一道立体几何的一题多解
一题多解多解归一——一道数学立体几何高考题的思考
又 由B E一 / / AF , G是 的 中 点 知 , B E 一 / /G H,
2
E F f B G
/ _ F A B = 9 0 0 , B C / / A D, B E #
1 AF
,
1
D
2
G、 日分 别 是 、 肋 的 中
曰
C
点。 问题 : C 、 D、 、 F 四点 是 否 共 面 ? 为 什 么 ? 分析 : 我 学 习过 的证 明 ( 判断) 是 否 共 面 的 方 法 有两类 : 一类是几何法 ; 一类是 向量法 。本题两类方 法都可 以使用 。而且每类方法 中还可以应 用不 同的 公理 和定理解决这个问题 。 所以这道题 的解法很多 , 我 整 理 了十 种 方 法 和 大 家共 同探 讨 。 方 法 一 :应 用 公理 3 的推论2 : “ 两 条 相 交直 线 可 以确 定 一 个 平 面 ” 判断 。 证 明: C , D, F , E 四点 共 面 ; 延长 D C交 A B的 延 长 线
延 长F E  ̄A "B 的 延 长线 于G 同理 可得 G ( G )
G E
—
G B
—
BE
一
1
G F G A AF 2
故 里:
,
G A GA
即G 与G , 重合
因此直线 C D、 肼 相 交于 G , 即C , D , E 四点共 面 。 方法 二 :利 用 公 理 3 的推 论 3 : “ 两 条 平 行 直 线 可 以 确 定一 个平 面” 和公 理 1 : “ 如果 一 条 直 线 上 的 两 点 在一个平 面内,那么这直线上所有 的点都在这个平 面 内” 。 C , D, F , E四点 共 面 。理 由如 下 : 由题 意 知 , 彤 = ,
数学一轮复习高频考点集中练立体几何含解析
高频考点集中练立体几何1。
(2019·全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD 为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A。
BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C。
BM=EN,且直线BM,EN是异面直线D。
BM≠EN,且直线BM,EN是异面直线【命题思维分析】利用垂直关系,再结合余弦定理进而解决问题.【解析】选B。
因为直线BM,EN都是平面BED内的直线,且不平行,即直线BM,EN是相交直线.设正方形ABCD的边长为2a,则由题意可得:DE=2a,DM=a,DN=a,DB=2a,根据余弦定理可得:BM2=DB2+DM2-2DB·DMcos∠BDE=9a2—4a2cos∠BDE,EN2=DE2+DN2-2DE·DNcos∠BDE=6a2—4a2cos∠BDE,所以BM≠EN。
【真题拾贝】判断异面直线的依据是异面直线的定义和性质定理,及一条直线与平面相交,该直线与平面内不过交点的直线异面,而解答本题的关键是构造直角三角形.2.(2018·全国卷Ⅱ)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B。
C. D.【命题思维分析】求异面直线所成的角是高考常考的题目,本题主要是考查空间直角坐标系的建立,各点坐标的表示及利用向量数量积求向量夹角,然后根据向量夹角与线线角相等或互补关系求结果.【解析】选C。
方法一:以D为坐标原点,DA,DC,DD1所在直线为x,y,z轴建立空间直角坐标系,则D(0,0,0),A(1,0,0),D1(0,0,),B1(1,1,),所以=(-1,0,),=(1,1,),设异面直线AD1与DB1所成角为α,则cos α=|cos , |==。
方法二:如图.连接A1D交AD1于点E。
取A1B1中点F,连接EF,则EF B1D,连接D1F,在△D1FE中,∠D1EF为异面直线AD1与DB1的夹角.由已知EF=DB1==,D1E=AD1=1,D1F==,所以cos∠D1EF==.【真题拾贝】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角.(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值。
立体几何难题解析附有答案详解
立体几何难题解析(附有答案详解)一、解答题1.如图1,直角梯形ABCD 中,//,90AB CD ABC ∠=︒,42==AB CD ,2=BC .//AE BC 交CD 于点E ,点G ,H 分别在线段DA ,DE 上,且//GH AE .将图1中的AED ∆沿AE 翻折,使平面ADE ⊥平面ABCE (如图2所示),连结BD 、CD ,AC 、BE .HEGDCBA图1图2ABCG EHD(Ⅰ)求证:平面⊥DAC 平面DEB ;(Ⅱ)当三棱锥GHE B -的体积最大时,求直线BG 与平面BCD 所成角的正弦值.2.如图,在直三棱柱111ABC A B C -中,点D E 、分别在边11BC B C 、上,1CD B E AC ==,60ACD ∠︒=.求证:(1)BE 平面1AC D ;(2)平面1ADC ⊥平面11BCC B .3.如图,在直角梯形CD AB 中,D//C A B ,DC 90∠A = ,AE ⊥平面CD AB ,F//CD E ,1C CD F D 12B ==AE =E =A =.(1)求证:C //E 平面F AB ;(2)在直线C B 上是否存在点M ,使二面角D E -M -A 的大小为6π?若存在,求出C M 的长;若不存在,说明理由.4.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠= ,1AD DC ==,2AB =,E 、F 分别为PD 、PB 的中点.(1)求证:平面PCB ⊥平面PAC ;(2)若平面CEF 与底面ABCD 所成的锐二面角为4π,求PA 的长.5.如图,两个相同的正四棱锥底面重合组成一个八面体,可放入棱长为2的正方体中,重合的底面与正方体的某一个面平行,各顶点均在正方体的表面上,将满足上述条件的八面体称为正方体的“正子体”.(1)若正子体的六个顶点分别是正方体各面的中心,求该八面体的表面积.(2)此正子体的表面积S 是否为定值?若是,求出该定值;若不是,求出表面积的取值范围.6.如图1,已知四边形ABCD 满足//AD BC ,12BA AD DC BC a ====,E 是BC 的中点,将BAE 沿着AE 翻折成1B AE △,形成四棱锥1B AECD -,F 为1B D 的中点,M 为AE 的中点,如图2所示.(1)求证:面1B DM ⊥面1B AE ;(2)当平面1B AE 与平面1B DC 所成角的余弦值为5时,求1B D 的长度;(3)当面1B AE ⊥面AECD 时,求平面1ADB 与平面1ECB 所成角的正弦值.7.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱1BB ,11A C 分别交于点F ,G.(1)若F 为1BB 的中点,求三棱柱被截面AGEF 分成上下两部分的体积比12V V ;(2)若四棱雉1A AGEF -求截面AGEF 与底面ABC 所成二面角的正弦值;(3)设截面AFEG 的面积为0S ,AEG ∆面积为1S ,AEF 面积为2S ,当点F 在棱1BB 上变动时,求2012S S S的取值范围.8.如图,在四棱锥B ACDE -中,平面ABC ⊥平面ACDE ,ABC 是等边三角形,在直角梯形ACDE 中,//AE CD ,AE AC ⊥,1AE =,2AC CD ==,P 是棱BD 的中点.(1)求证:EP ⊥平面BCD ;(2)设点M 在线段AC 上,若平面PEM 与平面EAB求MP 的长.9.如图,ABCD是块矩形硬纸板,其中2AB AD ==E 为DC 中点,将它沿AE 折成直二面角D AE B --.(1)求证:AD ⊥平面BDE ;(2)如果()0AH HB λλ=> ,求二面角H AD E --的余弦值.10.如图1,在边长为2的正方形ABCD 中,P 为CD 中点,分别将△PAD,△PBC 沿PA,PB 所在直线折叠,使点C 与点D 重合于点O,如图2.在三棱锥P-OAB 中,E 为PB 中点.(Ⅰ)求证:PO⊥AB;(II)求直线BP 与平面POA 所成角的正弦值;(Ⅲ)求二面角P-AO-E 的大小.11.如图,在四棱锥P −ABCD 中,PA⊥平面Q 在PB 上,且满足PQ∶QB=1∶3,求直线CQ 与平面PAC 所成角的正弦值.12.已知四棱锥中平面,点在棱上,且,底面为直角梯形,分别是的中点.(1)求证://平面;(2)求截面与底面所成二面角的大小.13.如图,已知四边形ABCD由Rt ABC∆拼接而成,其中∆和Rt BCDBAC BCD∠=∠=︒,3090∆沿着BC折起.=,BC=ABC∠=︒,AB ACDBC(1)若AD=,求异面直线AB与CD所成角的余弦值;(2)当四面体ABCD的表面积的最大时,求二面角A BC D--的余弦值.14.如图,ABCD与ADEF是两个边长为1的正方形,它们所在的平面互相垂直.(1)求异面直线AE 与BD 所成角的大小;(2)在线段BD 上取点M ,在线段AE 上取点N ,且BMx BD=,EN y EA =,试用x ,y 来表示线段MN 的长度;(3)在(2)的条件下,求MN 长度的最小值,并判断当MN 最短时,MN 是否是异面直线AE 与BD 的公垂线段?15.(本题满分14分)如图所示,正方形ABCD 所在的平面与等腰ABE ∆所在的平面互相垂直,其中顶120BAE ∠= ,4AE AB ==,F 为线段AE 的中点.(1)若H 是线段BD 上的中点,求证://FH 平面CDE ;(2)若H 是线段BD 上的一个动点,设直线FH 与平面ABCD 所成角的大小为θ,求tan θ的最大值.16.如图所示,正方体ABCD A B C D -''''的棱长为1,E F 、分别是棱AA CC ''、的中点,过直线EF 的平面分别与棱BB DD ''、交于M N 、,设[]01BM x x =∈,,,求:(1)求EF 与面A B BA ''所成的角的大小;(2)求四棱锥C MENF '-的体积()V h x =,并讨论它的单调性;(3)若点P 是正方体棱上一点,试证:满足'2PA PC +=成立的点的个数为6.17.如图,在斜三棱柱111ABC A B C -中,AC BC =,D 为AB 的中点,1D 为11A B 的中点,平面111A B C ⊥平面11ABB A ,异面直线1BC 与1AB 互相垂直.(1)求证:平面1//A DC 平面11BD C ;(2)若1CC 与平面11ABB A 的距离为x ,116AC AB ==,三棱锥1AACD -的体积为y ,试写出y 关于x 的函数关系式;(3)在(2)的条件下,当1CC 与平面11ABB A 的距离为多少时,三棱锥1A ACD -的体积取得最大值?并求出最大值.18.如图,四棱锥P ABCD -的底面为菱形且∠ABC=120°,PA ⊥底面ABCD,AB=1,PA E 为PC 的中点.(1)求直线DE 与平面PAC 所成角的大小;(2)求二面角E-AD-C 平面角的正切值;(3)在线段PC 上是否存在一点M ,使PC ⊥平面MBD 成立.如果存在,求出MC 的长;如果不存在,请说明理由参考答案1.(Ⅰ)见解析;(Ⅱ)BG 与平面BCD所成角的正弦值为6.【解析】(Ⅰ)由已知CD AB //,︒=∠90ABC ,42==AB CD 及BC AE //交CD 于点E .得到四边形ABCE 是边长为2的正方形.BE AC ⊥,AE DE ⊥.再据平面ADE ABCE ⊥平面,平面ADE ABCE AE ⋂=平面,得到DE ABCE ⊥平面,DE AC ⊥,AC DBE ⊥平面,得证.(Ⅱ)由(Ⅰ)知DE ABCE ⊥平面,EC AE ⊥,以E 为原点,ED EC EA ,,的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.)0,0,2(A ,)0,2,2(B ,(0,2,0)C ,)2,0,0(D 设x EH =,则x DH GH -==2(20<<x )由CE AB //,得到DAE AB 面⊥,从而2)]2(21[3131⨯-=⋅=∆-x x AB S V GHE GHE B ]1)1([31)2(3122+--=+-=x x x ,根据1=x 时,三棱锥GHE B -体积最大,此时,H 为ED 中点.G 也是AD 的中点,求得)1,0,1(G ,)1,2,1(--=BG .设),,(z y x n =是面BCD 的法向量.由⎪⎩⎪⎨⎧=-=-⋅=⋅=-=-⋅=⋅022)2,2,0(),,(02)0,0,2(),,(z y z y x DC n x z y x BC n ,令1=y ,得)1,1,0(=n ,设BG 与面BCD 所成角为θ,由||sin ||||BG n BG n θ⋅=即得.试题解析:(Ⅰ)∵CD AB //,︒=∠90ABC ,42==AB CD 又BC AE //交CD 于点E .∴四边形ABCE 是边长为2的正方形∴BE AC ⊥,AE DE ⊥.又∵平面ADE ABCE ⊥平面平面ADE ABCE AE = 平面∴DE ABCE⊥平面∵AC ABCE ⊂平面,∴DE AC ⊥又E BE DE = ∴AC DBE ⊥平面∵AC DAC ⊂平面∴平面DAC DEB⊥平面(Ⅱ)由(Ⅰ)知DE ABCE ⊥平面,ECAE ⊥以E 为原点,ED EC EA ,,的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.则)0,0,2(A ,)0,2,2(B ,(0,2,0)C ,)2,0,0(D 设x EH =,则x DH GH -==2(20<<x )∵CE AB //,∴DAE AB 面⊥∴2)]2(21[3131⨯-=⋅=∆-x x AB S V GHE GHE B ]1)1([31)2(3122+--=+-=x x x ∵20<<x ,∴1=x 时,三棱锥GHE B -体积最大,此时,H 为ED 中点.∵AE GH //,∴G 也是AD 的中点,∴)1,0,1(G ,)1,2,1(--=BG .设),,(z y x n =是面BCD 的法向量.则(,,)(2,0,0)20(,,)(0,2,2)220n BC x y z x n DC x y z y z ⎧⋅=⋅-=-=⎪⎨⋅=⋅-=-=⎪⎩ 令1=y ,得)1,1,0(=n 设BG 与面BCD 所成角为θ则||sin 6||||BG n BG n θ⋅===∴BG 与平面BCD所成角的正弦值为6.2.(1)见详解;(2)见详解.【分析】(1)通过1BE C D 来证明BE 平面1AC D ;(2)通过AD ⊥平面11BCC B 来证明平面1ADC ⊥平面11BCC B .【详解】证明:(1)由三棱柱111ABC A B C -是直三棱柱,得11BC B C .因为点D E 、分别在边11BC B C 、上,1CD B E =,所以1BD C E =,1BD C E .所以四边形1BDC E 是平行四形,所以1BE C D 因为1C D ⊂平面1AC D ,BE ⊄平面1AC D 所以BE 平面1AC D .(2)由三棱柱111ABC A B C -是直三棱柱,得1CC ⊥平面ABC ,因为AD ⊂平面ABC ,所以1AD CC ⊥,在ACD ∆中,由12CD AC =,60ACD ∠︒=,得32AD AC ==,所以222AD CD AC +=,所以90ADC ∠︒=,即:AD BC ⊥,因为BC ⊂平面11BCC B ,1CC ⊂平面11BCC B ,1BC CC C = ,所以AD ⊥平面11BCC B ,因为AD ⊂平面1ADC ,所以平面1ADC ⊥平面11BCC B .3.(1)详见解析(2)C 3M =【解析】(1)证明线面平行,一般利用线面平行判定定理进行论证,即从平几出发,寻找线线平行:根据题意先将图形补全,再利用平行四边形得线线平行(2)研究二面角,一般方法为利用空间向量:先建立坐标系,利用坐标求二面角两个平面的法向量,因为AE ⊥平面D AM ,所以AE 为平面D AM 的一个法向量,而平面D EM 的一个法向量,则需联立方程组解出,再利用向量数量积求两法向量的夹角的余弦值,最后根据二面角与法向量夹角相等或互补关系,列等量关系确定点M ,同时根据向量的模求出C M 的长.解:(1)如图,作FG//EA ,G//F A E ,连接G E 交F A 于H ,连接BH ,G B ,F//CD E 且F CD E =,∴G//CD A ,即点G 在平面CD AB 内.由AE ⊥平面CD AB ,知G AE ⊥A ,∴四边形FG AE 为正方形,四边形CD G A 为平行四边形,∴H 为G E 的中点,B 为CG 的中点,∴//C BH E .BH ⊂平面F AB ,C E ⊄平面F AB ,∴C //E 平面F AB .(4分)(2)法一:如图,以A 为原点,G A 为x 轴,D A 为y 轴,AE 为z 轴,建立空间直角坐标系xyz A -.则()0,0,0A ,()0,0,1E ,()D 0,2,0,设()01,,0y M ,∴()D 0,2,1E =- ,()0D 1,2,0y M =-,设平面D EM 的一个法向量为(),,n x y z = ,则()0D 20D 20n y z n x y y ⎧⋅E =-=⎪⎨⋅M =+-=⎪⎩,令1y =,得2z =,02x y =-,∴()02,1,2n y =-.(10分)又 AE ⊥平面D AM ,∴()0,0,1AE =为平面D AM 的一个法向量,∴cos ,cos62n πAE ==,解得023y =±,∴在直线C B 上存在点M ,且33C 2233⎛M =-±= ⎝⎭.方法二:作D S A⊥M ,则SA ,由等面积法,得D 3M =,∴C 3M =.【分析】(1)本题首先可根据题意求出AC 、BC 的长度,然后根据222AC BC AB +=得出BC AC ⊥,再然后根据PA ⊥底面ABCD 得出PA BC ⊥,即可得出BC ⊥平面PAC ,最后根据BC ⊂平面PCB 即可证得平面PCB ⊥平面PAC ;(2)本题首先可结合图像构造空间直角坐标系,然后设PA a =,写出平面ABCD的法向量1n u r 以及平面CEF 的法向量2n u u r,最后根据平面CEF 与底面ABCD 所成的锐二面角为4π即可求出PA 的长.【详解】(1)因为1AD DC ==,2AB =,90CDA BAD ∠=∠=,所以AC BC ==因为222AC BC AB +=,所以BC AC ⊥,因为PA ⊥底面ABCD ,BC ⊂平面ABCD ,所以PA BC ⊥,因为AC PA A ⋂=,所以BC ⊥平面PAC ,因为BC ⊂平面PCB ,所以平面PCB ⊥平面PAC .(2)如图,以A 为坐标原点,分别以AD 、AB 、AP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设(0)PA a a =>,则()0,2,0B =,()1,1,0C ,()1,0,0D ,()0,0,P a ,因为E 、F 分别为PD 、PB 的中点,所以1,0,22a E ⎛⎫ ⎪⎝⎭,0,1,2a F ⎛⎫ ⎪⎝⎭,1,1,22a CE ⎛⎫=-- ⎪⎝⎭ ,1,0,2a CF ⎛⎫=- ⎪⎝⎭ ,易知平面ABCD 的一个法向量1(0,0,1)n =,设平面CEF 的法向量为2(,,)n x y z =,则220,0,CE n CF n ⎧⋅=⎪⎨⋅=⎪⎩ ,即10,220,2az x y az x ⎧--+=⎪⎪⎨⎪-+=⎪⎩,不妨取4z =,则2x a =,y a =,即2(2,,4)a a n=,因为平面CEF 与底面ABCD 所成的锐二面角为4π,所以121212cos,nnn nnn⋅=⋅解得a=,即PA【点睛】利用空间向量解决立体几何问题,关键是依托图形建立空间直角坐标系,将相关向量用坐标表示,通过向量运算判断或证明空间元素的位置关系及探究空间角、空间距离问题.建立空间直角坐标系的三种方法:(1)以几何体中共顶点且互相垂直的三条棱所在的直线作为坐标轴建系;(2)利用线面垂直关系找到三条互相垂直的直线建系;(3)利用面面垂直关系找到三条互相垂直的直线建系.5.(1).【分析】(1)根据题意,正子体的所有棱都是正方体相邻两个面中心的连线,则正子体每个面都是正三角形,进而求出表面积;(2)设平面ABCD截正方体所得截面为A B C D'''',设(01)AA x x'=≤≤,进而算出ADE的面积,从而算出正子体的表面积即可判断.【详解】(1)依题意,正子体任一棱都是正方体相邻两个面中心的连线,所以正子体所有棱的长均相等.因为AB=所以242ABES=⨯,故该八面体的表面积8=.(2)正子体的表面积S不是定值.如图1,设平面ABCD截正方体所得截面为A B C D'''',且A B C D''''的中心为O,过点O作OG A B''⊥,垂足为G.设(01)AA x x '=≤≤,则1AG x =-,222222(1)1123AE DE AO OE x x x ==+=-++=-+,()2222(2)224AD x x x x =-+=-+.设AD 的中点为H ,如图2,则()22212122AD AH x x ⎛⎫==-+ ⎪⎝⎭,()22221222EH AE AH x x =-=-+,所以()()()2222211122422442ADE S AD EH x x x x ⎡⎤⎡⎤=⋅=-+-+⎢⎥⎣⎦⎣⎦ ()()2221322242x x x x =-+-+.因为01x ≤≤,所以2120x x -≤-≤,则()()2223132222442x x x x ≤-+-+≤,ADE S ≤≤ S ≤≤,所以此正子体的表面积S 的取值范围为.6.(1)证明见解析;(2)5a ;(3)45.【分析】(1)要证面1B DM ⊥面1B AE ,只需证AE ⊥面1B DM 即可;(2)根据已知条件可知,1MB D ∠即为面1B AE 与面1B DC 所成角的平面角,进而可得1B D 的长度;(3)建立适当的空间直角坐标系进行求解即可.【详解】(1)证明:因为12BA AD DC BC a ====,E 是BC 的中点,所以AD CE a ==,又因为//AD BC ,所以四边形AECD 为菱形,所以ABE △为正三角形,又因为M 为AE 的中点,所以1B M AE ⊥,DM AE ⊥,又因为1B M DM M ⋂=,所以AE ⊥面1B DM ,又因为AE ⊆面1B AE ,所以面1B DM ⊥面1B AE ,(2)由(1)知:DM AE ⊥,1B M AE ⊥,又因为//AE CD ,所以1B M CD ⊥,CD DM ⊥,所以CD ⊥面1B DM ,所以面1B DC ⊥面1B DM ,又因为面1B DM ⊥面1B AE ,所以1MB D ∠即为面1B AE 与面1B DC所成角的平面角,即1cos 5MB D ∠=,在1MB D △中,1B M =,DM =,由余弦定理得:22211111cos 25B M B D DM MB D B M B D +-∠=⋅,解得:15B D =.(3)因为面1B AE ⊥面AECD ,1B M AE ⊥,所以1B M ⊥面AECD ,所以以M 为坐标原点,以向量ME,MD ,1MB 的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,由题可得:,0,02aA ⎛⎫- ⎪⎝⎭,1B ⎛⎫⎪ ⎪⎝⎭,0,,02D ⎛⎫⎪ ⎪⎝⎭,,0,02aE ⎛⎫⎪⎝⎭,,,02C a ⎛⎫⎪ ⎪⎝⎭,则有:1,0,22a B A ⎛⎫=-- ⎪ ⎪⎝⎭,10,,22B D ⎛⎫=- ⎪ ⎪⎝⎭,1,0,22a B E ⎛⎫=- ⎪ ⎪⎝⎭ ,133,22B C a a a ⎛⎫= ⎪ ⎪⎝⎭,设平面1ADB 与平面1ECB 的法向量分别为()1111,,x n y z =,()2222,,n x y z = ,由111100n B A n B D ⎧⋅=⎪⎨⋅=⎪⎩,得11110220a x z y z ⎧--=⎪⎪=,令11z =,则1x =11y =,所以()1n =,由212100n B E n B C ⎧⋅=⎪⎨⋅=⎪⎩,得222220220ax z ax y z ⎧-=⎪⎪⎨⎪+=⎪⎩,令21z =,则1x =21y =-,所以)21,1n =-,设平面1ADB 与平面1ECB 所成角的平面角为θ,则:12123cos 5n n n n θ⋅==⋅ 所以4sin 5θ=.7.(1)121323V V =;(2)45;(3)94,2⎡⎤⎢⎣⎦.【分析】(1)连结EF ,并延长分别交1CC ,CB 于点M ,N ,连结AM 交11A C 于点G ,连结AN ,GE ,利用比例关系确定G 为11A C 靠近1C 的三等分点,然后先求出棱柱的体积,连结1A E ,1A F ,由11111A EFB G AA E F AA E V V V V ---=++和21V V V =-进行求解,即可得到答案;(2)求出点G 到平面1A AE 的距离,得到点G 为11A C 靠近1C 的四等分点,通过面面垂直的性质定理可得1AGA ∠即为截面AGEF 与底面ABC 所成的二面角,在三角形中利用边角关系求解即可;(3)设1GC m =,则[0m ∈,1],先求出12S S 的关系以及取值范围,然后将2012S S S 转化为1S ,2S 表示,求解取值范围即可.【详解】解:(1)连接EF ,并延长分别交1CC ,CB 延长线于点M ,N ,连接AM 交11A C 于点G ,连接AN ,GE .易得11113GC MC C E AC MC CN ===.故G 为11A C 靠近1C 的三等分点.11MC =,123GC =.下面求三棱柱被截面分成两部分的体积比.三棱柱111ABC A B C -的体积2224V =⨯=连接1A E ,1A F .由1//BB 平面1A AE 知,1F AA E V -为定值.11121323F AA E V -=⨯⨯=.11111A EFB G AA E F AA E V V V V ---=++1111211232323=⨯⨯⨯⨯⨯+=21V V V =-=121323V V =.(2)由111A AGEF G AA E F AA E V V V ---=+及1F AA E V -=1G AA E V -=又1113G AA E AA E V S h -=⨯⨯△,所以34h =.即点G 到1A E 的距离为34,G 为11A C 靠近1C 的四等分点.因为平面111//A B C 平面ABC ,所以截面AGEF 与平面ABC 所成角即为截面AGEF 与平面111A B C 所成角,在1GC E △中,112GC =,11C E =,故1EG GC ⊥.又因为平面11ACC A ⊥平面111A B C ,且平面11ACC A 平面11111A B C AC =,所以EG ⊥平面11ACC A .则1AGA ∠即为截面AGEF 与底面ABC 所成的二面角.在1Rt AGA △中,132A G =,12AA =,52AG =.故114sin 5AA A GA AG ∠==.因此,截面AGEF 与平面ABC 所成二面角的正弦值为45.(3)设1GC m =,则[]0,1m ∈,2MG mGA m=-.设MGE 的面积为S ,所以12S m S m=-.又因为21S S S =+,所以1222S mS -=.且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦.令12S t S =则1,12t ⎡⎤∈⎢⎥⎣⎦故()21201212122212S S SS S S S S S S S +==++.令12S t S =则1,12t ⎡⎤∈⎢⎥⎣⎦,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪⎝⎭,所以()94,2g t ⎡⎤∈⎢⎥⎣⎦,所以20121221924,2S S S S S S S ⎡⎤=++∈⎢⎥⎣⎦8.(1)证明见解析;(2)2M P =.【分析】(1)取BC 的中点Q ,连接PQ 、AQ ,由线面垂直判定定理可证AQ ⊥面BCD ,即可得证;(2)以Q 为原点建立坐标系,利用向量法建立关系可求出.【详解】(1)证明:如图,取BC 的中点Q ,连接PQ 、AQ ,因为ABC 是等边三角形,所以AQ BC ⊥,又平面ABC ⊥平面ACDE ,AE AC ⊥,平面ABC 平面ACDE =AC ,所以AE ⊥面ABC ,又AQ ⊂面ABC ,所以AE AQ ⊥,又//AE CD ,所以CD AQ ⊥,又CD BC C ⋂=,所以AQ ⊥面BCD ,因为2BP PD =,又P 是棱BD 的中点,所以112PQ DC ==,//PQ DC ,又//AE CD ,1AE =,所以//AE PQ ,AE PQ =,即四边形AEPQ 是一个平行四边形,所以//EP AQ ,所以EP ⊥平面BCD ;(2)由(1)得PQ ⊥平面ABC ,所以以点Q 为坐标原点,建立如图所示的空间直角坐标系,则()0,0,0Q ,)A ,()0,1,0B ,)E ,()0,0,1P ,设平面EAB 的法向量为()111,,m x y z =,由()111+00m AB y m m AE z ⎧⋅==⎪⇒=⎨⋅==⎪⎩,因为点M 在线段AC上,设其坐标为),0M t -,其中01t ≤≤,所以(),,1EM t =--,()EP = 设平面PEM 的法向量为()222,,n x y z =,由()222200,1,0n EM ty z n t n EP ⎧⋅=--=⎪⇒=-⎨⋅==⎪⎩,由题意,设平面PEM 与平面EAB 所成的锐二面角为θ,则1cos 2m n t m n θ⋅=⇒=-⋅或12t =,因为01t ≤≤,所以1,02M ⎫-⎪⎪⎝⎭,所以M P =.【点睛】向量法求二面角的步骤:建、设、求、算、取.1、建:建立空间直角坐标系.以三条互相垂直的垂线的交点为原点,没有三垂线时需做辅助线;建立右手直角坐标系,让尽量多的点落在坐标轴上。
