污水处理厂CASS工艺设计计算书

合集下载

污水处理CASS工艺计算公式

污水处理CASS工艺计算公式

序号一1设计流量Q=720日最大变化系数Kz=130.00最大流量Qmax=720.00日最大变化系数Kz=30.00BOD 5=250COD=500SS=NH 4--=200TP=32)出水水质BOD 5=20COD=60SS=NH 4--N=15TP=1二1污泥负荷-NsN S =K 2*S e *f/ηK 2=0.0168K 2-为有机基质降解Se=20.00Se-为混合液中残留的有机基质浓度,f=0.7f-为混合液中挥发性悬浮物固体浓度与总η=0.92η-有机基质降解率,η=(BOD 进-BOD 出)N S =0.26一般来讲,生活污水Ns=0.05kgBOD5/(kg 2曝气时间T A =24S 0/(N S *m*X)S 0=250.00S 0-进水BOD 浓度;X=2500X-混合液污泥浓度,2.5kg/m 3-4.0kg/m 31/m=0.31/m-排水比,≤1/3T A =2.823活性污泥界面的初始沉降速度Vmax=7.4*104*t*X 0-1.7水温10℃,V max =4.6*104*X 0-1.26水温20℃,t=10.00t-水温;Vmax=1.24水温10℃Vmax=2.41水温20℃4沉淀时间T s =[H*(1/m)+ε]/V max H=6H-反应器有效水深;ε=0.5ε-活性污泥界面上最小水深Ts=1.86水温10℃Ts=0.96水温20℃5一周期所用时间Tc ≥T A +T S +T D Tc=6.17T D =1.5T D -排水时间CASS 设计计算表(全)设计依据及参考资料1)进水水质工艺计算一周期时间8h 周期数3次/天6CASS 池需要总容积V=m*n*Q *C*T C /Lv*Lv=0.7Lv-BOD 容积负荷,kgBOD5/m3*d ,n=2n-反应器个数;V=1217.397反应器实际总容积V 实际=L 实际×B 实V 实际=1622.40V 单需要=608.70V 单实际=811.20H=6H-反应器有效高度,≦6m8单个反应器面积S=L*B S=124.80S 曝=0.45平方N 曝=554.67所有曝气盘总数量,N 曝=(S*n)/S 曝最终取1200所有曝气盘总数量Δvmax=120.00校核体积,按最大流量4小时计算H 安=6.00H 安=[ΔVmax*H*(1/m)]/[(q*H=6.50池高L=20.14池长,L:B 取值L:B=4-64L 最终取20.8B=13.00池宽,B:H 取值L:B=1-2B 最终取6预反应区长度L 1=3.33参考取值(0.16-0.25)L0.169隔墙底部连通孔口尺寸,A 1=H 1=1.80变动水深,H 1=H 安n 1=2连通孔个数n 15小于4m 6m 8m 10m 12m u=39u-孔口流速,20-50m/h 3910总需氧量O D =a`Q(S 0-S e )+b`VX kgO 2/dO D =407.33a=0.53a-活性污泥微生物每代谢1kgBOD 需氧量,生活污水为0.42-0.53池宽与连通孔数量关系池宽b=0.15b-1kg活性污泥每天自身氧化所需要的氧气量,生活污水为0.11-0.18811总供氧量SOR=[O D*C S(20)*(760/SOR=438.61kgO2/dC S(20)=9.17清水20℃饱和溶解氧浓度,mg/LC S(T)=9.17清水T℃饱和溶解氧浓度,mg/LT=20混合液水温,7-8月平均水温,℃C L=2混合液溶解氧浓度,mg/Lα=0.93K La的修正系数,高β=0.95饱和溶解氧修正系数,高负荷法取r=1.28曝气头水深修正,r=1/2*[(10.33+H A)H A=5.80曝气头水深,H A=HH A,=0.2曝气装置距池底深度,mP=760处理厂所在地大气压,mmHgt=11天的曝气时间,1dE A=10氧利用率,10%12总供风量G S=SOR/[0.28E A*(27G S=16812.17m3/dT`=20室外空气温度,℃n机=2拟采用风机数量,不含备用Q机=G S/[n*(24Q机=8.29风机必须流量,m3/minP机=60.00风机必须压力,kpak产=0.2去除1kgBOD产生剩余污泥,kg污泥排=(COD进-污泥排=63.36每天污泥排放量,k g)设计水温 T10=250TN=25070TN=20个1-5个1个2连通孔数量345。

cass工艺设计计算书

cass工艺设计计算书

cass工艺设计计算书CASS(循环活性污泥系统)工艺是一种常用的污水处理工艺,以下是一个简单的 CASS 工艺设计计算书的示例,供参考:1. 设计基础数据:- 设计流量:[具体数值]m³/d- 进水水质:BOD5 = [数值]mg/L,COD = [数值]mg/L,SS = [数值]mg/L- 出水水质:BOD5 ≤ [数值]mg/L,COD ≤ [数值]mg/L,SS ≤ [数值]mg/L2. 反应器容积计算:- 有效容积(V):根据进水水质和出水水质要求,按照负荷法计算有效容积。

