第15章波函数薛定谔方程

合集下载

波函数与薛定谔方程

波函数与薛定谔方程

波函数与薛定谔方程引言:在量子力学中,波函数与薛定谔方程是两个核心概念。

波函数描述了粒子的量子态,而薛定谔方程则给出了波函数的时间演化规律。

本文旨在解释波函数与薛定谔方程的概念,并探讨它们在量子力学中的重要性。

一、波函数的定义与性质:波函数用符号Ψ表示,是随时间和空间变化的数学函数。

对于一个单粒子的量子系统,波函数Ψ(x,t)是描述其位置和时间依赖的函数,其中x表示位置,t表示时间。

波函数的模的平方|Ψ(x,t)|²(也称为概率密度)给出了在某个位置找到粒子的概率。

波函数的归一化要求概率密度在整个空间积分为1,即∫|Ψ(x,t)|²dx = 1。

另外,波函数是复数形式的,通过它可以得到粒子的相位和幅度信息。

二、薛定谔方程及其意义:薛定谔方程是由奥地利物理学家薛定谔于1925年提出的,用于描述量子系统的演化。

薛定谔方程的一般形式为:ih∂Ψ/∂t = HΨ其中,i是虚数单位,h是普朗克常数,Ψ是波函数,H是哈密顿算符。

薛定谔方程可以看作是一个时间演化方程,它告诉我们波函数如何随时间变化。

三、薛定谔方程的解与量子态的演化:薛定谔方程的解Ψ(x,t)给出了波函数在时间和空间上的演化规律。

解薛定谔方程有多种方法,其中最常见的是分离变量法、微扰法和数值计算法。

通过求解薛定谔方程,我们可以得到粒子在不同时间、不同位置的波函数。

薛定谔方程解的平方Ψ(x,t)²表示了在经典条件下,在某个位置x找到粒子的概率密度分布。

波函数的演化规律是通过薛定谢方程来描述的,因此它反映了量子态的演化过程。

波函数的演化可以告诉我们粒子的位置、动量和能量等重要信息。

四、波函数的物理意义:波函数不仅仅是一个数学概念,它具有重要的物理意义。

首先,波函数的平方给出了在某个位置找到粒子的概率密度分布。

这一点与经典物理中的粒子位置概念是不同的,因为在量子力学中,粒子的位置是模糊的,只能通过概率来描述。

其次,波函数还包含了粒子的相位信息。

15.6 波函数 一维定态薛定谔方程

15.6 波函数 一维定态薛定谔方程
k nπ a
2
2mE
2
2
, n 1, 2 ,
En n
π
2 2
,
n 1, 2 ,
2ma
n 为主量子数,表明粒子的能量是量子化的。
大学物理 第三次修订本
13
第15章 量子物理基础
波函数
nπ Ψ n x A sin a
2 a
x , n 1, 2 ,
i t Ψ (r , t ) Ψ (r )e
E
定态薛定谔方程
2m 2 2 2 Ψ( r ) 2 E V Ψ(r ) 0 x y z
2 2 2
若粒子在一维空间运动,则
d Ψ x
2
dx
2

2m
大学物理 第三次修订本
o
a
x
势能曲线
11
第15章 量子物理基础
薛定谔方程
d Ψ x
2
dx
2

2mE
2
Ψ x 0
d Ψ x
2
,0 xa
k Ψ x 0
2
令 k
2 mE
2

dx
2
方程通解
Ψ x A sin kx B cos kx
Ψ 利用边界条件 x = 0, 0 0 , 则 B = 0 。
物质波波函数是复数,它本身并不代表任 何可观测的物理量。 波函数是怎样描述微观粒子运动状态的?
大学物理 第三次修订本
3
第15章 量子物理基础
1926年德国物理学家玻恩提出了物质波的 统计解释:实物粒子的物质波是一种概率波, t 时刻粒子在空间 r 处附近的体积元 dV 中出现的 概率dW与该处波函数绝对值的平方成正比。

波函数 薛定谔方程

波函数 薛定谔方程
2 2
(3)粒子能量 一维运动( 一维运动(沿
E 是一定值
x 轴),V(x) 不显含 t ,一维定态问题
2 d 2 H = +V(x) 2 2m dx
2 d 2ψ(x) +V (x)ψ(x) = Eψ(x) 2 2m dx
d 2ψ(x) 2m + 2 [E V(x)] (x) = 0 ψ 2 dx
ψ1(x) 与 ψ1 (x) 描写粒子的同一个状态
所以只取
n =1
A由归一化条件求出
ψ (x)
2
:粒子出现在附近单位长度间隔中的几率
粒子出现在

x ~ x + dx 之间的几率 dW = ψ(x) dx
2
1 = ∫ ψ (x) dx = ∫0 ψ (x) dx = ∫0 x)

a
2
a
2
a
nπx A sin dx a
2 2
=∫
0
1 2nπx 1 2 a 2nπx a A (1 cos )dx = A (x sin ) 2 a 2 2nπ a 0
2
1 2 = Aa , 2
2 A= a
2 nπx sin ψn (x) = a a 0
0< x <a x < 0, x > a
nπ En = 2ma2
2
2 2
∝ E , E 不再解释为能量密度
2
2
三、波函数的标准条件和归一化条件 经典力学: 某时刻质点在什么位置? 动量是多少? 经典力学: 某时刻质点在什么位置? 动量是多少? 轨迹方程? 轨迹方程? 量子力学: 微观粒子的波函数是什么? 量子力学: 微观粒子的波函数是什么? 粒子出现在空间各点上的几率是多大? 粒子出现在空间各点上的几率是多大? 粒子动量取各种可能数值的几率是多大? 粒子动量取各种可能数值的几率是多大? 某时刻粒子出现在空间各点上的几率是唯一的、完全确定的 某时刻粒子出现在空间各点上的几率是唯一的、 波函数: 波函数:单值函数 某时刻粒子出现在空间各点上的几率是有限的 波函数: 波函数:有限的 粒子出现在空间各点上的几率分布及随时间的变化是连续的 波函数: 波函数:连续的