深圳宝安区景山实验学校必修二第一章《立体几何初步》测试(含答案解析)
一、选择题1.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //2.设m ,n 为两条不同的直线,α,β为两个不同的平面,给出下列命题: ①若//m α,//m n ,则//n α; ②若m α⊥,//m β,则αβ⊥; ③若αβ⊥,n αβ=,m n ⊥,则m β⊥;④若//m n ,//αβ,则m 与α所成的角和n 与β所成的角相等. 其中正确命题的序号是( )) A .①②B .①④C .②③D .②④3.已知三棱柱111ABC A B C -的所有顶点都在球O 的表面上,侧棱1AA ⊥底面111A B C ,底面111A B C △是正三角形,1AB 与底面111A B C 所成的角是45°.若正三棱柱111ABC A B C -的体积是O 的表面积是( ) A .28π3B .14π3C .56π3D .7π 34.已知正方体1111ABCD A BC D -,点,E F 分别是棱11B C ,11A D 的中点,则异面直线BE ,DF 所成角的余弦值为( )A B .35C .45D 5.已知α、β是平面,m 、n 是直线,下列命题中不正确的是( ) A .若//m α,n αβ=,则//m n B .若//m n ,m α⊥,则n α⊥ C .若m α⊥,m β⊥,则//αβ D .若m α⊥,m β⊂,则αβ⊥6.下图中小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该四棱锥的体积为( )A .64B .48C .32D .167.在长方体1111ABCD A BC D -中,2AB =,1AD =,12AA =,点E 为11C D 的中点,则二面角11B A B E --的余弦值为( ) A .33-B .32-C .33D .328.如图,在正方体1111ABCD A BC D -中,点F 是线段1BC 上的动点,则下列说法错误的是( )A .无论点F 在上1BC 怎么移动,都有11A FB D ⊥B .当点F 移动至1BC 中点时,才有1A F 与1BD 相交于一点,记为点E ,且12A EEF= C .当点F 移动至1BC 中点时,直线1A F 与平面1BDC 所成角最大且为60° D .无论点F 在1BC 上怎么移动,异面直线1A F 与CD 所成角都不可能是30°9.如图,正方体1111ABCD A BC D -中,P 为线段1A B 上的动点,则下列结论错误的是( )A .1DC PC ⊥B .异面直线AD 与PC 不可能垂直 C .1D PC ∠不可能是直角或者钝角D .1APD ∠的取值范围是,62ππ⎛⎫⎪⎝⎭10.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α11.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'12.已知二面角l αβ--为60,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,45ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14B .24C .3 D .12二、填空题13.如图,已知直四棱柱1111ABCD A BC D -的所有棱长均相等,3BAD π∠=,E 是棱AB的中点,设平面α经过直线1A E ,且α平面111,B BCC l α=⋂平面112C CDD l =,若α⊥平面11A ACC ,则异面直线1l 与2l 所成的角的余弦值为_______.14.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为24,则这个球的体积为____________.15.如图,在一个底面面积为4,侧棱长为10的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的体积为___________.16.一个三棱锥的三视图如图所示,该三棱锥中最长棱的长度为_______.17.如图,正方形BCDE 的边长为a ,已知3AB BC =,将ABE △沿边BE 折起,折起后A 点在平面BCDE 上的射影为D 点,则翻折后的几何体中有如下描述:①AB 与DE 所成角的正切值是2;②//AB CE ;③B ACE V -体积是316a ;④平面ABC ⊥平面ADC .其中正确的有______.(填写你认为正确的序号)18.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE 沿直线DE 翻折成1A DE △.若M 为线段1AC 的中点,则在ADE 翻折过程中,下面四个选项中正确的是______(填写所有的正确选项)(1)BM 是定值(2)点M 在某个球面上运动 (3)存在某个位置,使1DE AC ⊥ (4)存在某个位置,使//MB 平面1A DE19.有一个半径为4的球是用橡皮泥制作的,现要将该球所用的橡皮泥重新制作成一个圆柱和一个圆锥,使得圆柱和圆锥有相等的底面半径和相等的高,若它们的高为8,则它们的底面圆的半径是___________.20.如图,已知正四面体D ABC -,P 为线段AB 上的动点(端点除外),则二面角D PC B --的平面角的余弦值的取值范围是___________.三、解答题21.如图,在四棱锥S ABCD -中,SD ⊥平面ABCD ,四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,2SD AD ==,1DC =,5CB =.(1)证明:平面SAD ⊥平面SAB ; (2)求三棱锥C SAB -的体积.22.在三棱锥P ABC -中,PAC ∆和PBC ∆是边长为2的等边三角形,2AB =,O ,D 分别是AB , PB 的中点.(1)求证://OD 平面PAC (2)求证:OP ⊥平面ABC (3)求三棱锥D OBC -的体积.23.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.24.如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,AB BC ⊥,D 为AC 的中点,12AA AB ==,3BC =.(1)求证:1//AB 平面1BC D ; (2)求三棱锥1D BCC -的体积.25.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积. 26.如图,四边形ABCD 为矩形,且4=AD ,22AB =PA ⊥平面ABCD ,2PA =,E 为BC 的中点.(1)求证:PC DE ⊥;(2)若M 为PC 的中点,求三棱锥M PAB -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.2.D【分析】①根据//n α或n ⊂α判断;②利用面面垂直的判定定理判断;③根据m β⊂,或//m β,或m 与β相交判断;④利用线面角的定义判断.【详解】①若//m α,//m n ,则//n α或n ⊂α,因此不正确;②若//m β,则β内必存在一条直线//m m ',因为m α⊥,所以m α'⊥,又因为m β'⊂,所以αβ⊥,正确;③若αβ⊥,n αβ=,m n ⊥,则m β⊂,或//m β,或m 与β相交,因此不正确;④若//m n ,//αβ,则m 与α所成的角和n 与β所成的角相等,正确. 其中正确命题的序号是②④. 故选:D . 【点睛】空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.3.A解析:A 【分析】首先得到11AB A ∠是1AB 与底面111A B C 所成的角,再通过三棱柱的体积得到三棱柱的底面等边三角形的边长,最后通过球的半径,球心到底面距离,底面外接圆半径的关系计算. 【详解】因为侧棱1AA ⊥底面111A B C ,则11AB A ∠是1AB 与底面111A B C 所成的角,则1145AB A ∠=︒. 故由11111tan tan 451AA AB A A B ∠=︒==,得111AA A B =.设111AA A B a ==,则11131224ABC A B C V a a a -=⨯⨯⨯==三棱柱, 解得2a =.所以球O 的半径R ==所以球O 的表面积2228π4π4π3S R ==⨯=.故选:A .解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.4.B解析:B 【分析】证明//BE AF ,得AFD ∠是异面直线BE ,DF 所成角或其补角,在三角形中求解即可. 【详解】连接,AF EF ,∵,E F 分别是棱11B C ,11A D 的中点,∴//EF AB ,EF AB =, ∴ABEF 是平行四边形,∴//BE AF ,∴AFD ∠是异面直线BE ,DF 所成角或其补角, 设正方体的棱长为2,则111A F D F ==,22215AF DF ==+=,2223cos 25255AF DF AD AFD AF DF +-∠===⋅⨯⨯,异面直线BE ,DF 所成角的余弦值为35. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.5.A解析:A【分析】根据已知条件判断直线m 、n 的位置关系,可判断A 选项的正误;利用线面垂直的性质可判断BC 选项的正误;利用面面垂直的判定定理可判断D 选项的正误. 【详解】对于A 选项,若//m α,则直线m 与平面α内的直线平行或异面, 由于n αβ=,则直线m 、n 平行或异面,A 选项错误;对于B 选项,若//m n ,m α⊥,则n α⊥,B 选项正确; 对于C 选项,若m α⊥,m β⊥,则//αβ,C 选项正确;对于D 选项,若m α⊥,m β⊂,由面面垂直的判定定理可知αβ⊥,D 选项正确. 故选:A. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.6.C解析:C 【分析】在长方体中还原三视图后,利用体积公式求体积. 【详解】根据三视图还原后可知,该四棱锥为镶嵌在长方体中的四棱锥P -ABCD (补形法) 且该长方体的长、宽、高分别为6、4、4, 故该四棱锥的体积为1(64)4323V =⨯⨯⨯=. 故选C . 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整;(2)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.7.C解析:C 【分析】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,可证EGF ∠为二面角11B A B E --的平面角,通过计算可得结果.【详解】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,因为,E F 分别为1111,C D A B 的中点,所以11//EF A D ,在长方体1111ABCD A BC D -中,因为11A D ⊥平面11ABB A ,所以EF ⊥平面11ABB A , 因为1A B ⊂平面11ABB A ,所以1EF A B ⊥,因为1FG A B ⊥,且FGEF F =,所以1A B ⊥平面EFG ,因为EG ⊂平面EFG ,所以1A B EG ⊥,所以EGF ∠为二面角11B A B E --的平面角, 因为12AB AA ==,所以14FA G π∠=,因为11A F =,所以122FG A F ==, 在直角三角形EFG 中,2216122EG EF FG =+=+=, 所以cos FGEGF EG ∠==2326=. 所以二面角11B A B E --3. 故选:C 【点睛】关键点点睛:根据二面角的定义作出其中一个平面角是解题关键.8.C解析:C 【分析】A.通过证明线面垂直,证得线线垂直;B.利用相似三角形,求1A EEF的值;C.首先构造直线1A F 与平面1BDC 所成角,再通过数形结合分析最大角,以及最大角的余弦值,判选项;D.将异面直线所成角转化为相交直线所成角,求解判断. 【详解】A.AC BD ⊥,1AC BB ⊥,AC ∴⊥平面1BB D ,1AC B D ∴⊥,11//AC AC ,111B D AC ∴⊥,同理11B D BC ⊥,1111AC BC C ,1B D ∴⊥平面11A BC ,1A F ⊂平面11A BC ,11B D A F ∴⊥,故A 正确;B.连结1A D ,1BC 交1BC 于点F ,11//A B DC ,且11A B DC =,∴四边形11A DCB 是平行四边形,所以11//A D B C ,∴11A DEFB E,得1112A E A DEF B F==,故B 正确;C.1AO ⊥平面1BDC ,1111A B AC A D ==,∴点O1BDC 是等边三角形的中心,11A BC 是等边三角形,111A BC BDC ≅ 当点F 是1BC 的中点时,11A F BC ⊥,此时1A F 是点1A 和1BC 上的点连线的最短距离,设直线1A F 与平面1BDC 所成角为θ,此时11sin AO A F θ=最大,所以此时θ最大,所以111cos 32OF A F θ==<,最大角大于60,故C 不正确;D.11//A B CD ,CD ∴与1A F 所成的角,转化为11BA F ∠的大小,11B A F ∠的最小角是11B A 与平面11A BC 所成的角,即11B A F ∠,此时1111123tan 23FB B A F A B ∠==>,所以11B A F ∠的最小角大于30,故D 正确.故选:C 【点睛】关键点点睛:本题考查利用几何的综合应用,包含线线,线面角,垂直关系,首先会作图,关键选项是C 和D ,C 选项的关键是1AO ⊥平面1BDC ,点O 1BDC 是等边三角形的中心,D 选项的关键是知道先与平面中线所成角中,其中线面角是其中的最小角.9.D解析:D 【分析】在正方体中根据线面垂直可判断A ,根据异面直线所成角可判断B ,由余弦定理可判断CD. 【详解】 如图,设正方体棱长为2,在正方体中易知1DC ⊥平面11A BCD ,P 为线段1A B 上的动点,则PC ⊂平面11ABCD ,所以 1DC PC ⊥,故A 正确;因为异面直线AD 与PC 所成的角即为BC 与PC 所成的角,在Rt PBC 中不可能BC 与PC 垂直,所以异面直线AD 与PC 不可能垂直,故B 正确;由正方体棱长为2,则222222211114480D P PC DC A P BP A P BP +-=+++-=+>, 所以由余弦定理知1cos 0D PC ∠>,即1D PC ∠不可能是直角或者钝角,故C 正确; 设1(022)A P x x =≤≤,则2214D P x =+,222422cos4224AP x x x x π=+-⨯=+-,由余弦定理,222211111222cos =22AP D P AD x x AP D P A PD P AP D ∠=+--⋅⋅,当2x <时,1cos 0APD ∠<,所以1APD ∠为钝角,故D 错误.故选:D 【点睛】关键点点睛:判断正方体中的角的范围时,可选择合适三角形,利用正方体中数量关系,位置关系,使用余弦定理,即可判断三角形形状或角的范围,属于中档题.10.D解析:D 【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项. 【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交; 对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D. 【点睛】方法点睛:证明或判断两个平面平行的方法有: ①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明; ④借助“传递性”来完成.11.C解析:C 【分析】设AH a =,则3BH a ,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则3BH a ,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB ,又Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,()2''221C H AC AH a =-=-Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.12.B解析:B 【分析】作出图形,设2CD =,AD l ⊥,2AB =,然后以CA 、CD 为邻边作平行四边形ACDE ,可知BAD ∠为二面角l αβ--的平面角,异面直线AB 与CD 所成角为BAE∠或其补角,计算出ABE △三边边长,利用余弦定理计算出cos BAE ∠,即可得解. 【详解】 如下图所示:设2CD =,AD l ⊥,2AB =,以CA 、CD 为邻边作平行四边形ACDE , 在平面β内,AD l ⊥,2CD =,45ACD ∠=,则sin 2AD CD ACD =∠=cos452AC CD ==AB l ⊥,AD l ⊥,AB α⊂,AD β⊂,所以,BAD ∠为二面角l αβ--的平面角,即60BAD ∠=,2AB AD ==ABD ∴为等边三角形,则2BD ,四边形ACDE 为平行四边形,//DE AC ∴,即//DE l ,AD l ⊥,AB l ⊥,DE AB ⊥∴,DE AD ⊥, AB AD A =,DE ∴⊥平面ABD ,BD ⊂平面ABD ,DE BD ∴⊥,则222BE BD DE =+=,在平行四边形ACDE 中,//AE CD 且2AE CD ==, 所以,异面直线AB 与CD 所成角为BAE ∠或其补角, 在ABE △中,2AB =,2AE BE ==,由余弦定理可得222cos 24AB AE BE BAE AB AE +-∠==⋅.因此,异面直线AB 与CD 所成角的余弦值为4. 故选:B. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.【分析】取的中点连接证明平面平面平面即平面然后分别取的中点证明平面平面可得可得异面直线与所成的角即与所成的角由余弦定理可得答案【详解】由直四棱柱的所有棱长均相等所以是菱形连接且所以因为平面平面所以且 解析:910【分析】取AD 的中点F ,连接1A F ,证明平面1A EF ⊥平面11A ACC ,平面1A EF 即平面α,然后分别取1111BC DC 、的中点M N 、,证明平面1//A EF 平面MNC ,可得//CM 1l ,//CN 2l ,可得异面直线1l 与2l 所成的角即CM 与CN 所成的角,由余弦定理可得答案.【详解】由直四棱柱1111ABCD A BC D -的所有棱长均相等,3BAD π∠=,所以ABCD 是菱形,连接AC BD 、,1111AC B D 、,且ACBD O =,11111AC B D O ⋂=,所以BD AC ⊥,1111B D AC ⊥,因为1AA ⊥平面ABCD ,BD ⊂平面ABCD , 所以1AA BD ⊥,且1AA AC A =,所以BD ⊥平面11A ACC ,取AD 的中点F ,连接1A F ,连接EF 交AC 与G ,所以//EF BD ,且G 是AO 的中点,所以EF ⊥平面11A ACC ,所以平面1A EF ⊥平面11AACC , 又1A E ⊂平面1A EF ,所以平面1A EF 即平面α, 分别取1111BC DC 、的中点M N 、,连接MN 交11AC与H 点,H 即为11O C 的中点,所以1A H GC =,且1//A H GC ,所以四边形1AHCG 是平行四边形,所以1//AG HC , 1AG ⊄平面CMN ,CH ⊂平面CMN ,所以//A G 平面CMN , 又因为11//////EF BD B D MN ,EF ⊄平面CMN ,MN ⊂平面CMN , 所以//MN 平面CMN ,又1AG EF G =,所以平面1//A EF 平面MNC ,且平面11B C CB ⋂平面MNC MC =, 平面11D C CD平面MNC NC =,所以//CM 1l ,//CN 2l ,所以异面直线1l 与2l 所成的角即CM 与CN 所成的角,设2AB =, 则直四棱柱1111ABCD A BC D -的所有棱长均为2,由3BAD π∠=,所以112BD AB B D ===,11112MN D B ==, 且2211415CM CN CC C M ==+=+=,由余弦定理得222551922510CM CN MN MCN CM CN +-+-∠===⨯⨯.故答案为:910. 【点睛】本题考查了异面直线所成的角,关键点是作出平面α及找出异面直线所成的角,考查了学生分析问题、解决问题的能力及空间想象力.14.【分析】根据正方体的表面积可得正方体边长然后计算外接球的半径利用球的体积的公式可得结果【详解】设正方体边长正方体外接球的半径为R 由正方体的表面积为24所以则又所以所以外接球的体积为:故答案为:【点睛 解析:43π【分析】根据正方体的表面积,可得正方体边长a ,然后计算外接球的半径3R =,利用球的体积的公式,可得结果. 【详解】设正方体边长a ,正方体外接球的半径为R , 由正方体的表面积为24,所以2624a =,则2a =,又2R a =,所以R =所以外接球的体积为:334433R ππ==.故答案为:. 【点睛】方法点睛:求多面体的外接球的表面积和体积问题关键是要求出外接球的半径,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.15.【分析】设为正方形的中心的中点为连接求出如图分别可求得大球与小球半径分别为和进而可得小球的体积【详解】解:由题中条件知底面四边形是边长为2的正方形设O 为正方形的中心的中点为M 连接则如图在截面中设N 为【分析】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,求出OM ,PM ,PO ,如图,分别可求得大球1O 与小球2O半径分别为2和4,进而可得小球的体积. 【详解】解:由题中条件知底面四边形ABCD 是边长为2的正方形.