圆周运动讲义
《圆周运动》课件
o
匀速圆周运动
物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫做匀速圆周运动。
率
匀速圆周运动中的“匀速”指速度不变吗?
匀速圆周运动是一 种变加速曲线运动
7.思考: (1)匀速圆周运动的定义
(2)匀速圆周运动的运动性质:
描述圆周运动快慢的物理量
1、物理意义:描述质点转过圆心角(绕圆心转动)的快慢。
2.角速度—质点所在的半径转过的角度Δθ跟所用时间Δt的比值。
即:
单位:米/秒,m/s
即:
单位:弧度/秒,rad/s
即:
单位:秒,s
即:
单位:转/秒,r/s
4.频率——1s时间内完成圆周运动的次数。
即:
单位:赫兹,Hz
第1节 圆周运动
物体做半径为 r 的匀速圆周运动:
⑴它运动一周所用的时间叫_______, 用T 表示。
《圆周运动》
一.认识圆弧)、具有周期性
转盘
水流星
地球仪
圆锥摆
在物理学中,把质点的运动轨迹是圆或圆弧的一部分的运动叫做圆周运动。
一、圆周运动的定义:
圆周运动的位置如何确定?如何判断快慢?
时 钟
弧长转角
相同时间内通过的弧长
相同时间内转过的角度
探究
描述快慢的物理量:线速度ν、角速度ω、周期Τ、转速n
周期
2r
2
思考题:
【例题】机械手表的时针、分针、秒针的角速度之比:
A.1:60:30 B.1:12:360
C.1:12:720 D.1:60:720
第1节 描述圆周运动
【例题】物体做匀速圆周运动时,下列哪些量不变?
4、单位 m/s
5、矢量 方向:沿圆 周该点的切线方向
圆周运动讲义
第3讲 圆周运动一、匀速圆周运动及描述 1.匀速圆周运动(1)定义:做圆周运动的物体,若在任意相等的时间内通过的圆弧长相等,就是匀速圆周运动. (2)特点:加速度大小不变,方向始终指向圆心,是变加速运动. (3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心. 2.运动参量自测 (多选)一质点做匀速圆周运动,其线速度大小为4 m/s ,转动周期为2 s ,则( ) A .角速度为0.5 rad/s B .转速为0.5 r/s C .轨迹半径为4π m D .加速度大小为4π m/s 2二、匀速圆周运动的向心力 1.作用效果向心力产生向心加速度,只改变速度的方向,不改变速度的大小. 2.大小F n =m v 2r =mrω2=m 4π2T2r =mωv =4π2mf 2r .3.方向始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力. 4.来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供.判断正误 (1)物体做匀速圆周运动时,因向心力总是沿半径指向圆心,且大小不变,故向心力是一个恒力.( )(2)物体做匀速圆周运动时,因向心力指向圆心,且与线速度方向垂直,所以它不能改变线速度的大小.( ) (3)物体做匀速圆周运动时,向心力由物体所受的合外力提供.( ) 三、离心运动和近心运动1.离心运动:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动. 2.受力特点(如图1)(1)当F =0时,物体沿切线方向飞出; (2)当0<F <mrω2时,物体逐渐远离圆心;(3)当F >mrω2时,物体逐渐向圆心靠近,做近心运动.3.本质:离心运动的本质并不是受到离心力的作用,而是提供的力小于做匀速圆周运动需要的向心力.1.对公式v =ωr 的理解当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比. 2.对a n =v 2r=ω2r 的理解在v 一定时,a n 与r 成反比;在ω一定时,a n 与r 成正比. 3.常见的传动方式及特点(1)皮带传动:如图2甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B .(2)摩擦传动和齿轮传动:如图3甲、乙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B .(3)同轴转动:如图4甲、乙所示,绕同一转轴转动的物体,角速度相同,ωA =ωB ,由v =ωr 知v 与r 成正比.例1 (多选)(2019·福建漳州市第二次教学质量监测)明代出版的《天工开物》一书中记载:“其湖池不流水,或以牛力转盘,或聚数人踏转.”并附有牛力齿轮翻车的图画如图5所示,翻车通过齿轮传动,将湖水翻入农田.已知A 、B 齿轮啮合且齿轮之间不打滑,B 、C 齿轮同轴,若A 、B 、C 三齿轮半径的大小关系为r A >r B >r C ,则( )A .齿轮A 、B 的角速度相等B .齿轮A 的角速度比齿轮C 的角速度小 C .齿轮B 、C 的角速度相等D .齿轮A 边缘的线速度比齿轮C 边缘的线速度小变式1 (多选)如图6所示,有一皮带传动装置,A 、B 、C 三点到各自转轴的距离分别为R A 、R B 、R C ,已知R B =R C =R A2,若在传动过程中,皮带不打滑.则( )A .A 点与C 点的角速度大小相等B .A 点与C 点的线速度大小相等C .B 点与C 点的角速度大小之比为2∶1D .B 点与C 点的向心加速度大小之比为1∶41.向心力来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.运动模型运动模型向心力的来源图示飞机水平转弯火车转弯圆锥摆飞车走壁汽车在水平路面转弯水平转台(光滑)3.分析思路例2(多选)(2019·安徽合肥市第二次质检)如图7所示为运动员在水平道路上转弯的情景,转弯轨迹可看成一段半径为R的圆弧,运动员始终与自行车在同一平面内.转弯时,只有当地面对车的作用力通过车(包括人)的重心时,车才不会倾倒.设自行车和人的总质量为M,轮胎与路面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g.下列说法正确的是()A.车受到地面的支持力方向与车所在平面平行B.转弯时车不发生侧滑的最大速度为μgRC.转弯时车与地面间的静摩擦力一定为μMgD.转弯速度越大,车所在平面与地面的夹角越小变式2如图8所示,长度不同的两根轻绳L 1与L2,一端分别连接质量为m1和m2的两个小球,另一端悬于天花板上的同一点O,两小球质量之比m1∶m2=1∶2,两小球在同一水平面内做匀速圆周运动,绳L1、L2与竖直方向的夹角分别为30°与60°,下列说法中正确的是()A.绳L1、L2的拉力大小之比为1∶3B.小球m1、m2运动的向心力大小之比为1∶6C.小球m1、m2运动的向心加速度大小之比为1∶6D.小球m1、m2运动的线速度大小之比为1∶2例3(多选)(2019·天津市南开区下学期二模)飞机飞行时除受到发动机的推力和空气阻力外,还受到重力和机翼的升力,机翼的升力垂直于机翼所在平面向上,当飞机在空中盘旋时机翼倾斜(如图9所示),以保证重力和机翼升力的合力提供向心力.设飞机以速率v在水平面内做半径为R的匀速圆周运动时机翼与水平面成θ角,飞行周期为T.则下列说法正确的是()A.若飞行速率v不变,θ增大,则半径R增大B.若飞行速率v不变,θ增大,则周期T增大C.若θ不变,飞行速率v增大,则半径R增大D.若飞行速率v增大,θ增大,则周期T可能不变拓展点实验:探究影响向心力大小的因素例4(2019·福建泉州市5月第二次质检)某同学做验证向心力与线速度关系的实验.装置如图10所示,一轻质细线上端固定在力传感器上,下端悬挂一小钢球.钢球静止时刚好位于光电门中央.主要实验步骤如下:①用游标卡尺测出钢球直径d;②将钢球悬挂静止不动,此时力传感器示数为F1,用米尺量出线长L;③将钢球拉到适当的高度处静止释放,光电门计时器测出钢球的遮光时间为t,力传感器示数的最大值为F2;已知当地的重力加速度大小为g,请用上述测得的物理量表示:(1)钢球经过光电门时的线速度表达式v=________,向心力表达式F向=m v2 R=________;(2)钢球经过光电门时所受合力的表达式F合=________;(3)若在实验误差允许的范围内F向=F合,则验证了向心力与线速度的关系.该实验可能的误差有:________________________________________________________________________.(写出一条即可)1.运动特点(1)竖直面内的圆周运动一般是变速圆周运动.(2)只有重力做功的竖直面内的变速圆周运动机械能守恒.(3)竖直面内的圆周运动问题,涉及知识面比较广,既有临界问题,又有能量守恒的问题,要注意物体运动到圆周的最高点的速度.(4)一般情况下,竖直面内的圆周运动问题只涉及最高点和最低点的两种情形.2.常见模型物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道运动的“过山车”等球与杆连接、球在光滑管道中运动等图示受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F弹=mv2R mg±F弹=mv2R临界特征F弹=0mg=mv min2R即v min=gRv=0即F向=0F弹=mg过最高点的条件在最高点的速度v≥gR v≥0模型归纳轻绳模型轻杆模型例5(2019·福建龙岩市期末质量检查)如图11甲所示,轻绳一端固定在O点,另一端固定一小球(可看成质点),让小球在竖直平面内做圆周运动.改变小球通过最高点时的速度大小v,测得相应的轻绳弹力大小F,得到F-v2图象如图乙所示,已知图线的延长线与纵轴交点坐标为(0,-b),斜率为k.不计空气阻力,重力加速度为g,则下列说法正确的是()A.该小球的质量为bgB.小球运动的轨迹半径为bkgC.图线与横轴的交点表示小球所受的合外力为零D.当v2=a时,小球的向心加速度为g模型2球—杆模型例6(2020·四川绵阳市诊断)如图12所示,轻杆长3L,在杆两端分别固定质量均为m的球A和B,光滑水平转轴穿过杆上距球A为L处的O点,外界给系统一定能量后,杆和球在竖直平面内转动,球B运动到最高点时,杆对球B恰好无作用力.忽略空气阻力,重力加速度为g,则球B在最高点时()A.球B的速度为零B.球A的速度大小为2gLC.水平转轴对杆的作用力为1.5mg D.