波函数和薛定谔方程

波函数和薛定谔方程

px ∂ 2Ψ = − Ψ, ∂x 2 h2
2
py ∂ 2Ψ = − Ψ 2 2 ∂y h pz ∂ 2Ψ = − Ψ ∂z 2 h2
2
2
h p2 2 − ∇ Ψ= Ψ 2m 2m (3)
是同一个量子态的不同表述
Ψ (r,t)是以坐标 r 为自变量的波函数, 坐标空间波函数,坐标表象波函数; C(p, t) 是以动量 p 为自变量的波函数, 动量空间波函数,动量表象波函数; 二者描写同一量子状态。
r r Ψ (r , t ) 与 c( p, t ) 有类似的物理意义 r 2 Ψ (r , t ) 是指在t时刻,粒子在r处出现的概率密度 r 2 c( p, t ) 是指在t时刻,粒子具有动量p的概率密度
与能量为E及动量为p 的粒子相联系的波(物质波) h E 的频率及波长为 λ= ν = p i rr h ( p⋅r − Et ) r 自由粒子平面波函数 ψ (r , t ) = Ae h
2.1 波函数的统计解释
另一种理解: 为防止电子间 发生作用,让 电子一个一个 地入射,发现 时间足够长后 的干涉图样和 大量电子同时 入射时完全相 同。(1989) 粒子是基本的,电子的波动性是大量电子之 间相互作用的结果。
2.3 含时薛定谔方程
2.3.1 经典粒子的动力学方程
r r dr t = t 0时刻,已知初态是: r0 , p0 = m dt
t = t0
2r r d r 粒子满足的方程是牛顿 方程: F = m 2 dt
从牛顿方程,人们可以确定以后任何时刻 t 粒子的状态 r 和 p 。因为初条件知道的是坐标及其对时间的一阶导 数,所以方程是时间的二阶常微分方程。
dτ ∫ ∞
→∞
2.2 态叠加原理

大学物理课件:波函数 薛定谔方程

大学物理课件:波函数 薛定谔方程

14.6.2 薛定谔方程
薛定谔方程:适用于低速下微观粒子在力场中运动的 波函数所满足的微分方程称为薛定谔方程. 1.薛定谔方程的建立
a.自由粒子平面波函数:
(x, y,z,t) 0ei[Et(xpx ypy zpz )]/
b.自由粒子的薛定谔方程:
(14.6.4)
2
2 i
2m
t
(14.6.6)
波函数 薛定谔方程 14.6.1 波函数及其统计解释
波函数:由于微观粒子具有波粒二象性,其位置 与动量不能同时确定,所以已无法用经典物理方 法去描述其运动状态,故用波函数描述微观粒子 的运动。
1.经典的波与波函数
机械波:y(x,t) Acos2π(t x )
电磁波:
E ( x,t )
E0
c os 2π(t
c.粒子在外力场中运动且势能为 V
粒子的能量:
E
1 2m
(
px2
py2
pz2
)
V
(x,
y,
z,t)
对应的薛定谔方程:
2
2 V i
2m
t
该方程是关于空间、时间的线性偏微分方程,具有波动 方程的形式。将其应用于微观粒子所得大量结果与实验 符合,薛定谔因此贡献荣获1933年度诺贝尔物理学奖。
2.定态薛定谔方程
例题 14.6.1 设质量为m的粒子沿x轴方向运动,其势
能为:
u(x)
, 0,
x 0,x a 0 x a (14.6.15)
Ep
无限深势阱:该势能如图所示形如一
无限深的阱,故称无限深势阱,本问
题为求解该一维无限深势阱内粒子的
o
ax
波函数。
解:分析 因为势能不随时间变化,故粒子波函数

波函数及薛定谔方程详解课件

波函数及薛定谔方程详解课件

03ቤተ መጻሕፍቲ ባይዱ
CATALOGUE
薛定谔方程在量子力学中的应用
无限深势阱
无限深势阱模型描述粒子被限 制在一定空间范围内运动的情 形,通常用于描述微观粒子在
势能无限高区域的行为。
在无限深势阱中,波函数具有 特定的边界条件,即在势阱边
界处波函数为零。
薛定谔方程在无限深势阱中的 解为分段函数,表示粒子在不 同势阱内的能量状态。
波函数及薛定 谔 方程详解课件
contents
目录
• 波函数简介 • 薛定谔方程概述 • 薛定谔方程在量子力学中的应用 • 波函数与薛定谔方程的关系 • 实验验证与实例分析 • 总结与展望
01
CATALOGUE
波函数简介
波函数的定 义
波函数是一种描述微观粒子状 态的函数,它包含了粒子在空 间中的位置和动量的信息。
06
CATALOGUE
总结与展望
波函数与薛定谔方程的意义
波函数
波函数是描述微观粒子状态的函数, 它包含了粒子在空间中的位置、动量 和自旋等所有信息。通过波函数,我 们可以计算出粒子在给定条件下的行 为和性质。
薛定谔方程
薛定谔方程是描述波函数随时间变化 的偏微分方程,它反映了微观粒子在 运动过程中所遵循的规律。通过求解 薛定谔方程,我们可以预测粒子在不 同条件下的行为和性质。
时间相关形式
在有限域中,薛定谔方程的形式为 ifrac{dpsi}{dt}=Hpsi,其中H为哈密 顿算子。
薛定谔方程的解
分离变量法
对于具有周期性势能的情况,可以将波函数分离为几个独立的函数,分别求解 后再组合得到原方程的解。
微扰法
对于势能存在微小扰动的情况,可以通过微扰法求解薛定谔方程,得到近似解。