设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,3PM ==,PO =PMO 中,设N为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,114PO PO OO R =+==∴2R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴24R r ==,故小球2O 的体积342324V r ππ==.故答案为:224π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.【分析】由三视图还原几何体得到三棱锥P-ABC 分别计算其棱长可得答案【详解】由三视图还原几何体得到三棱锥P-ABC 可将此三棱锥放入棱长为2的正方体内如下图所示所以:BC=所以该三棱锥最长棱的长度为故 解析:23【分析】由三视图还原几何体得到三棱锥P -ABC ,分别计算其棱长,可得答案. 【详解】由三视图还原几何体得到三棱锥P -ABC ,可将此三棱锥放入棱长为2的正方体内,如下图所示,所以:2AB =,BC =2,22,23BP AC PC AP ====. 所以该三棱锥最长棱的长度为23. 故答案为:23.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.17.①③④【分析】作出折叠后的几何体的直观图由题中条件得到是异面直线与所成的角求出其正切可判断①正确;根据线面垂直的的判定定理先证明平面可判断②错;根据等体积法由体积公式求出可判断③正确;根据面面垂直的解析:①③④ 【分析】作出折叠后的几何体的直观图,由题中条件,得到ABC ∠是异面直线AB 与DE 所成的角,求出其正切,可判断①正确;根据线面垂直的的判定定理,先证明CE ⊥平面ABD ,可判断②错;根据等体积法,由体积公式求出B ACE V -,可判断③正确;根据面面垂直的判定定理,可判断④正确. 【详解】作出折叠后的几何体直观图如图所示:由题意,3AB a =,BE a =,∴2AE a =;∴22AD AE DE a =-=,222AC CD AD a ∴+,∵//BC DE ,∴ABC ∠是异面直线AB 与DE 所成的角, 在Rt ABC 中, tan 2ACABC BC∠==①正确; 连结BD ,CE ,则CE BD ⊥,又AD ⊥平面BCDE ,CE ⊂平面BCDE , ∴CE AD ⊥,又BDAD D ,BD ⊂平面ABD ,AD ⊂平面ABD ,∴CE ⊥平面ABD ,又AB 平面ABD ,∴CE AB ⊥.故②错误.三棱锥B ACE -的体积2311113326B ACE A BCE BCEV V S AD a a a --===⨯⨯=⋅⨯. 故③正确.∵AD ⊥平面BCDE ,BC ⊂平面BCDE , ∴BC AD ⊥,又BC CD ⊥,CD AD D =,CD ⊂平面ADC ,AD ⊂平面ADC ,∴BC ⊥平面ADC ,∵BC ⊂平面ABC ,∴ABC ⊥平面ADC .故④正确. 故答案为:①③④. 【点睛】 思路点睛:判断空间中线线、线面、面面位置关系时,一般根据相关概念,结合线面平行、垂直的判定定理及性质,以及面面平行、垂直的判定定理及性质,根据题中条件,进行判断或证明.18.(1)(2)(4)【分析】首先取中点连结先判断(4)是否正确再根据平行关系以及等角定理和余弦定理判断(1)再判断(2)假设成立根据直线与平面垂直的性质及判定可得矛盾来判断(3)【详解】取中点连结则平解析:(1)(2)(4) 【分析】首先取CD 中点Q ,连结MQ ,BQ ,先判断(4)是否正确,再根据平行关系,以及等角定理和余弦定理判断(1),再判断(2),假设1DE AC ⊥成立,根据直线与平面垂直的性质及判定,可得11DA A E ⊥矛盾来判断(3). 【详解】取CD 中点Q ,连结MQ ,BQ ,则1//MQ DA ,//BQ DE ,∴平面//MBQ 平面1A DE ,又MB ⊂平面MBQ ,//MB ∴平面1A DE ,故(4)正确;由1A DE MQB ∠=∠,112MQ A D ==定值,QB DE ==定值, 由余弦定理可得2222cos MB MQ QB MQ QB MQB =+-⋅⋅∠ 所以MB 是定值,故(1)正确;B 是定点,M ∴是在以B 为球心,MB 为半径的球面上,故(2)正确;145A DE ADE ∠=∠=,45CDE ∠=,且设1AD =,2AB =,则DE CE ==若存在某个位置,使1DE AC ⊥,则因为222DE CE CD +=,即CE DE ⊥,因为1AC CE C =,则DE ⊥平面1ACE ,所以1DE A E ⊥,与11DA A E ⊥矛盾, 故(3)不正确.故答案为:(1)(2)(4) 【点睛】关键点点睛:本题考查线线,线面位置关系时,首先判断(4)是否正确,其他选项就迎刃而解,而判断线面平行时,可根据面面平行证明线面平行.19.【详解】设它们的底面圆的半径为()依题意得化简得所以故答案为:解析:【详解】设它们的底面圆的半径为r (0r >). 依题意得3443V π=⨯球V V =+圆柱圆锥221(+)83r r ππ=⨯, 化简得28r =,所以r =故答案为:20.【分析】当点从点运动到点时二面角的平面角逐渐增大二面角的平面角最小趋于二面角的平面角最大趋于二面角的平面角的补角求出二面角的平面角和二面角的平面角即可【详解】当点从点运动到点时二面角的平面角逐渐增大解析:11,33⎛⎫- ⎪⎝⎭【分析】当点P 从点A 运动到点B 时,二面角D PC B --的平面角逐渐增大,二面角D PC B --的平面角最小趋于二面角D AC B --的平面角,最大趋于二面角D BC A --的平面角的补角,求出二面角D AC B --的平面角和二面角D BC A --的平面角即可. 【详解】当点P 从点A 运动到点B 时,二面角D PC B --的平面角逐渐增大,二面角D PC B --的平面角最小趋于D AC B --的平面角,最大趋于二面角D BC A --的平面角的补角,设正四面体的棱长为2a ,如图所示,取AC 的中点E ,连接DE 、BE , 易知DEB ∠为二面角D AC B --的平面角,DE BE ==,所以()22221cos 3a DEB +-∠==,同理可得:二面角D BC A --的平面角的补角的余弦值为13-, 故二面角D PC B --的平面角的余弦值的取值范围是11,33⎛⎫- ⎪⎝⎭,故答案为:11,33⎛⎫- ⎪⎝⎭【点睛】本题主要考查了二面角的平面角的求解,考查空间想象能力,属于中档题.三、解答题21.(1)证明见解析;(2)43. 【分析】(1)由SD ⊥平面ABCD ,得AB SD ⊥,从而可证AB ⊥平面SAD ,然后得证面面垂直;(2)在直角梯形中求得ABC 的面积,以ABC 为底面,三棱锥的高为SD ,这样可求得体积. 【详解】解:(1)证明:因为SD ⊥平面ABCD ,又AB 平面ABCD ,所以AB SD ⊥,又AB AD ⊥,AD ⊂平面SAD ,SD ⊂平面SAD ,SDAD D =,所以AB ⊥平面SAD .又AB 平面SAB ,所以平面SAB ⊥平面SAD .(2)在下底面内过点C 作CE AB ⊥,垂足为E . 因为AB AD ⊥,且ABCE ,所以//AD CE ,又//CD AB .所以四边形ADCE 为矩形,故1AE CD ==,2CE AD ==, 在Rt BCE 中,221BE CB CE -=, 所以2AB AE EB =+-,。
高中数学立体几何多选题100含解析
高中数学立体几何多选题100含解析一、立体几何多选题1.如图,正方体1111ABCD A B C D -中的正四面体11A BDC -的棱长为2,则下列说法正确的是( )A .异面直线1AB 与1AD 所成的角是3πB .1BD ⊥平面11AC DC .平面1ACB 截正四面体11A BDC -所得截面面积为3D .正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23【答案】ABD 【分析】选项A ,利用正方体的结构特征找到异面直线所成的角;选项B ,根据正方体和正四面体的结构特征以及线面垂直的判定定理容易得证;选项C ,由图得平面1ACB 截正四面体11A BDC -所得截面面积为1ACB 面积的四分之一;选项D ,分别求出正方体的体对角线长和正四面体11A BDC -的高,然后判断数量关系即可得解. 【详解】A :正方体1111ABCD ABCD -中,易知11//AD BC ,异面直线1A B 与1AD 所成的角即直线1A B 与1BC 所成的角,即11A BC ∠,11A BC 为等边三角形,113A BC π∠=,正确;B :连接11B D ,1B B ⊥平面1111DC B A ,11A C ⊂平面1111D C B A ,即111AC B B ⊥,又1111AC B D ⊥,1111B B B D B ⋂=,有11A C ⊥平面11BDD B ,1BD ⊂平面11BDD B ,所以111BD AC ⊥,同理可证:11BD A D ⊥,1111AC A D A ⋂=,所以1BD ⊥平面11AC D ,正确;C :易知平面1ACB 截正四面体11A BDC -所得截面面积为134ACB S=,错误;D :易得正方体1111ABCD A B C D -()()()2222226++=2的正四面体11A BDC -的高为22222262213⎛⎫--⨯= ⎪⎝⎭,故正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23,正确. 故选:ABD. 【点睛】关键点点睛:利用正方体的性质,找异面直线所成角的平面角求其大小,根据线面垂直的判定证明1BD ⊥平面11AC D ,由正四面体的性质,结合几何图形确定截面的面积,并求高,即可判断C 、D 的正误.2.已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在平面1111D C B A 内,若||5AE =,AC DF ⊥,则( )A .点E 的轨迹是一个圆B .点F 的轨迹是一个圆C .EF 21-D .AE 与平面1A BD 21530+【答案】ACD 【分析】对于A 、B 、C 、D 四个选项,需要对各个选项一一验证. 选项A :由2211||5AE AA A E =+=1||1A E =,分析得E 的轨迹为圆;选项B :由AC DBF ⊥,而点F 在11B D 上,即F 的轨迹为线段11B D ,; 选项C :由E 的轨迹为圆,F 的轨迹为线段11B D ,可分析得min ||EF d r =-; 选项D :建立空间直角坐标系,用向量法求最值. 【详解】 对于A:2211||5AE AA A E =+=221|25A E +=1||1A E =,即点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上;故A 正确;对于B: 正方体1111ABCD A B C D -中,AC ⊥BD ,又AC DF ⊥,且BD ∩DF=D ,所以AC DBF ⊥,所以点F 在11B D 上,即F 的轨迹为线段11B D ,故B 错误;对于C:在平面1111D C B A 内,1A 到直线11B D 的距离为2,d=当点E ,F 落在11A C 上时,min ||21EF =-;故C 正确; 对于D:建立如图示的坐标系,则()()()()10,0,0,2,0,0,0,0,2,0,2,0A B A D因为点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上,可设()cos ,sin ,2E θθ 所以()()()1cos ,sin ,2,2,0,2,2,2,0,AE A B BD θθ==-=-设平面1A BD 的法向量(),,n x y z =,则有1·220·220n BD x y n A B x z ⎧=-+=⎪⎨=-=⎪⎩ 不妨令x =1,则()1,1,1n =, 设AE 与平面1A BD 所成角为α,则:2|||sin|cos,|||||n AEn AEn AEπθα⎛⎫++⎪====⨯当且仅当4πθ=时,sinα15=,故D正确故选:CD【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证.3.在正三棱柱111ABC A B C-中,AC=11CC=,点D为BC中点,则以下结论正确的是()A .111122A D AB AC AA=+-B.三棱锥11D AB C-的体积为6C.1AB BC⊥且1//AB平面11AC DD.ABC内到直线AC、1BB的距离相等的点的轨迹为抛物线的一部分【答案】ABD【分析】A .根据空间向量的加减运算进行计算并判断;B.根据1111D AB C A DB CV V--=,然后计算出对应三棱锥的高AD和底面积11DB CS,由此求解出三棱锥的体积;C.先假设1AB BC⊥,然后推出矛盾;取AB中点E,根据四点共面判断1AB//平面11AC D是否成立;D.将问题转化为“ABC内到直线AC和点B的距离相等的点”的轨迹,然后利用抛物线的定义进行判断.【详解】A.()11111111222A D A A AD AD AA AB AC AA AB AC AA=+=-=+-=+-,故正确;B.1111D AB C ADB CV V--=,因为D为BC中点且AB AC=,所以AD BC⊥,又因为1BB⊥平面ABC,所以1BBAD⊥且1BB BC B=,所以AD⊥平面11DB C,又因为AD===11111122DB CS BB B C=⨯⨯=,所以1111111133226D AB C A DB C DB CV V AD S--==⨯⨯=⋅=,故正确;C .假设1AB BC ⊥成立,又因为1BB ⊥平面ABC ,所以1BB BC ⊥且111BB AB B =,所以BC ⊥平面1ABB ,所以BC AB ⊥,显然与几何体为正三棱柱矛盾,所以1AB BC ⊥不成立;取AB 中点E ,连接11,,ED EA AB ,如下图所示:因为,D E 为,BC AB 中点,所以//DE AC ,且11//AC A C ,所以11//DE AC ,所以11,,,D E A C 四点共面,又因为1A E 与1AB 相交,所以1AB //平面11AC D 显然不成立,故错误;D .“ABC 内到直线AC 、1BB 的距离相等的点”即为“ABC 内到直线AC 和点B 的距离相等的点”,根据抛物线的定义可知满足要求的点的轨迹为抛物线的一部分,故正确; 故选:ABD. 【点睛】方法点睛:求解空间中三棱锥的体积的常用方法:(1)公式法:直接得到三棱锥的高和底面积,然后用公式进行计算;(2)等体积法:待求三棱锥的高和底面积不易求出,采用替换顶点位置的方法,使其求解高和底面积更容易,由此求解出三棱锥的体积.4.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC 【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH 的边长为()220a a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A 选项,由空间中两点间的距离公式可得2AE AF EF a ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由111100m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-, 设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-,由222200n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--, ()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C 选项,6cos ,23CG m CG m a CG m⋅<>===⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 63θ=,23cos 1sin θθ=-=,所以,sin tan 2cos θθθ==,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△,因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.5.在正方体1111ABCD A B C D -中,M 、N 分别是棱AB 、1CC 的中点,1MB P 的顶点P 在棱1CC 与棱11C D 上运动,有以下四个命题正确命题的序号是( )A .平面1MB P 1ND ⊥ B .平面1MB P ⊥平面11ND AC .1MB P 在底面ABCD 上的射影图形的面积为定值 D .1MB P 在侧面11D C CD 上射影图形是三角形 【答案】BC 【分析】取N 与P 重合,结合勾股定理可判断A 选项的正误;利用面面垂直的判定定理可判断B 选项的正误;分点P 在棱1CC 、11C D 上运动两种情况讨论,利用三角形的面积公式可判断C 选项的正误;取点P 与点1C 重合,判断1MB P 在侧面11D C CD 上射影图形形状,可判断D 选项的正误. 【详解】对于A 选项,设正方体1111ABCD A B C D -的棱长为2,如下图所示:当点P 与点N 重合时, 若1ND ⊥平面1MB P ,1B N ⊂平面1MB P ,则11ND B N ⊥,由勾股定理可得2211115D N C N C D =+=,同理可得15B N =,1122B D =,2221111B N D N B D ∴+≠,则1ND 与1B N 不垂直,假设不成立,A 选项错误;对于B 选项,取1BB 的中点E ,连接1A E 、EN ,在正方体1111ABCD A B C D -中,11//BB CC ,且E 、N 分别为1BB 、1CC 的中点, 则11//B E C N 且11B E C N =,所以,四边形11B ENC 为平行四边形,则11//EN B C 且11EN B C =,1111//A D B C 且1111A D B C =,所以,11//A D EN 且11A D EN =,所以,四边形11A END 为平行四边形,所以,11//A E D N ,111A B BB =,1B E BM =,11190A B E B BM ∠=∠=,所以,111Rt A B E Rt B BM ≅△△,所以,111B A E BB M ∠=∠,所以,111111190A EB BB M A EB B A E ∠+∠=∠+∠=,190B FE ∴∠=,所以,11B M A E ⊥,11A D ⊥平面11AA B B ,1B M ⊂平面11AA B B ,111B M A D ∴⊥, 1111A D A E A =,11A D 、1A E ⊂平面11ND A ,1MB ∴⊥平面11ND A ,1MB ⊂平面1MB P ,所以,平面1MB P ⊥平面11ND A ,B 选项正确;对于C 选项,设正方体1111ABCD A B C D -的棱长为a .若点P 在棱1CC 上运动时,1MB P 在底面ABCD 上的射影为MBC △, 此时,射影图形的面积为21224MBCa a S a =⋅=△; 若点P 在棱11C D 上运动时,设点P 在底面ABCD 上的射影点为G ,则G CD ∈, 且点G 到AB 的距离为a ,1MB 在底面ABCD 内的射影为MB ,则1MB P 在底面ABCD 内的射影为MBG △,且21224MBGa a S a =⋅⋅=△.综上所述,1MB P 在底面ABCD 内的射影图形的面积为定值,C 选项正确; 对于D 选项,当点P 与1C 重合时,P 、1B 两点在平面11D C CD 上的射影重合, 此时,1MB P 在侧面11D C CD 上的射影不构成三角形,D 选项错误. 故选:BC. 【点睛】方法点睛:证明面面垂直常用的方法: (1)面面垂直的定义; (2)面面垂直的判定定理.在证明面面垂直时,一般假设面面垂直成立,然后利用面面垂直转化为线面垂直,即为所证的线面垂直,组织论据证明即可.6.如图,已知四棱锥P ABCD -所有棱长均为4,点M 是侧棱PC 上的一个动点(不与点,P C 重合),若过点M 且垂直于PC 的截面将该四棱锥分成两部分,则下列结论正确的是( )A .截面的形状可能为三角形、四边形、五边形B .截面和底面ABCD 所成的锐二面角为4π C .当1PM =时,截面的面积为52D .当2PM =时,记被截面分成的两个几何体的体积分别为()1212,>V V V V ,则123=V V 【答案】BCD 【分析】点M 是侧棱PC 上的一个动点,根据其不同位置,对选项逐一进行判断即可. 【详解】A 选项中,如图,连接BD ,当M 是PC 中点时,2MC =,由题意知三角形PDC 与三角形PBC 都是边长为4的正三角形,所以DM PC ⊥,BM BC ⊥,又DM ,BM 在面MBD 内,且相交,所以PC ⊥平面PBD ,三角形MBD 即为过点M 且垂直于PC 的截面,此时是三角形,点M 向下移动时,2MC <,如图,仍是三角形;若点M 由中点位置向上移动,2MC >,在平面PDC 内作EM PC ⊥,交PD 于E ,在平面PBC 内作FM PC ⊥交PB 于F ,平面MEF 交平面PAD 于EG ,交PAB 于FH ,即交平面ABCD 于GH ,则五边形MEGHF 即为过点M 且垂直于PC 的截面,此时是五边形; 故截面的形状可能为三角形、五边形,A 错误;B 选项中,因为截面总与PC 垂直,所以不同位置的截面均平行,截面与平面ABCD 所成的锐角为定值,不妨取M 是中点,连接AC ,BD ,MB ,MD ,设AC ,BD 交点是N ,连接PN ,由题意知,四边形ABCD 是边长为4的菱形,BD AC ⊥,因为MB =MD ,所以MN BD ⊥,故MNC ∠是截面与平面ABCD 所成的锐角,过点M 作MQ AC ⊥,垂足Q.在三角形PAC中,MN =2,2,故在直角三角形MNQ 中,2cos 2NQ MNC MN ∠==,故4MNC π∠=,故B 正确;C 选项中,当PM =1时,M 是PC 中点,如图,五边形MEGHF 即为过点M 且垂直于PC 的截面,依题意,直角三角形PME 中,2cos PMPE EPM==∠,故E 为PD 的中点,同理,F是PB 的中点,则EF 是三角形PBD 的中位线,1222EF BD ==G ,H 分别在,AD AB 的中点上,证明如下,当G ,H ,也是中点时,1//,2GH BD GH BD =,有//,22GH EF GH EF ==EFHG 是平行四边形.依题意,三角形PAC 中4,42PA PC AC ===,故PA PC ⊥,故PC GE ⊥,易见,正四棱锥中BD ⊥平面PAC ,故BD PC ⊥,GH PC ∴⊥,因为 ,GE GH 均在平面EFHG 内,且相交,所以PC ⊥平面EFHG ,故此时平面EFHG 和平面MEF 即同一平面.又BD ⊥平面PAC ,有GH ⊥面平面PAC ,GH GM ⊥,根据对称性有GH GE ⊥,四边形EFHG 是矩形. 即五边形MEGHF 即为过点M 且垂直于PC 的截面,平面图如下:依题意,22GH EF ==,2EG FG ==,三角形高为()()22321h =-=,面积是122122⨯⨯=,四边形面积是22242⨯=,故截面面积是52. 故C 正确;D 选项中,若PM =2,看B 选项中的图可知,21124M BCD P BCD P ABCD V V V V ---===,故剩余部分134P ABCD V V -=,所以123=V V ,故D 正确. 故选:BCD. 【点睛】本题考查了棱锥的截面问题,考查了二面角、体积等计算问题,属于难题.7.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将ADE 沿AE 翻折成SAE △,在翻折过程中,下列说法正确的是( )A .存在点E 和某一翻折位置,使得SB SE ⊥ B .存在点E 和某一翻折位置,使得//AE 平面SBCC .存在点E 和某一翻折位置,使得直线SB 与平面ABC 所成的角为45°D .存在点E 和某一翻折位置,使得二面角S AB C --的大小为60° 【答案】ACD 【分析】依次判断每个选项:当SE CE ⊥时,⊥SE SB ,A 正确,//AE 平面SBC ,则//AE CB ,这与已知矛盾,故B 错误,取二面角D AE B --的平面角为α,取4=AD ,计算得到2cos 3α=,C 正确,取二面角D AE B --的平面角为60︒,计算得到tan θ=,故D 正确,得到答案. 【详解】当SE CE ⊥时,SE AB ⊥,SE SA ⊥,故SE ⊥平面SAB ,故⊥SE SB ,A 正确; 若//AE 平面SBC ,因AE ⊂平面ABC ,平面ABC 平面SBC BC =,则//AE CB ,这与已知矛盾,故B 错误;如图所示:DF AE ⊥交BC 于F ,交AE 于G ,S 在平面ABCE 的投影O 在GF 上, 连接BO ,故SBO ∠为直线SB 与平面ABC 所成的角,取二面角D AE B --的平面角为α,取4=AD ,3DE =,故5AE DF ==,1CE BF ==,125DG =,12cos 5OG α=,故只需满足12sin 5SO OB α==, 在OFB △中,根据余弦定理:2221213121312sin 1cos 2cos cos 55555OFB ααα⎛⎫⎛⎫⎛⎫=+---∠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得2cos 3α=,故C 正确; 过O 作OMAB ⊥交AB 于M ,则SMO ∠为二面角S AB C --的平面角,取二面角D AE B --的平面角为60︒,故只需满足22DG GO OM ==,设OAG OAM θ∠=∠=,84ππθ<<,则22DAG πθ∠=-,tan tan 22DG OGAG πθθ==⎛⎫- ⎪⎝⎭,化简得到2tan tan 21θθ=,解得tan 5θ=,验证满足,故D 正确; 故选:ACD .【点睛】本题考查了线线垂直,线面平行,线面夹角,二面角,意在考查学生的计算能力,推断能力和空间想象能力.8.