通常 CASS 工艺的 BOD5 负荷为[数值]kgBOD5/m³·d,COD 负荷为[数值]kgCOD/m³·d。

计算得到有效容积为 V = [具体数值]m³。

- 反应器数量(n):根据有效容积和单个反应器容积确定反应器数量。

假设单个反应器容积为[数值]m³,则反应器数量为 n = V/[数值],取整得到[具体数值]个反应器。

3. 曝气系统设计:- 需氧量计算:根据进水水质和出水水质要求,按照 BOD5 去除量和氨氮硝化需氧量计算需氧量。

通常 CASS 工艺的需氧量为[数值]kgO2/kgBOD5 去除,[数值]kgO2/kgNH4-N 硝化。

计算得到总需氧量为[具体数值]kgO2/d。

- 曝气设备选择:根据需氧量和反应器布局,选择合适的曝气设备。

常见的曝气设备包括鼓风机、曝气头、曝气软管等。

- 曝气量调节:根据进水负荷和水质变化,设置曝气量调节装置,以保证反应器内的溶解氧浓度在合适范围内。

4. 沉淀系统设计:- 沉淀时间:根据反应器容积和进出水流量,确定沉淀时间。

通常 CASS 工艺的沉淀时间为[数值]h。

- 沉淀区容积:根据沉淀时间和进出水流量,计算沉淀区容积。

沉淀区容积一般为反应器容积的[数值]%。

- 排泥系统设计:设置排泥泵和排泥管道,定期将沉淀区的污泥排出。

污水处理CASS工艺设计计算书

污水处理CASS工艺设计计算书

Q---处理规模(m ³/d)5000.00S 0 ----进水BOD5(mg/l)160.00S e ----出水BOD5(mg/l)10.00Nw---混合液悬浮固体浓度(MLSS) (mg/l)3200.00λ=1/m=1/2.5(排水比)0.40K 2有机基质降解速率常数,L/(mg •d)生活污水K2取值范围为0.0168-0.02810.02f——混合液中挥发性悬浮固体与总悬浮固体浓度的比值,一般在生活污水中,f值为0.7-0.80.75H---反应池水深(m) 4.00ε---安全高度 1.20Vmax(m/s) 1.76T D排水时间(h)0.50T f 闲置时间(h) 1.00T (运行周期) 5.55V----CASS 池容积(m ³)1600.92n 每日运行周期数4.32T S----沉淀时间 1.59Ns---BOD-污泥负荷(kgBOD5/(kgMLSS •d))0.20η---有机基质降解率0.94T A ---曝气时间(h) 2.46考虑格栅和沉砂池可去除部分有机物及SS,取COD,BOD5,NH3-N,TP,TN去除率为20%,SS去除率为35%CASS工艺设计计算书设计CASS池(座) 4.00V i 单CASS池容积(m ³)400.23复核V----CASS池容积(m ³)2083.33 H ——池内最高液位(m)(CASS池高) 4.00H 3(m)滗水结束时泥面高度 1.20H 2=ε(m)1.20L (cass池长)m 16.28B (CASS池宽)m 8.00H 0(CASS池总高)m 4.50L 1微生物选择区(m) 1.63h s污泥层高 1.20U—孔口流速m/h 70孔口宽度m 0.70孔高m0.43K d活性污泥自身氧化系数一般为0.04~0.0750.06Y 污泥的产率系数一般为 0.4~0.80.60f b VSS中可生化系数0.70C 0设计进水SS,mg/l 97.50C e设计出水SS,mg/l 10.00△X 剩余污泥总量(kg/d)657.75V i 单CASS池容积(m ³)520.83SVI—污泥体积指数,(ml/g)93.75H 1(m)--池内设计最高水位至滗水机排放最低水位之间的高度1.60h 1排水结束时最低水位 2.40A 1连通孔面积(㎡)0.30N R剩余污泥浓度(kg/m ³)5.33△X v剩余生物污泥量(kg/d)449.94△X s剩余非生物污泥(kg/d)207.81θc污泥龄(d)复核污泥龄17.51171.103(15-T)4.34µ——硝化细菌的增长速率d-1:T=0.2摄氏度时,取为0.350.35f s——安全系数:为保证出水氨氮小于5mg/L 取2.3~3.0;取2.30.67T ——污水温度:取冬季最不利温度0.2摄氏度。

《2024年CASS工艺的理论与设计计算》范文

《2024年CASS工艺的理论与设计计算》范文

《CASS工艺的理论与设计计算》篇一一、引言CASS(循环式活性污泥法)工艺是一种常用的污水处理技术,其核心在于通过循环和间歇操作,提高污泥的活性,从而达到高效处理污水的目的。

本文旨在探讨CASS工艺的理论基础、设计原则及计算方法,为相关工程实践提供理论支持。

二、CASS工艺理论基础1. 工艺原理CASS工艺基于活性污泥法原理,通过间歇性进水、曝气、沉淀、排水等操作过程,实现污水的高效处理。

该工艺通过循环利用活性污泥,提高了生物反应器的处理能力,同时减少了污泥的产生量。

2. 生物反应过程CASS工艺的生物反应过程主要包括:进水期、曝气期、沉淀期和排水期。

在进水期,污水进入反应器;在曝气期,通过曝气设备向反应器中供氧,促进微生物的生长和代谢;在沉淀期,活性污泥与水分离,使水得到净化;在排水期,上清液排出,为下一个周期做准备。

三、CASS工艺设计原则1. 满足处理要求:根据污水处理的要求,确定CASS工艺的设计参数,如进水水质、出水水质、处理效率等。

2. 合理布局:根据场地条件和实际需求,合理布局反应器、曝气设备、进出水管道等设施。

3. 节能降耗:在保证处理效果的前提下,尽可能降低能耗和药耗,提高经济效益。

4. 便于操作和维护:设计应考虑操作的便捷性和维护的可行性,方便日常管理和维护。

四、CASS工艺设计计算1. 设计参数计算(1)处理能力计算:根据设计要求,确定污水处理系统的处理能力。

计算过程中需考虑污水的流量、水质等因素。

(2)曝气量计算:根据设计要求和处理能力,计算所需的曝气量。

曝气量的计算需考虑生物反应器的体积、氧气传递效率等因素。

(3)沉淀时间计算:根据污泥的沉降性能和出水要求,确定沉淀时间。

沉淀时间的计算需考虑污泥的沉降速度和体积等因素。

2. 工艺流程设计(1)进水系统设计:设计进水管道、进水阀门等设施,确保污水能够顺利进入反应器。

(2)曝气系统设计:设计曝气设备、曝气管路等设施,为生物反应器提供充足的氧气。

污水处理厂CASS工艺设计计算及说明(精品))