波函数薛定谔方程

波函数薛定谔方程

(r .t )
0e
i
(
Et
pr )
波函数Ψ是复数,模的平方可表示为
2 *
5
4 、波函数的统计解释: (1)概率密度: 玻恩假定:概率波的波函数Ψ,模的平方
| r,t|2 r,t* r,t
代表 t 时刻,在空间 r 点处单位体积元中发现一个粒子的概 率,称为概率密度。
t 时刻在空间 r 附近体积 dv 内发现粒子的概率为:
为物质波能够干涉)。
薛定谔提出了波函数Ψ(x,y,z,t)所适用的(在非相对论) 动力学方程:
2 2 U x, y, z,t i
2m
t
(1)式中 2 2 2 2 称之为拉普拉斯算符, x2 y 2 z 2
11
(2)U x, y, z, t
表示微观粒子受到的作用势能,它一般的是 r 和 t 的函数, (3) m 是微观粒子的质量。
薛定谔方程既不能由经典理论导出,也不能用严格的逻辑推 理来证明,它的正确与否只能用实验来验证。
1 、一般的薛定谔方程 微观粒子的运动状态用波函数
Ψ(x,y,z,t)描述,薛定谔认为,这 个波函数应该是适用于微观粒子的波 动方程的一个解。
10
•必须能满足德布罗意波公式的要求,
E , h
h
p
•必须是线性微分方程,即其方程的解必须能满足叠加原理 (因
的原理可以证明它的正确性。 从薛定谔方程得到的结论正确与否,需要用实验事实去验证。
薛定谔方程是量子力学的一条基本假设。
14
例 15-23 将波函数在空间各点的振幅同时增大 D 倍,则粒子在 空间的分布概率将
(A)增大D2倍;(B)增大 2 D 倍;(C)增大 D 倍;(D)不变。

薛定谔方程中的波函数

薛定谔方程中的波函数

薛定谔方程中的波函数薛定谔方程是量子力学中的基本方程之一,它描述了量子体系的演化规律。

量子力学中最基本的物理量是波函数,它可以用来描述量子体系的各种性质和行为。

在薛定谔方程中,波函数是一个核心的概念,本文将从波函数的定义、性质、演化规律以及应用等几个方面对其进行系统的阐述和说明。

一、波函数的定义和基本性质波函数是量子力学中最基本的概念之一,它用来描述量子体系的状态随时间的演化规律。

波函数通常用希腊字母Ψ表示,它是一个复数函数,其物理意义是描述一个粒子在每一时刻所处状态的复振幅。

波函数在空间中的取值,可以用来预测量子体系的各种性质,如位置、动量、能量等。

波函数的基本性质包括归一化、线性叠加和幅角不变性等。

其中,归一化是指波函数必须满足面积归一化条件,即在整个空间中的概率密度值的积分等于1;线性叠加是指若存在两个波函数Ψ1和Ψ2,则它们的线性组合aΨ1+bΨ2也是一个波函数;幅角不变性是指波函数的幅角在空间变换下保持不变。

二、薛定谔方程的基本形式和演化规律薛定谔方程描述了量子体系随时间演化的规律。

它的基本形式是:iℏ∂Ψ/∂t=HΨ其中,H是一个厄米算符,描述了量子体系的哈密顿量;ℏ是普朗克常量除以2π,i是虚数单位。

薛定谔方程中的Ψ是波函数,通过解该方程可以预测量子体系的演化规律和各种性质。

薛定谔方程演化规律的本质是波函数随时间的演化。

根据波函数的定义和基本性质可以证明,在薛定谔方程下,波函数是线性演化的,即任何两个波函数的线性组合仍然是一个波函数;波函数的演化是幅角不变的,即所描述的量子态的物理性质仅仅由波函数的幅值和相位角决定;波函数的演化是量子态最小扰动原理的体现,即量子系统的演化过程总是惟一的,不能出现任何“选择”。

三、波函数在实际中的应用波函数在量子力学中有广泛的应用,如描述原子、分子、固体等物质的量子特性。

其中,波函数在化学中应用最广泛,可以通过使用量子化学方法提供各种分子的基态和激发态的性质,如能量、电子结构和化学反应等。

量子力学电子教案波函数和 薛定谔方程

量子力学电子教案波函数和 薛定谔方程
第二章
波函数和 薛定谔方程
微观粒子的基本属性不能用经典语言确切描述。
量子力学用波函数描述微观粒子的运动状态,波函数所 遵从的方程——薛定谔方程是量子力学的基本方程。 一、 物质波的波函数及其统计解释
1. 波函数: 概率波的数学表达形式, 描述微观客体的运动状态
(r , t ) ( x, y, z, t )
对屏上电子数分布 作概率性描述
一般 t 时刻,到达空间 r(x,y,z)处某体积dV内的粒子数 : 2 d N N | | d V
| ( x, y, z, t ) | *
2
dN N dV
| ( x, y, z, t ) |
2
的物理意义:
• t 时刻,出现在空间(x,y,z)点附近单位体积内的 粒子数与总粒子数之比 • t 时刻,粒子出现在空间(x,y,z)点附近单位体积 内的概率 • t 时刻,粒子在空间分布的概率密度
2. 波函数的强度——模的平方 2 波函数与其共轭复数的积 | | * 例:一维自由粒子:
| ( x, t ) | * 0e
2 i ( E t p x x ) i h ( E t p x x )
0e
0
2
3. 波函数的统计解释
1 2
| | | 1 2 | 1 1 * 2 2 * 1 2 * 1 * 2
2 2
干涉项
4、 波函数的归一化条件和标准条件 归一化条件 粒子在整个空间出现的概率为1
|
V
| dV
2

V
dN N dV

三维定态薛定谔方程
一般形式薛定谔方程

波函数和薛定谔方程

波函数和薛定谔方程

波函数和薛定谔方程薛定谔方程是量子力学中最基本的方程之一,描述了微观粒子的运动和性质。

而波函数则是薛定谔方程的解,通过波函数可以得到粒子的位置、动量等信息。

在量子力学中,波函数起着至关重要的作用,它是一种描述微观量子系统的数学工具。

下面将详细介绍波函数和薛定谔方程的基本概念和性质。

在量子力学中,波函数通常用Ψ(psi)来表示,它是一个关于时间和空间的复数函数。

波函数的模的平方|Ψ|² 可以描述粒子存在于某个位置的概率密度,即波函数的绝对值平方代表了粒子在空间中的分布情况。

波函数Ψ满足归一化条件,即积分∫|Ψ|² dV = 1,其中dV表示体积元素。

这意味着波函数描述的是单位概率密度,即粒子存在于空间中的概率为1。

薛定谔方程是描述波函数随时间演化的方程,一般写为:iℏ∂Ψ/∂t = -ℏ²/2m ∇²Ψ + VΨ其中,i表示虚数单位,ℏ是普朗克常数的约化普朗克常数,m是粒子的质量,∇²是拉普拉斯算子,V是势能函数。