水平转轴对杆的作用力为2.5mg变式3一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直面内做半径为R的圆周运动,如图13所示,重力加速度为g,则下列说法正确的是()A.小球过最高点时,杆所受到的弹力可以等于零B.小球过最高点的最小速度是gRC.小球过最高点时,杆对球的作用力一定随速度增大而增大D.小球过最高点时,杆对球的作用力一定随速度增大而减小模型3凹形桥与拱形桥模型概述当汽车通过凹形桥的最低点时,向心力F向=F N-mg=mv2r规律桥对车的支持力F N=mg+mv2r>mg,汽车处于超重状态概述当汽车通过拱形桥的最高点时,向心力F向=mg-F N=mv2r规律桥对车的支持力F N=mg-mv2r<mg,汽车处于失重状态.若v=gr,则F N=0,汽车将脱离桥面做平抛运动例7相等,汽车通过拱形桥桥顶时,对桥面的压力大小F N1为车重的一半,汽车通过圆弧形凹形桥的最低点时,对桥面的压力大小为F N2,则F N1与F N2之比为()A.3∶1 B.3∶2 C.1∶3 D.1∶21.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力.(1)如果只是摩擦力提供向心力,则最大静摩擦力F m=m v2r,静摩擦力的方向一定指向圆心.(2)如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其中一个物体存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心.2.与弹力有关的临界极值问题(1)压力、支持力的临界条件是物体间的弹力恰好为零.(2)绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力.例8(多选)如图14所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是()A.当ω>2Kg3L时,A、B相对于转盘会滑动B.当ω>Kg2L,绳子一定有弹力C.ω在Kg2L<ω<2Kg3L范围内增大时,B所受摩擦力变大D.ω在0<ω<2Kg3L范围内增大时,A所受摩擦力一直变大变式4(多选)质量为m的小球由轻绳a和b分别系于一轻质细杆的A点和B点,如图15所示,绳a与水平方向成θ角,绳b在水平方向且长为l,当轻杆绕轴AB以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,重力加速度为g,则下列说法正确的是()A.a绳的张力不可能为零B.a绳的张力随角速度的增大而增大C.当角速度ω>gl tan θ,b绳将出现弹力D.若b绳突然被剪断,则a绳的弹力一定发生变化1.(2020·河北邢台市调研)如图1所示为公路自行车赛中运动员在水平路面上急转弯的情景,运动员在通过弯道时如果控制不当会发生侧滑而摔离正常比赛路线,将运动员与自行车看做一个整体,下列论述正确的是()A.运动员转弯所需向心力由地面对车轮的支持力与重力的合力提供B.运动员转弯所需向心力由地面对车轮的摩擦力提供C.发生侧滑是因为运动员受到的合力方向背离圆心D.发生侧滑是因为运动员受到的合力大于所需的向心力2.(多选)(2020·辽宁丹东市质检)在如图2所示的齿轮传动中,三个齿轮的半径之比为2∶3∶6,当齿轮转动的时候,关于小齿轮边缘的A点和大齿轮边缘的B点,()A.A点和B点的线速度大小之比为1∶1B.A点和B点的角速度之比为1∶1C.A点和B点的角速度之比为3∶1D.以上三个选项只有一个是正确的3.(多选)在修筑铁路时,弯道处的外轨会略高于内轨.如图3所示,当火车以规定的行驶速度转弯时,内、外轨均不会受到轮缘的挤压,设此时的速度大小为v,重力加速度为g,两轨所在面的倾角为θ,则()A.该弯道的半径r=v2g tan θB.当火车质量改变时,规定的行驶速度大小不变C.当火车速率大于v时,内轨将受到轮缘的挤压D.当火车速率大于v时,外轨将受到轮缘的挤压4.未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图4所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是() A.旋转舱的半径越大,转动的角速度就应越大B.旋转舱的半径越大,转动的角速度就应越小C.宇航员质量越大,旋转舱的角速度就应越大D.宇航员质量越大,旋转舱的角速度就应越小5.(2019·辽宁沈阳市第一次质检)我国高铁技术发展迅猛,目前处于世界领先水平,已知某路段为一半径为5 600米的弯道,设计时速为216 km/h(此时车轮轮缘与轨道间无挤压),已知我国的高铁轨距约为1 400 mm,且角度较小时可近似认为tan θ=sin θ,重力加速度g等于10 m/s2,则此弯道内、外轨高度差应为()A.8 cm B.9 cm C.10 cm D.11 cm6.(多选)(2019·四川南充市第一次高考适应性考试)如图5所示,A、B两个物体放在水平旋转的圆盘上,A的质量是m,B的质量为2m,B离轴距离为R,A离轴距离为2R,在转盘转速增加的过程中,两物体始终相对盘静止,则()A.A与B的线速度大小之比为2∶1B.A与B的角速度之比为1∶1C.A与B的向心加速度大小之比为1∶1D.摩擦力对物体做正功7.(2019·四川遂宁市三诊)如图6所示,图(a)中甲汽车在水平路面上转弯行驶,图(b)中乙汽车在倾斜路面上转弯行驶.关于两辆汽车的受力情况,以下说法正确的是()A.两车都受到路面竖直向上的支持力作用B.两车都一定受平行路面指向弯道内侧的摩擦力C.甲车可能不受平行路面指向弯道内侧的摩擦力D.乙车可能受平行路面指向弯道外侧的摩擦力8.(多选)(2019·四川成都七中5月测试)天花板下悬挂的轻质光滑小圆环P可绕过悬挂点的竖直轴无摩擦地旋转.一根轻绳穿过P,两端分别连接质量为m1和m2的小球A、B(m1≠m2).设两球同时做如图7所示的圆锥摆运动,且在任意时刻两球均在同一水平面内,则()A.两球运动的周期相等B.两球的向心加速度大小相等C.球A、B到P的距离之比等于m2∶m1D.球A、B到P的距离之比等于m1∶m29.(2019·山东滨州市上学期期末)利用如图8实验装置可验证做匀速圆周运动的物体所受合外力与所需向心力的“供”“需”关系,启动小电动机带动小球做圆锥摆运动,不计一切阻力,移动水平圆盘,当盘与球恰好相切时关闭电动机,让球停止运动,悬线处于伸直状态.利用弹簧秤水平径向向外拉小球,使小球恰好离开圆盘且处于静止状态时,测出水平弹力的大小F.(1)为算出小球做匀速圆周运动时所需向心力,下列物理量还应该测出的有________.A.用秒表测出小球运动周期TB.用刻度尺测出小球做匀速圆周运动半径rC.用刻度尺测出小球到线的悬点的竖直高度hD.用天平测出小球质量m(2)小球做匀速圆周运动时,所受重力与线拉力的合力大小________弹簧秤测出F大小.(选填“大于”“等于”或“小于”)(3)当所测物理量满足________________关系式时,则做匀速圆周运动的物体所受合外力与所需向心力的“供”“需”平衡.10.(多选)如图9所示,置于竖直面内的光滑金属圆环半径为r,质量为m的带孔小球穿于环上,同时有一长为r的细绳一端系于圆环最高点,另一端系小球,当圆环以角速度ω(ω≠0)绕竖直直径转动时()A.细绳对小球的拉力可能为零B.细绳和金属圆环对小球的作用力大小可能相等C.细绳对小球拉力与小球的重力大小不可能相等D.当ω=2gr时,金属圆环对小球的作用力为零11.(2019·山东济南市上学期期末)如图10所示为固定在水平地面上的圆弧形容器,容器两端A、C在同一高度上,B为容器的最低点,圆弧上E、F两点也处在同一高度,容器的AB段粗糙,BC段光滑.一个可以看成质点的小球,从容器内的A点由静止释放后沿容器内壁运动到F以上、C点以下的H点(图中未画出)的过程中,则()A.小球运动到H点时加速度为零B.小球运动到E点时的向心加速度与运动到F点时大小相等C.小球运动到E点时的切向加速度与运动到F点时大小相等D.小球运动到E点时的切向加速度比运动到F点时的小12.(多选)摩擦传动是传动装置中的一个重要模型,如图11所示的两个水平放置的轮盘靠摩擦力传动,其中O、O′分别为两轮盘的轴心,已知两个轮盘的半径比r甲∶r乙=3∶1,且在正常工作时两轮盘不打滑.今在两轮盘上分别放置两个同种材料制成的完全相同的滑块A、B,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O、O′的间距R A=2R B.若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是()图11A.滑块A和B在与轮盘相对静止时,角速度之比为ω甲∶ω乙=1∶3B.滑块A和B在与轮盘相对静止时,向心加速度大小的比值为a A∶a B=2∶9C.转速增加后滑块B先发生滑动D.转速增加后两滑块一起发生滑动。
高考物理 圆周运动讲义