在长方体1111ABCD A B C D -中,23AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( ) A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥ C .当1AR A C ⊥时,1AR D R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD 【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【详解】如图所示,建立空间直角坐标系,设()2,,0P a ,0,23a ⎡∈⎣,()2,23,Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,23,22R λλλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,23,2D R λλλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确; 1AR A C ⊥,则()()12,23,222,23,2212440AR AC λλλλλλ⋅=--⋅--=-+-+=, 14λ=,此时11333313,,,,022224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则4234,,333R ⎛⎫ ⎪ ⎪⎝⎭,14232,,333D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则10n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得()3,1,3n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.9.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||104A B '=D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ的最大值为23【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE , 则22223111010()1()21cos12022224A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=时,函数()f λ取得最大值()312313f λ⎛⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.10.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3 【答案】ABD 【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可. 【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EFBB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小,此时MN EF ==,即面积S 的最小值为1;当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时MN =,即面积S 的最大值为2所以四边形MENF 的面积最小值与最大值之比为2C 不正确. 对于D 选项,四棱锥A MENF -的体积11113346M AEF N AEF AEF V V V DB S --=+=⋅==△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体,所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.。
高一数学立体几何初步试题答案及解析
高一数学立体几何初步试题答案及解析1.已知平面α内有无数条直线都与平面β平行,那么A.α∥βB.α与β相交C.α与β重合D.α∥β或α与β相交【答案】D【解析】由题意当两个平面平行时符合平面α内有无数条直线都与平面β平行,当两平面相交时,在α平面内作与交线平行的直线,也有平面α内有无数条直线都与平面β平行.故为D。
【考点】本题主要考查平面与平面之间的位置关系。
点评:对两平面空间的位置要做出多种推测。
2.平面α∥平面β,AB、CD是夹在α和β间的两条线段,E、F分别为AB、CD的中点,则EF与α的关系是A.平行 B.相交 C.垂直 D.不能确定【答案】A【解析】若AB∥CD,易得EF与α、β均平行若AB与CD相交,则EF与α、β均平行若AB与CD异面,则设过AB和EF的平面交α,β分别于直线AG和BH,如下图所示:且使G,F,H在一直线上.因为平面α∥β,所以AG∥CH,连接CG和DH,则CGFDH在一个平面内,且CG∥DH,F为CD中点,所以三角形CFG和三角形DFH全等,即得FG=FH,因为AG∥CH,又E,F分别为AB,CD中点,且A,C,H,G在一个平面内,所以EF∥AG∥CH,CH在平面β内,故EF∥β.同理EF∥β故选A。
【考点】本题主要考查空间中直线与平面之间的位置关系。
点评:由于AB,CD的位置关系不确定,故要进行分类讨论。
将空间问题转化为平面问题的转化思想也是处理空间问题最常用的思路。
3.若三个平面把空间分成6个部分,那么这三个平面的位置关系是A.三个平面共线;B.有两个平面平行且都与第三个平面相交;C.三个平面共线,或两个平面平行且都与第三个平面相交;D.三个平面两两相交。
【答案】C【解析】①若三个平面两两平行,则把空间分成4部分;②若三个平面两两相交,且共线,则把空间分成6部分;③若三个平面两两相交,且有三条交线,则把空间分成7部分;④若三个平面其中两个平行和第三个相交,则把空间分成6部分;故选C.【考点】本题主要考查平面与平面之间的位置关系。
专题06 立体几何(解答题)
专题06 立体几何(解答题)1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. 【答案】(1)见解析;(2)41717. 【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以117C E =,故417CH =.从而点C 到平面1C DE 的距离为41717.【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1, 故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C . (2)由(1)知∠BEB 1=90°. 由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.3.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.【答案】(1)见解析;(2)4.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=3,故DM=2.所以四边形ACGD的面积为4.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,突出考查考生的空间想象能力.-中,PA⊥平面ABCD,底部ABCD为菱形,E 4.【2019年高考北京卷文数】如图,在四棱锥P ABCD为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【答案】(1)见解析;(2)见解析;(3)存在,理由见解析.【解析】(1)因为PA⊥平面ABCD,⊥.所以PA BD又因为底面ABCD为菱形,所以BD AC ⊥. 所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点, 所以AE ⊥CD . 所以AB ⊥AE . 所以AE ⊥平面PAB . 所以平面PAB ⊥平面PAE .(3)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG . 则FG ∥AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB . 所以FG ∥CE ,且FG =CE . 所以四边形CEGF 为平行四边形. 所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE , 所以CF ∥平面PAE .【名师点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.5.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值. 【答案】(1)见解析;(2)见解析;(33【解析】(1)连接BD ,易知AC BD H =,BH DH =.又由BG=PG ,故GH PD ∥.又因为GH ⊄平面P AD ,PD ⊂平面P AD , 所以GH ∥平面P AD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC , 又因为平面PAC ⊥平面PCD ,平面PAC 平面PCD PC =,所以DN ⊥平面P AC ,又PA ⊂平面P AC ,故DN PA ⊥. 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC 的中点, 所以3DN =又DN AN ⊥,在Rt AND △中,3sin DN DAN AD ∠==所以,直线AD 与平面P AC 所成角的正弦值为33.【名师点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.6.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC−A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.7.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3. 由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,23),B (3,1,0),1(3,3,23)B ,33(,,23)22F ,C (0,2,0). 因此,33(,,23)22EF =,(3,1,0)BC =-. 由0EF BC ⋅=得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(0223)BC AC --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得3030x y y z ⎧-+=⎪⎨-=⎪⎩, 取n (131)=,,,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.8.【2018年高考全国Ⅰ卷文数】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析;(2)1.【解析】(1)由已知可得,BAC ∠=90°,BA AC ⊥. 又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32又23BP DQ DA ==,所以22BP = 作QE ⊥AC ,垂足为E ,则QE =∥13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.【名师点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.解答本题时,(1)首先根据题的条件,可以得到BAC ∠=90°,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积. 9.【2018年高考全国Ⅱ卷文数】如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)见解析;(2)455. 【解析】(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =23. 连结OB .因为AB =BC =22AC,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离. 由题设可知OC =12AC =2,CM =23BC =23,∠ACB =45°. 所以OM =253,CH =sin OC MC ACB OM ⋅⋅∠=455.所以点C 到平面POM 45【名师点睛】立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明,解答本题时,连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;本题第二问可以通过作出点到平面的距离线段求解,即过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可,本题也可利用等体积法解决.10.【2018年高考全国Ⅲ卷文数】如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)见解析;(2)存在,理由见解析.【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .【名师点睛】本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.11.【2018年高考北京卷文数】如图,在四棱锥P −ABCD 中,底面ABCD 为矩形,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面P AB ⊥平面PCD ; (3)求证:EF ∥平面PCD .【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥. ∵底面ABCD 为矩形,∴BC AD ∥, ∴PE BC ⊥.(2)∵底面ABCD 为矩形,∴AB AD ⊥. ∵平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD . ∴AB PD ⊥.又PA PD ⊥,∴PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (3)如图,取PC 中点G ,连接,FG GD .∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =. ∵四边形ABCD 为矩形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥,∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形, ∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD , ∴EF ∥平面PCD .【名师点睛】证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法. 证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.12.【2018年高考天津卷文数】如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (1)求证:AD ⊥BC ;(2)求异面直线BC 与MD 所成角的余弦值; (3)求直线CD 与平面ABD 所成角的正弦值.【答案】(1)见解析;(2)1326;(3)34. 【解析】(1)由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角. 在Rt △DAM 中,AM =1,故DM 22=13AD AM +AD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN 22=13AD AN +在等腰三角形DMN 中,MN =1,可得1132cos MNDMN DM ∠==.所以,异面直线BC 与MD 所成角的余弦值为1326. (3)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM =3.又因为平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD =22AC AD +=4.在Rt △CMD 中,3sin 4CM CDM CD ∠==. 所以,直线CD 与平面ABD 所成角的正弦值为34.【名师点睛】本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.13.【2018年高考江苏卷】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC . 【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.【名师点睛】本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.解答本题时,(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得四边形ABB1A1为菱形,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.14.【2018年高考浙江卷】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.【答案】(1)见解析;(2)3913. 【解析】方法一:(1)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得11122AB A B ==, 所以2221111A B AB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得115B C =, 由2,120AB BC ABC ==∠=︒得23AC =,由1CC AC ⊥,得113AC =,所以2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD .由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由1111115,22,21BC A B AC ==1111116cos 77C A B C A B ∠=∠=, 所以13C D , 故11139sin C D C AD AC ∠==.因此,直线1AC 与平面1ABB 所成的角的正弦值是3913. 方法二:(1)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:111(0,3,0),(1,0,0),(0,3,4),(1,0,2),3,1),A B A B C --因此11111(1,3,2),(1,3,2),(0,23,3),AB A B AC ==-=- 由1110AB A B ⋅=得111AB A B ⊥. 由1110AB AC ⋅=得111AB AC ⊥. 所以1AB ⊥平面111A B C .(2)设直线1AC 与平面1ABB 所成的角为θ.由(1)可知11(0,23,1),(1,3,0),(0,0,2),AC AB BB === 设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩n n 即30,20,x z ⎧+=⎪⎨=⎪⎩可取(3,1,0)=-n .所以111|39sin |cos ,|13|||AC AC AC θ⋅===⋅n |n n |. 因此,直线1AC 与平面1ABB 39. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.15.【2017年高考全国Ⅰ文数】如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P −ABCD 的体积为83,求该四棱锥的侧面积. 【答案】(1)见解析;(2)326+.【解析】(1)由已知90BAP CDP ==︒∠∠,得AB AP ⊥,CD PD ⊥. 由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD . 设AB x =,则由已知可得2AD x =,22PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==22PB PC ==. 可得四棱锥P ABCD -的侧面积为21111sin 606232222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+ 【名师点睛】证明面面垂直,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;计算点面距离时,如直接求不方便,应首先想到转化,如平行转化、对称转化、比例转化等,找到方便求值时再计算,可以减少运算量,提高准确度,求点面距离有时能直接作出就直接求出,不方便直接求出的看成三棱锥的高,利用等体积法求出.解答本题时,(1)由AB AP ⊥,AB PD ⊥,得AB ⊥平面PAD 即可证得结果;(2)设AB x =,则四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=,解得2x =,可得所求侧面积.16.【2017年高考全国Ⅱ卷文数】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,2AB BC AD BAD ==∠90.ABC =∠=︒ (1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD -的体积.【答案】(1)见解析;(2)43.【解析】(1)在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC PAD ⊄平面,AD PAD ⊂平面, 故BC ∥平面P AD .(2)取AD 的中点M ,连结PM ,CM , 由12AB BC AD ==及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD , 所以PM ⊥AD ,PM ⊥底面ABCD ,因为CM ABCD⊂底面,所以PM⊥CM.设BC=x,则CM=x,CD=2x,PM=3x,PC=PD=2x.取CD的中点N,连结PN,则PN⊥CD,所以142PN x=.因为△PCD的面积为27,所以114227 22x x⨯⨯=,解得x=−2(舍去),x=2,于是AB=BC=2,AD=4,PM=23,所以四棱锥P−ABCD的体积()22412343 32V⨯+=⨯⨯=.【名师点睛】解答本题时,(1)先由平面几何知识得BC∥AD,再利用线面平行的判定定理证得结论;(2)取AD的中点M,利用线面垂直的判定定理证明PM⊥底面ABCD,从而得四棱锥的高,再通过平面几何计算得底面直角梯形的面积,最后代入锥体体积公式即可.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.17.【2017年高考全国Ⅲ卷文数】如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【答案】(1)见解析;(2)1:1【解析】(1)取AC的中点O,连结DO,BO.因为AD=CD,所以AC⊥DO.又由于△ABC是正三角形,所以AC ⊥BO . 从而AC ⊥平面DOB , 故AC ⊥BD . (2)连结EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,222BO AO AB +=.又AB =BD ,所以222222BO DO BO AO AB BD +=+==, 故∠DOB =90°. 由题设知△AEC 为直角三角形,所以12EO AC =. 又△ABC 是正三角形,且AB =BD ,所以12EO BD =.故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:1.【名师点睛】解答本题时,(1)取AC 的中点O ,由等腰三角形及等边三角形的性质得OD AC ⊥,OB AC ⊥,再根据线面垂直的判定定理得⊥AC 平面OBD ,即得AC ⊥BD ;(2)先由AE ⊥EC ,结合平面几何知识确定12EO AC =,再根据锥体的体积公式得所求体积之比为1:1.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.18.【2017年高考北京卷文数】如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E –BCD 的体积. 【答案】(1)见解析;(2)见解析;(3)13. 【解析】(1)因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC , 又因为BD ⊂平面ABC ,所以PA BD ⊥.(2)因为AB BC =,D 为AC 中点,所以BD AC ⊥, 由(1)知,PA BD ⊥,所以BD ⊥平面PAC , 所以平面BDE ⊥平面PAC .(3)因为PA ∥平面BDE ,平面PAC 平面BDE DE =,所以PA DE ∥.因为D 为AC 的中点,所以112DE PA ==,2BD DC ==由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC . 所以三棱锥E BCD -的体积1163V BD DC DE =⋅⋅=. 