薛定谔方程包含了波函数的时间演化和空间演化,可以描述量子粒子在不同势场中的运动和行为。

波函数的物理意义在于可以通过对波函数的操作得到粒子的物理量。

例如,对波函数Ψ做位置算符作用Ψ(x),可以得到粒子的位置期望值;对波函数Ψ做动量算符作用-iℏ∇Ψ(x),可以得到粒子的动量期望值。

波函数还可以描述量子系统的波包运动、干涉效应等现象,展现了量子力学的奇妙之处。

总之,波函数和薛定谔方程是量子力学中的核心概念和基本方程,它们揭示了微观世界的规律性和奇特性。

通过深入理解和研究波函数和薛定谔方程,可以更好地理解量子世界的奥秘,推动量子科学的发展和应用。

希望本文的介绍对读者有所帮助,激发对量子力学的兴趣和研究。

薛定谔方程

薛定谔方程

E
e2
4π 0 r
0
分离变量法求出方程解:
r,, RrΘ Φ
结论:方程的解可以表示成三个各自具有一个独立 变量的函数的乘积。
讨论: 讨论的依据:① 波函数单值、有限、连续
② 边界条件
(1) 在较远处(r 较大): Rr 0
结论: Rr 是一个关于变量 r 的多项式与一个指
数函数 e(r 为正数)的乘积。
n3 l 1 ml 1
n3 l 1 ml 0
n3 l2 ml 2
n3 l2 ml 1
n3 l2 ml 0
径向概率分布:
0.5
0.4
0.3
0.2
n 1
0.1
0
l 0 r r1
5
10
当 n = 1时,l max = 0, 峰值位置:r = r1
0.2
0.1
n2
0
l 0 r r1
5
10
15
z
Lz 2 Lz
Lz 0 Lz Lz 2
L 6
L
l2
15-9-3 氢原子中电子的概率分布
在氢原子中的空间体积dV内发现电子的概率
2 dV dV R2r2dr Θ2 sin d ΦΦ d
z
n 1 l0 ml 0
n2 l0 ml 0
n2 l 1 ml 1
n2 l 1 ml 0
20
25
r = 9r1
玻尔预言氢原子轨道半径: r n2r1
结论:量子力学认为电子在玻尔轨道上的那些点出 现的概率最大,但是也有可能出现在别处。
§15-10 电子的磁矩 原子的壳层结构
塞曼效应:在磁场中一些光 谱线会发生分裂的现象。
15-10-1 电子的轨道磁矩

波函数和薛定谔方程

波函数和薛定谔方程
d骣b ç r ( x, t ) dx÷ ÷= ç 蝌 桫 a dt
b a
Ò
S
r r r J (r , t ) dS

dJ x ( x, t ) = J x (a, t )- J x (b, t )
J x (a, t )和 J x (b, t ) 分别表示流入和流出Vab
r d 3r r r , t d r=( ) dt 蝌 V
抖 2 y* * y y =y + y 抖 t t t
对于一维的薛定谔方程
抖 ih y ( x, t ) = 抖 t 轾 h2 2 犏 + U ( x, t ) y ( x, t ) 犏 2m x 2 臌
则对于上式,可写为
抖 r ( x, t ) + 抖 t x J x ( x, t ) = 0

ì ï 抖 y ih 2y i ï = - Uy ï 2 ï 抖 t 2m x h ï í ï 抖 y* ih 2 y * i * ï = + U y ï 2 ï t 2m x h ï î 抖
不稳定粒子
发生衰变、或湮灭-再生过程的 粒子,则
P (t ) =

ò
¥
么?
守恒性
归一化条件是非相对论性粒子概率意义 的自然要求,也是薛定谔方程的结果。
r d 3r r r , t d r® 0 ( ) ò dt ¥
ò
+
-
y (x, t ) dx = e- t t
2
P (t )是粒子出现在全空间的概率, t 为粒子衰变的寿命。
算符
在位形空间里,描述动量的函数不再 是一般的函数,而是微分算符
ˆx px ? p - ih ¶ ¶x

普通物理学波函数 薛定谔方程

普通物理学波函数 薛定谔方程


2
i 2 2m x t
2 2
上页
下页
2、一维势场U(x,t)中运动粒子
i E t 2 2 P 2 2 x P2 E Ek U U 2m
2
2 2 U i 2 2m x t
在势场中一维运动的粒子的含时 薛定谔方程
单位体积中出现的概率,又称为概率密度 时刻 t , 粒子在空间
r
处 dV 体积内出现的概率
( r , t ) 不可直接测量!
(r ) (r )
2 可测量——在空间 w( r ) ( r ) 的概率密度。
r 处可观测到粒子
量子力学指出,我们只能判断在一定空间范围发现粒子 的概率,不能确定一个粒子一定在什么地方;只能作某种 可能性的判断,不能做绝对确定性t
三维势场中运动粒子的含时薛定谔方程
上页 下页
定态薛定谔方程 一维:
2 2 U i 2 2m x t
i E t
( x )e