2011高考物理圆周运动讲义温故自查1.线速度(1)物理意义:描述质点沿圆周运动的快慢.(2)方向:质点在圆弧某点的线速度方向沿圆弧该点的方向.(3)大小:v=(s是t时间内通过的弧长).切线2.角速度(1)物理意义:描述质点绕圆心转动的快慢.(2)大小:ω=(rad/s),φ是连结质点和圆心的半径在t时间内转过的角度.3.周期T、频率f做圆周运动的物体运动一周所用的叫周期.做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速.4.v、ω、f、T的关系时间考点精析描述圆周运动的物理量有线速度、角速度、周期、频率、向心加速度五个物理量,线速度描述质点沿圆周运动的快慢,角速度描述质点绕圆心转动的快慢,周期和频率表示质点做圆周运动的快慢,向心加速度描述线速度方向变化的快慢.其中T、f、ω三个量是密切相关的,任意一个量确定,其它两个量就是确定的,其关系为当T、f、ω一定时,线速度v还与r有关,r越大,v越大;r越小,v越小.向心加速度是按效果命名的,总是指向圆心,方向时刻在变化,是一个变加速度.当ω一定时,a与r成正比,当v一定时,a与r成反比,关系式为a==ω2r.注意对公式中v、r的理解,严格地说,v是相对圆心的速度,r是物体运动轨迹的曲率半径.温故自查匀速圆周运动的向心力,是按作用效果命名的,其动力学效果在于向心加速度,即只改变线速度方向,不会改变线速度的大小.表达式:对于做匀速圆周运动的物体其向心力应由其所受合外力提供,mω2r考点精析1.向心力的作用效果:产生向心加速度以不断改变物体的线速度方向,维持物体做圆周运动.2.向心力的来源向心力可以是重力、弹力、摩擦力等各种力,也可以是各力的合力或某力的分力,总之,只要达到维持物体做圆周运动效果的力,就是向心力.向心力是按力的作用效果来命名的.对各种情况下向心力的来源应明确.如:水平圆盘上跟随圆盘一起匀速转动的物体[如图(a)]和水平地面上匀速转弯的汽车,其摩擦力是向心力;圆锥摆[如图(b)]和以规定速度转弯的火车,向心力是重力与弹力的合力.3.圆周运动中向心力的分析(1)匀速圆周运动:物体做匀速圆周运动时受到的外力的合力就是向心力,向心力大小不变,方向始终与速度方向垂直且指向圆心,这是物体做匀速圆周运动的条件.(2)变速圆周运动:在变速圆周运动中,合外力不仅大小随时间改变,其方向也不沿半径指向圆心.合外力沿半径方向的分力(或所有外力沿半径方向的分力的矢量和)提供向心力,使物体产生向心加速度,改变速度的方向,合外力沿轨道切线方向的分力,使物体产生切向加速度,改变速度的大小.4.圆周运动中的动力学方程无论是匀速圆周运动,还是非匀速圆周运动,向心力和向心加速度关系仍符合牛顿第二定律即:温故自查1.定义做匀速圆周运动的物体,在合外力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐圆心的运动,叫做离心运动.远离2.离心运动的应用和危害利用离心运动制成离心机械,如:离心干燥器、洗衣机的脱水筒等.汽车、火车转弯处,为防止离心运动造成的危害,一是限定汽车和火车的转弯速度不能太;二是把路面筑成外高内低的斜坡以向心力.大增大考点精析物体做离心运动的条件:(1)做圆周运动的物体,由于本身具有惯性,总是想沿着切线方向运动,只是由于向心力作用,使它不能沿切线方向飞出,而被限制着沿圆周运动,如图中B情形所示.(2)当产生向心力的合外力消失,F=0,物体便沿所在位置的切线方向飞出去,如图中A所示.(3)当提供向心力的合外力不完全消失,而只是小于应当具有的向心力F′=mrω2,即合外力不足以提供所需的向心力的情况下,物体沿切线与圆周之间的一条曲线运动,如图中C 所示.命题规律同轴转动或皮带传动过程中,确定线速度、角速度、向心加速度之间的关系.[考例1]某种变速自行车,有六个飞轮和三个链轮,如图所示,链轮和飞轮的齿数如下表所示,前、后轮直径约为660mm,人骑该车行进速度为4m/s时,脚踩踏板做匀速圆周运动的角速度最小值约为()A.1.9rad/s B.3.8rad/sC.6.5rad/s D.7.1rad/s[解析]车行驶速度与前、后车轮边缘的线速度相等,故后轮边缘的线速度为4m/s,后轮的角速度飞轮与后轮为同轴装置,故飞轮的角速度ω1=ω=12rad/s,飞轮与链轮是用链条连接的,故链轮与飞轮线速度相同,所以ω1r1=ω2r2,r1,r2分别为飞轮和链轮的半径,因此周长L=NΔL=2πr,N为齿数,ΔL为两邻齿间的弧长,故r∝N,所以ω1N1=ω2N2.[答案] B[总结评述]皮带传动、齿轮传动装置,两轮边缘各点的线速度大小相等,根据v=ωr、a =v2/r即可讨论两轮的角速度和边缘的向心加速度的关系.在同一轮上,各点的角速度相同,根据v=ωr、a=ω2r即可讨论轮上各点的线速度和向心加速度的关系.如图所示,甲、乙、丙三个轮子依靠摩擦传动,相互之间不打滑,其半径分别为r1、r2、r3.若甲轮的角速度为ω1,则丙轮的角速度为()[解析]对甲轮边缘的线速度v1=r1ω1对乙轮边缘的线速度v2=r2ω2对丙轮边缘的线速度v3=r3ω由各轮边缘的线速度相等得:r1ω1=r2ω2=r3ω3[答案] A命题规律物体在水平面内做匀速圆周运动,确定轨道平面,确定圆心位置,确定向心力的方向,根据牛顿运动定律,求向心力或向心加速度、线速度、角速度.[考例2]如图所示,质量M=0.64kg的物体置于可绕竖直轴匀速转动的平台上,M用细绳通过光滑的定滑轮与质量为m=0.3kg的物体相连.假定M与轴O的距离r=0.2m,与平台的最大静摩擦力为2N.为使m保持静止状态,水平转台做圆周运动的角速度ω应在什么范围?(g=10m/s2)[解析]m保持静止状态时,M做圆周运动的半径不变,M的向心力由绳的拉力和静摩擦力的合力提供,由于静摩擦力的大小、方向不定,所以存在临界问题.当ω最小时,M受到的最大静摩擦力的方向与拉力的方向相反,则有mg-F fm=代入数据得ω1=2.80rad/s当ω增大时,静摩擦力减小,当ω′=4.84rad/s时,静摩擦力为零.当ω继续增大时,M受到的静摩擦力方向反向,与拉力方向相同,静摩擦力与拉力的合力提供做圆周运动的向心力.当ω最大时有mg+F fm=Mωr代入数据得ω2=6.25rad/s因此ω的取值范围为2.80rad/s≤ω≤6.25rad/s[答案] 2.80rad/s≤ω≤6.25rad/s一个圆盘在水平面内匀速转动,角速度是4 rad/s.盘面上距圆盘中心0.10m的位置有一个质量为0.10kg的小物体能够随圆盘一起运动,如下图所示.(1)求物体做匀速圆周运动时所受向心力的大小.(2)关于物体的向心力,甲、乙两人有不同意见:甲认为该向心力等于圆盘对物体的静摩擦力,指向圆心;乙认为物体有向前运动的趋势, 摩擦力方向和相对运动趋势的方向相反,即向后,而不是和运动方向垂直,因此向心力不可能是静摩擦力.你的意见是什么?说明理由.[解析](1)根据牛顿第二运动定律得:F=mω2r=0.1×42×0.1N=0.16N.(2)甲的意见是正确的.静摩擦力的方向与物体相对接触面运动的趋势方向相反.设想一下,如果在运动过程中,转盘突然变得光滑了,物体将沿轨迹切线方向滑动,这就如同在光滑的水平面上,一根细绳一端固定在竖直立柱上,一端系一小球,让小球做匀速圆周运动,突然剪断细绳一端,小球将沿轨迹切线方向飞出.这说明物体在随转盘匀速转动的过程中,相对转盘有沿半径向外的运动趋势.[答案](1)0.16 N(2)同意甲的意见命题规律(1)根据物体在竖直平面内做圆周运动的临界条件,确定物体在最高点或最低点的速度大小或物体受力情况.(2)根据物体在竖直平面内做圆周运动的速度,由牛顿运动定律确定物体所受合力或物体所受的压力或拉力.[考例3]如图所示,LMPQ是光滑轨道,LM水平,长为5.0m,MPQ是一半径为R=1.6m 的半圆,QOM在同一竖直线上,在恒力F作用下,质量m=1kg的物体A由静止开始运动,当达到M时立即停止用力.欲使A刚好能通过Q点,则力F大小为多少?(取g=10m/s2)[解析]物体A经过Q点时,其受力情况如图所示.由牛顿第二定律得mg+F N=物体A刚好过Q点时有F N=0=4m/s对物体从L到Q全过程,由动能定理得Fx LM-2mgR=m v2解得F=8N.[答案]8N[总结评述](1)正确理解A物体“刚好能通过Q点”的含义是解决本题的关键.常用来表达临界状态的词语还有“恰好”“恰能”“至少”“至多”等,同学们在审题时必须高度注意.小球沿圆弧M→P→Q通过最高点Q时,应服从圆周运动的规律,即应从向心力与线速度的关系求解小球经过Q点的临界速度.(2)圆周运动常与机械能守恒定律、动能定理、电荷在磁场中的偏转等知识相联系,构成综合性较强的题目.如图所示的“S”形玩具轨道,该轨道是用内壁光滑的薄壁细圆管弯成,固定在竖直平面内,轨道弯曲部分是由两个半径相等的半圆连接而成,圆半径比细管内径大得多,轨道底端与水平地面相切.弹射装置将一个小球(可视为质点)从a点水平弹射向b点并进入轨道,经过轨道后从P点水平抛出.已知小物体与地面ab段间的动摩擦因数μ=0.2,不计其他机械能损失,ab段长L=1.25m,圆的半径R=0.1m,小物体质量m=0.01kg,轨道质量为M=0.15kg,g=10m/s2.求:(1)若v0=5m/s,小物体从P点抛出后的水平射程;(2)若v0=5m/s,小物体经过轨道的最高点时管道对小物体作用力的大小和方向;(3)设小球进入轨道之前,轨道对地面的压力大小等于轨道自身的重力.当v0至少为多大时,可出现轨道对地面的瞬时压力为零.[解析](1)小物体运动到P点时的速度大小为v,对小物体由a点运动到P点过程应用动能定理得小物体自P点做平抛运动,设运动时间为t,水平射程为s,则:(2)设在轨道最高点时管道对小物体的作用力大小为F,取竖直向下为正方向F+mg=联立代入数据解得F=1.1N,方向竖直向下.(3)分析可知,要使小球以最小速度v0运动,且轨道对地面的压力为零,则小球的位置应该在“S”形轨道的中间位置,设此时速度为v1,解得:v0=5m/s.[答案](1)0.4 m(2)1.1N方向竖直向下(3)5m/s命题规律生活中的圆周运动随处可见,和分析一般圆周运动类似,对物体正确的受力分析,确定向心力、轨迹圆是求解的关键.[考例4]铁路转弯处的弯道半径r是由地形决定的.弯道处要求外轨比内轨高,其内外轨高度差h的设计不仅与r有关,还取决于火车在弯道处的行驶速率.下面表格中是铁路设计人员技术手册中弯道半径r及与之对应的内外轨道的高度差h.(g取10m/s2)(1)根据表中数据,试导出h和r的关系表达式,并求出当r=440m时,h的设计值;(2)铁路建成后,火车通过弯道时,为保证绝对安全,要求内外轨道均不向车轮施加侧向压力,又已知我国铁路内外轨的间距设计值为L=1435mm,结合表中数据,算出我国火车的转弯速率v(以km/h为单位,结果取整数).(设轨道倾角θ很小时,tanθ≈sinθ)[解析](1)分析表中数据可得,每组h与r的乘积都等于常数C=660×50×10-3m2=33m2,因此,hr=C,得h=当r=440m时,有h==0.075m=75mm(2)若转弯时,内外轨对车轮均没有侧向压力,火车的受力如图甲所示.由牛顿第二定律得mg tanθ=代入数据解得v≈15m/s=54km/h[答案](1)75mm(2)54km/h[总结评述]近几年,人们对交通运输的快捷提出了更高的要求,为了提高运输力,国家对铁路不断进行提速,这就要求铁路转弯处对应的速率也要提高,由题中表达式v=可知,提高速度可采用两种方法:(1)适当增加内外轨的高度差h;(2)适当增加轨道半径r.