【名师点睛】线线、线面的位置关系以及证明是高考的重点内容,而其中证明线面垂直又是重点和热点,要证明线面垂直,根据判定定理可转化为证明线与平面内的两条相交直线垂直,也可根据性质定理转化为证明面面垂直.解答本题时,(1)要证明线线垂直,一般转化为证明线面垂直;(2)要证明面面垂直,一般转化为证明线面垂直、线线垂直;(3)由13BCD V S DE =⨯⨯△即可求解.19.【2017年高考天津卷文数】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.【答案】(1)55;(2)见解析;(3)55. 【解析】(1)如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,所以AD ⊥PD . 在Rt △PDA 中,由已知,得225AP AD PD =+=,故5cos 5AD DAP AP ∠==. 所以,异面直线AP 与BC 所成角的余弦值为55.(2)因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD . 又因为BC //AD ,所以PD ⊥BC , 又PD ⊥PB ,所以PD ⊥平面PB C .(3)过点D 作AB 的平行线交BC 于点F ,连结PF , 则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角. 因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影, 所以DFP ∠为直线DF 和平面PBC 所成的角.由于AD //BC ,DF //AB ,故BF =AD =1,由已知,得CF =BC –BF =2. 又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF 中,可得2225DF CD CF =+=, 在Rt △DPF 中,可得5sin 5PD DFP DF ∠==. 所以,直线AB 与平面PBC 所成角的正弦值为55. 【名师点睛】线线、线面的位置关系以及证明是高考的重点考查内容,而证明线面垂直又是重点和热点,要证明线面垂直,根据判断定理转化为证明直线与平面内的两条相交直线垂直即可,而线线垂直又可通过线面垂直得到,用几何法求线面角,关键是找到斜线的射影,斜线与其射影所成的角就是线面角.解答本题时,(1)异面直线所成的角一般都转化为相交线所成的角,因为AD BC ∥,所以DAP ∠或其补角即为异面直线AP 与BC 所成的角,本题中AD ⊥PD ,进而可得AP 的长,所以cos ADDAP AP∠=;(2)要证明线面垂直,根据判断定理,证明直线与平面内的两条相交直线垂直即可;(3)根据(2)中的结论,作DF AB ∥,连结PF ,则DFP ∠为直线DF 和平面PBC 所成的角.20.【2017年高考山东卷文数】由四棱柱ABCD −A 1B 1C 1D 1截去三棱锥C 1−B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD . (1)证明:1A O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【答案】(1)见解析;(2)见解析.【解析】(1)取11B D 的中点1O ,连接111,CO AO ,由于1111ABCD A B C D -是四棱柱, 所以1111,AO OC AO OC =∥, 因此四边形11AOCO 为平行四边形, 所以11A O O C ∥,又1O C ⊂平面11B CD ,1AO ⊄平面11B CD , 所以1A O ∥平面11B CD .(2)因为AC BD ⊥,E ,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又1A E ⊥平面ABCD ,BD ⊂平面ABCD , 所以1,A E BD ⊥ 因为11,B D BD ∥所以11111,,EM B D A E B D ⊥⊥ 又1,A E EM ⊂平面1A EM ,1A E EM E =,所以11B D ⊥平面1,A EM 又11B D ⊂平面11B CD , 所以平面1A EM ⊥平面11B CD .【名师点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.-中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,21.【2017年高考江苏卷】如图,在三棱锥A BCDF(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【答案】(1)见解析;(2)见解析.⊥,【解析】(1)在平面ABD内,因为AB⊥AD,EF AD∥.所以EF AB又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.⊥,(2)因为平面ABD⊥平面BCD,平面ABD平面BCD=BD,BC⊂平面BCD,BC BD所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.=,AB⊂平面ABC,BC⊂平面ABC,又AB⊥AD,BC AB B所以AD⊥平面ABC,又因为AC⊂平面ABC,所以AD⊥AC.【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.22.【2017年高考浙江卷】如图,已知四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,BC AD∥,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(1)证明:CE ∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值. 【答案】(1)见解析;(2)8. 【解析】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.满分15分.(1)如图,设P A 中点为F ,连接EF ,FB . 因为E ,F 分别为PD ,P A 中点,所以EF AD ∥且12EF AD =, 又因为BC AD ∥,12BC AD =,所以 EF BC ∥且EF BC =,即四边形BCEF 为平行四边形,所以CE BF ∥,因此CE ∥平面P AB .(2)分别取BC ,AD 的中点为M ,N .连接PN 交EF 于点Q ,连接MQ . 因为E ,F ,N 分别是PD ,P A ,AD 的中点,所以Q 为EF 中点, 在平行四边形BCEF 中,MQ//CE .由△P AD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,N 是AD 的中点得BN ⊥AD .PABCDE所以AD⊥平面PBN,由BC//AD得BC⊥平面PBN,那么平面PBC⊥平面PBN.过点Q作PB的垂线,垂足为H,连接MH.MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.设CD=1.在△PCD中,由PC=2,CD=1,PD=2得CE=2,在△PBN中,由PN=BN=1,PB=3得QH=14,在Rt△MQH中,QH=14,MQ=2,所以sin∠QMH=28,所以直线CE与平面PBC所成角的正弦值是28.【名师点睛】本题主要考查线面平行的判定定理、线面垂直的判定定理及面面垂直的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.另外,本题也可利用空间向量求解线面角.。
高二数学立体几何试题答案及解析
高二数学立体几何试题答案及解析1.如图所示,已知PD⊥平面ABCD,底面ABCD是正方形,PD=AB,M是PA的中点,则二面角M-DC-A的大小为()A.B.C.D.【答案】C【解析】∵底面,∴而底面是正方形,∴∴面,则∴就是二面角的平面角在中,∵,是中点∴,即二面角的大小为,故选C2.如图,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成角的余弦值为()【答案】B【解析】略3.(本题满分14分,第(1)小题6分,第(2)小题8分)如图,在四棱锥中,底面为矩形,平面,点在线段上,平面.(1)求证:平面;(2)若,,求二面角的大小.【答案】(1)详见解析;(2)详见解析.【解析】(1)要证线与面垂直,即证垂直于平面内的两条相交直线,根据已知的线与面垂直,得到线性垂直,得证;(2)法一:根据前问所证,平面,易证底面是正方形,所以可以根据三垂线定理做出二面角的平面角,即设的交点为,过点作于点,连,易证为二面角的平面角,在直角三角形内求得角;法二:以为原点建立平面直角坐标系,根据向量法,求两个平面的法向量,利用法向量夹角的余弦值计算二面角的余弦值.试题解析:解:(1)证明:∵,∴.同理由,可证得.又,∴.(2)解法一:设的交点为,过点作于点,连易证为二面角的平面角由(1)知为正方形,在中,,二面角的大小为解法二:分别以射线,,为轴,轴,轴的正半轴建立空间直角坐标系.由(1)知,又,∴.故矩形为正方形,∴.∴.∴.设平面的一个法向量为,则,即,∴,取,得.∵,∴为平面的一个法向量.所以.设二面角的平面角为,由图知,则二面角的大小为【考点】1.线与面垂直的判定;2.二面角的计算;3.几何法与向量法求二面角.4.已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为.【答案】【解析】设,那么平面,在直角三角形中,,,所以,所以四棱锥的体积是.【考点】1.球与几何体;2.体积的计算5.(本小题12分)已知三棱柱中,底面,,,分别为的中点.(1)求证://平面;(2)求证:;(3)求三棱锥A-BCB的体积.1【答案】(1)见解析:(2)见解析;(3)【解析】(1)欲证//平面,AB中点G,连DG,CG,只需证明是平行四边形,∥即可;(2)证明面面垂直采用证明线面垂直,通过证明因为底面为等腰三角形,,又因为,所以可证得;(3)转化顶点所求三棱锥的体积为,即可求得试题解析:(I)取AB中点G,连DG,CG,在三棱柱中,底面ABC ,是矩形.∵D,E分别为AB1,CC1的中点,∴,是平行四边形,∥∵GC平面ABC,平面ABC,∴DE//平面ABC .(II)三棱柱中,底面ABC,∴中点,又,∴(III)由(II)得,在,,【考点】1.证明线面平行;2.证明面面垂直;3.求体积6.在空间直角坐标系中,点与点之间的距离为()A.B.C.D.【答案】A【解析】由空间距离公式可知:【考点】空间两点间距离7.已知为两条不同的直线,为两个不同的平面,且,给出下列结论:①若∥,则∥;②若∥,则∥;③若⊥,则⊥;④若⊥,则⊥;其中正确结论的个数是( )A.0B.1C.2D.3【答案】A【解析】若两个平面内分别有两条直线平行,则这两个平面不一定平行,所以命题•错误;若两个平面平行,则两个平面内的直线可能平行或异面,所以命题‚错误;若两个平面内分别有两条直线垂直,则这两个平面不一定垂直,所以命题ƒ错误;若两个平面垂直,则两个平面内的直线可能平行、垂直或异面,所以命题④错误;【考点】直线与直线、平面与平面的平行与垂直的命题判断.8.已知,,则的最小值.【答案】【解析】,因此当时取最小值【考点】空间向量模9.截一个几何体,各个截面都是圆面,则这个几何体一定是A.圆柱B.圆锥C.球D.圆台【答案】C【解析】圆柱的截面可以是矩形,圆锥的截面可以是三角形,圆台的截面可以是梯形,值有球的截面都是圆,故选C.【考点】几何体的截面图形.10.一个正方体的展开图如图所示,为原正方体的顶点,则在原来的正方体中()A.B.C.与所成的角为D.与相交【答案】C【解析】把展开图还原为立体图形,如下图正方体,可见与是异面直线,它们甩成的角为60°.【考点】多面体的展开图,两直线的位置关系.11.在三棱锥中,已知,则三棱锥外接球的表面积为.【答案】【解析】设中点为,由于,则点到点的距离相等,因此是三棱锥外接球的直径,由题意,是等边三角形,,所以,.【考点】几何体与外接球,球的表面积.【名师】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.12.如图,在体积为2的三棱锥侧棱AB、AC、AD上分别取点E、F、G使,记O为三平面BCG、CDE、DBF的交点,则三棱锥的体积等于()A. B. C. D.【答案】D【解析】为了便于解析,可设三棱锥为正三棱锥,为正三棱锥的高;为正三棱锥有高,因为底面相同,则它们的体积比为高之比,已知三棱锥的体积为2,所以三棱锥的体积为:(1),由题意可知,且,所以由平行得到,所以,(面BCG所在的平面图如左下角简图),同理,,则,所以,那么,亦即,设,那么,则,而,所以,则,所以,所以,又,所以,(2),且,所以:(3),由(2)×(3)得到:代入到(1)得到:三棱锥的体积就是.【考点】1.简单几何体体积;2.三角形相似比的应用.【方法点晴】此题主要考查三角形相似比在求简单几何体体积中应用方面的内容,属于中高档题.根据题意可借助正三棱锥(或正四面体)模型来帮助思考,值得注意的是所求三棱锥体积的高与原三棱锥的高往往是不在同一直线上的,当然这两个高的比值也是解决此问题的关键点,需要借助这两高与垂线之间的比值进行转换,在此过程中多次使用了相似三角形的相似比,从而问题可得解决.13.如图,棱锥的底面是矩形,⊥平面,.(1)求证:BD⊥平面PAC;(2)求二面角P—CD—B的大小;(3)求点C到平面PBD的距离.【答案】(1)见解析;(2)450(3)【解析】(1)要证明BD⊥平面PAC,只需证BD垂直于平面PAC两条相交直线即可,由ABCD为正方形,可得BD⊥AC,易得PA⊥平面ABCD,可得BD⊥PA ,结论得证.(2)由PA⊥面ABCD可得AD为PD在平面ABCD的射影,又CD⊥AD,由三垂线定理的逆定理可得 CD⊥PD,可得∠PDA为二面角P—CD—B的平面角.易得∠PDA=450.(3)由,求得点C到平面PBD的距离试题解析:(1)在Rt△BAD中,AD=2,BD=,∴AB=2,ABCD为正方形,因此BD⊥AC.∵PA⊥平面ABCD,BDÌ平面ABCD,∴BD⊥PA .又∵PA∩AC=A∴BD⊥平面PAC.(2)由PA⊥面ABCD,知AD为PD在平面ABCD的射影,又CD⊥AD,∴CD⊥PD,知∠PDA为二面角P—CD—B的平面角.又∵PA=AD,∴∠PDA=450.(3)∵PA=AB=AD=2,∴PB=PD=BD=,设C到面PBD的距离为d,由,有,即,得【考点】线面垂直,二面角及点到平面的距离.【方法点睛】立体几何解答题的一般模式是首先证明线面位置关系(一般考虑使用综合几何方法进行证明),然后是与空间角有关的问题,综合几何方法和空间向量方法都可以,但使用综合几何方法要作出二面角的平面角,作图中要伴随着相关的证明,对空间想象能力与逻辑推理能力有较高的要求,而使用空间向量方法就是求直线的方向向量、平面的法向量,按照空间角的计算公式进行计算,也就是把几何问题完全代数化了,这种方法对运算能力有较高的要求.两种方法各有利弊,在解题中可根据情况灵活选用.14.直三棱柱中,,分别是的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.【答案】(1)详见其解析;(2)存在一点,使得平面与平面所成锐二面角的余弦值为.【解析】(1)首先根据线面垂直的判定定理和性质定理可得,然后以为原点建立如图所示的空间直角坐标系,并写出各点的坐标,再由三点共线即可求出点坐标,最后计算并验证其是否为0即可得出所证的答案;(2)首先设出面的法向量为,然后由即可得出,又因为面的法向量,再由公式即可得出的值,进而得出点的坐标,即可得出所求的结果.试题解析:(1)证明:∵,,又∵∴⊥面.又∵面,∴,以为原点建立如图所示的空间直角坐标系,则有,设且,即,则,∵,所以;…6分(2)结论:存在一点,使得平面与平面所成锐二面角的余弦值为理由如下:由题可知面的法向量,设面的法向量为,则,∵,∴,即,令,则.∵平面与平面所成锐二面角的余弦值为,∴,即,解得或(舍),所以当为中点时满足要求.【考点】1、线线垂直的判定定理;2、空间向量法求解立体几何问题.15.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的高为______________.【答案】【解析】设圆锥母线为,底面圆的半径,圆锥侧面积,所以,又半圆面积,所以,,故,所以答案应填:.【考点】1、圆锥侧面展开图面积;2、圆锥轴截面性质.16.已知一个高度不限的直三棱柱,,点是侧棱上一点,过作平面截三棱柱得截面,给出下列结论:①是直角三角形;②是等边三角形;③四面体为在一个顶点处的三条棱两两垂直的四面体.其中有不可能成立的结论的个数是()A.0B.1C.2D.3【答案】B【解析】本题考察在空间点线面的位置关系,在直三棱柱中,数形结合,作图求解,①和②找出一个例子即可证明其存在性,③需分类讨论,利用直三棱柱的性质以及底面三边长AB=4,BC=5,CA=6条件判断.如图,做直三棱柱ABC-A1B1C1,AB=4,BC=5,CA=6,(1)不妨取AD=6,AE=10,DE=8,则△ADE是直角三角形,①可能成立;(2)不妨令AD=AE=DE=a(a>6),则△ADE是等边三角形,②可能成立;(3)假设四面体APDE为在一个顶点处的三条棱两两垂直的四面体,当A为直角顶点时,在直三棱柱ABC-A1B1C1中,PA⊥底面ABC,则 E,D分别与C,B重合,此时,∠EAD不是直角,与假设矛盾,假设不成立,当P为直角顶点时,可得PD∥AB,PE∥AC,由等角定理知则∠EPD不可能是直角,与假设矛盾,假设不成立,当E或D点为直角顶点时,不妨选E为直角顶点,则DE⊥EP,DE⊥EA,EP∩EA═A,EP⊂平面,EA⊂平面,则平面与平面垂直,则直三棱柱中,可证∠ACB为二面角的平面角,∠ACB═90°,与题意矛盾,假设不成立.综上③错误.故选:C.【考点】命题的真假判断17.如图,在直三棱柱中,,,,点分别在棱上,且.(1)求三棱锥的体积;(2)求异面直线与所成的角的大小.【答案】(1);(2).【解析】(1)从图形可以看出,三棱锥中,平面,所以三棱锥的体积比较容易求,利用等积法即可求出三棱锥的体积;(2)连接,由条件知,所以就是异面直线与所成的角,解三角形知.试题解析:(1)(2)连接,由条件知,所以就是异面直线与所成的角.在中,,所以,所以异面直线与所成的角为.【考点】1、三棱锥的体积;2、异面直线所成的角;3、等积法.18.若向量,,则A.B.C.D.【答案】D【解析】因为向量,,所以,排除B;,所以,应选D.,A错,如果则存在实数使,显然不成立,所以答案为D.【考点】向量的有关运算.19.在直三棱柱中,,,则直线与平面所成角的正弦值为()A.B.C.D.【答案】C【解析】在直三棱柱中,,可以证得,因此直线与平面所成角为,在中,,因此【考点】直线与平面所成的角;20.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是由一个半圆柱与一个三棱锥组成的,其直观图如下:所以该几何体的体积为:.故选A.【考点】1.三视图;2.几何体的体积.21.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线,它与直尺所在直线()A.垂直B.异面C.平行D.相交【答案】A【解析】由题意得可以分两种情况讨论:①当直尺所在直线与地面垂直时,则地面上的所有直线都与直尺垂直,则底面上存在直线与直尺所在直线垂直;②当直尺所在直线若与地面不垂直时,则直尺所在的直线必在地面上有一条投影线,在平面中一定存在与此投影线垂直的直线,由三垂线定理知,与投影垂直的直线一定与此斜线垂直,则得到地面上总有直线与直尺所在的直线垂直.∴教室内有一直尺,无论怎样放置,在地面总有这样的直线与直尺所在直线垂直. 【考点】空间中直线与直线之间的位置关系22. (2015秋•淮南期末)已知正方体的棱长为1,则正方体的外接球的体积为 . 【答案】.【解析】正方体的外接球的直径是正方体的体对角线,由此能求出正方体的外接球的体积. 解:∵正方体棱长为1, ∴正方体的外接球的半径R=, ∴正方体的外接球的体积V=()3=.故答案为:.【考点】球的体积和表面积.23. 在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 、F 分别是CC 1、AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于 ( ) A .B .C .D .【答案】B 【解析】取的中点,连接,,那么异面直线所成角就是,根据勾股定理,,,所以,故选B .【考点】异面直线所成角24. 如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1;(2)求证:AC 1∥平面CDB 1. 【答案】见解析【解析】(1)利用ABC ﹣A 1B 1C 1为直三棱柱,证明CC 1⊥AC ,利用AB 2=AC 2+BC 2,说明AC ⊥CB ,证明AC ⊥平面C 1CB 1B ,推出AC ⊥BC 1.(2)设CB 1∩BC 1=E ,说明E 为C 1B 的中点,说明AC 1∥DE ,然后证明AC 1∥平面CDB 1. 解:(1)∵ABC ﹣A 1B 1C 1为直三棱柱, ∴CC 1⊥平面ABC ,AC ⊂平面ABC , ∴CC 1⊥AC∵AC=3,BC=4,AB=5, ∴AB 2=AC 2+BC 2,∴AC ⊥CB 又C 1C∩CB=C ,∴AC ⊥平面C 1CB 1B ,又BC 1⊂平面C 1CB 1B , ∴AC ⊥BC 1(2)设CB1∩BC1=E,∵C1CBB1为平行四边形,∴E为C1B的中点又D为AB中点,∴AC1∥DEDE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.25.如图,在直三棱锥中,底面是正三角形,点是中点,.(1)求三棱锥的体积;(2)证明:.【答案】(1);(2)证明见解析.【解析】(1)由于平面为直棱柱的侧面,所以可以考虑变换顶点,利用面面垂直的性质性质定理作,则面,由棱锥的体积公式即可求得其体积;(2)要证明线线垂直可考虑证线面平行,取的中点,连接,由于底面是正三角形,,可证得,在平面由平面几何的知识可证得,所以面由线面垂直的性质即可证得.试题解析:(1)过作,直三棱柱中面,,面,是高,(2)取的中点,连接底面是正三角形,矩形中,,中面.【考点】空间直线与平面的垂直关系及棱锥的体积.26.如图,四边形和均为正方形,它们所在的平面互相垂直,分别为的中点,则直线与平面所成角的正切值为________;异面直线与所成角的余弦值是________.【答案】,【解析】由两两垂直,分别以所在的直线为轴建立如图所示的空间直角坐标系,设,则,所以,其中平面的一个法向量为,所以与平面所成角的正弦值为,所以;又向量与所成角的余弦值为,又,所以异面直线与所成角的余弦值是.【考点】空间向量的运算及空间角的求解.27.平行六面体中,底面是边长为1的正方形,侧棱的长为2,且,则的长为 .【答案】【解析】由题意得,在平行六面体中,因为,,,且,所以,所以.【考点】空间向量的运算.28.在长方体ABCD﹣A1B1C1D1中,B1C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为()A.B.C.D.【答案】A【解析】试题分析:设长方体的高为1,根据B1C和C1D与底面所成的角分别为600和450,分别求出各线段的长,将C1D平移到B1A,根据异面直线所成角的定义可知∠AB1C为异面直线B1C和DC1所成角,利用余弦定理求出此角即可.解:设长方体的高为1,连接B1A、B1C、AC∵B1C和C1D与底面所成的角分别为600和450,∴∠B1CB=60°,∠C1DC=45°∴C1D=,B1C=,BC=,CD=1则AC=∵C1D∥B1A∴∠AB1C为异面直线B1C和DC1所成角由余弦定理可得cos∠AB1C=故选A【考点】异面直线及其所成的角.29.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的体积为 .【答案】【解析】设圆锥的底面半径为,,解得,根据勾股定理,圆锥的高等于,所以圆锥的体积.【考点】旋转体的体积30.已知A、B、C三点不共线,若点M与A、B、C四点共面, 对平面ABC外一点O,给出下列表达式:其中x,y是实数,则【答案】【解析】A、B、C三点不共线,点M与A、B、C四点共面,则对平面ABC外一点O,满足,所以,所以【考点】空间向量的基本定理及其意义31.在正方体中,、分别是、的中点。
点到平面距离一题多解一例
() 1的结论可知 A 。 平面 AB , B上 。 所以 C D K上 平面 A。 . 以线段 C B 所 D K的长即为点 C到平
面 A。D 的距 离. B
因为 D是棱 C 。 C 的中点, 所以 B 。 C , B= D 2
在正三棱柱 A C ABC 中 ,平面 A C上平 B - 。。 。 B 面 B CB 所 以A C I, 0上平面 B CB 取 BC 中 C I. II
则 ∥A 则 ∥平 面 AB . 肘, 。, 。D 由 D分 别是棱 A 。 C 的中点 ,所 以 M 。C 又 A, 。 C A = D, M 。 C 所 以 AM D是平行 四边形 。 以 A / D, / 。C 所 MC / 。,所 以 MC / 面 AB . /,D 4 /平 。 又 D 肘C 肘, 以平面 M C / = 所 P / 平面 AB 则点 C 。 D,
M 则 C / l, 上 N, M/A D 删 平面 AB . lD 所 以 MC ∥平 面 AB 。 D,则点 C到平 面
AB 。 D的距离 , 即为直线 MC到平面 AB 。 D的 距 离 ,即为点 肘 到平面 A D的距离 MN =
1 B
。 :
. t
策略 2 转化为面面距离
B I c 所以△B I B / o, / BF AD C 所以旦 F,
C F
= =
点 0, 0为原点, , , 的方向分 。 以 丽
B CB的距离为 A0= / . △ 。D 中 , C。 。l、 在 AB B AI=、 , = 、 ,所 以 S 肋= D= D / AB 2 / I . 、 , 1 / s .