污水处理厂CASS工艺设计计算及说明(精品))

设计计算书1.污水处理厂处理规模1.1处理规模污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。

1.2污水处理厂处理规模污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。

最高日水量为生活污水最高日设计水量和工业废水的总和。

Q设= Q1+Q2 = 5000+5000 = 10000 m³/d总变化系数:K Z=K h×K d=1.6×1=1.62.城市污水处理工艺流程污水处理厂CASS工艺流程图3.污水处理构筑物的设计3.1泵房、格栅与沉砂池的计算3.1.1 泵前中格栅格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。

在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。

3.1.1.1 设计参数:(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ;(4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个max Q n bhv =式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ;(2)栅槽宽度B ,m取栅条宽度s=0.01mB=S (n -1)+bn(3)进水渠道渐宽部分的长度L 1,m式中,B 1-进水渠宽,m ;α1-渐宽部分展开角度,(°);(4)栅槽与出水渠道连接处的渐窄部分长度L 2,m(5)通过格栅的水头损失h 1,m式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ;k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3;1112tga B B L -=125.0L L =αεsin 2201gv k kh h ==ξ— 阻力系数,与栅条断面形状有关; 设栅条断面为锐边矩形断面,β=2.42 v 2— 过栅流速, m/s ; α — 格栅安装倾角, (°);(6)栅后槽总高度 H ,m取栅前渠道超高20.3h m =21h h h H ++=(7)栅槽总长度L ,m112 1.5 2.0tan H L L L α=++++式中,H 1为栅前渠道深,112H h h =+,m (8)每日栅渣量W ,m 3/dmax 1864001000z Q W W K =式中,1W -为栅渣量,(333/10m m 污水),格栅间隙为16~25mm 时为0.1~0.05,格栅间隙为30~50mm 时为0.03~0.01; K Z -污水流量总变化系数3.1.1.3 设计计算采用两座粗格栅池一个运行,一个备用。

CASS工艺污水处理厂设计计算书

CASS工艺污水处理厂设计计算书

毕业设计学号:x x 学院毕业设计计算书设计题目:市某区污水处理厂设计设计编号:学院:专业:班级:姓名:指导教师:完成日期:答辩日期:市某区污水处理厂设计学生姓名:指导教师:(学院建筑工程学院,2008级给水排水工程2班)摘要:本设计主要是市某区污水处理厂的设计,该污水厂出水水质要求达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级A标准和绿化水质标准,经过对可行的两种处理工艺CASS工艺与氧化沟工艺的比较,最终采用现行的SBR变形形式CASS工艺。

CASS工艺主体部分采用圆形利浦罐形式,污水从圆向外流,从到外依次是选择器、厌氧区,好氧区,通过改变CASS池的循环周期来达到氮磷的最佳去除。

该污水厂设计的构筑物有平流沉淀池,格栅,提升泵房等构筑物。

污泥经过污泥浓缩后再经过消化池消化处理,最后再外运。

最后在污水厂平面布置的形式上采用《给排水设计手册》相关规定。

关键词:污水处理厂;CASS;平流沉砂池A sewage treatment plant design in a district ofGuangzhouStudent: Adviser: Wang Zhiyong(College of Civil Engineering and Architecture,Taizhou University)Abstract:The design is mainly to a sewage treatment plant in Guangzhou. The water quality discharged of the sewage treatment plant must achieve at the Degree A and the stander of Greening water quality in the “Urban sewage treatment plant pollutant discharge stander (GB 18918-2002)”. Finally, we adopt the current SBR deformation form of CASS process according to the comparison of the feasible two processing technology of CASS process and oxidation ditch process. The body of the CASS process adopts the circular Philips cans forms and the sewage is from the inner circle to be out. The selector, the anaerobic zone, and an aerobic zone is in line from the inner to outside. And the removal of nitrogen and phosphorus is by changing the CASS cellCycle. There are horizontal flow sedimentation pool, grille, pumping station in the structure of the sewage plant design. The condensed sludge need to handle in the sludge digester before sending out. At last, the form of the sewage plant layout adopts the relevant rule of the Water supply and drainage.Key words:Sewage treatment plant; CASS; Horizontal flow sedimentation目录中文摘要 (I)英文摘要 ...................................................................................................................... I I 1 引言. (1)1.1 设计任务及依据 (1)1.1.1 设计任务 (1)1.1.2 设计依据 (1)1.2 设计水量、水质、出水要求及该污水厂设计规模 (1)1.2.1 污水量 (2)1.2.2 污水水质 (2)1.2.3 出水要求 (2)1.2.4 工程设计规模 (2)2 工艺设计方案的确定 (2)2.1 原水水量及水质分析 (2)2.2 污水处理程度 (3)2.3 污水处理工艺流程选择 (3)2.3.1 氧化沟方案 (4)2.3.2 CASS工艺方案 (4)2.3.3 方案的确定 (6)2.3.4 工艺流程图 (6)2.4 污水厂各处理构筑物的计算与选型 (7)2.4.1 中格栅计算 (7)2.4.2 污水提升泵房计算 (10)2.4.3 泵后细格栅计算 (11)2.4.4 沉砂池设计计算 (14)2.4.5 巴氏计量槽计算 (17)2.4.6 CASS池计算 (19)2.4.7 污泥提升泵房 (25)2.4.8 滤池设计计算 (25)2.4.9 接触消毒池计算 (26)3 污泥的处理与处置 (27)3.1 污泥处理与处置的基本流程 (27)3.2 贮泥池计算 (27)3.3 浓缩池设计计算 (28)3.4 污泥消化池计算 (29)3.5 污泥脱水计算 (30)3.5.1 浓缩后污泥量 (30)3.5.2 脱水工艺及脱水设备的选择 (30)4 污水厂总体布置 (30)4.1 污水处理厂平面布置原则 (30)4.2 污水处理厂高程布置原则 (31)4.3 污水厂辅助建筑物计算 (32)毕业设计总结 (33)参考文献 (34)致谢 (35)1 引言1.1 设计任务及依据1.1.1 设计任务污水处理厂毕业设计任务主要包括以下几部分:(1)污水处理厂系统方案的比较1)污水处理方法、流程比较和污水处理构筑物型式的选择;2)污泥处理方法、流程比较和污水处理构筑物型式的选择。