如图所示,医学上常用离心分离机加速血液的沉淀,其“下沉”的加速度可这样表示:而普通方法靠“重力沉淀”产生的加速度为a′式子中ρ0,ρ分别为液体密度和液体中固体颗粒的密度,r表示试管中心到转轴的距离,ω为转轴角速度,由以上信息回答:(1)当满足什么条件时,“离心沉淀”比“重力沉淀”快?(2)若距离r=0.2m,离心机转速度n=3000r/min,求a a′.[解析](1)比较两个加速度a和a′可知:只要rω2>g,即ω> 离心沉淀就比重力沉淀快.命题规律物体做圆周运动具有周期性,正确分析物体运动过程,确定物体运动的多解.[考例5]在半径为R的水平圆板中心轴正上方高为h处,水平抛出一小球,圆板匀速转动.当圆板半径OA与初速度方向一致时开始抛出小球,如图所示,要使球与圆板只碰一次,且落点为A,则小球的初速度v0为多大?圆板转动的角速度为多大?[解析]对做平抛运动的小球的运动情况分析可得在竖直方向:如图所示,小球从光滑的圆弧轨道下滑至水平轨道末端时,光电装置被触动,控制电路会使转筒立刻以某一角速度匀速连续转动起来.转筒的底面半径为R,已知轨道末端与转筒上部相平,与转筒的转轴距离为L,且与转筒侧壁上的小孔的高度差为h;开始时转筒静止,且小孔正对着轨道方向.现让一小球从圆弧轨道上的某处无初速滑下,若正好能钻入转筒的小孔(小孔比小球略大,小球视为质点,不计空气阻力,重力加速度为g),求:(1)小球从圆弧轨道上释放时的高度H;(2)转筒转动的角速度ω.[解析](1)设小球离开轨道进入小孔的时间为t,则由平抛运动规律得ωt=2nπ(n=1,2,3…).命题规律根据物体受力分析和物体运动情况,确定物体做圆周运动时的角速度(或转速)大小范围.[考例6]如图所示,两绳系一个质量为m=0.1kg的小球,两绳的另一端分别固定于轴的A、B两处,上面绳长L=2m,两绳都拉直时与轴夹角分别为30°和45°,问球的角速度在什么范围内,两绳始终张紧?[解析]两绳张紧时,小球受的力如图所示,当ω由0逐渐增大时,ω可能出现两个临界值.(1)BC恰好拉直,但F2仍然为零,设此时的角速度ω1,则有F x=F1sin30°=mωL sin30°,①F y=F1cos30°-mg=0, ②代入已知解①②得,ω1≈2.40rad/s.(2)AC由拉紧转为恰好拉直,但F1已为零,设此时的角速度为ω2,则有F x=F2sin45°=mωL sin30°,③F y=F2cos45°-mg=0, ④代入已知解③④得ω2≈3.16rad/s.可见,要使两绳始终张紧,ω必须满足2.4rad/s≤ω≤3.16rad/s.[答案] 2.4rad/s≤ω≤3.16rad/s如图所示,把一个质量m=1kg的物体通过两根等长的细绳与竖直杆上A、B两个固定点相连接,绳a、b长都是1 m,AB长度是1.6m,直杆和球旋转的角速度等于多少时,b绳上才有张力?[解析]已知a、b绳长均为1 m,即sinθ=0.6,θ=37°小球做圆周运动的轨道半径b绳被拉直但无张力时,小球所受的重力mg与a绳拉力F Ta的合力F为向心力,其受力分析如图所示,由图可知小球的向心力为F=mg tanθ根据牛顿第二定律得F=mg tanθ=mr·ω2解得直杆和球的角速度为=3.5rad/s.当直杆和球的角速度ω>3.5rad/s时,b中才有张力.[答案]ω>3.5rad/s命题规律考查识别图象、分析物体在各位置的运动状态等主要知识内容.[考例7]如图甲所示,在同一竖直平面内的两条正对着的相同半圆形的光滑轨道,相隔一定的距离,虚线沿竖直方向,一小球能在其间运动,今在最高点与最低点各放一个压力传感器,测试小球对轨道的压力,并通过计算机显示出来,当轨道距离变化时,测得两点压力差与距离x的图象如图乙所示,g取10m/s2,不计空气阻力,求:(1)小球的质量为多少?(2)若小球在最低点B的速度为20m/s,为使小球能沿轨道运动,x的最大值为多少?[解析](1)设轨道半径为R,由机械能守恒定律:由图象可得:截距6mg=6,即m=0.1kg[答案](1)0.1kg(2)15m[总结评述]随着高考改革的深入,新高考更加突出对考生应用能力及创新能力的考查,本题就是构建了新的情景:将常见的竖直平面内的圆周变换成两正对着的相同半圆光滑轨道,同时将环内圆周运动和机械能综合,并结合了利用传感器所得的图象,考查了识别图象、分析小球在各位置的状态(特别是特殊点处,如最高点与最低点)等重要知识内容.在本题中既考查了中学阶段很重要的受力分析能力,又对圆周运动的相关知识进行考查,更重要的是考查了同学们在新情景下构建模型、从图象获取信息进行解题的能力.。
2.1圆周运动讲义
2.1匀速圆周运动一、圆周运动1.定义:质点的轨迹是圆的运动2.特点(1)运动轨迹是圆的。
(2)其速度方向是该点上的切线方向(3)是变速运动:由于速度方向时刻变化,所以是一种变速运动。
3.匀速圆周运动.(1)定义:质点在做圆周运动时,在任意相等时间里,通过的弧长相等的运动。
(2)特点:速度的大小恒定不变,方向时刻变化,是一种变速运动.二、描述匀速圆周运动的物理量1.线速度(1)概念:线速度的大小等于质点通过的弧长s 跟通过这段弧长所用时间t 的比值。
(2)公式:v=s/t(3)物理意义:描述质点沿圆周运动的快慢(4)方向:沿圆周各点的切线方向2.角速度(1)概念:做圆周运动的物体某段时间内转过的角与该段时间t 的比值叫做角速度(2)公式tϕω= (3)物理意义(4)单位 弧度每秒rad/s3.周期①周期T :在国际单位制中,单位是秒(s )。
匀速圆周运动是一种周期性的运动。
②频率f :每秒钟完成圆周运动的转数。
在国际单位制中,单位是赫兹(Hz )。
③转速n :单位时间内做匀速圆周运动的物体转过的转数。
在国际单位制中,单位是转/秒(n/s ).f=n=1/T注意:匀变速直线运动当中线速度大小、角速度、周期、转速不变线速度、角速度、周期之间的关系 三、描述圆周运动各物理量的比较ϕTf n f T rn rf r t l v /122222T πr 2=========πππωππω四、经典例题例1:对于匀变速直线运动,下列物理量不变是( )(多选)A.线速度B.角速度C.周期D.线速度大小例2.关于匀变速圆周运动物体的线速度、角速度、周期的关系,下列说法中正确的是( )A.线速度大的角速度一定大B.线速度大的周期一定小C.角速度大的半径一定小D.角速度大的周期一定小例3.一质点做匀速圆周运动时,它在任意相等时间内( (多选)A.通过的弧长相等B.通过的位移相等C.转过的角速度相等D.速度的变化相等例4.做匀速圆周运动的物体,10s 内沿半径为20m 的圆周运动100m ,试求物体做匀速圆周运动时:(1)线速度的大小.(2)角速度的大小.(3)周期的大小.例5.如右图所示皮带传动装置,主动轴O1上有两上半径分别为R 和r 的轮,O2上的轮半径为r',已知R =2r ,R =r ′,设皮带不打滑,问:ωA ∶ωB =? ωB ∶ωC =? vA ∶vB =? vA ∶vC =?随堂练习图41.下列关于匀速圆周运动的说法中正确的是A.匀速圆周运动是匀速运动B.匀速圆周运动是变加速运动C.匀速圆周运动是匀变速运动D.匀速圆周运动是匀速率运动2.做匀速圆周运动的物体,下列不变的物理量是A .速度B .速率C .角速度D .周期3. 关于角速度和线速度,说法正确的是A .半径一定,角速度与线速度成反比B .半径一定,角速度与线速度成正比C .线速度一定,角速度与半径成正比D .角速度一定,线速度与半径成反比4.如图4所示,地球绕OO ′轴自转,则下列正确的是A .A 、B 两点的角速度相等B .A 、B 两点线速度相等C .A 、B 两点的转动半径相同 D. A 、B 两点的转动周期相同5.下列关于甲乙两个做圆周运动的物体的有关说法正确的是 ( )A.它们线速度相等,角速度一定相等B.它们角速度相等,线速度一定也相等C.它们周期相等,角速度一定也相等D.它们周期相等,线速度一定也相等6.做匀速圆周运动的飞机,运动半径为4000m ,线速度为80m/s ,则周期为______s ,角速度为______rad/s .7.半径为40cm ,转速是1200r/min .求(1)砂轮转动的周期;(2)砂轮转动的角速度;(3)砂轮边缘上一点线速度的大小?8.如图所示,一个圆环绕中心线AB 以一定的角速度转动,下列说法正确的是( )A.PQ 两点的角速度相同B.PQ 两点线速度相同C.PQ 两点角速度之比为1:D.PQ 两点线速度之比为1: 9.甲乙两物体分别做匀速圆周运动,如果它们转动的半径之比为1:5,线速度之比为3:2,33则下列说法正确的是()A.甲乙两物体的角速度之比是15:2B.甲乙两物体的角速度之比是10:3C.甲乙两物体的周期之比是2:15D.甲乙两物体的周期之比是10:310.如果钟表的指针都做匀速圆周运动,钟表上分针的周期和角速度各多大?分针与秒针的角速度之比为多少?11.如图所示,直径为d的纸筒,以角速度绕o轴转动,一颗子弹沿直径水平穿过圆纸筒,先后留下a、b两个弹孔,且oa、ob间的夹角为,则子弹的速度为多少?12.如图所示,A为主动轮,在01、02、03三轮边缘各取一点A、B、C,,已知三个轮的半径之比r1:r2:r3=2:1:1,求:(1) A、B、C三点的线速度大小之比;(2) A、B、C三点的角速度大小之比。
圆周运动(讲义)-【教育机构专用】高三物理寒假讲义
专题09 圆周运动(讲义)
一、核心知识
(一)匀速圆周运动和非匀速圆周运动
1.匀速圆周运动
(1)定义:物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫做匀速圆周运动.
(2)性质:向心加速度大小不变,方向总是指向圆心的变加速曲线运动.
(3)质点做匀速圆周运动的条件
合力大小不变,方向始终与速度方向垂直且指向圆心.
2.非匀速圆周运动
(1)定义:线速度大小、方向均发生变化的圆周运动.
(2)合力的作用
①合力沿速度方向的分量F t产生切向加速度,F t=ma t,它只改变速度的大小.
②合力沿半径方向的分量F n产生向心加速度,F n=ma n,它只改变速度的方向.
(二)圆周运动各物理量间的关系
(三)圆周运动中的运动学分析
(1)对公式v =ωr 的理解
当r 一定时,v 与ω成正比;
当ω一定时,v 与r 成正比;
当v 一定时,ω与r 成反比.
(2)对a =v 2r
=ω2r =ωv 的理解 在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比.