i Et
U E 2 2m x 2 d 2 U E 2 2m d x
2 2 i 2 2m x t 2 U i 2m t
2
一维定态薛定谔方程
d 2 2m 2 ( E U ) 0 2 dx
2m 2 ( E U ) 0
2
三维定态薛定谔方程
上页
下页
奥地利物理学家,1933年诺贝尔物理奖获得者。薛 定谔是著名的理论物理学家,量子力学的重要奠基人之 一,同时在固体的比热、统计热力学、原子光谱及镭的 放射性等方面的研究都有很大成就。 薛定谔的波动力学,是在德布罗意提出的物质波的 基础上建立起来的。他把物质波表示成数学形式,建立 了称为薛定谔方程的量子力学波动方程。薛定谔方程在 量子力学中占有极其重要的地位,它与经典力学中的牛 顿运动定律的价值相似。在经典极限下,薛定谔方程可 薛定谔 以过渡到哈密顿方程。薛定谔方程是量子力学中描述微 Erwin 观粒子(如电子等)运动状态的基本定律,在粒子运动速 Schrö dinger 率远小于光速的条件下适用。 薛定谔对分子生物学的发展也做过工作。由于他的 ( 1887–1961) 影响,不少物理学家参与了生物学的研究工作,使物理 学和生物学相结合,形成了现代分子生物学的最显著的 特点之一。 薛定谔对原子理论的发展贡献卓著,因而于1933年 同英国物理学家狄拉克共获诺贝尔物理奖金。

量子物理基础 15.6 波函数 一维定态薛定谔方程

量子物理基础 15.6 波函数 一维定态薛定谔方程
光 源
N
摄谱仪
v0 +△v v0 v0 - △ v
S z e
磁 矩 r
(2) 解释
• 磁场作用下的原子附加能量 磁矩和角动量的关系
r L
e r µ =− L 2me r
的方向) 向 z 轴(外磁场 B 的方向)投影
µ
e e µz = − Lz = − (mlh) = −ml µB µB ——玻尔磁子 2me 2me r r 由于磁场作用, 由于磁场作用 原子附加能量为 ∆E = −µ ⋅ B= −µ cosθ B l µBB = −µz B = m
2 (k12 − k2 )2 sin 2 (k2a) R= 2 2 2 (k1 − k2 ) sin 2 (k2a) + 4k12k2 2 4k12k2 T= 2 2 2 (k1 − k2 ) sin 2 (k2a) + 4k12k2
U0

E


T + R =1
讨论
0
a
入射粒子一部分透射到达 III 区,另一部分被势垒反射回 I 区 。
N=3000 电子数 N=7 N=70000 N=20000 电子数 N=100 电子 双缝 干涉 图样
• t 时刻 , 粒子在 r 处 dV 内出现的概率 粒子在 r 2 dW =| Ψ(r , t) | dV r * r =Ψ(r , t)Ψ (r , t)dV
r Ψ(r ,t)
r r
o
dV
说明 • t 时刻 , 粒子在 r 处 dV 内出现的概率 粒子在
0 < x < a 区域,定态薛定谔方程为 区域,
d2Ψ( x) 2mE + 2 Ψ( x) = 0 2 dx h

波函数及薛定谔方程

波函数及薛定谔方程

即:
Ψ dV = 1 ∫∫∫
2
波函数归一化条件
波函数满足的条件:单值、有限、连续、 波函数满足的条件:单值、有限、连续、归一 满足的条件
四 薛定谔方程的建立
1、一维自由粒子薛定谔方程的建立 、一维自由粒子薛定谔 薛定 薛定谔方程是量子力学基本假设之一, 薛定谔方程是量子力学基本假设之一,不能理论推导证明 以一维自由粒子为例
2 mE 2mE = k2 2 ℏ
Φ( x) = A sin(kx + ϕ )
(0 < x < a )
d Φ 2 +k Φ =0 2 dx
2
(2)确定常数 A、ϕ ) 势阱无限深 ~ 阱外无粒子
Φ( x) = A sin(kx + ϕ )
(0 < x < a )
Φ (a) = 0
(x≤0 x≥a) 由波函数连续性 连续性, 由波函数连续性, 边界条件 : Φ (0) = 0 ϕ=0 Asinϕ = 0 Asinka =0
-费曼- 费曼-
玻恩( 的波函数统计解释: 玻恩(M..Born)的波函数统计解释 的波函数统计解释
t 时刻粒子出现在空间某点 r 附近体积元 dV
中的概率, 成正比。 中的概率,与波函数平方及 dV 成正比。 内概率: 出现在 dV 内概率:
dW = Ψ ( r , t ) dV
2
dV=dx dy dz 概率密度: 概率密度: w = dW = Ψ ( r , t ) 2 = ΨΨ
用指数形式表示: 用指数形式表示: 波的强度
x
y = Ae
I∝A
−i 2π ( vt − )
λ
)
x
λ
取复数实部

§15-7,8波函数一维定态问题

§15-7,8波函数一维定态问题
(x)2(2/a)si2(n x/a) (2 /2 a )1 [ co 2 x s /a ) (]
当 co2 sx(/a)1时, ( x ) 2 有最大值.
在0≤x≤a范围内可得 2x/a
1 x a
2
5.在一维无限深方势阱中,求得粒子的波函数,
i(x)
2sin nx()(,0xa)
aa
则当
粒子处于1(n1)时,发现粒子概率最大的位置
3
2
1aBiblioteka 20a 22.势垒穿透
经典理论: 1.E >U0的粒子, 能越过。
U ( x) U0 势
2.E <U0的粒子,不能越过。E

量子理论: 1.E > U0 的粒子,也存在被 弹回的概率 —— 反射波。
Oa
2.E < U0 的粒子,也可能 越过势垒到达另一区—— 隧道效应。
隧道效应
3.越过势垒的概率与下式成正比:
d2 d Ψ x2x2m 2 E Ψ x0
Ψ(x)0
ax
令:
2m E 2
k2
(x)A sik n x ()
根据波函数的连续性:
(0)0,(a)0
(0)A sin 0 0
(a ) A sik n a () 0 k a n n1 ,2,3,
En
n2
22
2m a2
——能量量子化, 能级,量子数
(x)Asin n x n1,2,3,
§15-7 波函数 薛定谔方程
薛定谔(Schrödinger 1887–1961) 奥地利物理学家。概率 波动力学的创始人,提 出描述微观粒子运动的 薛定谔方程。1933年获 诺贝尔物理学奖。
微观粒子具有波粒二象性,其运动不能 用经典的坐标、动量、轨道等概念来精确描述。