设 点 C到 平 面 A。D 的 距 离 为 d B .由
三视图立体几何高一数学总结练习含答案解析
§3三视图1.三视图的特点:主、俯视图①;主、左视图②;俯、左视图③,前后对应.2.在绘制三视图时,应注意:若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,分界线和可见轮廓线都用④画出,不可见轮廓线,用⑤画出.一、解决有关三视图的问题1.(2014福建,2,★☆☆)某空间几何体的正视图是三角形,则该几何体不可能是( )A.圆柱B.圆锥C.四面体D.三棱柱思路点拨逐个分析各选项.圆柱的任何视图都不可能为三角形.2.(2014江西,5,★☆☆)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )思路点拨认清直观图是解题关键.3.(2014广东汕头期末,★☆☆)下列几何体各自的三视图中,有且仅有两个视图相同的是( )A.①②B.①③C.①④D.②④思路点拨正确画出三视图是解题的关键.4.(2013四川理,3,★☆☆)一个几何体的三视图如图所示,则该几何体的直观图可以是( )思路点拨综合三个视图,先看轮廓线,再考虑细节.5.(2013湖南理,7,★★☆)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的主视图的面积不可能等于( )A.1B.√2C.√2-12D.√2+12思路点拨俯视图是正方形,而主视图的视角不固定,从不同角度观察正方体,主视图也不同.6.(2012辽宁理改编,13,★★☆)一个几何体的三视图如图所示,试画出该几何体的直观图.思路点拨整个长方体,挖去一个圆柱.二、空间几何体的直观图与三视图的关系7.(2014浙江改编,3,★☆☆)某几何体的三视图如图所示,则此几何体为( )A.长方体与三棱锥的组合体B.正方体与三棱柱的组合体C.长方体与三棱柱的组合体D.正方体与三棱锥的组合体思路点拨先画出直观图的草图,再加以判断.8.(2014山东高密统测,★★☆)如图所示,甲、乙、丙是三个几何体的三视图,则下列甲、乙、丙对应的标号正确的是( )①长方体②圆锥③三棱锥④圆柱A.④③②B.②①③C.①②③D.③②④思路点拨仔细考量各个视图.以某一个视图为基准,其他两个视图辅助,画出直观图草图.9.(2014河北沧州阶段考试,★★☆)根据如图所示的三视图,想象对应的几何体,并画出草图(尺寸不作严格要求).思路点拨从视图可看出上部为正六棱锥,下部为正六棱柱.一、选择题1.下列说法正确的是( )A.任何几何体的三视图都与其摆放的位置有关B.任何几何体的三视图都与其摆放的位置无关C.有的几何体的三视图与其摆放的位置无关D.正方体的三视图一定是三个全等的正方形2.如果一个空间几何体的主视图与左视图均为全等的等边三角形,俯视图为一个圆及其圆心,那么这个几何体为( )A.棱锥B.棱柱C.圆锥D.圆柱3.如图,空心圆柱体的主视图是( )4.将正三棱柱截去三个角(如图①所示,A,B,C分别是△GHI三边的中点)得到如图②所示的几何体,则该几何体按图②所示方向的左视图为( )5.四个正方体按如图所示的方式放置,其中阴影部分为我们观察的正面,则该组合体的三视图是( )6.如图所示的正方体ABCD-A1B1C1D1是一个用铁丝围成的模型框架,E、F分别是A1D1、CC1的中点,G为正方形ABCD的中心,用铁丝将AE、EF、FG、GA连接起来得到一组合体框架,则该组合体的主视图、左视图和俯视图分别是( )A.①④②B.①②④C.①④③D.②④③7.若某几何体的三视图如图所示,则这个几何体的直观图可能是( )二、填空题8.对几何体的三视图,下列说法正确的是.①主视图反映物体的长和宽;②俯视图反映物体的长和高;③左视图反映物体的高和宽;④主视图反映物体的高和宽.三、解答题9.一个几何体的三视图及其尺寸如图所示(单位:cm),请问该几何体是什么?写出该几何体的母线长,底面半径,高的大小.10.根据如图所示的三视图画出相应空间图形的直观图(尺寸自定).11.一个几何体是由若干个相同的小正方体组成的,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多是多少?一、选择题1.(2015山东聊城测试,★☆☆)如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体分别为( )A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台2.(2015河南内黄月考,★☆☆)如下图,三棱柱的侧棱长和底面边长均为2,且侧棱AA1⊥底面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为( )A.√3B.2√3C.4D.4√33.(2014湖北黄石模拟,★★☆)如图,水平放置的三棱柱的侧棱长为2,底面是边长为2的等边三角形,侧棱AA1⊥平面A1B1C1,且其主视图是边长为2的正方形,则该三棱柱左视图的面积为( )A.4B.2√C.2√3D.2√24.(2014安徽宿州检测,★★☆)如图所示的直三棱柱的主视图的面积为2a2,则左视图的面积为( )A.2a2B.a2a2C.√3a2D.√345.(2013北京西城一模改编,★☆☆)如图为某几何体的三视图,则此几何体为( )A.球与三棱柱的组合体B.半球与圆柱的组合体C.半球与圆锥的组合体D.半球与三棱柱的组合体二、填空题6.(2014山西太原模拟,★★★)已知正三棱锥V-ABC的主视图、俯视图如图所示,其中VA=4,AC=2√3,则该三棱锥的左视图的面积为.知识清单①长对正②高平齐③宽相等④实线⑤虚线链接高考1.A 由三视图知识可知,圆柱的正视图是矩形,不可能为三角形.故选A.2.B 由几何体的直观图知,该几何体最上面的棱横放且在中间的位置上,因此它的俯视图应排除A、C、D,经验证B符合题意,故选B.3.D 正方体的三个视图都是正方形,不合题意;圆锥的主视图和左视图都是等腰三角形,俯视图是圆(含圆心),符合题意;三棱台的主视图、左视图和俯视图各不相同,不合题意;正四棱锥的主视图和左视图都是三角形,俯视图是正方形(含两条对角线),符合题意,所以②④符合题意.故选D.4.D 由俯视图易知,只有选项D符合题意.故选D.5.C 若该正方体的放置方式如图所示,当主视图的方向与正方体的任一侧面垂直时,主视图的面积最小,其值为1,当主视图的方向与正方体的对角面BDD1B1或ACC1A1垂直时,主视图的面积最大,其值为√2,因为主视图的方向不同,所以主视图的面积S∈[1,√2].故选C.6.解析如图所示:该几何体是长为4,宽为3,高为1的长方体内部挖去一个底面半径为1,高为1的圆柱.7.C 画直观图如图,可见几何体是长方体与三棱柱的组合体.8.A 甲中俯视图是圆,则该几何体是旋转体,又其主视图和左视图均是矩形,则甲是圆柱;乙中俯视图是三角形,则该几何体是多面体,又其主视图和左视图均是三角形,则该多面体的各个面都是三角形,因此,乙是三棱锥;丙中俯视图是圆(含圆心),则该几何体是旋转体,又其主视图和左视图均是三角形,故丙是圆锥.9.解析由主视图和俯视图可知该几何体的下半部分为柱体,上半部分为锥体,因为俯视图为一个正六边形,所以该几何体是由一个正六棱锥和一个正六棱柱组合而成的.它的实物草图如图所示.基础过关一、选择题1.C 球的三视图与其摆放位置无关.2.C 棱锥、棱柱的俯视图不是圆,圆柱的主视图和左视图都是矩形,故选C.3.C 根据三视图的画法可知选C.4.A 左视图一定为直角梯形.5.B 由三视图的定义,可得其对应三视图应为选项B中的相应图形,故选B.6.A 主视图是从前向后观察,易知为①,左视图是从左向右观察,应为④,俯视图为②.7.D A、B的主视图不符合要求,C的俯视图不符合要求.二、填空题8.答案③解析根据三视图定义,主视图反映的是物体的长和高,左视图反映的是物体的宽和高,俯视图反映的是物体的长和宽.三、解答题9.解析主视图与左视图相同,说明它是均匀的对称体,又俯视图为圆(含圆心),根据学过的知识可知该几何体是圆锥.从主视图可知圆锥的底面直径为6 cm,母线长是5 cm,所以该几何体的底面半径为3 cm,母线长为5 cm,高为4 cm.10.解析直观图如图:11.解析 由主视图和左视图可知该几何体底部这一层最多摆放9个小正方体,上面一层最多摆放4个小正方体,所以组成这个几何体的小正方体的个数最多是13个.三年模拟一、选择题1.C 仔细观察三视图,先确定大致图形,再细化处理.2.B 侧视图是宽为√3,长为2的矩形,故侧视图的面积为2√3.3.C 三棱柱的左视图为一个矩形,且其一边为三棱柱的高,与这一边相邻的一边为底面三角形的高,故其面积为2×√3=2√3.4.C 由主视图的面积为2a 2得三棱柱的高为2a.左视图为矩形,长为2a,宽为底面图形(三角形)的高√32a,∴左视图的面积为2a×√32a=√3a 2.5.C 显然是半球与圆锥的组合体.二、填空题6.答案 6解析 此正三棱锥的侧棱长是4,底面正三角形的边长是2√3,而其左视图是等腰三角形,底边长是2√3,高是三棱锥的高,即为2√3,所以左视图的面积是6.。
压轴题05 立体几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用-理)
压轴题05立体几何压轴题题型/考向一:点、线、面间的位置关系和空间几何体的体积、表面积题型/考向二:外接球、内切球等相关问题题型/考向三:平行关系、垂直关系、二面角等相关问题一、空间几何体的体积、表面积热点一空间几何体的侧面积、表面积柱体、锥体、台体和球的表面积公式:(1)若圆柱的底面半径为r,母线长为l,则S侧=2πrl,S表=2πr(r+l).(2)若圆锥的底面半径为r,母线长为l,则S侧=πrl,S表=πr(r+l).(3)若圆台的上、下底面半径分别为r′,r,则S侧=π(r+r′)l,S表=π(r2+r′2+r′l +rl).(4)若球的半径为R,则它的表面积S=4πR2.热点二空间几何体的体积柱体、锥体、台体和球的体积公式:(1)V柱体=Sh(S为底面面积,h为高);Sh(S为底面面积,h为高);(2)V锥体=13(S上+S下+S上S下)h(S上、S下分别为上、下底面面积,h为高);(3)V台体=13(4)V球=4πR3.3二、外接球、内切球问题类型一外接球问题考向1墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:考向2对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R )2=a 2+b 2+c 2(长方体的长、宽高分别为a ,b ,c ),即R 2=18(x 2+y 2+z 2),如图.考向3汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2的连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h 2,所以R 2=r 2+h 24.考向4垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O 的位置是△CBD 的外心O 1与△AB 2D 2的外心O 2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.类型二内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r,建立等式V P-ABC=V O-ABC+V O-P AB+V O-P AC+V O-PBC⇒V P-ABC=13S△ABC·r+13S△P AB·r+13S△P AC·r+13S PBC·r=13(S△ABC+S△P AB+S△P AC+S△PBC)r;第三步:解出r=3V P-ABCS△ABC+S△P AB+S△P AC+S△PBC.类型三球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).三、平行关系和垂直关系的证明、二面角等热点一空间线、面位置关系的判定判断空间线、面位置关系的常用方法(1)根据空间线面平行、垂直的判定定理和性质定理逐项判断,解决问题.(2)利用直线的方向向量、平面的法向量判断.(3)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线、面的位置关系,并结合有关定理进行判断.热点二几何法证明平行、垂直1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.热点三空间向量法证明平行、垂直1.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,在平面α内的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.2.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.四、空间角、距离问题热点一异面直线所成的角求异面直线所成角的方法方法一:综合法.步骤为:①利用定义构造角,可固定一条直线,平移另一条直线,或将两条直线同时平移到某个特殊的位置;②证明找到(或作出)的角即为所求角;③通过解三角形来求角.方法二:空间向量法.步骤为:①求出直线a ,b 的方向向量,分别记为m ,n ;②计算cos 〈m ,n 〉=m ·n|m ||n |;③利用cos θ=|cos 〈m ,n 〉|,以及θ,π2,求出角θ.热点二直线与平面所成的角求直线与平面所成角的方法方法一:几何法.步骤为:①找出直线l 在平面α上的射影;②证明所找的角就是所求的角;③把这个角置于一个三角形中,通过解三角形来求角.方法二:空间向量法.步骤为:①求出平面α的法向量n 与直线AB 的方向向量AB →;②计算cos 〈AB →,n 〉=AB →·n |AB →||n |;③利用sin θ=|cos 〈AB →,n 〉|,以及θ∈0,π2,求出角θ.热点三平面与平面的夹角求平面与平面的夹角方法方法一:几何法.步骤为:①找出二面角的平面角(以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角就是二面角的平面角);②证明所找的角就是要求的角;③把这个平面角置于一个三角形中,通过解三角形来求角.求二面角的平面角的口诀:点在棱上,边在面内,垂直于棱,大小确定.方法二:空间向量法.步骤为:①求两个平面α,β的法向量m ,n ;②计算cos 〈m ,n 〉=m ·n|m |·|n |;③设两个平面的夹角为θ,则cos θ=|cos 〈m ,n 〉|.热点四距离问题1.空间中点、线、面距离的相互转化关系2.空间距离的求解方法有:(1)作垂线段;(2)等体积法;(3)等价转化;(4)空间向量法.一、单选题1.在正方体1111ABCD A B C D -中,直线m 、n 分别在平面ABCD 和11ABB A 内,且m n ⊥,则下列命题中正确的是()A .若m 垂直于AB ,则n 垂直于AB B .若m 垂直于AB ,则n 不垂直于ABC .若m 不垂直于AB ,则n 垂直于ABD .若m 不垂直于AB ,则n 不垂直于AB【答案】C【详解】AB 选项,若m 垂直于AB ,由面ABCD ⊥面11ABB A ,面ABCD ⋂面11ABB A AB =,可得m 垂直于面11ABB A ,即面11ABB A 内的所有直线均与m 垂直,而n 可能垂直于AB ,也可能不垂直于AB ,故A 错误,B 错误;CD 选项,若m 不垂直于AB ,则,BC m 为面ABCD 内的两条相交直线,由题可知BC n ⊥,m n ⊥,则n 垂直面ABCD ,又AB ⊂面ABCD ,所以n 垂直于AB ,故C 正确,D 错误.故选:C2.在中国古代数学经典著作《九章算术》中,称图中的多面体ABCDEF 为“刍甍”.书中描述了刍甍的体积计算方法:求积术曰,倍下袤,上袤从之,以广乘之,又以高乘之,六而一,即()216V AB EF AD h =+⨯⨯,其中h 是刍甍的高,即点F 到平面ABCD 的距离.若底面ABCD 是边长为4的正方形,2EF =,且//EF AB ,ADE V 和BCF △是等腰三角形,90AED BFC ∠=∠= ,则该刍甍的体积为()A .3B .3C .D .403【答案】B【详解】如图所示,设点F 在底面的射影为G ,,H M 分别为,BC AD 的中点,连接,,EM FH MH ,则FG 即为刍甍的高,-P ABC 面积恰为该容器的表面积)展开后是如图所示的边长为10的正方形123APP P (其中点B 为23P P 中点,点C为12PP 中点),则该玩具的体积为()A .6253B .1253C .125D .2503【答案】B【详解】该玩具为三棱锥-P ABC ,即三棱锥A PBC -,则PA ⊥底面PBC ,且10PA =,PBC 面积为252,所以12512510323P ABC V -=⨯⨯=.故选:B.4.攒尖是中国古代建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖.通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.如图所示的建筑屋顶是圆形攒尖,可近似看作一个圆锥,已知其轴截面(过圆锥旋转轴的截面)是底边长为6m ,腰长为5m 的等腰三角形,则该屋顶的体积约为()A .38πmB .39πmC .310πmD .312πm 【答案】D【详解】如图所示为该圆锥轴截面,由题知该圆锥的底面半径为15.已知为两条不同的直线,,为两个不同的平面,则下列命题中正确的是()A .若//,//a b b α,则//a αB .若//,,//a b a b αβ⊥,则αβ⊥C .若//,//,//a b αβαβ,则//a bD .若//,//,a b αβαβ⊥,则a b⊥【答案】B【详解】对于A ,若//,//a b b α,则//a α或a α⊂,故A 错误;对于B ,若//,//a b b β,则a β⊂或//a β,若a β⊂,因为a α⊥,则αβ⊥,若//a β,如图所示,则在平面β一定存在一条直线//m a ,因为a α⊥,所以m α⊥,又m β⊂,所以αβ⊥,综上若//,,//a b a b αβ⊥,则αβ⊥,故B 正确;对于C ,若//,//,//a b αβαβ,则直线,a b 相交或平行或异面,故C 错误;对于D ,若//,//,a b αβαβ⊥,则直线,a b 相交或平行或异面,故D 错误.故选:B.6.在直三棱柱111ABC A B C -中,ABC 为等腰直角三角形,若三棱柱111ABC A B C -的体积为32,则该三棱柱外接球表面积的最小值为()A .12πB .24πC .48πD .96π7.已知三棱锥-P ABC 中,底面ABC 是边长为的正三角形,点P 在底面上的射影为底面的中心,且三棱锥-P ABC 外接球的表面积为18π,球心在三棱锥-P ABC 内,则二面角P AB C --的平面角的余弦值为()A .12B .13C 22D 即PDC ∠为二面角P AB C --的平面角,由23AB =,得22OC OD ==,显然三棱锥线段PO 上,由三棱锥-P ABC 的外接球的表面积为8.已知三棱锥-P ABC 的四个顶点都在球O的球面上,4PB PC AB AC ====,2PA BC ==,则球O 的表面积为()A .316π15B .79π15C .158π5D .79π5而,,AB AC A AB AC =⊂ 平面ABC ,因此在等腰ABC 中,4,2AB AC BC ===,则215sin 1cos ABC ABC ∠=-∠=,二、多选题9.已知直线a ,b ,c 两两异面,且a c ⊥,b c ⊥,下列说法正确的是()A .存在平面α,β,使a α⊂,b β⊂,且c α⊥,c β⊥B .存在平面α,β,使a α⊂,b β⊂,且c α∥,c β∥C .存在平面γ,使a γ∥,b γ∥,且c γ⊥D .存在唯一的平面γ,使c γ⊂,且a ,b 与γ所成角相等【答案】ABC【详解】对于A,平移直线b 到与直线a 相交,设平移后的直线为b ',因为b c ⊥,所以b c '⊥,设直线,a b '确定的平面为α,则a c ⊥,b c '⊥,直线b '和a 相交,所以c α⊥,同理可得:c β⊥,故A 对;对于B,平移直线c 到与直线a 相交,设平移后的直线为c ',设直线,a c '确定的平面为α,因为c //c ',且α⊄c ,所以c α∥,同理可得:c β∥,故B 对;对于C,同时平移直线b 和直线a ,令平移后的直线相交,设平移后的直线为,a b '''',因为a c ⊥,b c ⊥,所以a c ''⊥,b c ''⊥,设直线,a b ''''确定的平面为γ,则a γ∥,b γ∥,且c γ⊥,故C 对;对于D ,由对称性可知,存在两个平面γ,使c γ⊂,且a ,b 与γ所成角相等,故D 错误;故选:ABC.10.