(3)常见的传动方式
①同轴传动:固定在一起共轴转动的物体上各点角速度大小相等,如图所示,ωA。
圆周运动讲义-高一下学期物理人教版必修2
课题:圆周运动知识点一:圆周运动的性质1.圆周运动定义:物体运动轨迹是圆的运动叫圆周运动.特点:圆周运动的特点是动点到定点的距离保持不变.举例:在圆周运动中,最简单的一种是速率不变的匀速圆周运动.2.匀速圆周运动:如果质点沿圆周运动,且在相等的时间里通过的圆弧长度相等,这种运动叫匀速圆周运动.知识点二:描述圆周运动的物理量1.线速度:描述物体圆周运动快慢的物理量. 公式:T r t s v π2=∆∆= 单位:m/s 2.角速度:描述物体绕圆心转动快慢的物理量. 公式:T t πθω2=∆∆=单位:rad/s 3.周期和频率:描述物体绕圆心转动快慢的物理量.公式:vr T π2=单位:s 公式:T f 1= 单位:Hz [要点诠释] 物理量定义、意义 公式、单位[m] 线速度 ①描述圆周运动的物体运动快慢的物理量(v )②是矢量,方向和半径垂直,和圆周相切①T r t s v π2=∆∆= ②单位:m/s [来源:学_角速度网Z_X_X_K] ①描述物体绕圆心转动快慢的物理量(ω) ②中学不研究其方向①T t πθω2=∆∆= ②单位:rad/s 周期和转速 ①周期是物体沿圆周运动一周的时间(T )②转速是物体单位时间转过的圈数(n ),也叫频率(f ) ①v r T π2= 单位:s ②n 的单位:r/s 、r/min ,f 的单位:Hz例1.关于物体做匀速圆周运动的正确说法是( )A .速度大小和方向都改变B .速度的大小和方向都不变C .速度的大小改变,方向不变D .速度的大小不变,方向改变例2.时针、分针和秒针转动时,下列正确说法是( )A .秒针的角速度是分针的60倍B .分针的角速度是时针的60倍C .秒针的角速度是时针的360倍D .秒针的角速度是时针的86400倍举一反三1.一物体在水平面内沿半径 R=20 cm 的圆形轨道做匀速圆周运动,线速度V=0.2m/s ,那么,它的向心加速度为______m/S 2,它的角速度为_______ rad/s ,它的周期为______s . 知识点二:线速度、角速度和周期之间的关系1.圆周运动各物理量间的关系[要点诠释]1.对公式v =ωr 的理解 当r 一定时,v 与ω成正比.当ω一定时,v 与r 成正比.当v 一定时,ω与r 成反比.2.传动装置(1)高中阶段所接触的传动主要有:①皮带传动(线速度大小相等);②同轴传动(角速度相等);③齿轮传动(线速度大小相等);④摩擦传动(线速度大小相等).(2)传动装置的特点:(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同;(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等. 典例强化例1.关于做匀速圆周运动的物体的线速度、角速度、周期的关系,下列说法正确的是( )A .线速度大的角速度一定大B .线速度大的周期一定小C .角速度大的半径一定小D .角速度大的周期一定小举一反三1.如图1所示为皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径是4r ,小轮的半径是2r ,b 点在小轮上,到小轮中心的距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中皮带不打滑,则( )各物理量间的关系线速度t s v ∆∆=角速度t ∆∆=θω周期T 转速n 频率f图 2 A .a 点和b 点的线速度大小相等B .a 点和b 点的角速度大小相等C .a 点和c 点的线速度大小相等D .a 点和d 点的向心加速度大小相等随堂基础巩固1.关于角速度和线速度,下列说法正确的是 [ ]A .半径一定,角速度与线速度成反比B .半径一定,角速度与线速度成正比C .线速度一定,角速度与半径成正比D .角速度一定,线速度与半径成反比2.下列关于甲乙两个做圆周运动的物体的有关说法正确的是 [ ]A .它们线速度相等,角速度一定相等B .它们角速度相等,线速度一定也相等C .它们周期相等,角速度一定也相等D .它们周期相等,线速度一定也相等3.从高处斜向下抛出的物体在各个时刻的速度、加速度方向如图3所示,其中正确的是(). A .图(a ) B .图(b ) C .图(c ) D .图(d )4.一个物体以初速度v 0从A 点开始在光滑的水平面上运动,一个水平力作用在物体上,物体的运动轨迹如图3中的实线所示,B 为轨迹上的一点,虚线是经过A 、B 两点并与轨迹相切的直线.虚线和实线将水平面分成五个区域,则关于施力物体的位置,下列各种说法中正确的是()A .如果这个力是引力,则施力物体一定在④区域中B .如果这个力是引力,则施力物体可能在③区域中C .如果这个力是斥力,则施力物体一定在②区域中D .如果这个力是斥力,则施力物体可能在⑤区域中 5.如图4所示装置中,三个轮的半径分别为r 、2r 、4r ,b 点到圆心的距离为r ,求图中a 、b 、c 、d 各点的线速度之比、角速度之比.课时跟踪训练1.下列对于匀速圆周运动的说法中,正确的是( )A .线速度不变的运动B .角速度不变的运动C .周期不变的运动D .转速不变的运动 2.对于做匀速圆周运动的物体,下列说法正确的是() A .其角速度与转速成正比,与周期成反比 B .运动的快慢可用线速度描述,也可用角速度来描述C .匀速圆周运动是匀速运动,因为其速率保持不变D .做匀速圆周运动的物体,所受合力为零3.质点做匀速圆周运动,则( )A .在任何相等的时间里,质点的位移都相等B .在任何相等的时间里,质点通过的路程都相等C .在任何相等的时间里,质点运动的平均速度都相同D .在任何相等的时间里,连接质点和圆心的半径转过的角度都相等4.关于做匀速圆周运动的物体的线速度、角速度、周期的关系,下列说法中正确的是()A .线速度大的角速度一定大B .线速度大的周期一定小 图 1图3 图4图7 图6 图8 图9 C .角速度大的半径一定小 D .角速度大的周期一定小 5.甲、乙两个做匀速圆周运动的质点,它们的角速度之比为3∶1,线速度之比为2∶3,那么下列说法中正确的是( )A .它们的半径之比为2∶9B .它们的半径之比为1∶2C .它们的周期之比为2∶3D .它们的周期之比为1∶36.一个电子钟的秒针角速度为( )A .π rad/sB .2π rad/sC .π/30 rad/sD .π/60 rad/s7.假设“神舟十号”实施变轨后做匀速圆周运动,共运行了n 周,起始时刻为t 1,结束时刻为t 2,运行速度为v ,半径为r .则计算其运行周期可用( )A .T =t 2-t 1nB .T =t 1-t 2nC .T =2πr vD .T =2πv r8.汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长.某国产轿车的车轮半径约为30 cm ,当该型号轿车在高速公路上行驶时,驾驶员面前的速率计的指针指在“120 km/h ”上,可估算出该车车轮的转速为() A .1 000 r/s B .1 000 r/min C .1 000 r/h D .2 000 r/s9.如图5所示是一个玩具陀螺.a 、b 和c 是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是() A .a 、b 和c 三点的线速度大小相等B .a 、b 和c 三点的角速度相等C .a 、b 的角速度比c 的大D .c 的线速度比a 、b 的大10.如图6所示,圆盘绕过圆心且垂直于盘面的轴匀速转动,其上有a 、b 、c 三点,已知Oc =12Oa ,则下列说法中错误..的是( )A .a 、b 两点线速度相同B .a 、b 、c 三点的角速度相同C .c 点的线速度大小是a 点线速度大小的一半D .a 、b 、c 三点的运动周期相同11.两个小球固定在一根长为1 m 的杆的两端,杆绕O 点逆时针旋转,如图7所示,当小球A 的速度为3 m/s 时,小球B 的速度为12 m/s .则小球B 到转轴O 的距离是() A .0.2 m B .0.3 m C .0.6 m D .0.8 m 12.如图8所示为某一皮带传动装置,主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是() A .从动轮做顺时针转动 B .从动轮做逆时针转动C .从动轮的转速为r 1r 2nD .从动轮的转速为r 2r 1n 13.如图9所示的传动装置中,B 、C 两轮固定在一起绕同一轴转动,A 、B 两轮用皮带传动,三个轮的半径关系是r A =rC =2r B .若皮带不打滑,则A 、B 、C 三轮边缘上a 、b 、c 三点的( )A .角速度之比为1∶2∶2B .角速度之比为1∶1∶2C .线速度之比为1∶2∶2D .线速度之比为1∶1∶214.如图10所示,小球A 在光滑的半径为R 的圆形槽内做匀速圆周运动,当它运动到图中a 点时,在圆图5形槽中心O点正上方h处,有一小球B沿Oa方向以某一初速度水平抛出,恰好在a点与A球相碰,求:(1)B球抛出时的水平初速度;(2)A球运动的线速度的最小值.图10。
《圆周运动》PPT教学课件
一、线速度
(1) 物理意义:描述质点沿圆周运动的快慢. (2) 定义:质点做圆周运动通过的弧长 Δ l 和所用时间 Δ t 的比值叫做线速度的大小.
∆l ∆t
(3)大小:
v=
Δs Δt
(4)单位:m / s
思考:圆周运动是一种曲线运动,曲线运动速度方向如何,在曲 线运动总速度又如何?
一、线速度
(5)方向:质点在圆周某点的线速度方向沿圆周上该点的切线方向.
3.如图所示是一个玩具陀螺,a、b和c是陀螺上的三个点。当陀螺绕垂
B 直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是 ( )
A.a、b和c三点的线速度大小相等 B.a、b和c三点的角速度相等 C.a、b的角速度比c的大 D.c的线速度比a、b的大
课堂小结
4.如图所示,甲、乙、丙三个轮子依靠摩擦传动,相互之间不打滑,
二、角速度
(1)物理意义:
描述质点绕圆心转动的快慢
(2)定义:
质点所在的半径转过的角度Δ θ和所用时间Δ t的比值叫做角速
度
A
B
θ
(3)定义式:
ω=
Δθ
Δt
O
(4)单位:弧度每秒,符号为__r_a_d__/_s.
注意:角速度是矢量,其方向在高中学段不作要求
三、周期其他描述圆周运动的物理量
1. 周期 T :做圆周运动的物体转过一周所用的时间。 ( 单位 : 秒 )
a. 皮带传动
b.齿轮传动
皮带、链条、齿轮、摩擦 特点:同一传动带各轮边缘上线速度相同
四、描述圆周运动的各个物理量的关系 2.两个重要推论 (2)同轴轮上各点的角速度关系
特点:同轴轮上各点的角速度相同
课堂小结
《圆周运动》PPT课件
➢周期与转速关系
国际单位之中 =
1
符号:n
三 知识详解
5、线速度、角速度、周期之间关系
➢ = ,圆周运动中,线速度大小等于角
速度大小与半径的乘积
➢公式变形:
2
2
= =
, = = 2
基础测评
1、思考判断
(1)做圆周运动的物体,起线速度的方向是不变化的。
则 (A C )
O’
A:P、Q两点的角速度相等
P
r
R
B:P、Q两点的线速度大小相等
θ
Q
1
C:若θ=60·,则 =
2
1
D:若θ=30·,则 =
2
O
解:P、Q两点围绕同一轴转动,角速度相等;P
1
围绕OO’做圆周运动的轨道半径 = Rcos = ,
= =
1
,而
运动是变速运动
∆s
三 知识详解
2、角速度
➢定义式: =
∆
∆
➢ 单位:弧度每秒
符号:rad/s
O
C
A
三 知识详解
3、匀速圆周运动
➢性质:变速运动
➢匀速指速率不变
➢角速度不变,线速度大小处处相等
三 知识详解
4、周期
➢周期单位:秒, 符号:T
1
频率单位:赫兹,符号:f =
➢转速 单位:转每秒(r/s)或转每分(r/min)
描述圆周运动的几个物理量及其关系
Δs
v = Δt
Δθ
ω= Δt
1
f
T
v = rω
匀速圆周运动的特点及性质
圆周运动辅导班讲义
圆周运动1、定义:物体运动轨迹为圆称物体做圆周运动。
2、分类: ⑴匀速圆周运动:质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
物体在大小恒定而方向总跟速度的方向垂直的外力作用下所做的曲线运动。
注意:这里的合力可以是万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力——锥摆、静摩擦力——水平转盘上的物体等.⑵变速圆周运动:如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直. 3、描述匀速圆周运动的物理量(1)轨道半径(r ):对于一般曲线运动,可以理解为曲率半径。
(2)线速度(v ):①定义:质点沿圆周运动,质点通过的弧长S 和所用时间t 的比值,叫做匀速圆周运动的线速度。
②定义式:tsv =③线速度是矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上,实际上,线速度是速度在曲线运动中的另一称谓,对于匀速圆周运动,线速度的大小等于平均速率。
(3)角速度(ω,又称为圆频率):①定义:质点沿圆周运动,质点和圆心的连线转过的角度跟所用时间的比值叫做匀速圆周运动的角速度。
②大小:Ttπϕω2==(φ是t 时间内半径转过的圆心角)③单位:弧度每秒(rad/s )(4)周期(T ):做匀速圆周运动的物体运动一周所用的时间叫做周期。
(5)频率(f ,或转速n ):物体在单位时间内完成的圆周运动的次数。
各物理量之间的关系:r t r v f T t rf Tr t s v ωθππθωππ==⇒⎪⎪⎭⎪⎪⎬⎫======2222计算时,采用国际单位制,角度的单位采用弧度制。
(6)圆周运动的向心加速度①定义:做匀速圆周运动的物体所具有的指向圆心的加速度叫向心加速度。
圆周运动的规律及其应用课件
选择合适的转动半径,以减小离 心力对圆周运动的影响。
增加质量
增加运动物体的质量,可以降低离 心力对圆周运动的影响。
增加约束力
通过增加约束力,如使用弹性绳或 弹簧,可以减小离心运动的影响。
如何利用圆周运动进行工作?
