心,AB 为半径画弧交于J ,连接JI ,IA ,BH ,HJ ,连同AB 即为所求正五边形(图2.6).[已知外接圆作正六边形] 以外接圆半径在其圆周上顺次截段,并连接各点,即为所求正六边形(图2.7). ABC[已知边长作正六边形] 已知AB 等于边长,分别以A ,B 为圆心,AB 为半径画弧交于O ,以O 为圆心,AB 为半径画圆.再按上法可作出所求正六边形(图2.8).[已知外接圆作正七边形(近似作法)] 以圆周上任一点A 为圆心,以同圆半径为半径画弧交圆周于B ,C ,连接BC ,AO ,交于D .以BD 为半径(作图时应略大于BD )在圆周上顺次截段,并连接各点,即为所求正七边形(图2.9).[已知外接圆作正八边形] 过圆心O 作互相垂直的直径AB ,CD .分别以A ,B ,D 为圆心,任意长为半径画弧交于E ,F ,连接EO ,FO ,并延长交圆于G ,H ,I ,J ,顺次连接八点,即为所求正八边形(图2.10).[已知外接圆作正十边形] 过圆心O 作互相垂直的直径AB ,CD ,以OB 为直径画圆E ,连接EC 交E 圆于F .以CF 为半径在圆周上顺次截段,并连接各点,即为所求正十边形(图2.11).[已知外接圆作任意正多边形(近似作法)] 将直径AB n 等分(n 为边数),以A ,B 为圆心,AB 为半径画弧交于C ,连接C 与第二个分点E ,并延长交圆于D ,以AD 为半径在圆周上顺次截段,并连接各点,即为所求正n 边形(图2.12中为正九边形).二、 椭圆作图已知长短轴(2a,2b )作椭圆,其方法如下:[轨迹法] 作长轴AB =2a ,短轴CD =2b ,相互垂直平分交于O ,以D 为圆心,a 为半径画弧交AB 于.在两点钉上,F F ,F F线,移动铅笔所画出的曲线即为椭圆(图2.13).[焦点法] 同轨迹法一样,先画出点,将AB 8等分,中间各点为.分别以为圆心,为半径画弧,以为圆心,为半径画弧,两两相交于和.再将这些交点连同A ,B 一起用光滑曲线顺次连接,即近似于所求椭圆(图2.14).[压缩法] 用长短轴为直径画出两个同心圆,并将圆周12等分(小圆分点1~12,大圆分点对应为21~1'').连接018,117,42,51'-''-''-''-'和1-11,2-10,4-8,5-7,并延长,将51'-'与1-11,5-7;42'-'与2-10,4-8;117'-'与1-11,5-7;018'-'与2-10,4-8的交点(共8个),连同四个顶点一起,用光滑曲线顺次连接,即近似于所求椭圆(图2.15).[圆弧法] 作长轴AB=2a ,短轴CD=2b ,相互垂直平分交于O ,作OE=OA ,以C 为圆心,CE 为半径画弧交AC 于F ,作AF 的垂直平分线交AB 于G ,交CD 延长线于I .作OH=OG ,OJ=OI .分别以I ,J 为圆心,IC 为半径画弧,又分别以G ,H 为圆心,GA 为半径画弧,则四段弧相连即近似于所求椭圆(图2.16).三、 圆弧放样法在土木建筑工程中,由于受各种施工条件的限制,不能用圆规一转就画出圆弧,可采用下面方法在施工现场直接放大样.这种方法可在有限平面内放出任意大半径的圆弧实样,又便于工人同志掌握.[已知弦长和拱高作圆弧] 方法作AB 等于弦长,作CO 垂直平分AB ,并使CO 等于拱高,连接BC ,作BC 的中垂线DE .作的平分线交DE 于E ,在ED 延长线上取DF=DE ,则F 为的分点.由对称性,F 的对称点也是的分点.重复上述步骤,可得的各分点,将各分点以光滑曲线顺次连接,即为所求圆弧(图2.17).此方法概念明确,步骤较少,占地最少.方法作AB 等于弦长,作CO 垂直平分AB ,并使CO 等于拱高.作BC 的中垂线DF ,截OE=CD .过E 作AB 的垂线交DF 于F ,则F21,F F i K )71(≤≤i 1F i AK 2F i BK i M i N )62(≤≤i ︒1ABC ∠41'F 41,321,161,81︒211述步骤,可得的各分点,将各分点以光滑曲线顺次连接,即为所求圆弧(图2.18).此方法步骤最少.[已知弦长和圆弧上任一点作圆弧] 已知AB 为弦长,C 为已知圆弧上一点.以BC 为边作角()ABC CAB CBB ∠<<∠=∠αα1.再以AC 为边按相同方向作角α=∠1CAA .上的点.当取a 为一系列值时,便得到圆弧上一系列点,将各点以光滑曲线顺次连接,即为所求圆弧(图 2.19).此方法最适于采用经纬仪、罗盘仪来测放半径很大的圆弧.四、 几何作图问题所谓初等几何作图问题,是指使用无刻度的直尺和圆规来作图.若使用尺规有限次能作出几何图形,则称为作图可能,或者说欧几里得作图法是可能的,否则称为作图不可能.很多平面图形可以用直尺和圆规作出,例如上面列举的正五边形、正六边形、正八边形、正十边形等.