已知正方体1111ABCD A B C D -的外接球表面积为12π,,,M N P 分别在线段1BB ,1CC ,1DD 上,且,,,A M N P 四点共面,则().A .AP MN=B .若四边形AMNP 为菱形,则其面积的最大值为C .四边形AMNP 在平面11AAD D 与平面11CC D D 内的正投影面积之和的最大值为6D .四边形AMNP 在平面11AA D D 与平面11CC D D 内的正投影面积之积的最大值为4设正方体1111ABCD A B C D -依题意,234π()12π2a ⋅=,解得因为平面11BCC B ∥平面ADD则M 在平面11AA D D 上的投影落在设为H ,则四边形AGHP 为四边形AMNP 由于,AM PN GM HN ==,则(当1x y ==时取“=”),故C 错误,D 正确,故选:ABD三、解答题11.如图,四棱锥S ABCD -的底面为菱形,60BAD ∠=︒,2AB =,4SD =,SD ⊥平面ABCD ,点E 在棱SB 上.(1)证明:AC DE ⊥;(2)若三棱锥E ABC -,求点E 到平面SAC 的距离.【详解】(1)证明:如图,连接BD ,因为四边形ABCD 为菱形,所以AC BD ⊥,因为SD ⊥平面ABCD ,AC ⊂平面ABCD ,所以SD AC ⊥,又因为SD BD D = ,所以AC ⊥平面SBD ,又因为DE ⊂平面SBD ,所以AC DE ⊥.(2)解:设点E 到平面ABC 则三棱锥E ABC -的体积V (11sin 18032AB BC =⨯⨯⨯⨯︒-12.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,,AB AD O =为BD 的中点.(1)证明:OA CD ⊥;(2)已知OCD 是边长为1的等边三角形,已知点E 在棱AD 的中点,且二面角E BC D --的大小为45 ,求三棱锥A BCD -的体积.【详解】(1)证明:AB AD = ,O 为BD 的中点,AO BD ∴⊥,又平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,AO ⊂平面BCD ,所以AO ⊥平面BCD ,又CD ⊂平面BCD ,AO CD ∴⊥.(2)取OD 的中点F ,因为OCD 为等边三角形,所以CF OD ⊥,过O 作//OM CF ,与BC 交于M ,则OM OD ⊥,由(1)可知OA ⊥平面BCD ,设OA a =,因为OA ⊥平面BCD ,所以设平面BCE 的一个法向量为n =3300x y n BC ⎧+=⎪⎧⋅= ○热○点○题○型二外接球、内切球等相关问题一、单选题1.已知ABC 是边长为3的等边三角形,其顶点都在球O 的球面上,若球O 的体积为323π,则球心O 到平面ABC 的距离为()A B .32C .1D 因为ABC 是边长为3的等边三角形,且所以13O B =,又因为球O 的体积为32π2.已知三棱锥-P ABC 的底面ABC 是边长为1的正三角形,侧棱,,PA PB PC 两两垂直,若此三棱锥的四个顶点都在同一个球面上,则该球的表面积是()A .3πB .πC .3π4D .3π23.一个圆锥的底面圆和顶点都恰好在一个球面上,且这个球的半径为5,则这个圆锥的体积的最大值时,圆锥的底面半径为()A .103B .2C .3D 【答案】C【详解】解:如图,设圆锥的底面半径为r ,球半径5R =,球心为O .过圆锥的顶点P 作底面的垂线2125OO r =-.所以圆锥的高h PO =4.已知圆锥的侧面积为2π,母线与底面所成角的余弦值为2,则该圆锥的内切球的体积为()A .4π3B .43π9C.27D5.如图,几何体Ω为一个圆柱和圆锥的组合体,圆锥的底面和圆柱的一个底面重合,圆锥的顶点为A ,圆柱的上、下底面的圆心分别为B 、C ,若该几何体Ω存在外接球(即圆锥的顶点与底面圆周在球面上,且圆柱的底面圆周也在球面上).已知24BC AB ==,则该组合体的体积等于()A .56πB .70π3C .48πD .64π【答案】A【详解】设该组合体外接球的球心为O ,半径为R ,易知球心在BC 中点,则224R AO ==+=.6.已知矩形ABCD的顶点都在球心为的体积为43,则球O的表面积为()A.76πB.112πC D.3故球的表面积为:2476πR π=,故选:A .7.水平桌面上放置了4个半径为2的小球,4个小球的球心构成正方形,且相邻的两个小球相切.若用一个半球形的容器罩住四个小球,则半球形容器内壁的半径的最小值为()A .4B .2C .2D .6此时,如上图示,O 为半球的球心,体的体对角线,且该小球与半球球面上的切点与8.已知三棱锥-PABC的四个顶点均在球的球面上,,PB AC== PC AB=Q为球O的球面上一动点,则点Q到平面PAB 的最大距离为()A2211BC2211D2223BD BE AB∴+==,BD2226BD BE BF∴++=,∴球在PAB中,cosABABP∠=二、填空题9.在三棱锥-P ABC 中,PA ⊥平面ABC ,14AB AC PA AB AC ⊥=+=,,,当三棱锥的体积最大时,三棱锥-P ABC 外接球的体积为______.则三棱锥-P ABC 外接球的直径为2R PA =因此,三棱锥-P ABC 外接球的体积为34π3R10.如图,在直三棱柱111中,1.设为1的中点,三棱锥D ABC -的体积为94,平面1A BC ⊥平面11ABB A ,则三棱柱111ABC A B C -外接球的表面积为______.【答案】27π【详解】取1A B 的中点E ,连接AE ,如图.因为1AA AB =,所以1AE A B ⊥.又面1A BC ⊥面11ABB A ,面1A BC ⋂面111ABB A A B =,且AE ⊂面11ABB A ,所以⊥AE 面1A BC ,BC ⊂面1A BC ,所以AE BC ⊥.在直三棱柱111ABC A B C -中,1BB ⊥面ABC ,BC ⊂面ABC ,所以1BB BC ⊥.又AE ,1BB ⊂面11ABB A ,且AE ,1BB 相交,所以BC ⊥面11ABB A ,AB ⊂面11ABB A ,所以BC AB ⊥.11.如图,直三棱柱111的六个顶点都在半径为1的半球面上,,侧面11BCC B 是半球底面圆的内接正方形,则直三棱柱111ABC A B C -的体积为___________.12.如图所示的由4个直角三角形组成的各边长均相等的六边形是某棱锥的侧面展开图,若该六边形的面积为12+,则该棱锥的内切球半径为___.由题意,侧面展开图的面积由,PD AD PD DC ⊥⊥,○热○点○题○型三平面关系、垂直关系、二面角等相关问题1.已知多面体ABCDEF 中,四边形CDEF 是边长为4的正方形,四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,36BE AB ==,4=AD .(1)求证:平面ADF ⊥平面BCE ;(2)求直线AF 与平面BCF 所成角的正弦值.【详解】(1)因为四边形CDEF 是边长为4的正方形,所以CE ⊥DF ,ED ⊥DC ,因为四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,所以AD ⊥CD ,AB ⊥AD ,故直线AF与平面BCF所成角的正弦值为-PA 2.如图,在四棱锥P ABCD平面PAD⊥平面ABCD.Array(1)证明:平面CDM⊥平面PAB;(2)若AD BC ∥,2AD BC =,2AB =,直线PB 与平面MCD ,求三棱锥P MCD -的体积.【详解】(1)取AD 中点为N ,连接PN ,因为PAD 为等边三角形,所以PN AD ^,且平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PN ⊂面PAD ,所以PN ^平面ABCD ,又AB ⊂平面ABCD ,所以PN AB ⊥,又因为PD AB ⊥,PN PD P = ,,PN PD ⊂平面PAD ,所以AB ⊥平面PAD ,又因为DM ⊂平面PAD ,所以AB DM ⊥,因为M 为AP 中点,所以DM PA ⊥,且PA AB A = ,,PA PB ⊂平面PAD ,所以DM ⊥平面PAB ,且DM ⊂平面CDM ,所以平面CDM ⊥平面PAB .(2)由(1)可知,PN AB ⊥且PD AB ⊥,PN PD P = ,所以AB ⊥平面PAD ,△为边长为6的等边三角形,E为BD的中点,F为AE的三等分点,且2AF FE ABD=.(1)求证://FM 面ABC ;(2)若二面角A BD C --的平面角的大小为23π,求直线EM 与面ABD 所成角的正弦值.【详解】(1)在BE 上取一点N ,使得12BN NE =,连接FN ,NM ,∵6BD =,∴116BN BD ==,2NE =,3ED =,∵12AF FE =,∴12BN AF NE FE ==,则FN AB ∥,又FN ⊄面ABC ,AB ⊂面ABC ,∴FN ∥面ABC ,∵15BN CM ND MD ==,∴NM BC ∥.∵NM ⊄面ABC ,BC ⊂面ABC ,∴NM ∥面ABC ,∵FN NM N = ,,FN NM ⊂面FNM ,∴面FNM ∥面ABC ,又FM ⊂面FNM ,4.已知底面是正方形,平面,,,点E 、F 分别为线段PB 、CQ 的中点.(1)求证://EF平面PADQ ;(2)求平面PCQ 与平面CDQ 夹角的余弦值;(3)线段PC 上是否存在点M ,使得直线AM 与平面PCQ 所成角的正弦值是7,若存在求出PM MC的值,若不存在,说明理由.【详解】(1)证明:法一:分别取AB 、CD 的中点G 、H ,连接EG 、GH 、FH ,由题意可知点E 、F 分别为线段PB 、CQ 的中点.所以//EG PA ,//FH QD ,因为//PA DQ ,所以//EG FH ,所以点E 、G 、H 、F 四点共面,因为G 、H 分别为AB 、CD 的中点,所以//GH AD ,因为AD ⊂平面ADQP ,GH ⊄平面ADQP ,所以//GH 平面ADQP ,又因为//FH QD ,QD ⊂平面ADQP ,FH ⊄平面ADQP ,所以//FH 平面ADQP ,法二:因为ABCD 为正方形,且以点A 为坐标原点,以AB 、空间直角坐标系,则()0,0,3P 、()3,3,0C 、()0,3,1Q 所以()0,3,1EF =- ,易知平面PADQ 所以0a EF ⋅= ,所以E F a ⊥ ,EF ⊄ADQP EF所在平面和圆所在的平面互相垂直,已知2,1AB EF ==.(1)求证:平面DAF ⊥平面CBF ;(2)当AD 的长为何值时,二面角C EF B --的大小为60︒?设()0AD t t =>,则(1,0,C -∴(1,0,0)EF = ,33,22CF ⎛= ⎝6.如图,在三棱柱111中,四边形11是边长为4的菱形,AB BC =,点D 为棱AC 上的动点(不与A 、C 重合),平面1B BD 与棱11AC 交于点E .(1)求证1BB DE //;(2)若平面ABC ⊥平面11AAC C ,160A AC ∠= ,判断是否存在点D 使得平面11A ABB 与平面1B BDE 所成的锐二面角为π3,并说明理由.【详解】(1)11//BB CC ,且1BB ⊂/平面11ACC A ,1CC ⊂平面11ACC A ,∴1//BB 平面11ACC A ,又∵1BB ⊂平面1B BD ,且平面1B BD 平面11ACC A DE =,∴1BB DE //;(2)连接1AC ,取AC 中点O ,连接1AO ,BO ,在菱形11ACC A 中,160A AC ∠=︒,∴1A AC △是等边三角形,又∵O 为AC 中点,∴1A O ⊥∵平面ABC ⊥平面11ACC A ,平面ABC ⋂平面11ACC A AC =∴1A O ⊥平面ABC ,OB ⊂平面。
专题8.8 立体几何综合问题(精练)-2021年新高考数学一轮复习学与练(解析版)
专题8.8 立体几何综合问题一、选择题1.(2020·浙江高三月考)“直线l与平面α内无数条直线垂直”是“直线l与平面α垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不必要也不充分条件【答案】B【解析】设命题p:直线l与平面α内无数条直线垂直,命题q:直线l与平面α垂直,⇒,所以p是q的必要不充分条件.则p q,但q p故选:B、是空间两个不同的平面,则“平面α上存在不共线的三点到2.(2020·上海市建平中学月考)已知αβαβ”的()平面β的距离相等”是“//A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件【答案】B【解析】、是空间两个不同的平面,若平面α内存在不共线的三点到平面β的距离相等,已知αβαβ或相交,可得//αβ,则平面α上存在不共线的三点到平面β的距离相等;反之,若//αβ”的必要不充分条件.所以“平面α上存在不共线的三点到平面β的距离相等”是“//故选:B.3.(2020·浙江高三月考)设m,n是空间两条不同直线,α,β是空间两个不同平面,则下列选项中不正确的是()A.当n⊥α时,“n⊥β”是“α∥β”成立的充要条件⊥”的充分不必要条件B.当时,“m⊥β”是“αβC.当时,“n//α”是“”必要不充分条件D .当时,“”是“”的充分不必要条件【答案】C 【解析】A,B,D 正确;C 错误.,////m n m n m n αα⊂⇒或与异面;,////;m n m n n ααα⊂⇒⊂或所以当m α⊂时,//n α是//m n 的既不充分又不必要条件.故选C3.(2020·河北新华·石家庄二中高三月考(理))如图,正方体1111ABCD A BC D -中,P 为底面ABCD 上的动点,1PE A C ⊥于E ,且,PA PE =则点P 的轨迹是( )A .线段B .圆C .椭圆的一部分D .抛物线的一部分【答案】A【解析】 连结1AP ,可证11A AP A EP ≌,即11A A A E =,即点E 是体对角线1AC 上的定点,直线AE 也是定直线.PA PE =,∴动点P 必定在线段AE 的中垂面α上,则中垂面α与底面ABCD 的交线就是动点P 的轨迹,所以动点P 的轨迹是线段.故选:A5.(2020·河南月考(理))3D 打印属于快速成形技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠累积的方式来构造物体的技术(即“积层造型法”).过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如髋关节、牙齿或一些飞机零部件等).已知利用3D 打印技术制作如图所示的模型.该模型为在圆锥底内挖去一个正方体后的剩余部分(正方体四个顶点在圆锥母线上,四个顶点在圆锥底面上),圆锥底面直径为31 g/cm,不考虑打印损耗,制作该模型所需原料的质量约为()(取π 3.14=,精确到0.1)A.609.4g B.447.3g C.398.3g D.357.3g【答案】C【解析】如图,是几何体的轴截面,因为圆锥底面直径为,所以半径为OB=.因为母线与底面所成角的正切值为tan B,所以圆锥的高为10cmPO=.设正方体的棱长为a,DE=1010a-=,解得5a=.所以该模型的体积为(()2331500ππ105125cm33V=⨯⨯-=-.所以制作该模型所需原料的质量为()500π500π1251125398.3g33⎛⎫-⨯=-≈⎪⎝⎭.故选:C.6.(2020·上海浦东新·华师大二附中月考)运用祖暅原理计算球的体积时,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等.现将椭圆221916x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .64πB .48πC .16πD .32π【答案】B【解析】 构造一个底面半径为3,高为4的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点的圆锥,则当截面与顶点距离为(04)h h 时,小圆锥的底面半径为r ,则43h r =, 34r h ∴=, 故截面面积为26991h ππ-,把y h =代入椭圆221916x y +=可得x =, ∴橄榄球形几何体的截面面积为221699h x πππ=-, 由祖暅原理可得橄榄球形几何体的体积()1229494483V V V πππ⎛⎫=-=⨯-⨯⨯= ⎪⎝⎭圆柱圆锥. 故选:B .7.(2018·浙江高考真题)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( )A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤【答案】D【解析】 设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO 、SN 、OM ,则SO 垂直于底面ABCD ,OM 垂直于AB ,因此123,,,SEN SEO SMO θθθ∠=∠=∠= 从而123tan ,tan ,tan ,SN SN SO SO EN OM EO OMθθθ==== 因为SN SO EO OM ≥≥,,所以132tan tan tan ,θθθ≥≥即132θθθ≥≥,选D.8.(2019·山西高二期中(理))如图,在Rt ABC ∆中,D ,E 分别为AB ,AC 边上的中点,且4AB =,2BC =.现将ABC ∆沿DE 折起,使得A 到达1A 的位置,且二面角1A DE B --为60︒,则1AC =( )A .B .3CD .【答案】A【解析】 ,D E 分别为,AB AC 中点 //DE BC ∴ DE BD ∴⊥,1DE A D ⊥又1,BD A D ⊂平面1A BD ,1BD A D D = DE ∴⊥平面1A BD二面角1A DE B --的平面角为1A DB ∠ 160A DB ∴∠=12A D BD == 12A B ∴=//BC DE BC ∴⊥平面1A BD ,又1A B ⊂平面1A BD 1BC A B ∴⊥1AC ∴===故选:A9.(2020·浙江诸暨·)正方体1111ABCD A BC D -中,在111A B D ∆内部(不含边界)存在点P ,满足点P 到平面11ACC A 的距离等于点P 到棱1BB 的距离.分别记二面角P AD B --为α,P AC B --为β,P BC A --为γ,则下列说法正确的是( )A .αβγ>>B .αγβ<<C .αβγ<<D .以上说法均不正确【答案】C【解析】如图所示,作PQ ⊥面ABCD 于Q ,作QE AD ⊥于E ,QF BC ⊥于F ,QG AC ⊥于G ,连PE ,PF ,PG , 则PEQ α=∠,PGQ β=∠,PFQ γ=∠. 因此tan PQ QE α=,tan PQ QG β=,tan PQ QFγ=, 作111PE A D ⊥于1E ,111PF B C ⊥于1F ,111PG AC ⊥于1G ,1PG 即点P 到平面11ACC A 的距离,1PB 即点P 到棱1BB 的距离,因此11PB PG =,因为111QF PF PB PG QG =<==,因此tan tan βγ<,因为11QG PG PE QE =<=,因此tan tan αβ<综上有:tan tan tan αβγ<<,即αβγ<<,故选:C10.(2020·安徽合肥·高三三模(理))在长方体1111ABCD A B C D -中,6AB AD ==,12AA =,M 为棱BC 的中点,动点P 满足APD CPM ∠=∠,则点P 的轨迹与长方体的面11DCC D 的交线长等于()A .23πB .πC .43πD【答案】A【解析】如下图所示:当P 在面11DCC D 内时,AD ⊥面11DCC D ,CM ⊥面11DCC D ;又APD MPC ∠=∠, 在Rt PDA △与Rt PCM 中,∵6AD =,则3MC =, ∴tan tan AD MC APD MPC PD PC ∠==∠=,则63PD PC =, 即2PD PC =.在平面11DCC D 中,以DC 所在直线为x 轴,以DC 的垂直平分线为y 轴建立平面直角坐标系, 则()3,0D -,()3,0C ,设(),P x y , 由2PD PC ==整理得:221090x x y -++=,即()22516x y -+=.∴点P 的轨迹是以()5,0F 为圆心,半径为4的圆.设圆F 与面11DCC D 的交点为E 、M ,作EK 垂直x 轴于点K ,则21sin 42EK EFK EF ∠===; ∴6EFK π∠=;故点P 的轨迹与长方体的面11DCC D 的交线为劣弧ME ,所以劣弧ME 的长为2463ππ⨯=. 故选:A .二、多选题 11.(2020·广东宝安·高三开学考试)如图,正方体1111ABCD A BC D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =,则下列结论中正确的是( )A .AC BE ⊥B .//EF 平面ABCDC .AEF 的面积与BEF 的面积相等D .