污水处理厂CASS工艺设计计算书

污水处理厂CASS工艺设计计算书

污水处理厂设计计算书1.污水处理厂处理规模1.1处理规模污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。

1.2污水处理厂处理规模污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。

最高日水量为生活污水最高日设计水量和工业废水的总和。

Q设= Q1+Q2 = 5000+5000 = 10000 m³/d总变化系数:K Z=K h×K d=1.6×1=1.62.城市污水处理工艺流程污水处理厂CASS工艺流程图3.污水处理构筑物的设计3.1泵房、格栅与沉砂池的计算3.1.1 泵前中格栅格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。

在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。

3.1.1.1 设计参数:(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ;(4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个max Q n bhv =式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ;(2)栅槽宽度B ,m取栅条宽度s=0.01mB=S (n -1)+bn(3)进水渠道渐宽部分的长度L 1,m式中,B 1-进水渠宽,m ;α1-渐宽部分展开角度,(°);(4)栅槽与出水渠道连接处的渐窄部分长度L 2,m(5)通过格栅的水头损失h 1,m式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ;k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3;1112tga B B L -=125.0L L =αεsin 2201gv k kh h ==ξ— 阻力系数,与栅条断面形状有关; 设栅条断面为锐边矩形断面,β=2.42 v 2— 过栅流速, m/s ; α — 格栅安装倾角, (°);(6)栅后槽总高度 H ,m取栅前渠道超高20.3h m =21h h h H ++=(7)栅槽总长度L ,m112 1.5 2.0tan H L L L α=++++式中,H 1为栅前渠道深,112H h h =+,m (8)每日栅渣量W ,m 3/dmax 1864001000z Q W W K =式中,1W -为栅渣量,(333/10m m 污水),格栅间隙为16~25mm 时为0.1~0.05,格栅间隙为30~50mm 时为0.03~0.01; K Z -污水流量总变化系数3.1.1.3 设计计算采用两座粗格栅池一个运行,一个备用。

某污水处置厂设计计算说明书40cass工艺41

某污水处置厂设计计算说明书40cass工艺41

某污水厂设计计算说明书姓名:班级:学号:指导教师:2021-6-28目录一总论 (1)二工艺流程 (2)CASS工艺的优势 (3)与其他工艺对照 (5)三处置构筑物设计 (7)㈠集水井的设计 (7)㈡格栅的设计与计算 (8)1.泵前中格栅的设计与计算 (8)2.泵后细格栅的设计与计算 (11)㈢提升泵站 (14)1.设计参数 (15)2.提升泵房设计计算 (15)㈣曝气沉砂池的设计与计算 (15)1.曝气沉砂池 (15)2.曝气沉砂池的设计与计算 (16)3. 设计计算 (16)4.吸砂泵房与砂水分离器 (20)5.鼓风机房 (20)㈤CASS池的设计与计算 (20)1.CASS工艺运行进程 (20) (21)㈥污泥浓缩池 (35)1.设计参数 (35)2.设计计算 (35)㈦贮泥池设计 (37)四污水厂整体布置 (39)㈠要紧构(建)筑物与附属建筑物 (39)㈡污水厂平面布置 (40)㈢污水处置构筑物高程布置 (41)五设计体会 (43)一总论目的:加深明白得所学专业知识,培育运用所学专业知识的能力,在设计、计算、画图等方面取得锻炼。

内容:对要紧污水处置构筑物的工艺尺寸进行设计计算,确信污水处置厂的平面布置和高程布置。

完成设计计算说明书和设计图(污水处置厂平面布置、高程布置图、某构筑物工艺图各一张)。

深度: 初步设计(1).水质水量项目规模:长沙某污水处置厂要紧处置该市某地区的工业及居民废水。

考虑远期进展,设计水量扩大一倍。

进水水质:BOD5=160mg/L;COD=280 mg/L; SS=150 mg/L; TN=335mg/L; 磷酸盐(以P计)= mg/L。

(2).处置要求(1)要求出水水质知足GB 18918-2002《城镇污水处置厂污染物排放标准》的一级B排放标准,即:pH=6~9; BOD5≤20mg/L; COD≤60mg/L; SS≤20mg/L; TN≤20mg/L; NH3-N≤8mg/L, 磷酸盐(以P计)≤1mg/L。