而另一些就不能作出,例如正七边形、正九边形、正十一边形等,这些多边形只能用近似作图法.如何判断哪些作图可能,哪些作图不可能呢?直到百余年前,用代数的方法彻底地解决了这个问题,即给出一个关于尺规作图可能性的准则:作图可能的充分必要条件是,这个作图问题中必需求出的未知量能够由若干已知量经过有限次有理运算及开平方运算而算出.几千年来许多数学家耗费了不少的精力,企图解决所谓“几何三大问题”:立方倍积问题,即作一个立方体,使它的体积二倍于一已知立方体的体积. 三等分角问题,即三等分一已知角.化圆为方问题,即作一正方形,使它的面积等于一已知圆的面积. 后来已严格证明了这三个问题不能用尺规作图.,321,161,81为交于1111,,C C BB AA ︒1︒2︒3§4 立体图形的体积、表面积、侧面积几何重心与转动惯量计算公式一、 立体图形的体积、表面积、侧面积、几何重心与转动惯量计算公式图形体积V 、表面积S 、侧面积M 、几何重心G 与转动惯量*Ja 为棱长,d 为对角线a,b,h 分别为长,宽,高,d 为对角线体 积 3a V = 表面积 侧面积 对角线重 心 G 在对角线交点上体 积表面积 侧面积对角线重 心 G 在对角线交点上 转动惯量取长方体中心为坐标原点,坐标 轴分别平行三个棱边(当时,即为正方体的情况)表中m 为物体的质量,物体都为匀质.一般物体的转动惯量计算公式见第六章,§3,五.26a S =24a M =a d 3=2aGQ =abh V =)(2bh ah ab S ++=)(2b a h M +=222h b a d ++=2h GQ =m h b J x )(12122+=m h a J y )(12122+=m b a J z )(12122+=m h b a J o )(121222++=h b a ==*a,b,c为边长,h为高a为底边长,h为高,d为对角线n为棱数,a为底边长,h为高,g为斜高a,b,c,p,q,r为棱长h为高a’,a分别为上下底边长,n为棱数,h为高,g为斜高重心(P为顶点,Q为底面的重心)体积式中分别为上下底面积重心(P,Q分别为上下底重心)体积表面积侧面积gaanM)'(2+=式中分别为上下底面积重心(P、Q分别为上下底重心)1111111128812222222222222cbacpqbpraqrV=PQGQ41=)''(3FFFFhV++=FF,''''3'24FFFFFFFFPQGQ++++=⎪⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛++=2''13aaaahFVFFMS++='FF,'2222'''3'24aaaaaaaahGQ++++=两底为矩形,a’,b’,a,b分别为上下底边长,h为a为截头棱长高,1底为矩形,a,b为其边长,h为高,a’为上棱长r为半径[半球体]r为半径,O为球心r为球半径,a为弓形底圆半径,h为拱高,α为锥角(弧度)r为球半径,a为拱底圆半径,h为拱高[球台]r为球半径,a',a分别为上下底圆的半径,h为高R为中心半径,D为中心直径,r为圆截面半径,d为圆截面直径[圆柱体]r为底面半径,h为高R为外半径,r为内半径,h为高r为底圆半径,h,H分别为最小,最大高度,α为截角,D为截头椭圆轴h为截段最大高度,b为底面拱高,2a为底面弦长,r为底面半径,α2为弧所对圆心角(弧度) a,b,c为半轴r为底圆半径,h为高,l为母线r,R分别为上,下底圆半径,h为高,l为母线F为上下底平行,F',F分别为上,下底面积,中截面面积,h为高d为上,下底圆直径,D为中截面直径,h为高二、多面体[正四面体] [正八面体] [正十二面体] [正二十面体]4 8 12 20[欧拉公式] 一个多面体的面数为f,棱数为k,顶点数为e,它们之间满足ke-f+=2。
勾股定理证明-初中数学常见的模型方法专题
![勾股定理证明-初中数学常见的模型方法专题](https://img.taocdn.com/s3/m/2d8285def71fb7360b4c2e3f5727a5e9856a2720.png)