旋转机械
利用圆周运动设计旋转机械,如 电动机、发电机和泵等,以实现
能量的转换和传输。
旋转木马的速度和旋转半径可以根据需要进行调整,为游客提供安全、舒适的旋 转体验。
洗衣机脱水原理
洗衣机脱水原理基于离心力作用,通过高速旋转将衣物中的 水分甩出。
脱水时,洗衣机内桶高速旋转,使衣物受到离心力作用紧贴 内桶壁,同时衣物中的水分被甩出,从而达到脱水的目的。
05 圆周运动的挑战与解决方 案
离心力
当物体做圆周运动时,会受到一个始 终指向圆外的力,称为离心力。离心 力的大小与速度的大小和半径有关, 速度越大,半径越小,离心力越大。
匀速圆周运动
01
匀速圆周运动是指物体做圆周运 动时,速度大小保持不变。匀速 圆周运动中,向心加速度的大小 不变,方向始终指向圆心。
02
匀速圆周运动中,物体所受的合 外力提供向心力,即合外力等于 向心力。
如何保持稳定的圆周运动?
确定合适的转动半径
01
根据物体质量和运动速度,选择合适的转动半径,以确保圆周
运动稳定。
保持恒定的角速度
02
在圆周运动过程中,应尽量保持恒定的角速度,以减少不稳定
性。
减小摩擦力
03
减小运动过程中的摩擦力,如使用润滑油或改进轴承设计,有
助于提高圆周运动的稳定性。
如何减小离心运动的影响?
圆周运动的周期和频率
圆周运动讲义--精编
小结⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧====∅==⎩⎨⎧fTTrvTrvfTbtwasmcbtsvaba1;2;;2343::2/::;:121πωωπ、关系:)频率()周期(单位;)角速度(单位:矢量;)线速度(、描述快慢的物理量的弧长在相等的时间通过相等物体在圆周上运动、定义:匀速圆周运动【复习检测】1、分析下图中,A、B两点的线速度有什么关系?2、分析下列情况下,轮上各点的角速度有什么关系?3、皮带传动装置BArr21=,BCrr21=,求A、B、C三点的ω与v的大小关系?4、如图所示,质点P以O为圆心、r为半径作匀速圆周运动,周期为了T,当质点P经过图中位置A时,另一质量为m、初速度为零的质点Q受到沿OA方向的拉力F作用从静止开始在光滑水平面上作直线运动,为使P、Q在某时刻速度相同,拉力F必须满足条件______.A AB BBCO(1)如图1和图2所示,没有物体支撑的小球,注意:绳对小球只能产生沿绳收缩方向的拉力①临界条件:在最高点,绳子或轨道对小球没有力的做用:mg =m v 2Rv 临界=gR②能过最高点的条件:v ≥gR ,当v >gR 时,绳对球产生拉力,轨道对球产生压力.v <v 临界时,实际上球还没到最高点时就脱离了轨道)例1. 如右图所示,质量为0.1kg 的木桶内盛水0.4kg 后,用50cm 的绳子系桶,使它在竖直面内做圆周运动。
如果木桶在最高点和最低点时的速度大小分别为9m/s 和10m/s ,求木桶在最高点和最低点对绳的拉力和水对桶底的压力。
(g=10m/s 2)(2)如图3和图4所示,有物体支撑或光滑硬管中的小球,注意:杆对球既能产生拉力,也能对球产生支持力。
①当v =0时,F N =mg (F N 为支持力).②当0<v <gR 时,F N 随v 增大而减小,且mg >F N >0,F N 为支持力. ③当v =gR 时,F N =0.④当v >gR 时,F N 为拉力,F N 随v 的增大而增大.例2.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R ,小球半径为r ,则下列说法正确的是( )A .小球通过最高点时的最小速度v min =g (R +r )B .小球通过最高点时的最小速度v min =0C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力 (3)如图5,小物体在竖直平面内的外轨道,做圆周运动。
圆周运动讲义
圆周运动圆周运动1.物体做匀速圆周运动的条件:匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方向垂直并指向圆心。
2.描述圆周运动的运动学物理量(1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。
它们之间的关系大多是用半径r 联系在一起的。
如:T r r v πω2=⋅=,22224Tr r r v a πω===。
要注意转速n 的单位为r/min ,它与周期的关系为nT 60=。
(2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有:ωωv r r v a ===22,公式中的线速度v 和角速度ω均为瞬时值。
只适用于匀速圆周运动的公式有:224T ra π= ,因为周期T 和转速n 没有瞬时值。
二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为T r t s v π2==; 其方向沿轨迹切线,国际单位制中单位符号是m/s ;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为Ttπφω2==; 在国际单位制中单位符号是rad /s ;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min . 2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,T v π2=,f πω2=。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度 1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向. 2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为22224T r r rv a n πω=== 公式:1.线速度V =s/t =2πr/T2.角速度ω=Φ/t =2π/T =2πf3.向心加速度a =V 2/r =ω2r =(2π/T)2r4.向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5.周期与频率:T =1/f6.角速度与线速度的关系:V =ωr7.角速度与转速的关系ω=2πn (此处频率与转速意义相同) 8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。
6.1圆周运动课件(共20张PPT)
C.va:vc:vd = 1∶1 ∶2
D.va:vb:vd = 2∶1 ∶4
)
四、传动方式分析
【例题5】如图所示,小球Q在竖直平面内做匀速圆周运动,当Q球
转到图示位置时,有另一小球P在距圆周最高点为h处开始自由下落,要
使两球在圆周最高点相碰,则Q球的角速度ω应满足什么条件?
四、传动方式分析
【例题6】如图所示是一个玩具陀螺。a、b和c是陀螺上的三个点。
当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的
是(
)
A. a、b和c三点的线速度大小相等
B.a、b和c三点的角速度相等
C.a、b的角速度比c的大
D.c的线速度比a、b的大
四、传动方式分析
【例题7】如图所示,一个半径为R的圆环绕中心轴AB以一
s
Hz 或 s-1
物理意义
关系
描述物体做圆周运动的快慢
三、匀速圆周运动
v
定义:线速度的大小处处相等的圆周运动。
思考与讨论
匀速圆周运动中的“匀速”指的是什么意思?