污水处理CASS工艺参数设计计算公式

污水处理CASS工艺参数设计计算公式

设计计算一、CASS容积计算(X)设计选用污泥浓度2500mg/L(MLSS)挥发性污泥浓度比例0.75(MLVSS/MLSS)(t a )曝气时间 5.632h(λ)设计排出比0.33(N s)设计污泥负荷0.15(u)污泥沉淀速率 1.238m/h(T)水温10℃曝气池水深5m(ζ)缓冲层高度0.5m(t s)沉淀时间 1.737h(t b)滗水时间0.5h(t j)进水时间0h(X)暂停时间0h(t)周期时间7.869h(n1)反应池数目4个(n2)每天运行周期 3.050个,24/周期时间结果(V)曝气池容积2980.538m3,水量/(排出比×运行周期×反应池数目)曝气池总容积11922.151m3二、污泥产量1CASS段剩余污泥(Y)B OD污泥产率0.50.4-0.8(f)SS污泥产率0.60.5-0.7(ΔX)剩余污泥量2100kg(绝干泥,不考虑衰减量)2UASB污泥污泥产率0.2以COD计算S S污泥产率0.6同前U ASB污泥产量23868kg(绝干泥,不考虑衰减量)3初沉池污泥产泥系数0.90.8-1.0,排泥时间长取下限产泥量17820kg(绝干泥)结果绝干泥重量43788kg(初沉池产泥+UASB产泥+CASS产泥)三、CASS池曝气量计算1设计需氧量(a)氧化每kgBOD需氧量系数0.48kgO2/kgBOD5(一般取0.42-0.53)(b)污泥自身氧化系数0.15kgO2/(kgMLVSS·d)(一般取0.19-0.11)(AOR)设计每天需氧量4332.305kgO2/d设计每周期需氧量355.096kgO2/周期2实际需氧量(C S60)20°时氧在清水中的饱和溶解度9.17mg/l(α)氧总转移系数0.85(β)氧在污水中的饱和溶解度修正系数0.95(ρ)因海拔高度不同引起的压力系数1.000(p)所在地的大气压101300Pa(900m海拔)(C sb(T))设计水温条件下曝气池内平均溶解氧饱和度10.189mg/l(C s(T))设计水温下氧在清水中饱和溶解度8.9mg/l(p b)空气扩散装置处的绝对压力147360Pa(H)空气扩散装置淹没深度4.7m(O t)汽包离开水面时含氧量17.537%(E A)空气扩散装置氧转移效率20%(C)曝气池内平均溶解氧浓度2mg/l (T)设计污水水温25℃(SOR)标准需氧量443.034kg/周期3实际供气量(ρ)空气用量7383.907519m3/周期曝气机供气量,单池1311.063125m3/h21.851m3/min 4气水比7.507变化系数 1.585一、12000m3/d#######L/S二、设计水质COD cr BOD5SS氨氮TP初沉池进水12000500055005511出水10800450038505511去除率%10103000UASB进水10800450038505511出水43202700269549.59.9去除率%6040301010 CASS进水360200220353出水60307080.5去除率%9085684030海拔高度(m)大气压(pa)010.3×10410010.2×20010.1×10430010.0×1044009.8×104 5009.7×104 6009.6×1047009.5×104 8009.4×104 15008.6×104 20008.1×104设计条件平均每天处理处理量355.0965。

CASS工艺处理生活污水课程设计报告书

CASS工艺处理生活污水课程设计报告书
流速不均及污泥沉积问题。在氧化沟中,为了获得其独特的混合和处理效果,混合液必须以一定的流速在沟循环流动。一般认为,最低流速应为0.15m/s,不发生沉积的平均流速应达到0.3-0.5m/s。氧化沟的曝气设备一般为曝气转刷和曝气转盘,转刷的浸没深度为250-300mm,转盘的浸没深度为480-530mm。与氧化沟水深(3.0-3.6m)相比,转刷只占了水深的1/10-1/12,转盘也只占了1/6-1/7,因此造成氧化沟上部流速较大(约为0.8-1.2m,甚至更大),而底部流速很小(特别是在水深的2/3或3/4以下,混合液几乎没有流速),致使沟底大量积泥(有时积泥厚度达1.0m),大大减少了氧化沟的有效容积,降低了处理效果,影响了出水水质。
⑤无有毒有害的物质流入。
活性污泥法的原理形象说法:微生物“吃掉”了污水中的有机物,这样污水变成了干净的水。它本质上与自然界水体自净过程相似,只是经过人工强化,污水净化的效果更好。
污水处理工艺的选择与污水的原污水水质、出水要求、污水厂规模、当地温度、用地面积、发展余地、管理水平、工程投资、电价和环境影响等因素有关。
2.2 循环活性污泥(CASS)工艺特点
(1)操作周期四阶段。a.曝气阶段。由曝气装置向反应池充氧,此时有机污染物被微生物氧化分解,同时污水中的NH3-N通过微生物的硝化作用转化为NO3--N。b.沉淀阶段。此时停止曝气,微生物利用水中剩余的DO进行氧化分解。反应池逐渐由好氧状态向缺氧状态转化,开始进行反硝化反应,活性污泥逐渐沉到池底,上层水变清。c.滗水阶段。沉淀结束后,置于反应池末端的滗水器开始工作,自上而下逐渐排出上清液。此时反应池逐渐过渡到厌氧状态继续反硝化。d.闲置阶段.即滗水器上升到原始位置阶段。
3 .针对以上特点,以及出水要求,现有城市污水处理的特点,以下有几种处理方法供我选择:

某污水处理厂设计计算说明书(cass工艺)_毕业设计

某污水处理厂设计计算说明书(cass工艺)_毕业设计

某污水处理厂设计计算说明书(cass工艺)_毕业设计某污水厂设计计算说明书目录一总论 (1)二工艺流程 (3)CASS工艺的优点 (4)与其他工艺对比 (7)三处理构筑物设计 (7)㈠集水井的设计 (9)㈡格栅的设计与计算 (10)1.泵前中格栅的设计与计算 (11)2.泵后细格栅的设计与计算 (14)㈢提升泵站 (17)1.设计参数 (17)2.提升泵房设计计算 (17)㈣曝气沉砂池的设计与计算 (18)1.曝气沉砂池 (18)2.曝气沉砂池的设计与计算 (19)3. 设计计算 (19)4.吸砂泵房与砂水分离器 (23)5.鼓风机房 (23)㈤CASS池的设计与计算 (23)1.CASS工艺运行过程 (23)2.CASS反应池的设计计算 (25)㈥污泥浓缩池 (38)1.设计参数 (39)2.设计计算 (39)㈦贮泥池设计 (41)四污水厂总体布置 (39)㈠主要构(建)筑物与附属建筑物 (39)㈡污水厂平面布置 (40)㈢污水处理构筑物高程布置 (45)五设计体会 (48)一总论1.课程设计的内容和深度目的:加深理解所学专业知识,培养运用所学专业知识的能力,在设计、计算、绘图等方面得到锻炼。