勾股定理证明方法1 商高证明法证明:∵222()2S a b a b ab =+=++大正方形, 4S S S =+大正方形直角三角形小正方形2142ab c =⨯+ 22c ab =+,∴22222a b ab c ab ++=+,∴222+=a b c .方法2 赵爽弦图2、以a 、b 为直角边()b a >,以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于12ab .把这四个直角三角形拼成如图所示形状.∵Rt Rt DAH ABE ≌,∴HDA EAB ∠=∠.∵90HAD HAD ∠+∠=︒,∴90EAB HAD ∠+∠=︒,∴ABCD 是一个边长为c 的正方形,它的面积等于2c .∵EF FG GH HE b a ====-,90HEF ∠=︒.∴EFGH 是一个边长为b a -的正方形,它的面积等于2()b a -.∴2214()2ab b a c ⨯+-=. ∴222+=a b c .方法3 刘徽证明方法——青朱出入图3、勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方才幂.开方除之,即弦也.——《九章算术注》222+=a b c方法4 加菲尔德方法——梯形面积法4、以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于12ab .把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵Rt Rt EAD CBE ≌,∴ADE BEC ∠=∠.∵90AED ADE ∠+∠=︒,∴90AED BEC ∠+∠=︒.∴1809090DEC ∠=︒-︒=︒.∴DEC 是一个等腰直角三角形,它的面积等于212c . 又∵90DAE ∠=︒,90EBC ∠=︒,∴//AD BC .∴ABCD 是一个直角梯形,它的面积等于21()2a b +. ∴22111()2222a b ab c +=⨯+.∴222+=a b c .方法55.张景中证明方法1——对角线垂直的四边形CEBD ABE ADC S S S =+222111222c a b =+ 222c a b =+方法66.张景中证明方法2——悬挂模型矩形DECFADE BFD ≌()2a b CE CF +==ABC ADB S S S =+正22111()4222a b ab ⎛⎫+=+ ⎪ ⎪⎝⎭222+=a b c方法7欧几里得证明7、做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示的形状,使H 、C 、B 三点在一条直线上,连结BF 、CD .过C 作CL DE ⊥,交AB 于点M ,交DE 于点L .∵AF AC =,AB AD =,FAB GAD ∠=∠,∴FAB GAD ≌.∵FAB 的面积等于212a ,GAD 的面积等于矩形ADLM 的面积的一半, ∴矩形ADLM 的面积2a =.同理可证,矩形MLEB 的面积2b =.∵正方形ADEB 的面积=矩形ADLM 的面积+矩形MLEB 的面积∴222c a b =+,即222+=a b c .注意:面积Ⅰ:Ⅱ:Ⅲ222::a b c =注意:面积Ⅰ:Ⅱ:Ⅲ222::a b c =注意:面积Ⅰ:Ⅱ:Ⅲ222::a b c =注意:面积Ⅰ:Ⅱ:Ⅲ222::a b c =方法8杨作玫证明8、做两个全等直角三角形,设它们的两条直角边长分别为a 、()b b a >,斜边长为c .再作一个边长为c 的正方形.把它们拼成如图所示的多边形.过A 作AF AC ⊥,AF 交GT 于F ,AF 交DT 于R .过B 作BP AF ⊥,垂足为P .过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 与H .∵90BAD ∠=︒,90PAC ∠=︒,∴DAH BAC ∠=∠.又∵90∠=︒DHA ,90BCA ∠=︒,AD AB c ==,∴Rt Rt DHA BCA ≌.∴DH BC a ==,AH AC b ==.由作法可知,PBCA 是一个矩形,所以Rt Rt APB BCA ≌.即PB CA b ==,AP a =,从而PH b a =-.∵Rt Rt DGT BCA ≌,Rt Rt DHA BCA ≌,∴Rt Rt DGT DHA ≌,∴DH DG a ==,GDT HDA ∠=∠.有∵90DGT ∠=︒,90DHF ∠=︒方法9陈杰证明9、设直角三角形两直角边的长分别为a 、()b b a >,斜边的成为c ,做两个边长分别为a 、b 的正方形()b a >,把它们拼成如图所示的形状,使E 、H 、M 三点在一条直线上.用数字表示面积的编号(如图).在EH b =上截取ED a =,连结DA 、DC ,则AD c =.∵EM EH HM b a =+=+,ED a =,∴()DM EM ED b a a b =-=+-=.又∵90CMD ∠=︒,CM a =,90AED ∠=︒,AE b =∴Rt Rt AED DMC ≌.∴EAD MDC ∠=∠,DC AD c ==.∵180ADE ADC MDC ∠+∠+∠=︒,90ADE MDC ADE EAD ∠+∠=∠+∠=︒,∴90ADC ∠=︒.