v
匀速圆周运动——匀速率圆周运动
线速度大小、角速度,周期、频率、转速均恒定不变
o
v
三、匀速圆周运动
【例题1】对于做匀速圆周运动的物体,下列说法不正确的是(
ω1、ω2、ω3。则 (
A. r1ω1= r2ω2
B. r1ω1= r3ω3
C. ω1=ω2=ω3
D. ω1=ω2+ ω3
)
定的角速度匀速转动,下列说法正确是(
)
A.P、Q两点的角速度相同
B.P、Q两点的线速度相同
C.P、Q两点的轨道半径之比为1∶ 3
(完整版)圆周运动讲义
圆周运动讲义【知识点】1.匀速圆周运动:质点沿圆周运动,如果在相等的时间里通过的圆弧的长度相等,这种运动叫做匀速圆周运动。
匀速圆周运动是一种变加速曲线运动,虽然匀速圆周运动的速度大小不变,但它的速度的方向时刻在发生变化,所以匀速圆周运动不是匀速圆周运动,而是匀速率圆周运动。
2.线速度v①物理意义:描述物体做圆周运动快慢的物理量;②定义:质点沿圆周运动通过的弧长s 和所以时间t 的比值叫做线速度 ③大小:v =s/t ,单位:m/s④矢量,它的方向是质点在圆周上某点沿圆周上的切线方向。
实际上就是该点的瞬时速度。
3.角速度①物理意义:描述质点转过的圆心角的快慢②定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度跟所用时间t 的比值,就是质点运动的角速度。
③大小:=/t ,单位:rad/s④匀速圆周运动是角速度不变的圆周运动。
4.周期T 、频率f 和转速n①周期T :在匀速圆周运动中,物体沿圆周转过一周所用的时间叫做匀速圆周运动的周期。
在国际单位制中,单位是秒(s )。
匀速圆周运动是一种周期性的运动。
②频率f :每秒钟完成圆周运动的转数。
在国际单位制中,单位是赫兹(Hz )。
③转速n:单位时间内做匀速圆周运动的物体转过的转数。
在国际单位制中,单位是转/秒(n/s). 匀速圆周运动的T 、f 和n 均不变。
5.描述匀速圆周运动的物理量之间的关系①线速度和角速度间的关系: ②线速度和周期的关系: ③角速度和周期的关系: ④周期和频率之间的关系: 6。
描述圆周运动的动力学物理量———向心力(1)向心力来源:向心力是根据力的作用效果命名的,不是一种特殊的性质力。
向心力可以是某一个性质力,也可以是某一个性质力的分力或某几个性质力的合力。
做匀速圆周运动的物体向心力是所受外力的合力做非匀速圆周运动的物体,其向心力为沿半径方向的外力的合力,而不是物体所受合外力。
(2)向心力大小:根据牛顿第二定律和向心加速度公式可知,向心力大小为:22224T r m r m r v m F πω=== 其中r 为圆运动半径。
高中物理必修二专题03 圆周运动的描述——学生版辅导讲义
专题3 圆周运动的描述(教师版)一、目标要求二、知识点解析1.圆周运动和匀速圆周运动(1)圆周运动:如果物体运动的轨迹是圆,物体做的就是圆周运动.(2)匀速圆周运动:质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,这种运动就叫做“匀速圆周运动”,亦称“匀速率圆周运动”.说明:物体做匀速圆周运动时,速度的大小虽然不变,但速度的方向时刻改变,所以匀速圆周运动是变速运动.2.线速度和角速度(1)线速度:①线速度就是速度.注:线速度的大小用物体通过的弧长与所用时间的比值来度量:svt=,当所取的时间间隔很小时,这样得到的就是瞬时速度.①大小:2πs rvt T==单位为:m/s.①方向:某点线速度的方向即为该点的切线方向.(与半径垂直)①物理意义:从长度方面描述圆周运动的快慢.注:对于匀速圆周运动,在任意相等时间内通过的弧长都相等,即线速度大小不变,但方向时刻改变.(2)角速度:①定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度ϕ跟所用时间t的比值,就是质点运动的角速度.①大小:2πt Tϕω==单位:rad/s.①物理意义:从角度方面描述圆周运动的快慢.注:对于匀速圆周运动,角速度大小不变.3.周期、频率、转速(1)周期:做匀速圆周运动的物体,转过一周所用的时间叫做周期.用T表示,单位s.⑵频率:做匀速圆周运动的物体在1 s内转的圈数叫做频率.用f表示,其单位为:转/秒(或赫兹),符号为r/s(或Hz).⑶转速:工程技术中常用转速来描述转动物体上质点做圆周运动的快慢.转速是指物体单位时间所转过的圈数,常用符号n表示,转速的单位为转/秒,符号是r/s,或转/分(r/min).4.匀速圆周运动中线速度、角速度、周期、频率的关系5.三种传动方式(1)同轴传动:如图所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA=ωB.(2)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A=v B.(3)齿轮传动:如图所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即:v A=v B.6.匀速圆周运动中的加速度匀速圆周运动的速度方向不断改变,一定是变速运动,必定有加速度;匀速圆周运动的加速度总是指向圆心,所以其方向不断变化.(1)匀速圆周运动的向心加速度及推导如图所示,设质点沿半径为r 的圆周做匀速圆周运动,在某时刻位于A 点,速度为v A ,经过很短的时间∆t ,运动到B 点,速度为v B ,把速度矢量v A 和v B 的始端移至一点,求出速度矢量的改变量,如乙图所示.①向心加速度的方向:比值∆∆vt是质点在∆t 时间内的平均加速度,方向与∆v 的方向相同,当∆t 足够短,或者说∆t 趋近于零时,∆∆vt就表示质点在A 点的瞬时加速度,在图乙所示的矢量三角形中,v A 和v B 的大小相等,当∆t 趋近于零时,θ∆也趋近于零,∆v 的方向趋近于跟v A 垂直而指向圆心.②向心加速度的大小:做匀速圆周运动的质点在任一点的瞬时加速度方向都沿半径指向圆心.甲图中三角形ABO 与乙图中的矢量三角形是相似三角形,用v 表示A v 和B v 的大小,用∆l 表示弦AB 的长度,则有:∆∆=v l v r 或∆=∆v v l r ,用上式除以∆t 得∆∆=⋅∆∆v l v t t r .当∆t 趋近于零时,∆∆v t表示向心加速度a 的大小,∆∆lt 表示线速度的大小v ,于是得到2=v a r.综上所述,对向心加速度做个总结:定义:做匀速圆周运动的物体,加速度指向圆心,这个加速度称为向心加速度. 大小:222222224π4π4πn v r a r n r f r v r Tωω======.方向:总是沿着圆周运动的半径指向圆心.(即方向始终与运动方向垂直,方向时刻改变,所以圆周运动一定是变加速曲线运动.)t 图甲图乙物理意义:描述线速度方向改变的快慢.一般用符号a n表示向心加速度.(2)对向心加速度的理解①根据题目中所给的条件,应灵活选取a n的表达式.例:若已知或要求量为v,则选a n=2vr,若已知或要求量为ω,则选a n=ω2r.②向心加速度的每个公式都涉及三个物理量的变化关系,所以必须在某一物理量不变时,才可以判断另外两个物理量之间的关系.在v一定的情况下,可认为物体的向心加速度a n与r成反比;而在ω一定的情况下,可认为物体的向心加速度a n与r成正比.③向心加速度公式也适用于非匀速圆周运动.当物体做匀速圆周运动时,向心加速度就是总加速度.当物体做非匀速圆周运动时,物体在向心加速度之外还有一个切向加速度,所以总加速度不指向圆心.三、考查方向题型1:圆周运动各物理量的关系典例一:(多选)质点做匀速圆周运动时()A.线速度越大,其转速一定越大B.角速度大时,其转速一定大C.线速度一定时,半径越大,则周期越长D.无论半径大小如何,角速度越大,则质点运动的周期一定越长题型2:共轴传动典例二:如图所示,当正方形薄板绕着过其中心O并与板垂直的转动轴转动时,板上A、B两点()A.角速度大小之比ωA∶ωB1B.角速度大小之比ωA∶ωB=1C.线速度大小之比v A∶v B1D.线速度大小之比v A∶v B=1题型3:皮带传动典例三:如图为自行车传动机构的示意图,经过测量A、B轮的半径比为2∶1,C轮的半径为32 cm.假设脚踏板每2 s转1圈,则自行车前进的速度约为()A .2 m/sB .3 m/sC .4 m/sD .5 m/s题型4:向心加速度的计算典例四:某变速箱中有甲、乙、丙三个齿轮,如图,其半径分别为r 1、r 2、r 3,若甲轮的角速度为ω,则丙轮边缘上某点的向心加速度为( )A.2213r r ωB .22321r r ωC .22322r r ωD .2123r r r ω四、模拟训练一、基础练习1.下列关于匀速圆周运动的说法中正确的是( ) A .是速度不变的运动 B .是角速度不变的运动 C .是角速度不断变化的运动 D .是相对圆心位移不变的运动2.(多选)质点做匀速圆周运动时( ) A .线速度越大,其转速一定很大 B .角速度大时,其转速一定大 C .线速度一定时,半径越大则周期越大D .无论半径大小如何,角速度越大,则质点的速度方向变化得越快 3.(多选)关于线速度和角速度,下列说法正确的是( ) A .半径一定,线速度大小与角速度大小成正比 B .半径一定,线速度大小与角速度大小成反比C .线速度大小一定,角速度大小与半径成反比D .角速度大小一定,线速度大小与半径成反比B4.(多选)A 、B 两个质点,分别做匀速圆周运动,在相等时间内它们通过的弧长比s A ∶s B =2∶3,转过的圆心角比θA ∶θB =3∶2.则下列说法中正确的是( )A .它们的线速度比v A ∶vB =2∶3 B .它们的角速度比ωA ∶ωB =2∶3C .它们的周期比T A ∶T B =2∶3D .它们的周期比T A ∶T B =3∶25.一物体以一定的半径做匀速圆周运动,它的线速度为v ,角速度为ω,经过一段短暂的时间后,物体通过的弧长为S ,半径转过的角度为ϕ,则下列关于S 的表达式中正确的是( )A .v S φω⋅=B .v S ωφ⋅=C .S vωφ⋅=D .S v ωφ=⋅ 6.走时准确的机械表,分针与时针由转动轴到针尖的长度之比是1.3∶1,则下列判断正确的是( ) A .分针与时针的周期之比是1∶24 B .分针与时针的角速度之比是60∶1C .分针针尖与时针针尖的线速度之比是600∶13D .分针和时针从重合至第二次重合所经历的时间是1211h 7.关于做匀速圆周运动物体的向心加速度方向,下列说法正确的是( )A .与线速度方向始终相同B .与线速度方向始终相反C .始终指向圆心D .始终保持不变8.(多选)关于质点做匀速圆周运动的下列说法中正确的是( )A .由a =2v r 可知,a 与r 成反比B .由a =ω2r 可知,a 与r 成正比C .当v 一定时,a 与r 成反比D .由ω=2πn 可知,角速度ω与转速n 成正比9.关于向心加速度,下列说法正确的是( ) A .向心加速度是描述线速度大小变化快慢的物理量 B .向心加速度是描述线速度的方向变化快慢的物理量 C .向心加速度时刻指向圆心,方向不变 D .向心加速度是平均加速度,大小可用0-=t v v a t来计算 10.关于匀速圆周运动的向心加速度,下列说法中正确的是( )A .由于2v a r =,所以线速度大的物体向心加速度大B .由于2v a r =,所以半径大的物体向心加速度小C .由于a =rω2,所以角速度大的物体向心加速度大D .由于a =rω2,所以角速度大的物体向心加速度可能大11.如图所示,质量相等的A、B两物体紧贴在匀速转动的圆筒的竖直内壁上,随圆筒一起做匀速圆周运动,则下列说法中正确的是()A.线速度v A=v BB.线速度v A>v BC.周期T A<T BD.周期T A>T B12.(多选)如图所示,一个球绕中心轴线OO′以角速度ω做匀速圆周运动,则( )A.a、b两点线速度相同B.a、b两点角速度相同:v b2C.若θ=30°,则a、b两点的线速度之比v:a b2D.若θ=30°,则a、b两点的向心加速度之比a13.