内容:对主要污水处理构筑物的工艺尺寸进行设计计算,确定污水处理厂的平面布置和高程布置。

完成设计计算说明书和设计图(污水处理厂平面布置、高程布置图、某构筑物工艺图各一张)。

深度: 初步设计2.基本资料(1).水质水量项目规模:长沙某污水处理厂主要处理该市某地区的工业及居民废水。

考虑远期发展,设计水量扩大一倍。

进水水质:BOD5=160mg/L;COD=280 mg/L; SS=150 mg/L; TN=335mg/L; 磷酸盐(以P计)= 1.8mg/L。

(2).处理要求(1)要求出水水质满足GB 18918-2002《城镇污水处理厂污染物排放标准》的一级B排放标准,即:pH=6~9; BOD5≤20mg/L; COD≤60mg/L; SS≤20mg/L; TN≤20mg/L; NH3-N≤8mg/L, 磷酸盐(以P计)≤1mg/L。

水控课设CASS工艺污水厂设计计算

水控课设CASS工艺污水厂设计计算

摘要 (3)1绪论 (4)1.1设计目的和意义 (4)2工艺流程 (5)2.1可行工艺 (5)2.1.1 SBR工艺 (5)2.1.2 CASS工艺 (5)2.1.3 AB工艺 (5)2.2工艺比较 (6)2.2.2 工艺费用评估 (6)2.2.3选择最终工艺 (6)2.3 工艺流程图 (6)2.3.1 格栅 (7)2.3.2 旋流式沉砂池 (7)2.3.3 CASS池 (8)2.3.4 接触消毒池 (8)2.3.5 竖流浓缩池 (9)2.3.6 贮泥池 (10)3 构筑物工艺计算 (10)3.1 粗格栅的计算 (10)3.1.1 设计说明 (10)3.1.2 栅条的间隙数 (11)3.1.3栅槽宽度 (11)3.1.4清渣方式 (11)3.1.5通过格栅的水头损失 (12)3.2.1 设计流量和扬程的确定 (12)3.2.2 水泵的选定 (12)3.3 集水池容积的确定 (12)3.4 细格栅的计算 (12)3.4.1 栅条的间隙数 (12)3.4.2 栅槽宽度 (13)3.4.3 通过格栅的水头损失 (13)3.4.4 清渣方式 (13)3.5旋流式沉砂池的选型 (13)3.6 CASS池的设计 (14)N: (14)3.6.1 污泥负荷S3.6.2 曝气时间T A (14)3.6.3 沉淀时间T S (14)3.6.4 排水时间T D (15)3.6.5 周期数的确定 (15)3.6.6 进水时间T F (15)3.6.7 CASS池容积计算 (16)3.6.8 CASS反应池构造尺寸 (16)3.6.9 反应池液位控制 (16)3.6.10 需氧量 (17)3.6.11产泥量及其排泥系统 (18)3.6.12 回流污泥泵房 (19)3.7 接触消毒池的工艺计算 (20)3.8 重力浓缩池的计算 (20)3.8.1设计说明 (20)3.8.2排泥量与存泥容积 (21)3.8.3浓缩池深度 (21)3.8.4出水渠与堰板 (22)3.8.5刮渣设备(浮渣) (22)3.8.6选刮泥机 (22)3.9污泥脱水设计计算 (22)3.9.1压滤机选择 (22)3.9.2 附属设备 (23)3.10 其它构筑物 (23)3.10.1 门卫室 (23)4污水处理厂配套工程设计 (24)4.1厂区平面设计原则 (24)4.2 厂区高程设计 (25)5 环境保护及劳动卫生 (28)5.1.1 项目施工期对环境的影响 (28)6 工程投资估算及效益分析 (30)6.1 投资估算 (30)6.1.1 土建费用估算表 (30)6.1.2 材料及设施费用估算 (31)6.2 运费成本估算 (32)7 结论 (33)参考文献 (34)摘要:CASS是周期循环活性污泥法的简称,是在SBR工艺的基础上发展起来的,即在SBR池内进水端增加了一个生物选择器,实现了连续进水,间歇排水。

CASS

CASS

CASS工艺的设计计算已知条件设计污水量为100000吨每天,设最大设计水深为6m,充水比λ=0.25。

表1-3原水水质参数CASS设计计算本设计只要求硝化处理,不要求进行脱氮处理,查阅相关手册可知:总泥龄采用11d,设计温度按10摄氏度设计;查阅相关资料和借鉴已成功的设计实例:SVI选用140ml/g。

1.选定参数:(1)周期参数周期数:6(1/)=N d周期长:4=Tc h进水时段:2/=周期Tj h反应时段:2/=周期Tf h沉淀时段:1/Ts h =周期 滗水周期:1/Te h =周期 污泥实际沉淀时间:'11.8336Ts Ts Te h =+-=(曝气反应结束后有十分钟的时间内,主反应池内的水处于搅动状态,此时污泥还没有开始沉淀。