∴作//AB DC ,//CB DA ,则ABCD 是一个边长为c 的正方形.∵90BAF FAD DAE FAD ∠+∠=∠+∠=︒,∴BAF DAE ∠=∠.连结FB ,在ABF 和ADE 中,∵AB AD c ==,AE AF b ==,BAF DAE ∠=∠,∴ABF ADE △≌△.∴90AFB AED ∠=∠=︒,==BF DE a .∴点B 、F 、G 、H 在一条直线上.在Rt ABF 和Rt BCG 中,∵AB BC c ==,BF CG a ==,∴Rt Rt ABF BCG ≌.∵22345c S S S S =+++,2126b S S S =++,237a S S =+,15467S S S S S ===+,∴7223126a b S S S S S +=++++()23176S S S S S =++++2345S S S S =+++2c =∴222+=a b c .方法10李锐证明10、设直角三角形两直角边长分别为a 、()b b a >,斜边的长为c .做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上.用数字表示面积的编号(如图).∵90TBE ABH ∠=∠=︒,∴TBH ABE ∠=∠.又∵90BTH BEA ∠=∠=︒,BT BE b ==,∴Rt Rt HBT ABE ≌.∴HT AE a ==.∴GH GT HT b a =-=-.又∵90GHF BHT ∠+∠=︒,90DBC BHT TBH BHT ∠+∠=∠+∠=︒,∴GHF DBC ∠=∠.∵DB EB ED b a =-=-,90HGF BDC ∠=∠=︒,∴Rt Rt HGF BDC ≌.即27S S =.过Q 作QM AG ⊥,垂足是M .由90BAQ BEA ∠=∠=︒,可知ABE QAM ∠=∠,而AB AQ c ==,∴Rt Rt ABE QAM ≌.又Rt Rt HBT ABE ≌.所以Rt Rt ABE QAM ≌.即85S S =.由Rt Rt ABE QAM ≌,有得QM AE a ==,AQM BAE ∠=∠.∵90AQM FQM ∠+∠=︒,90BAE CAR ∠+∠=︒,AQM BAE ∠=∠,∴FQM CAR ∠=∠.又∵90QMF ARC ∠=∠=︒,QM AR a ==,∴Rt Rt QMF ARC ≌.即46S S =.∵212345c S S S S S =++++,216a S S =+,2378b S S S =++,又∵27S S =,85S S =,46S S =,∴2216378a b S S S S S +=++++14325S S S S S =++++2c =,即222+=a b c .【拓展】1. 如图所示,在正方形ABCD 的四边AB ,BC ,CD ,DA 上分别取点E ,H ,G ,F ,使得BE CH GD AF ===,求证:四边形EHGF 是正方形.【答案】见解析【解析】【分析】根据正方形的性质证明Rt AEF Rt BHE Rt CGH Rt DFG △≌△≌△≌△,然后证明90FEH ∠=即可得到答案.【详解】解:∵四边形ABCD 是正方形∴AB CD BC AD ===,90A B C D ∠=∠=∠=∠=︒∵BE CH GD FA ===,∴AE BH CG FD ===,∴Rt AEF Rt BHE Rt CGH Rt DFG △≌△≌△≌△,∴EF HE GH FG ===,AFE BEH ∠=∠.∵90AEF AFE ∠+∠=,∴90AEF BEH ∠+∠=,∴90FEH ∠=,∴四边形EHGF 是正方形.【点睛】本题主要考查了正方形的性质与判定,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.2. 如图所示,在正方形ABCD 的四边AB ,BC ,CD ,DA 上分别取点E ,H ,G ,F ,使得BE CH GD AF ===,此外//EQ BC ,HP//CD ,GO//DA ,FR//AB ,求证:四边形ORQP 是正方形.【答案】见解析【解析】【分析】根据已知条件得到四边形AFRE 、四边形EBHQ 、四边形HCGP 、四边形FOGD 均为长方形,在根据三角形全等证明即可;【详解】∵//EQ BC ,HP//CD ,GO//AD ,FR//AB ,且90A B C D ∠=∠=∠=∠=︒, ∴四边形AFRE 、四边形EBHQ 、四边形HCGP 、四边形FOGD 均为长方形, ∴AEF RFE BHE QEH CGH PHG DFG OGF ≌≌≌≌≌≌≌, ∴FR EQ HP GO ===,ER HQ GP FO ===,∴OR RQ QP PO ===,且18090POR FOG ∠=︒-∠=︒,∴四边形ORQP 为正方形.