八年级第二学期3月份 月考检测数学试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.如图,ABC 是等边三角形,点D .E 分别为边BC .AC 上的点,且CD AE =,点F
是BE 和AD 的交点,BG AD ⊥,垂足为点G ,已知75∠=︒BEC ,1FG =,则2AB 为( )
A .4
B .5
C .6
D .7
2.图中不能证明勾股定理的是( )
A .
B .
C .
D .
3.如图,在四边形ABCD 中,90B C ∠=∠=,DAB ∠与ADC ∠的平分线相交于BC 边上的M 点,则下列结论:①90AMD ∠=;②1=2ADM ABCD
S S ∆梯形;③AB CD AD +=;④M 到AD 的距离等于BC 的1
3
;⑤M 为BC 的中点;其中正确的有( )
A .2个
B .3个
C .4个
D .5个
4.如图,在等腰三角形ABC 中,AC=BC=5,AB=8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,则DE+DF= ( )
A .5
B .8
C .13
D .4.8
5.如图,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45︒,若AD =4,CD =2,则BD 的长为
( )
A .6
B .27
C .5
D .25 6.已知△ABC 的三边分别是6,8,10,则△ABC 的面积是( )
A .24
B .30
C .40
D .48
7.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=︒正方形ADOF 的边长是2,4BD =,则CF 的长为( )
A .6
B .2
C .8
D .10 8.有一个直角三角形的两边长分别为3和4,则第三边的长为( ) A .5
B 7
C 5
D .57
9.在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是( ) A .如果∠A ﹣∠B =∠C ,那么△ABC 是直角三角形 B .如果∠A :∠B :∠C =1:2:3,那么△ABC 是直角三角形
C .如果 a 2:b 2:c 2=9:16:25,那么△ABC 是直角三角形
D .如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠A =90°
10.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为( ) A .5
B .7
C .5或7
D .3或4
二、填空题
11.如图,AB =12,AB ⊥BC 于点B , AB ⊥AD 于点A ,AD =5,BC =10,E 是CD 的中点,则AE 的长是____ ___.
12.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.
13.如图,等腰梯形ABCD 中,//AD BC ,1AB DC ==,BD 平分ABC ∠,
BD CD ⊥,则AD BC +等于_________.
14.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的C 点处的食物,需要爬行的最短路程是___________________(π的值取3).
15.在△ABC 中,若2222
25,75a b a b c -+===,,则最长边上的高为_____. 16.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.
17.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.
18.如图,Rt△ABC 中,∠BCA =90°,AB =5,AC =2,D 为斜边AB 上一动点(不与点
A ,
B 重合),DE ⊥A
C ,DF ⊥BC ,垂足分别为E 、F ,连接EF ,则EF 的最小值是_____.
19.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则
2________BD =.
20.如图,由两个直角三角形和三个正方形组成的图形,已知25AB = ,24AC = 其中阴影部分面积是_____________平方单位.
三、解答题
21.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米. (1)此时梯子顶端离地面多少米?
(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?
22.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处. (1)求BF 的长; (2)求CE 的长.
23.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .
(1)求证:AE =BD ;
(2)试探究线段AD 、BD 与CD 之间的数量关系;
(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.
24.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、
BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.
(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=︒,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转
90︒);