) (2) 设计池数量:M=8个; (3) 池水设计深度:H=6m ; (4) 安全高度:Hf=0.5m. 2. 设计水量:设计CASS 池的设计水量:d m Q d /1000003==1157.4 L/s设计地区时变化系数Kz=11.07.2QK h = Kz=24.11157.47.27.211.011.0==Q Q h = K h ×Q d ÷24 = 1.24×100000/24 =5166.67m 3/h高峰时流量:(z K :总变化系数) 单池小时进水量(平均流量):/h m 67.10412861000003ik =⨯⨯=⨯⨯=Tj M N Q Q d反应泥龄:查阅相关设计手册可知:设计水温为10摄氏度时,有硝化的推荐泥龄为11d ,由于CASS 反应池设有前置厌氧生物选择器,污泥沉降性能大为改善,因此反应泥龄取:11CF Q d =。

3. 污泥产率系数:⎥⎦⎤⎢⎣⎡⨯⨯+⨯⨯⨯⨯⨯+⋅=15-15-00072.117.01072.175.017.0)2.0-1(-6.075.0T CF T CF Q Q S X k Y 式中: k ——结合我国情况的修正系数,K=0.9;0X ——进水悬浮固体浓度(mg L )T ——设计水温,与泥龄计算取相同数值;0S ——反应池进水BOD 浓度(mg L )。

CASS工艺设计计算

CASS工艺设计计算

CASS工艺设计计算
南方某城市污水处理厂,分三期建设,一、二期污水处理规模均为20000m3d⁄,后期由于管网系统的完善,污水厂进水量增加,因此,进行污水处理厂三期扩建工程建设,三期污水处理规模为40000m3d⁄。

一、二、三期污水处理主体工艺均采用CASS工艺。

本例题以该污水处理厂一期工程主体工艺计算为例。

一、已知条件
某城市污水处理厂,设计处理水量Q=20000m3d⁄,总变化系数为K z= 1.47。

1.设计进水水质COD=300mg/L,BOD5浓度S0=150mg/L;TSS浓度SS0=150mg/L;VSS=105mg/L(MLVSS/MLSS=0.75);TN=40mg/L;NH3-N=35mg/L;TP=3mg/L;最低水温15℃;最高水温25℃。

2.设计出水水质COD cr=60mg/L;BOD5浓度S e=20mg/L;TSS浓度X e=20mg/L;TN=20mg/L;NH3-N=8mg/L;TP=1mg/L。

试根据以上水质情况设计CASS处理工艺流程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

污水处理厂设计计算书1.污水处理厂处理规模1.1处理规模污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。

1.2污水处理厂处理规模污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。

最高日水量为生活污水最高日设计水量和工业废水的总和。

Q设= Q1+Q2 = 5000+5000 = 10000 m³/d总变化系数:K Z=K h×K d=1.6×1=1.62.城市污水处理工艺流程污水处理厂CASS工艺流程图3.污水处理构筑物的设计3.1泵房、格栅与沉砂池的计算3.1.1 泵前中格栅格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。

在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。

3.1.1.1 设计参数:(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ;(4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个max Q n bhv =式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ;(2)栅槽宽度B ,m取栅条宽度s=0.01mB=S (n -1)+bn(3)进水渠道渐宽部分的长度L 1,m式中,B 1-进水渠宽,m ;α1-渐宽部分展开角度,(°);(4)栅槽与出水渠道连接处的渐窄部分长度L 2,m(5)通过格栅的水头损失h 1,m式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ;k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3;1112tga B B L -=125.0L L =αεsin 2201gv k kh h ==ξ— 阻力系数,与栅条断面形状有关; 设栅条断面为锐边矩形断面,β=2.42 v 2— 过栅流速, m/s ; α — 格栅安装倾角, (°);(6)栅后槽总高度 H ,m取栅前渠道超高20.3h m =21h h h H ++=(7)栅槽总长度L ,m112 1.5 2.0tan H L L L α=++++式中,H 1为栅前渠道深,112H h h =+,m (8)每日栅渣量W ,m 3/dmax 1864001000z Q W W K =式中,1W -为栅渣量,(333/10m m 污水),格栅间隙为16~25mm 时为0.1~0.05,格栅间隙为30~50mm 时为0.03~0.01; K Z -污水流量总变化系数3.1.1.3 设计计算采用两座粗格栅池一个运行,一个备用。

(1)格栅间隙数 n ,个max Q =185.03600246.110000≡⨯⨯3/m s268.04.0021.065sin 185.0=⨯⨯︒⨯=n (个);(2)栅槽宽度 B ,mB=0.01⨯(26-1)+0.021⨯26+0.2=1.01m ; 校核槽内流速:Vc=46.001.14.0185.0=⨯m/s,在0.4~0.9m/s 范围之内,符合。

(3) 进水渠道渐宽部分长度 L 1,mL 1 26.020tan 282.0-01.1=︒=m(4)栅槽与出水渠连接的渐窄部分长度 L 2,mL 2 13.0226.0==m (5)过栅水头损失 h 1,m设栅条断面为锐边矩形断面β=2.42h 1 08.0365sin 8.928.0021.001.042.2234=⨯⨯⨯⨯⎪⎭⎫⎝⎛⨯=o m (6)栅后总高度 H ,m21h h h H ++= =0.4+0.3+0.08=0.78≈0.8m(7)栅槽总长度 L ,mL = 0.26+0.13+0.5+1.0+︒65tan 7.0=2.22m (8)每日栅渣量W ,m 3/dW d m d m /2.0/50.0106.105.086400185.0333>⨯⨯⨯== 宜采用机械清渣。

(9)计算草图如下:3.1.1.4 设备选型中格栅选用BLQ 型格栅除污机,两共四台。

3.1.1.5 粗格栅栅槽尺寸确定3.1.2 进水泵房的确定3.1.2.1设计参数设计流量:最大设计流量为20000m³/d , 平均日设计流量为10000m³/d 。