【点睛】本题主要考查了正方形的判定,结合三角形全等的判定与性质、矩形的判定与性质证明是解题的关键.3. 如图所示,在正方形ABCD 的四边AB ,BC ,CD ,DA 上分别取点E ,H ,G ,F ,使得BE CH GD AF ===,此外//EQ BC ,HP//CD ,GO//DA ,FR//AB .求证:(1)4AEF ABCD EHGF S SS =+正方形正方形; (2)4FREEHGF ORQP S S S =+正方形正方形; (3)ABCD EHGF EHGF ORQP S S S S -=-正方形正方形正方形正方形.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析【解析】【分析】(1)根据正方形的性质证明Rt AEF Rt BHE Rt CGH Rt DFG △≌△≌△≌△,然后证明90FEH ∠=即可得到答案;(2)先证明AEF RFE △≌△,然后同理可以得到RFE QEH PHG OGF △≌△≌△≌△,然后证明四边形ORQP 是正方形,即可得到结论;(3)根据(1)(2)的结论求解即可.【详解】解:(1)∵四边形ABCD 是正方形∴AB CD BC AD ===,90A B C D ∠=∠=∠=∠=∵BE CH GD FA ===,∴AE BH CG FD ===,∴Rt AEF Rt BHE Rt CGH Rt DFG △≌△≌△≌△,∴EF HE GH FG ===,AFE BEH ∠=∠,AEF BHE CGH DFG S S S S ==△△△△= ∵90AEF AFE ∠+∠=,∴90AEF BEH ∠+∠=,∴90FEH ∠=,∴四边形EHGF 是正方形.∴4AEF ABCD EHGF S S S =+正方形正方形(2)∵四边形EHGF 是正方形∴EH HG GF FE ===,90FEH EHG HGF GFE ∠=∠=∠=∠=∵//EQ BC , FR//AB∴四边形AERF 是平行四边形∵∠A =90°∴四边形AERF 是矩形∴AEF RFE △≌△∴90A=ERF=∠∠同理可以得到BHE QEH △≌△,CGH PHG △≌△,DFG OGF △≌△ ∴RFE QEH PHG OGF △≌△≌△≌△∴RFE QEH PHG OGF S S S S △△△△===,RE QH PG OE ===,RF QE PH OG ===∴OR RQ QP PO === ∵90A=ERF=∠∠∴90ORQ=∠∴四边形ORQP 是正方形 ∴4FREEHGF ORQP S SS =+正方形正方形(3)∵4AEF ABCD EHGF S S S -=△正方形正方形,4FRE EHGF ORQP =S S S -正方形正方形△, 又∴AEF RFE △≌△ ∴AEF RFE S S △△=∴ABCD EHGF EHGF ORQP S S S S -=-正方形正方形正方形正方形【点睛】本题主要考查了正方形的性质与判定,全等三角形的性质与判定,矩形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.例题4. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A. 9B. 6C. 4D. 3【答案】D 【解析】【分析】已知ab∴8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长. 【详解】a b -由题意可知:中间小正方形的边长为:,11ab 8422=⨯=每一个直角三角形的面积为:,214ab a b 252(),∴⨯+-=2a b 25169∴-=-=(),a b 3∴-=,故选D.【点睛】本题考查勾股定理的推导∴有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.变式15. 如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于()A. 8B. 6C. 4D. 5【答案】B【解析】【详解】根据面积的差得出a+b的值,再利用a∴b=2,解得a∴b的值代入即可.解:∵AB=10∴EF=2∴∴大正方形的面积是100,小正方形的面积是4∴∴四个直角三角形面积和为100∴4=96,设AE为a∴DE为b,即4×ab=96∴∴2ab=96∴a2+b2=100∴∴∴a+b∴2=a2+b2+2ab=100+96=196∴∴a+b=14∴∵a∴b=2,解得:a=8∴b=6∴∴AE=8∴DE=6∴∴AH=8∴2=6∴故选B∴变式26. 