波函数与薛定谔方程

波函数与薛定谔方程

定态Schr dinger方程的解 Schrödinger 2.定态Schr dinger方程的解 ψ ( x) = 0 x > a (3) 有限, 因 ψ(x) 及 E 有限,由(2) 令 (1)
α
2
2 µE = h2
d 2ψ + α 2ψ ( x) = 0 dx 2
从物理考虑, 从物理考虑,粒 (4) 子不能透过无穷 高的势壁。 高的势壁。 (4) 4
◆ 波函数的标准条件
Chapter 2 The wave function and Schrödinger Equation
r r 2 根据Born统计解释, Born统计解释 ω (1)根据Born统计解释, (r , t ) = ψ (r , t ) 是粒子在 t
r 点的几率,这是一个确定的数, 时刻出现在 r 点的几率,这是一个确定的数,所以 r r 的单值函数且有限。 要求 ψ (r , t ) 应是 (r , t ) 的单值函数且有限。
(6)
nπ αn = 2a
(n为奇数) 为奇数)
(7)
(6)和(7)两式统一写成 (6)和(7)两式统一写成
nπ αn = , 2a
2µ E α = 2 h
2
n = 1,2,3, L
(8)
n2π 2 h2 本征能量: 本征能量: En = 8µ a 2
(9)
11
一维无限深势阱( §2.6 一维无限深势阱(续4)
(3)写出定态波函数 即得到对应第 n 个 本征值 En 的定态波 函数

4.求解定态问题的步骤 4.求解定态问题的步骤
r r Ψ n ( r , t ) = Cnψ n (r ) e

i En t h

波函数和薛定谔方程

波函数和薛定谔方程

波函数和薛定谔⽅程波函数和薛定谔⽅程⼀、波函数的统计解释、叠加原理和双缝⼲涉实验微观粒⼦具有波粒⼆象性(德布罗意假设);德布罗意关系(将描述粒⼦和波的物理量联系在⼀起) k n h p h E ====λων物质波(微观粒⼦—实物粒⼦)引⼊波函数(概率波幅)—描述微观粒⼦运动状态对于微观粒⼦来说,如果不考虑“⾃旋”⼀类的“内禀”态,单值波函数是其物理状态的最详尽描述。

⾄少在⽬前量⼦⼒学框架中,我们不能获得⽐波函数更多的物理信息。

微观粒⼦的状态⽤波函数完全描述——量⼦⼒学中的⼀条基本原理该原理包含三⽅⾯内容:粒⼦的状态⽤波函数表⽰、波函数的统计解释和对波函数性质的要求。

要明确“完全”的含义是什么。

按着波函数的统计解释,波函数统计性的描述体系的量⼦态,若已知单粒⼦(不考虑⾃旋)波函数)(r ψ,则不仅可以确定粒⼦的位置概率分布,⽽且如动量等粒⼦的其它⼒学量的概率分布也均可通过波函数⽽完全确定。

由此可见,只要已知体系的波函数,便可获得该体系的⼀切物理信息。

从这个意义上说,有关体系的全部信息已包含在波函数中,所以说微观粒⼦的状态⽤波函数完全描述。

必须强调指出,波函数给出的有关粒⼦的“信息”本质上是统计性质的。

例如,在适当条件下制备动量为p 的粒⼦,然后测量其空间位置,我们根本⽆法预⾔测量的结果,我们只能知道获得各种可能结果的概率。

很⾃然,⼈们会提出这样的疑问:既然量⼦⼒学只能给出统计结果,那就只需引⼊⼀个概率分布函数(象经典统计⼒学那样),何必假定⼀个复值波函数呢?事实上,引⼊复值波函数的物理基础,乃是量⼦⼒学中的⼜⼀条基本原理——叠加原理。

这条原理告诉我们,两种状态的叠加,绝不是概率相加,数学求和)。

正因如此,在双缝⼲涉实验中,我们才能看见屏上的⼲涉花纹。

实物粒⼦双缝⼲涉实验分析我们⾸先只打开⼀条狭缝,根据粒⼦的波动性,可以预⾔屏上将显⽰波长p / =λ(p 为粒⼦动量)的单缝衍射花纹。

但是,根据粒⼦的微粒性,它们将是⼀个⼀个打上去的,怎样将这两种性质的描述调和起来呢?为此,我们想象将⼊射粒⼦束强度降低,直到只⼀个粒⼦通过狭缝,这时屏上会出现很微弱的衍射花纹吗?当然不会!单个粒⼦只能作为⼀个不可分割的整体打到屏上的⼀个点,从⽽出现⼀个⼩斑点。

波函数 薛定谔方程

波函数  薛定谔方程

玻尔在解释氢原子光谱时就提出了定态的概念雏形.定态也是量子力
学中最重要的概念之一,本节就从薛定谔方程出发,对定态的性质做一些
概括性的讨论.
若势能V(r)与时间无关,则可以设
Ψ(r,t)=Ψ(r)f(t)
(15- 41)
把式(15- 41)代入式(15- 40),得到
波函数 薛定谔方程
两边同除以Ψ(r)f(t),就可以分离变量,即
波函数 薛定谔方程
薛定谔方程描述微观粒子运动的一般方程,自然也可以描 15- 36
解,由式(15- 36)可得
(15- 37)
波函数 薛定谔方程
由式(15- 35)可得
波函数 薛定谔方程
(1)这并不是薛定谔方程的证明,薛定谔方程是量子力学的基本 假定,是对大量实验观测结果的概括,它和经典力学中的牛顿三定律一 样,是不能被证明的.
波函数 薛定谔方程
图15- 13 无限深方势阱中的波函数
波函数 薛定谔方程
图15- 14所示为 无限深方势阱中的粒 子分布密度Ψ2(x).容 易看出,当n→∞时, 粒子分布密度会趋于 均匀,即在大量粒子 数条件下,量子力学 将回到经典情况.
图15- 14 无限深方势阱中的粒子分布密度
谢谢观看
波函数 薛定谔方程
若定态波函数能够满足归一化条件,即
则在无限远处,定态波函数必然迅速趋于0,即粒子不可能出现 在无穷远处,也就是粒子被限制在有限的范围内运动,这种状态就称 为束缚态,否则就称为游离态.
波函数 薛定谔方程
在经典情况下,粒子当然也不能出现在阱外,这一点与量子 力学的解并无区别.若是经典粒子,在阱内各处的势场都为零, 因此粒子在阱内均匀分布.在量子力学情况下,容易解得粒子出 现在各处的概率并不相同,随着位置的变化而变化,即粒子分布 是不均匀的.此外,在经典情况下,粒子的能量可以取任意的有 限值,即粒子的能量是可以连续变化的,但在量子力学情况下, 粒子的能量只能取一系列分立值,即能级是量子化的.图15-13所 示为无限深方势阱中的波函数Ψ(x).