3.1.2.2设计计算3.1.3 细格栅3.1.3.1 设计参数(1)栅前水深0.4m, 过栅流速0.6~1.0m/s, 取v=0.8m/s ,栅前流速0.4~0.9s m /; (2)栅条净间隙,中格栅b= 3~ 10 mm, 取b=10mm ; (3)栅条宽度s=0.01m ;(4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.8 m ,此时栅槽内流速为0.58 m/s ; (6)单位栅渣量:W 1 =0.1 m 3栅渣/103m 3污水。

3.1.3.2 设计计算 (1)格栅的间隙数n ,个558.04.001.065sin 185.0=⨯⨯︒⨯=n (个)(2)格栅的建筑宽度B ,m取栅条宽度s=0.01m校核槽内流速:Vc=42.009.14.0185.0=⨯m/s,在0.4~0.9m/s 范围之内,符合。

(3)进水渠道渐宽部分长度L 1,m(4)栅槽与出水渠道连接处的渐窄部位长度L 2,m L 2 2.024.0==m(5)通过格栅的水头损失h 1,m取栅条断面为锐边矩形断面 (6)栅后槽总高度H ,m取栅前渠道超高m h 3.02=m h h h H 91.04.021.03.021=++=++=mh 21.0365sin 8.928.0)01.001.0(42.2234=⨯︒⨯⨯⨯⨯=ma B B L 4.020tan 28.009.1tan 2111=⨯-=-=m B09.15501.0)155(01.0=⨯+-⨯=(7)栅槽的总长度L ,m(8)每日栅渣量W ,m 3/d取333110/10.0m m W =污水宜采用机械清栅。

(9)计算草图如下:3.1.1.4 设备选型细格栅选用TGS 型回转式格栅除污机,型号TGS-800,电机功率0.75kW ,格栅间隙10mm ,共两台。

3.1.1.5 粗格栅栅槽尺寸确定3.2调节池的设计计算3.2.1 调节池的选择为了保证后续处理构筑物或设备的正常运行,需对废水的水量和水质进行调节,常用的水量调节池进水为重力流,出水用泵提升,池中最高水位不高于进水管的设计水位,有效水位一般为2~3m ,最低水位为死水位。

此外,酸性废水和碱性废水还可以在调节池内混合以达到中和的目的,短期排出的高温废水也可以利用调节池来降低水温。

因此,调节池具有下列功能:a 减少或防止冲击负荷对处理设备的不利影响;b 使酸性废水和碱性废水得到中和;c 调节水温;d 当处理设备发生故障时,可起到临时的事故贮水池的作用。

欲曝气可以有效地去除一定的COD 、BOD 等。

调节池在结构上可分为砖石结构、混凝结构、钢结构。

目前常用的是利用调节池特殊的结构形式进行差时混合,即水利混合。

主要有对角线出水调节池和折流调节池。

对角线出水调节池,其特点是出水槽沿对角线方向设置,同一时间流入池内的废水,由池的左、右两侧,经过不同时间流到出水槽。

从而达到自动调节、均和调节、均和的目的。

折流调节池,池内设置许多折流隔墙,使废水在池内来回折流。

配水槽设于调节池上,通过许多孔口溢流投配到调节池的各个折流槽内,使废水在池内混合、均衡。

[11] 3.2.2设计参数(1) 调节池有效水深为2.0~5.0m ,取h=4.0m ;dm d m W /2.0/00.110006.18640010.0185.033>=⨯⨯⨯=mL 4.265tan 3.04.00.15.02.04.0=︒+++++=(2) 调节池停留时间4~8 小时,取T=5h;(3) 调节池保护高度0.3~0.5m,取h′=0.3m;(4)设计流量Q = 3000m3/d = 125m3/h ;=0.3m;(5)超高部分:h1(6)设池底为正方形,即长宽尺寸相等;3.2.3池体设计(1)池体容积V(m3)V= (1+k)•Qmax ×T式中: k—池子扩充系数,一般为10~20%,本设计池子扩充系数采用20% V--------调节池容积,m3T--------调节池中污水停留时间,取5h池容积为:V=(1+20%)×416.7×5=2500m3池面积为:A = V/h =2500/3=625m2式中: V--------调节池的有效容积,m3A--------调节池面积,m2h--------有效水深,m,取4.0m(2)设调节池1 座,采用方形池,池长L 与池宽B 相等,则池长: L=A=625=25m,池长取L=25m,池宽取B=25m池总高度:H=h+ h′=4+0.3=4.3m式中 H--------调节池总高,mh--------有效水深,m,取3.0m--------保护高,mh1(3)池子总尺寸为:L×B×H = 25×25×4.3m3(4)在池底设集水坑,水池底以i=0.01 的坡度坡向集水坑。

3.3 平流沉砂池的设计目前,应用较多的陈沙迟池型有平流沉砂池、曝气沉砂池和钟式沉砂池。

本设计中选用平流沉砂池,它具有颗粒效果较好、工作稳定、构造简单、排沙较方便等优点。

3.3.1 设计参数=0.185m3/s;(1)按最大设计流量设计,Qmax(2)设计流量时的水平流速:最大流速为0.3m/s,最小流速0.15m/s,取v=0.20m/s;(3)最大设计流量时,污水在池内停留时间不少于30s一般为30—60s,取t=30s;(4)设计有效水深不应大于1.2m一般采用0.25—1.0m每格池宽不应小于0.6m 取b=0.8m ;(5)沉砂量的确定,城市污水按每10万立方米污水砂量为3立方米,沉砂含水率60%,容重1.5t/立方米,贮砂斗容积按2天的沉砂量计,斗壁倾角55—60度,取600; (6)沉砂池超高不宜小于0.3m ,取h 1=0.3m ;(7)沉砂池不应小于两个,并按并联系列设计,以便可以切换工作。

相关文档
最新文档