如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形的面积是17,小正方形的面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A. 4B. 6C. 8D. 10【答案】B【解析】【分析】小正方形、大正方形的面积可以分别用a、b 表示,进而两式相减即可求出ab 的值.【详解】由勾股定理,得大正方形的面积为:2217a b +=,又小正方形的面积为2()5a b -= 即2225a b ab +-= ∴1725ab -= ∴ab =6 故选:B .【点睛】本题是以弦图为背景的计算题,考查了勾股定理,图形的面积,关键是用a 、b 表示大小正方形的面积.巩固练习7. 勾股定理是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中不能证明勾股定理的是( )A. B. C.D.【答案】D 【解析】【分析】利用两个以a 和b 为直角边三角形面积与一个直角边为c 的等腰直角三角形面积和等于上底为a,下第为b,高为(a+b)的梯形面积推导勾股定理可判断A , 利用以a 与b 为两直角边四个全等三角形面积与边长为c 的小正方形面积和等于以a+b 的和为边正方形面积推导勾股定理可判断B ,利用以a 与(a+b )为两直角边四个全等三角形面积与边长为b 的小正方形面积和等于以c 为边正方形面积推导勾股定理可判断C ,利用四个小图形面积和等于大正方形面积推导完全平方公式可判断D .【详解】解: A 、两个以a 和b 为直角边三角形面积与一个直角边为c 的等腰直角三角形面积和等于上底为a,下第为b,高为(a+b)的梯形面积,故()2211112222ab ab c a b ++=+,整理得: 222a b c +=,即能证明勾股定理,故本选项不符合题意;B 、以a 与b 为两直角边四个全等三角形面积与边长为c 的小正方形面积和等于以a+b 的和为边正方形面积,故()22142ab c a b ⨯+=+,整理得: 222a b c +=,即能证明勾股定理,故本选项不符合题意;C 、以a 与(a+b )为两直角边四个全等三角形面积与边长为b 的小正方形面积和等于以c 为边正方形面积,()22142a a b b c ⨯++=,整理得: 222a b c +=,即能证明勾股定理,故本选项不符合题意;D 、四个小图形面积和等于大正方形面积,()2222ab a b a b ++=+ ,根据图形证明完全平方公式,不能证明勾股定理,故本选项符合题意; 故选:D .【点睛】本题考查利用面积推导勾股定理与完全平方公式,掌握利用面积推导勾股定理与完全平方公公式是关键.8. 我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若12321S S S ++=,则S 2的值是( )A. 9B. 8C. 7D. 6【答案】C 【解析】【分析】根据图形的特征得出线段之间的关系,进而利用勾股定理求出各边之间的关系,从而得出答案.【详解】解:∵图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,∴CG =NG ,CF =DG =NF , ∴S 1=(CG +DG )2 =CG 2+DG 2+2CG •DG =GF 2+2CG •DG , S 2=GF 2,S 3=(NG ﹣NF )2=NG 2+NF 2﹣2NG •NF ,∵S 1+S 2+S 3=21=GF 2+2CG •DG +GF 2+NG 2+NF 2﹣2NG •NF =3GF 2, ∴S 2的值是:7. 故选:C .【点睛】此题主要考查了勾股定理的应用,根据已知得出S 1+S 2+S 3=21=GF 2+2CG •DG +GF 2+NG 2+NF 2﹣2NG •NF =3GF 2是解决问题的关键. 9. 如图,在ABC 中,90A ∠=︒,则三个半圆面积S 1,S 2,S 3的关系为___________.【答案】123S S S =+ 【解析】【分析】分别用AB 、BC 和AC 表示出1S 、2S 、3S ,然后根据222BC AB AC =+即可得出1S 、2S 、3S 的关系.【详解】解:在ABC ∆中,90A ∠=︒,222BC AB AC ∴=+,22311()228S AC AC ππ==,22211()228S AB AB ππ==,22111()228S BC BC ππ==,222321()88S S AC AB BC S ππ∴+=+==,即123S S S =+. 故答案为:123S S S =+.【点睛】本题主要考查了勾股定理的应用.