波函数与薛定谔方程

波函数与薛定谔方程

ψ = c1ψ1 + c2ψ2 + − − − + cnψn = ∑cnψn
c1, c2 ,− − −cn为 意 数 任 常
n
波函数遵从叠加原理由实验证实: 波函数遵从叠加原理由实验证实: 以双缝实验为例 1、子弹通过双缝的射击实验 (经典) 经典) 、
a
子弹
P 1 P 2
b
P
P = P + P概 叠 率 加 1 2
等项. 等项
(二),方程应具有粒子各种状态都能满足的普适性质 二 方程应具有粒子各种状态都能满足的普适性质 方程应具有粒子各种状态都能满足的普适性质. 各项系数只能为普适衡量 如 和表示粒子一般属性的量,如 和表示粒子一般属性的量 各项系数只能为普适衡量,如h,和表示粒子一般属性的量 如 普适衡量 m 等,而不能包含仅只表征某特殊状态的量如能量、动量等 而不能包含仅只表征某特殊状态的量如能量、 而不能包含仅只表征某特殊状态的量如能量 动量等.

Ψ(x, t) = Ψ e 0
i − ( Et− px) h


24
∂ψ ∂2ψ ∂ψ 原则: 一 波函数满足叠加原理 可有 原则: (一),波函数满足叠加原理 ,可有 ∂x , ∂x2 , ∂t ,− − − −
等项, 等项 不能含
∂ψ ψ2 , ,− − − − ∂x
2
光子在某处出现的概率和 光子在某处出现的概率和 概率 该处光振幅 平方成正比 振幅的 该处光振幅的平方成正比
4
自由电子的波函数
ψ ( x, y , z , t ) = ψ 0 e
v v i ( p⋅r − Et ) / h
ψ (r , t ) = ψ 02
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海森伯因创立用矩阵数学描述微观粒子运动 规律的矩阵力学,获1932年诺贝尔物理奖。
不确定关系可用来划分经典力学与量子力学的界 限,如果在某一具体问题中,普朗克常数可以看成是 一个小到被忽略的量,则不必考虑客体的波粒二象性, 可用经典力学处理。
三.能量和时间的不确定关系
由坐标——动量的不确定关 系还可以推导出相应的能量与时 间的不确定关系:
x Asinx
a
求:(1)常数A;(2)粒子在0到a/2区域内出现的概率;(3)粒子在何 处出现的概率最大?
解:(1)由归一化条件
2 dx A2 a sin2 x dx 1
0
a
a/2
2 dx
2
a/ 2 sin2 x dx
1
0
a0
a
2
(3)概率最大的位置应该满足
解得
a A2 1 2
“宏观物体只表现出粒子性”
15.6 德布罗意波的统计解释
经典粒子 不被分割的整体,有确定 位置和运动轨道。
经典的波 某种实际的物理量的空间 分布作周期性的变化,波具有相干叠加性。
二 象 性 要求将波和粒子两种对立 的属性统一到同一物体上。
1 从粒子性方面解释
单个粒子在何处出现具有偶然性;大量 粒子在某处出现的多少具有规律性. 粒子在 各处出现的概率不同.
例:某原子的第一激发态的能级宽度为E=6 10-8 eV, 试估算原子处于第一激发态的寿命t。
解:根据时间与能量的不确定关系,
Δt

2ΔE
=
1.05 ×10 -34 2 × 6 ×10 -8 ×1.6 ×10 -19
≈ 1.09 ×10 s(-8 )
用。
Ek
U
P2 2m
U
Ψ
i P2
[ U (x, t)]Ψ
电子束 狭缝
电子的单缝衍射
2 从波动性方面解释
电子密集处,波的强度大;电子稀 疏处,波的强度小.
电子束 狭缝
电子的单缝衍射
3 结论(统计解释)
在某处德布罗意波的强度与粒子在该处 附近出现的概率成正比.
1926 年玻恩提出,德布罗意波为概率波.
一、引入
15.6.2 不确定关系
•经典力学:宏观粒子的运动具有决定性的规律,原 则上说可同时用确定的坐标与确定的动量来描述宏 观物体的运动。
15.5 德布罗意波 波-粒二象性
光(波)具有粒子性
一 德布罗意波
? 实物粒子具有波动性
1924年 ,青年博士研究生德布罗意提出, 德布罗意假设:
不仅光具有波粒二象性,一切实物粒子(如电子、原子、分
子等)也都具有波粒二象性; 具有确定动量 P 和确定能量 E
的实物粒子相当于频率为 和波长为 ν 的波, 二者之间的
因此,将波函数在空间各
波强的绝对值。
点的振幅同时增大 C倍,则
因此,将波函数在空间各
个处的能流密度增大 C2 倍, 变为另一种能流密度分布状
点的振幅同时增大 C倍,不影 响粒子的概率密度分布,即
态。
和C 所描述德布罗意波的状
态相同。
波动方程无归一化问题。
波函数存在归一化问题。
例:作一维运动的粒子被束缚在0<x<a 的范围内,已知其波函数为:
4、波函数应满足的条件
1)标准条件 粒子在某一个时刻t,在空间某点上粒子出现的几
率应该是唯一的、有限的,所以波函数必须是单值的、 有限的;又因为粒子在空间的几率分布不会发生突变, 所以波函数还必须是连续的。
波函数必须满足“单值、有限、连续”的条件,称
为波函数的标准条件。也就是说,波函数必须连续可 微,且一阶导数也连续可微。
这个不确定范围很小,仪器测不出,可见对宏观 物体来说,不确定关系实际上是不起作用的。
例: 电视显象管中电子的加速电压为9kV ,电 子枪的枪口的直径为0.01㎝ 。试求电子射出电子枪后 的横向速度的不确定量。
解: 电子横向位置的不确定量: x 0.01cm
Δυ x