如图所示,一球体绕轴O1O2以角速度ω旋转,A、B为球体上两点,下列几种说法中正确的是()A.A、B两点具有相同的角速度B.A、B两点具有相同的线速度C.A、B两点的向心加速度方向都指向球心D.A、B两点的向心加速度相同14.在如图所示的齿轮传动中,三个齿轮的半径之比为1∶3∶5,当齿轮转动的时候,比较小齿轮边缘的A点和大齿轮边缘的B点有()A.A点和B点的角速度之比为5∶1B.A点和B点的角速度之比为1∶1C.A点和B点的向心加速度之比为1∶5D.A点和B点的线速度大小之比为1∶515.如图,靠轮传动装置中右轮半径为2r,a为它边缘上的一点,b为轮上的一点,b距轴为r;左侧为一轮轴,大轮的半径为4r,d为它边缘上的一点;小轮半径为r,c为它边缘上的一点.若传动中靠轮不打滑,则下列说法错误的是()A.b点与d点的周期之比为2∶1B.a点与c点的线速度之比为1∶1C.c点与b点的角速度之比为2∶1D.a点与d点的向心加速度大小之比为1∶416.(多选)如图为一皮带传动装置,右轮半径为r,a为它边缘上一点;左侧是一轮轴,大轮半径为4r,小轮半径为2r,b点在小轮上,到小轮中心的距离为r.c点和d点分别位于左侧小轮和大轮的边缘上.若传动过程中皮带不打滑,则( )A.a点和b点的线速度大小相等B.a点和b点的角速度大小相等C.a点和c点的线速度大小相等D.a点和d点的向心加速度大小相等17.如图是自行车传动机的示意图,其中①是大齿轮,①是小齿轮,①是后轮.(1)假设脚踏板的转速为n r/s,则大齿轮的角速度是___________rad/s;(2)要知道在这种情况下自行车前进的速度有多大,除需要测量大齿轮①的半径r1,小齿轮①的半径r2外,还需要测量的物理量是_________________;(3)用上述量推导出自行车前进速度的表达式.二、提升练习1.A、B两艘快艇在湖面上做匀速圆周运动(如图),在相同的时间内,它们通过的路程之比是4:3,运动方向改变的角度之比是3:2,则它们()A.线速度大小之比为4:3B.角速度大小之比为3:4C.圆周运动的半径之比为2:1D.向心加速度大小之比为1:22.火车以60/m s的速率转过一段弯道,某乘客发现放在桌面上的指南针在10s内匀速转过了约10 .在此10s 时间内,火车( )A .运动路程为600mB .加速度为零C .角速度约为1/rad sD .转弯半径约为3.4km3.如图,带有一白点的黑色圆盘,可绕过其中心,垂直于盘面的轴匀速转动,每秒沿顺时针方向旋转30圈.在暗室中用每秒闪光31次的频闪光源照射圆盘,观察到白点每秒沿( )A .顺时针旋转31圈B .逆时针旋转31圈C .顺时针旋转1圈D .逆时针旋转1圈4.图示为某一皮带传动装置。
圆周运动教师讲义
圆周运动(圆周运动为高考重点)教学目标:1.掌握描述圆周运动的物理量及相关计算公式2.学会应用牛顿定律和动能定理解决竖直面内的圆周运动问题本讲重点:1.描述圆周运动的物理量及相关计算公式2.用牛顿定律和动能定理解决竖直面内的圆周运动问题本讲难点:用牛顿定律和动能定理解决竖直面内的圆周运动问题考点点拨:1.“皮带传动”类问题的分析方法2.竖直面内的圆周运动问题3.圆周运动与其他运动的结合一、考点扫描(一)知识整合匀速圆周运动:质点沿圆周运动,在相等的时间里通过的弧长相等。
描述圆周运动的物理量1.线速度(1)大小:v = ts (s 是t 时间内通过的弧长) (2)方向:矢量,沿圆周的切线方向,时刻变化,所以匀速圆周运动是变速运动。
(3)物理意义:描述质点沿圆周运动的快慢2.角速度(1)大小:ω=t φ (φ是t 时间内半径转过的圆心角) 单位:rad/s(2)对某一确定的匀速圆周运动来说,角速度是恒定不变的(3)物理意义:描述质点绕圆心转动的快慢3.描述匀速圆周运动的各物理量间的关系:r fr Tr v ωππ===22 4.向心加速度a (1)大小:a =ππω442222===r Tr r v 2 f 2r (2)方向:总指向圆心,时刻变化(3)物理意义:描述线速度方向改变的快慢。
5.向心力:是按效果命名的力,向心力产生向心加速度,即只改变线速度方向,不会改变线速度的大小。
(1)大小:R f m R Tm R m R v m ma F 22222244ππω=====向 (2)方向:总指向圆心,时刻变化做匀速圆周运动的物体,向心力就是物体所受的合外力,总是指向圆心。
做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力。
(二)重难点阐释在竖直平面内的圆周运动问题在竖直平面内做圆周运动的物体,按运动轨道的类型,可分为:(1)无支撑(如球与绳连结,沿内轨道的“过山车”)在最高点物体受到弹力方向向下.当弹力为零时,物体的向心力最小,仅由重力提供, 由牛顿定律知mg=Rv m 20,得临界速度gR v =0 .当物体运动速度v <v 0,将从轨道上掉下,不能过最高点.因此临界速度的意义表示了物体能否在竖直面上做圆周运动的最小速度.(2)有支撑(如球与杆连接,车过拱桥等)因有支撑,在最高点速度可为零,不存在“掉下”的情况.物体除受向下的重力外,还受相关弹力作用,其方向可向下,也可向上.当物体实际运动速度gR v >产生离心运动,要维持物体做圆周运动,弹力应向下.当gR v <物体有向心运动倾向,物体受弹力向上.所以对有约束的问题,临界速度的意义揭示了物体所受弹力的方向.(3)对于无约束的情景,如车过拱桥,当gR v >时,有N=0,车将脱离轨道.此时临界速度的意义是物体在竖直面上做圆周运动的最大速度.以上几种情况要具体问题具体分析,但分析方法是相同的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动讲义 Revised as of 23 November 2020
圆周运动讲义
【知识点】
1.匀速圆周运动:质点沿圆周运动,如果在相等的时间里通过的圆弧的长度相等,这种运动叫做匀速圆周运动。
匀速圆周运动是一种变加速曲线运动,虽然匀速圆周运动的速度大小不变,但它的速度的方向时刻在发生变化,所以匀速圆周运动不是匀速圆周运动,而是匀速率圆周运动。
2.线速度v
①物理意义:描述物体做圆周运动快慢的物理量;
②定义:质点沿圆周运动通过的弧长s和所以时间t的比值叫做线速度
③大小:v=s/t,单位:m/s
④矢量,它的方向是质点在圆周上某点沿圆周上的切线方向。
实际上就是该点的瞬时速度。
3.角速度
①物理意义:描述质点转过的圆心角的快慢
②定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度跟所用时间t的比值,就是质点运动的角速度。
③大小:=/t,单位:rad/s
④匀速圆周运动是角速度不变的圆周运动。
4.周期T、频率f和转速n
①周期T:在匀速圆周运动中,物体沿圆周转过一周所用的时间叫做匀速圆周运动的周期。
在国际单位制中,单位是秒(s)。
匀速圆周运动是一种周期性的运动。
②频率f:每秒钟完成圆周运动的转数。
在国际单位制中,单位是赫兹(Hz)。
③转速n:单位时间内做匀速圆周运动的物体转过的转数。
在国际单位制中,单位是转/秒(n/s).
匀速圆周运动的T、f和n均不变。
5.描述匀速圆周运动的物理量之间的关系
①线速度和角速度间的关系:
②线速度和周期的关系:
③角速度和周期的关系:
④周期和频率之间的关系:
6.描述圆周运动的动力学物理量———向心力
(1)向心力来源:向心力是根据力的作用效果命名的,不是一种特殊的性质力。
向心力可以是某一个性质力,也可以是某一个性质力的分力或某几个性质力的合力。
做匀速圆周运动的物体向心力是所受外力的合力
做非匀速圆周运动的物体,其向心力为沿半径方向的外力的合力,而不是物体所受合外力。
(2)向心力大小:根据牛顿第二定律和向心加速度公式可知,向心力大小为:
222
24T
r m r m r v m F πω=== 其中r 为圆运动半径。
(3)向心力的方向:总是沿半径指向圆心,与速度方向永远垂直。
(4)向心力的作用效果:只改变线速度的方向,不改变线速度的大小。
【典型例题分析】
【例1】如右图所示皮带传动装置,主动轴O 1上有两上半径分别为R 和r 的轮,O 2上的轮半径为r ',已知R =2r ,R =r ′,设皮带不打滑,问:ωA ∶ωB = ωB ∶ωC = v A ∶v B = v A ∶v C =
【例2】一把雨伞,圆形伞面的半径为r ,伞面边缘距地面的高度为h 。
以角速度旋转这把雨伞,问伞面边缘上甩出去的水滴落在地面上形成的圆的半径R 为多少 【例3】m =1kg ,r =5cm ,ω=10rad/s ,最大静摩擦力静止状态在该处处于静止的最大ω是多大
【例4】长为L 的细线,栓一质量为m 的小球,一端固定于O 点,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,摆线L 与竖直方向的夹角为α。
求: (1)线的拉力F
(2)小球运动的线速度的大小 (3)小球运动的角速度及周期
A
ω
r m
【例5】在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。
当圆筒的角速度增大以后,下列说法正确的是( )
A 、弹力增大,摩擦力也增大了
B 、弹力增大,摩擦力减小了
C 、弹力和摩擦力都减小了
D 、物体所受弹力增大,摩擦力
不变
【例6】某辆汽车以速度为72km/h 通过凸形桥最高点,这时对桥的压力是车重的一半,则凸形桥圆弧形桥面的半径是多大欲使该车通过桥最高点时对桥面的压力恰好为零,则此时的汽车的行驶速度应该是多大(g 取10m/s 2)。
【例7】用长为L=的绳子系着装有m=水的小桶,在竖直平面内做圆周运动,成为“水流星”,求:①在最高点水不流出的最小
速度为多少
②若过最高点时速度为3m/s ,此时水对桶底的压力为多大 【例8】如图所示,杆长为L ,球的质量为m ,杆连球在竖直平
面内绕轴O 自由
转动,已知在最高点处,杆对小球的弹力大小为F=mg/2,
求此时小球的瞬时速度大小。
【例9】、在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过( ) A .
g mr m M + B .g mr m
M + C .
g mr m M - D .
mr
Mg
【例10】如图所示,A、B、C三个物体放在旋转圆台上,动摩擦因数均为μ,A的质量为2m ,B、C质量均为m ,A、B离轴R,C离轴2R,则当圆台旋转时(设
A、B、C都没有滑动),A、B、C三者的滑动摩擦力认为等于最大静摩擦力,下列说法正确的是( ) A. C物的向心加速度最大; B. B物的静摩擦力最小;
C. 当圆台转速增加时,C比A先滑动;
D. 当圆台转速增加时,B比A先滑动。
【例11】如图所示,细绳一端系着质量m=0.1 kg 的小物块A ,置于光滑水平台面上;另一端通过光滑小孔O 与质量M=0.5 kg 的物体B 相连,
B 静止于水平地面上.当A 以O 为圆心做半径r =0.2m 的匀速圆周运动时,地面对B 的支持力F N =3.0N ,求物块A 的速度和角速度的大小.(g=10m/s 2)
【例12】如图所示,一个人用一根长1m ,只能承受46N 拉力的绳子,拴着一个质量为1㎏的小球,在竖直平面内作圆周运动,已知圆心O 离地面h=6m 。
转动中小球在最底点时绳子断了,
(1)绳子断时小球运动的角速度多大
(2)绳断后,小球落地点与抛出点间的水平距离。
【例13】如图所示,质量为m 的小球以速度V 冲上放在竖直平面内的光滑园轨道,刚好能够到达轨道的顶部,如图所示,求小球飞离轨道顶部后落地点距离圆心O 的水平距离设轨道的半径为r 。
【例14】如下图所示,ABC 为一细圆管构成的
4
3
园轨道,固定在竖直平面内,轨道半径为R (比细圆管的半径大得多),OA 水平,OC 竖直,最低点为B ,最高点为
C,细圆管内壁光滑。
在A点正上方某位置处有一质量为m的小球(可视为质点)由静止开始下落,刚好进入细圆管内运动。
已知细圆管的内径稍大于小球的直径,不计空气阻力。
(1)若小球刚好能到达轨道的最高点C,求小球经过最低点B时的速度大小和轨道
对小球的支持力大小;
(2)若小球从C点水平飞出后恰好能落到A
A点的高
度为多大。