解题的关键是勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10. 勾股定理是人类最伟大的十个科学发现之一,在《周髀算经》中就有“若勾三,股四,则弦五”的记载,汉代数学家赵爽为证明勾股定理创制的“赵爽弦图”也流传至今.迄今为止己有400多种证明勾股定理的方法.下面是数学课上创新小组验证过程的一部分.请认真阅读并根据他们的思路将后续的过程补充完整:将两张全等的直角三角形纸片按图所示摆放,其中b a >,点 E 在线段AC 上,点B D 、在边AC 两侧,试证明: 222+=a b c .【答案】见解析. 【解析】【分析】首先连结BD ,作DF BC ⊥延长线于F ,则AE b a ,根据Rt ABCRt DAE ,易证90DAB ︒∠=,再根据 ADEABCADFBDFCE S SSS 四边形四边形,ADB DFB ADFB S S S ∆∆=+四边形,两者相等,整理即可得证.【详解】证明:连结BD ,作DF BC ⊥延长线于F ,则AE b aADEABCADFBDFCE S SSS 四边形四边形1122ab ab b a b2ab b ab =+-2b =Rt ABC Rt DAE ∆≅∆ABADcADE BAC ∴∠=∠90ADE DAE 90BACDAE即90DAB ︒∠=, ∴AD AB ⊥∴ADB DFB ADFB S S S ∆∆=+四边形21122c a bba222111222c b a =+- 即有:2222111222b c b a ∴222+=a b c【点睛】本题考查了勾股定理的证明,用两种方法表示出四边形ADFB 的面积是解本题的关键.11. (1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(1876年4月1日发表在《新英格兰教育日志》上),现请你尝试证明过程.说明:222C a b =+.【答案】(1)222()2a b a ab b +=++;(2)证明见解析.【解析】【分析】(1)根据正方形面积计算公式解答; (2)利用面积法证明即可得到结论. 【详解】(1)222()2a b a ab b +=++;(2)如图,∴Rt △DEC ≌Rt △EAB , ∴∠DEC =∠EAB ,DE=AE , ∴90EAB AEB ∠+∠=︒, ∴90DEC AEB ∠+∠=︒, ∴△AED 为等腰直角三角形, ∴RtABERtDCERtDEAABCD S S S S =++梯形,∴21111()()2222b a a b ab ab c ++=++,即22()2a b ab c +=+, ∴222()2a b a ab b +=++, ∴22222a ab b ab c ++=+, ∴222c a b =+.【点睛】此题考查勾股定理的证明,完全平方公式在几何图形中的应用,正确理解各部分图形之间的关系,正确分析它们之间的面积等量关系是解题的关键.培优12. 阅读理解: 【问题情境】教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?【探索新知】从面积的角度思考,不难发现:大正方形的面积=小正方形的面积+4个直角三角形的面积.从而得数学等式:(a+b)2=c2+4×12ab,化简证得勾股定理:a2+b2=c2.【初步运用】(1)如图1,若b=2a,则小正方形面积:大正方形面积=;(2)现将图1中上方的两直角三角形向内折叠,如图2,若a=4,b=6,此时空白部分的面积为;(3)如图3,将这四个直角三角形紧密地拼接,形成风车状,已知外围轮廓(实线)的周长为24,OC=3,求该风车状图案的面积.(4)如图4,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=40,则S2=.【迁移运用】如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图5的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a、b、c之间的关系,写出此等量关系式及其推导过程.【答案】【初步运用】(1)5:9;(2)28;(3)24;(4)403;【迁移运用】a2+b2﹣ab=c2,证明见解析【解析】【分析】初步运用:(1)如图1,求出小正方形的面积,大正方形的面积即可;(2)根据空白部分的面积=小正方形的面积﹣2个直角三角形的面积计算即可;(3)可设AC=x,根据勾股定理列出方程可求x,再根据直角三角形面积公式计算即可求解;(4)根据图形的特征得出四边形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出S1,S2,S3,得出答案即可.