2mΔx
=
1.05 × 10 -34 2 × 9.11 × 10-31 × 1.0 × 10 -4
A 2 a
d 2 2 sin 2x 0
dx
aa
(2)粒子的概率密度为
2 2 sin2 x
aa
即当 2x k , k 0,1,2,
a
时,粒子出现的概率最大。因 为0<x<a,故得x=a/2,此处粒
粒子在0到a/2区域内出现的概率 子出现的概率最大。
二 薛定谔方程的建立
1、一维自由粒子薛定谔方程的建立 薛定谔方程是量子力学基本假设之一,不能理论推导证明
a
x
o
y
第一级的衍射角满足:
sin
a
动量在 Ox轴上的分量的不确定量为:
Px
Px
P sin
P
x
代入德布罗意关系: h 得出:
h Px x

p
x px h
考虑到更高级的衍射图样,则应有:
h
2
x px h
上述讨论只是反映不确定关系的实质,并不 表示准确的量值关系。
1927年德国物理学家海森伯由量子力学得到 位置与动量不确定量之间的关系:
7.3 m s
电子经过加速后出口速度为:
2eU m
21.61019 9103 9.11 10 31
5.6107 m / s
由于 x ,所以电子运动速度相对来说
仍然是相当确定的,波动性不起什么实际影响。
例: 氢原子中电子的速度为 106m/s,原子的线度 约为10-10m,求: 原子中电子速度的不确定量。
W | |2 某一时刻出现在某点附近在体积元 dV 中的粒子
的概率为: dW 2 dV *dV
由此可见,| |2 为粒子在某点附近单位体积内粒子出
现的几率,称为几率密度。即: | |2
波函数不仅把粒子与波统一起来,同时以几率幅(几 率密度幅)的形式描述粒子的量子运动状态。
波函数Ψ(x, y, z, t)的统计解释(哥本哈根解释):波函 数模的平方代表某时刻 t 在空间某点 (x, y, z) 附近单 位体积内发现粒子的概率,即|Ψ| 2 代表概率密度。
Et 2
反映了原子能级宽度△E 和原子在该能级的平均
寿命 △t 之间的关系。
E E 2
E E 2
寿命△t E
光辐射
激发态
平均寿命 t ~ 108s
基 态
能级宽度 E h ~ 108 eV
2t
基态
平均寿命 t
能级宽度 E 0
它能解释谱线的自然宽度
例:一颗质量为10g的子弹,以500m/s的速度飞行, 设速度的不确定量为0. 1% υ ,问在确定该子弹的位 置时,有多大的不确定量?
符合
不符合
不符合
不符合
德布罗意波(概率波)不同于 经典波(如机械波、电磁波)
经典波
德布罗意波
是振动状态的传播
不代表任何物理量的传播
波强(振幅的平方)代 表通过某点的能流密度
波强(振幅的平方)代表粒 子在某处出现的概率密度
能流密度分布取决于空
概率密度分布取决于空间各
间各点的波强的绝对值。
点波强的比例,并非取决于
以一维自由粒子为例
i (EtPx)
Ψ (x,t) Ψ oe
Ψ t
i

oe
i
(
E
t
P
x)
i EΨ
2Ψ x2
P2 2
i (EtPx)
Ψoe
P2 2
Ψ
E
Ek
P2 2m
2 2m
2Ψ x2
i Ψ t
一维自由粒子的 含时薛定谔方程
2、一维势场 U (x,t) 中运动粒子薛定谔方程
E
2)归一化条件
由于粒子必定要在空间中的某一点出现,所以任
意时刻,在整个空间发现粒子的总几率应是1。所以
应有:
| |2 dV 1
V
| |2 dV 1 这称为波函数的归一化条件。
V
量子力学中的波函数具有一个独特的性质:波函 数与波函数/=c(c为任意常数)所描写的是粒 子的同一状态。
原因:粒子在空间各点出现的几率只决定于波函数在 空间各点的相对强度,而不决定于强度的绝对大小。
如果把波函数在空间各点的振幅同时增大一倍, 并不影响粒子在空间各点的几率。所以将波函数乘 上一个常数后,所描写的粒子的状态并不改变。
如果波函数对整个空间的积分值是有限的,但不 为零,则可以适当选取波函数的系数,使这积分值 为1,这个过程称为波函数的归一化过程。
以一维波函数为例,在下述四种函数曲线中,只 有一种符合标准条件
解:子弹速度的不确定量为:
0.1% 0.1% 500 0.5m s1
子弹的动量的不确定量为:
p m 0.01 0.5 5103kg m s1
由不确定关系,可以得到子弹位置的不确定量为:
Δx =
2Δp
=
1.05 × 10 -34 2 × 5 ×10 -3
= 1.05 ×10 m -32
关系如同光子和光波的关系一样, 满足:
E mc2 hν
p mv h
这种和实物粒子相联系的波称为 德布罗意波 或 物质波 。
p mv h
m m0
1 2
如果v c,
h h h 1 2
p m V m0V
德布罗意公式
则:
h
m0 v
例:电子在电场里加速所获得的能量
E
1 2
m0V
B
D K
U
G
M
镍单晶
2、汤姆逊(1927) 电子衍射实验
相关文档
最新文档