迁移运用:根据大正三角形面积=三个全等三角形面积+小正三角形面积,构建关系式即可.【详解】解:【初步运用】(1)由题意:b=2a,c,∴小正方形面积:大正方形面积=5a2:9a2=5:9,故答案为:5:9;(2)空白部分的面积为=52﹣2×12×4×6=28,故答案为:28;(3)24÷4=6,设AC=x,依题意有:(x+3)2+32=(6﹣x)2,解得x=1,∴面积为:12×(3+1)×3×4=12×4×3×4=24,故该飞镖状图案的面积是24;(4)将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=40,∴S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=40,∴x+4y=403,∴S2=x+4y=403,故答案为:403;[迁移运用]结论:a2+b2﹣ab=c2.理由:由题意:大正三角形面积=三个全等三角形面积+小正三角形面积,可得:12(a+b)×k(a+b)=3×12×b×ka+12×c×ck,∴(a+b)2=3ab+c2,∴a2+b2﹣ab=c2.【点睛】本题考查勾股定理的证明和应用,根据图形得出面积关系是解题的关键.21。
万能公式几何证明
![万能公式几何证明](https://img.taocdn.com/s3/m/f469b918f11dc281e53a580216fc700abb6852a8.png)
万能公式几何证明
几何证明中的万能公式是一种通用的证明方法,它可以用于证明各种不同的几何定理和性质。
以下是万能公式的步骤:
1. 定义已知条件和未知量:首先明确题目中给出的已知条件和需要求证的未知量,并将它们清晰地表达出来。
2. 引入辅助线或辅助图形:根据题目的特点,引入适当的辅助线或辅助图形,以便将问题转化为更容易处理的形式。
3. 运用基本定理或性质:根据题目要求,选择适当的几何定理或性质,以便推导出所需结论。
这些定理或性质可以是平行线的性质、相似三角形的性质、勾股定理等等。
4. 逐步推导:通过逐步推导的方式,将已知条件和未知量联系起来,最终得出所需结论。
在推导过程中,要保证每一步的推理都是正确的,并且能够清晰地表达出来。
5. 得出结论:最后得出所需结论,并将其清晰地表达出来。
需要注意的是,万能公式并不是万能的,它并不能解决所有的几何问题。
在具体的问题中,需要根据题目的特点选择适当的证明方法。
初中几何证明题公式
![初中几何证明题公式](https://img.taocdn.com/s3/m/16d97cacbd64783e08122b05.png)
1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 错角相等,两直线平行11 同旁角互补,两直线平行12两直线平行,同位角相等13 两直线平行,错角相等14 两直线平行,同旁角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形角和定理三角形三个角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的角和等于360°49四边形的外角和等于360°50多边形角和定理n边形的角的和等于(n-2)×°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69形性质定理1 形的四个角都是直角,四条边都相等70形性质定理2形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L ×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a /b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L ×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a /b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交 d<r②直线L和⊙O相切 d=r③直线L和⊙O相离 d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离 d>R+r ②两圆外切 d=R+r③两圆相交 R-r<d<R+r(R>r)④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=nπR/180145扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r)。