三棱锥A BEF -的体积为定值【答案】ABD【解析】可证AC ⊥平面11D DBB ,从而AC BE ⊥,故A 正确;由11//B D 平面ABCD ,可知//EF 平面ABCD ,B 也正确;连结BD 交AC 于O ,则AO 为三棱锥A BEF -的高,1111224BEF S =⨯⨯=△,三棱锥A BEF -的体积为1134224⨯⨯=为定值,D 正确;很显然,点A 和点B 到的EF 距离是不相等的,C 错误. 故选:ABD 12.(2020·江苏赣榆一中高一月考)已知在矩形ABCD 中,4AB =,3BC =,将矩形ABCD 沿对角线AC 折成大小为θ的二面角B AC D --,若折成的四面体ABCD 内接于球O ,则下列说法正确的是( ) A .四面体ABCD 的体积的最大值是245 B .球的体积随θ的变化而变化C .球心O 为原矩形的两条对角线的交点D .球O 的表面积为定值25π 【答案】ACD【解析】如图,(1)当面ACD ⊥面ABC 时,四面体ABCD 的体积最大,此时,如图,过点D 作AC 的垂线,交AC 于点E ,则DE 即为四面体ABCD 的高,由等面积法得:AC DE AD DC ⨯=⨯,∴ 125DE = , ∴四面体ABCD 的最大值为11112243433255ABC V S h =⋅=⨯⨯⨯⨯=, 故A 选项正确; (2)在四面体ABCD 内,AC 的中点O 到点,,,A B C D 的距离相等,∴点O 为外接球的球心,此时球的半径522AC R ==,球的体积242533V R ππ== ,为定值,球的表面积2425S R ππ== ,为定制,故B 选项错误,,C D 正确,故选,,A C D 13.(2020·湖北江岸·期末)向体积为1的正方体密闭容器内注入体积为x (01x <<)的液体,旋转容器,下列说法正确的是( )A .当12x =时,容器被液面分割而成的两个几何体完全相同 B .不管注入多少液体,液面都可以成正三角形形状CD 【答案】AC【解析】对于A ,当12x =时,题目等价于过正方体中心的平面截正方体为两部分, 根据对称性知两部分完全相同,所以A 正确; 对于B ,取12x =,此时液面过正方体中心,截面不可能为三角形,所以B 错误; 对于C ,当液面与正方体的体对角线垂直时,液面为如图所示正六边形时面积最大,其中正六边形的顶点均为对应棱的中点,所以液面面积的最大值为162S ==,C 正确; 对于D ,当液面过1DB 时,截面为1B NDG ,将1111D C B A 绕11C D 旋转2π,如图所示;则111DN B N DN B N DB ''+=+≥= 当D 、N 、1B '三点共线时等号成立,所以液面周长最小值为D 错误. 故选:AC.14.(2020·广东深圳·高二月考)(多选题)如图,在直三棱柱111ABC A B C -中,1223AA AC AB ===,AB AC ⊥,点D ,E 分别是线段BC ,1BC 上的动点(不含端点),且1EC DC B C BC=.则下列说法正确的是( )A .//ED 平面1ACCB .该三棱柱的外接球的表面积为68πC .异面直线1BC 与1AA 所成角的正切值为32 D .二面角A EC D --的余弦值为413【答案】AD【解析】在直三棱柱111ABC A B C -中,四边形11BCC B 是矩形, 因为1EC DC B C BC=,所以11////ED BB AA ,ED 不在平面1ACC 内,1AA ⊂平面1ACC , 所以//ED 平面1ACC ,A 项正确; 因为1223AA AC AB ===,所以3AB =, 因为AB AC ⊥,所以BC ==1BC 易知1BC 是三棱柱外接球的直径,所以三棱柱外接球的表面积为22417πππ=⨯=⎝⎭,所以B 项错误; 因为11//AA BB ,所以异面直线1BC 与1AA 所成角为1BB C ∠.在1Rt B BC 中,12BB =,BC =,所以11tan BC BB C BB ∠==C 项错误; 二面角A EC D --即二面角1A B C B --,以A 为坐标原点,以AB ,AC ,1AA 的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图则1(0,0,0),(3,0,0),(0,2,0),(3,0,2)A B C B ,1(3,0,2)AB ∴=,(3,2,0)BC =-,1(3,2,2)BC =--, 设平面1ABC 的法向量(,,)n x y z =,则1100n AB n B C ⎧⋅=⎪∴⎨⋅=⎪⎩,即3203220x z x y z +=⎧⎨-+-=⎩,令2x =可得(2,0,3)n =-, 设平面1BB C 的一个法向量为(,,)m x y z =,则100m BC m B C ⎧⋅=⎪⎨⋅=⎪⎩,即3203220x y x y z -+=⎧⎨-+-=⎩,令2x =可得(2,3,0)m = 故二面角A EC D --413=,所以D 项正确. 故选:AD.三、填空题15.(2020·浙江高三月考)在2000多年前,古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究圆锥曲线:用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面倾斜到“和且仅和”圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线.已知一个圆锥的高和底面半径都为2,则用与底面呈45的平面截这个圆锥,得到的曲线是___________.【答案】抛物线【解析】因为圆锥的高和底面半径都为2,因此有, ︒tan 145OS SAO SAO AO︒∠==⇒∠=所以母线SA 与底面所成的角为45,因为用与底面呈45的平面截这个圆锥,所以该平面一定会与圆锥的某条母线(如SA )平行,由题中所给的结论可知:用与底面呈45的平面截这个圆锥,得到的曲线是抛物线.故答案为:抛物线16.(2020·江西其他(文))《九章算术》是我国古代著名数学经典,其中对勾股定理的论述,比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小;以锯锯之,深一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺,问这块圆柱形木料的直径是多少?长为0.5丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).己知弦尺,弓形高寸,估算该木材镶嵌墙内部分的体积约为______立方寸.(注:一丈=10尺=100寸,,答案四舍五入,只取整数...........)【答案】317 【解析】如图,设圆半径为寸(下面长度单位都是寸),连接,已知,, 在中,,即,解得, ︒︒︒1AB =1CD =53.14,sin 22.513π≈≈r ,OA OD 152AD AB ==1OD OC CD r =-=-Rt ADO 222AD OD OA 2225(1)r r +-=13r =由得,所以, 图中阴影部分面积为扇形(平方寸), 镶嵌在墙体中木材是以阴影部分为底面,以锯刀长为高的柱体,所以其体积为(立方寸)故答案为:317.17.(2020·河北新华·石家庄二中高二月考)如图,在四棱锥中,四边形为菱形,且是等边三角形,点是侧面内的一个动点,且满足,则点所形成的轨迹长度是_______.【解析】根据题意,连接AC ,BD ,记其交点为O ,取PC 上一点为M ,连接MB ,MD ,作图如下:5sin 13AD AOD AO ∠==22.5AOD ∠=︒45AOB ∠=︒S S =214131012 6.332522AOB S πππ-=⨯⨯-⨯⨯≈△6.332550317V Sh =≈⨯≈P ABCD -ABCD 2,60,AB DAB PAD =∠=∆PB Q =PBC DQ AC ⊥Q若满足题意,又,故平面DBQ ,则点Q 只要在平面DBQ 与平面PBC 的交线上即可.假设如图所示:平面DBM 与平面DBQ 是同一个平面,则Q 点的轨迹就是线段BM.根据假设,此时直线平面DBM ,则.故三角形MOC 为直角三角形.因为三角形PAD 是等边三角形,三角形BAD 也是等边三角形,故AD ,又因为BC //AD ,故BC PB ,故三角形PBC 为直角三角形,故故在三角形PAC 中,由余弦定理可得:故在直角三角形MOC 中, 在直角三角形PBC 中, 在三角形BCM 中: 故可得:. DQ AC ⊥AC BD ⊥AC ⊥AC ⊥AC MO ⊥PB ⊥⊥2210PC PB BC +2,23,10PA AC PC ===33021023cos PCA ∠==⨯210OC MC cos PCA ==∠BC cos PCB PC ∠=1010=2222829BM BC CM BC CM cos PCB =+-⨯⨯⨯∠=27BM =故答案为. 18.(2021·福建其他)《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的鳖臑中,平面,,,,为中点,为内的动点(含边界),且.①当在上时,______;②点的轨迹的长度为______.【答案】【解析】 (1)当在上时,因为平面,故,又,故平面.故.又,为中点,故所以为中点.故. (2)取中点则由(1)有平面,故,又,设平面则有平面.故点的轨迹为.又此时,,故. 所以3P ABC -PA ⊥ABC 90ACB ∠=︒4CA =2PA =D AB E PAC ∆PC DE ⊥E AC AE =E E AC PA ⊥ABC PA DE ⊥PC DE ⊥DE ⊥PAC DE AC ⊥90ACB ∠=︒D AB //DE BC E AC 122AE AC ==AC F DF ⊥PAC PC DF ⊥PC DE ⊥DEF PC G ⋂=PC ⊥DGF E FG 2CF =1tan 2PA PCA AC ∠==sin PCA ∠==sin 5FG CF PCA =⋅∠==故答案为:19.(2020·全国高三专题练习(文))现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.【答案】12 90【解析】足球每块黑色皮子的5条边分别与5块白色皮子的边缝在一起;每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其他白色皮子的边缝在一起.所以设这个足球有x 块正五边形,一共有5x 条边,其中白皮三条边和黑皮相连,又足球表面中的正六边形的面为20个,根据题意可得方程:,解得,该足球表面中的正五边形的面为12个;因为任何相邻两个面的公共边叫做足球的棱,所以每条棱由两条边组成,该足球表面的棱为:条.故答案为:12;90.20.如图在三棱锥S ABC -中,SA SB SC ==,且2ASB BSC CSA π∠=∠=∠=,M N 、分别是AB 和SC 的中点.则异面直线SM 与BN 所成的角的余弦值为______,直线SM 与面SAC 所成角大小为5203x =⨯12x =()125+206290⨯⨯÷=_________.4π 【解析】 因为2ASB BSC CSA π∠=∠=∠=,所以以S 为坐标原点,SA,SB,SC 为x,y,z 轴建立空间直角坐标系.设2SA SB SC ===,则(1,1,0),(0,2,0),(0,0,1),(2,0,0),(0,0,2).M B N A C因为2(1,1,0),(0,2,1),cos ,2SM BNSM BN -==-==,所以异面直线SM 与BN 所成的角的余弦值为5,面SAC 一个法向量为(0,2,0),SB =则由2cos ,22SM SB ==得π,4SM SB =,即直线SM 与面SAC 所成角大小为π4. 21.(2020·包头市第九中学高一期末)设三棱锥的底面和侧面都是全等的正三角形,是棱的中点.记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则,,中最大的是_________,最小的是________.【答案】【解析】S ABC -P SA PB AC αPB ABC βP AC B --γαβγαβ作交于,由于,, 所以为正三棱锥,由对称性知,取中点,连接,作平面,交平面于,连接, 作平面,交平面于,连接,作,交于,连接,所以, 由于,所以,由于平面,所以,由于,平面,所以,, 因为,在上,平面于,平面于, 所以.所以.所以, 由于都是锐角,所以, 由于在上,由对称性,而,则,由于也是锐角,所以,由,,所以 综上所述,三个角中的最小角是,最大角是.故答案为:①;②.四、解答题//PD CA SC D AB BC CA ==SA SB SC ==S ABC -BD PB =PD E BE EH ⊥ABC ABC H BH PF ⊥ABC ABC F BF PG AC ⊥AC G GF BE PD ⊥//PD AC BPD α=∠PF ⊥ABC PBF β=∠PG AC ⊥PF ⊥ABC PGF γ=∠sin BE EH BP BP BP BPα==>=//PD CA E PD EH ⊥ABC H PF ⊥ABC F EH PF =sin PF EH BP BPβ==sin sin αβ>,αβαβ>P SA PB CP =CP PG >sin sin PF PF PF PG CP BP γβ=>==γγβ>PB BG<sin BE EH PF BP BP BP α==>==sin PF PGγ>=αγβααβ22.(2019·北京西城·高三三模)如图,在正四棱柱1111ABCD A BC D -中,1AB =,13AA =,过顶点A ,1C 的平面与棱1BB ,1DD 分别交于M ,N 两点(不在棱的端点处).(1)求证:四边形1AMC N 是平行四边形;(2)求证:AM 与AN 不垂直;(3)若平面1AMC N 与棱BC 所在直线交于点P ,当四边形1AMC N 为菱形时,求PC 长.【答案】(1)证明见解析;(2)证明见解析;(3)=2PC .【解析】(1)依题意1AM C N ,,,都在平面1AC 上, 因此AM ⊆平面1AC ,1NC ⊆平面1AC ,又AM ⊆平面11ABB A ,1NC ⊆平面11DCC D ,平面11ABB A 与平面11DCC D 平行,即两个平面没有交点,则AM 与1NC 不相交,又AM 与1NC 共面,所以//AM 1NC ,同理可证//AN 1MC ,所以四边形1AMC N 是平行四边形;(2)因为M ,N 两点不在棱的端点处,所以11MN BD AC <=,又四边形1AMC N 是平行四边形,1MN AC ≠,则1AMC N 不可能是矩形,所以AM 与AN 不垂直;(3)如图,延长1C M 交CB 的延长线于点P ,若四边形1AMC N 为菱形,则1AM MC =,易证11Rt ABM Rt C B M ≅,所以1BM B M =,即M 为1BB 的中点, 因此112BM CC =,且1//BM CC ,所以BM 是1PCC 的中位线, 则B 是PC 的中点,所以22PC BC ==.23.(2019·全国高三专题练习)如图,正△ABC 的边长为4,CD 为AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)在线段BC 上是否存在一点P ,使AP DE ⊥?如果存在,求出BP BC 的值;如果不存在,请说明理由. 【答案】(1)//AB 平面DEF ,理由见解析;(2)13. 【解析】(1)AB∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 的中点,得EF∥AB.又因为AB ⊄平面DEF ,EF ⊂平面DEF ,所以AB∥平面DEF.(2)以点D 为坐标原点,直线DB ,DC ,DA 分别为x 轴,y 轴,z 轴,建立空间直角坐标系(如图所示),则A(0,0,2),B(2,0,0),C(0,0),E(01),故DE =(01).假设存在点P(x ,y ,0)满足条件,则AP =(x ,y ,-2),AP ·DE 20-=,所以y =.又BP =(x 2-,y ,0),PC =(-x ,y ,0),BP ∥PC ,所以(x 2-)(y )=xy -y +=把y =代入上式得4x 3=,所以BP =1BC 3, 所以在线段BC 上存在点P 使AP⊥DE,此时BP 1BC 3=. 24.(2019·上海市金山中学高二月考)几何特征与圆柱类似,底面为椭圆面的几何体叫做“椭圆柱”,如图所示的“椭圆柱”中,A B ''、AB 和O '、O 分别是上下底面两椭圆的长轴和中心,1F 、2F 是下底面椭圆的焦点,其中长轴的长度为2,两中心O '、O M 、N 分别是上、下底面椭圆的短轴端点,且位于平面AA B B ''的两侧.(1)求证:OM ∥平面A B N '';(2)求点M 到平面A B N ''的距离;(3)若点Q 是下底面椭圆上的动点,Q '是点Q 在上底面的投影,且1Q F '、2Q F '与下底面所成的角分别为α、β,试求出tan()αβ+的取值范围.【答案】(1)证明见解析;(2(3)tan()[5αβ+∈-. 【解析】(1)连接,,O M O N ON '',M N 分别为上下椭圆的短轴端点 //O M ON '∴∴四边形O MPN '为平行四边形 //OM O N '∴O N '⊂平面A B N '',OM ⊄平面A B N '' //OM ∴平面A B N ''(2)连接OO '由“椭圆柱”定义可知OO '⊥平面12F NFON ⊂平面12F NF OO ON '∴⊥ O N '∴==由对称性可知:A N B N ''= O N A B '''∴⊥1122A B N S A B O N ''∆'''∴=⋅=⨯=又12A B M S A B O M ''∆'''=⨯⋅=,OO '1133N A B M A B M V S OO ''''-∆'∴=⋅==设点M 到平面A B N ''的距离为d ,则13M A B N N A B M A B N V V S d ''''''--∆==⋅==解得:7d =,即点M 到平面A B N ''的距离为7(3)连接12,QF QF由题意知:QQ '⊥平面12F F Q,QQ '=1Q FQ '∴∠即为1Q F'与下底面所成角;2Q F Q '∠即为2Q F '与下底面所成角 即1Q FQ α'∠=,2Q F Q β'∠= 设1QF m =,由椭圆定义知:2QF m =1tan QQ QF α'∴==,2tan QQ QF β'== ()tan tan tan 1tan tan 1αβαβαβ+∴+===-21m ⎡⎤∈⎣⎦[]265,4m∴-+-∈-- ()tan 5αβ⎡∴+∈-⎢⎣⎦25.(2016·天津高考真题(理))如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF⊥平面ABCD ,点G 为AB 的中点,AB=BE=2.(Ⅰ)求证:EG∥平面ADF ;(Ⅱ)求二面角O −EF −C 的正弦值;(Ⅲ)设H 为线段AF 上的点,且AH=23HF ,求直线BH 和平面CEF 所成角的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)√33;(Ⅲ)√721.【解析】依题意,OF ⊥平面ABCD ,如图,以O 为点,分别以AD ⃗⃗⃗⃗⃗ ,BA⃗⃗⃗⃗⃗ ,OF ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,依题意可得O(0,0,0),A(−1,1,0),B(−1,−1,0),C(1,−1,0),D(1,1,0),E(−1,−1,2),F(0,0,2),G(−1,0,0).(Ⅰ)证明:依题意,AD ⃗⃗⃗⃗⃗ =(2,0,0),AF⃗⃗⃗⃗⃗ =(1,−1,2). 设n 1=(x,y,z)为平面ADF 的法向量,则{n 1⋅AD ⃗⃗⃗⃗⃗ =0n 1⋅AF⃗⃗⃗⃗⃗ =0 ,即{2x =0x −y +2z =0 . 不妨设z =1,可得n 1=(0,2,1),又EG ⃗⃗⃗⃗⃗ =(0,1,−2),可得EG⃗⃗⃗⃗⃗ ⋅n 1=0, 又因为直线EG ⊄平面ADF ,所以EG//平面ADF .(Ⅱ)解:易证,OA⃗⃗⃗⃗⃗ =(−1,1,0)为平面OEF 的一个法向量. 依题意,EF⃗⃗⃗⃗⃗ =(1,1,0),CF ⃗⃗⃗⃗⃗ =(−1,1,2).设n 2=(x,y,z)为平面CEF 的法向量,则{n 2⋅EF ⃗⃗⃗⃗⃗ =0n 2⋅CF⃗⃗⃗⃗⃗ =0 ,即{x +y =0−x +y +2z =0 . 不妨设x =1,可得n 2=(1,−1,1).因此有cos <OA ⃗⃗⃗⃗⃗ ,n 2>=OA⃗⃗⃗⃗⃗⃗ ⋅n 2|OA ⃗⃗⃗⃗⃗⃗ |⋅|n 2|=−√63,于是sin <OA ⃗⃗⃗⃗⃗ ,n 2>=√33, 所以,二面角O −EF −C 的正弦值为√33.(Ⅲ)解:由AH =23HF ,得AH =25AF .因为,所以AH ⃗⃗⃗⃗⃗⃗ =25AF ⃗⃗⃗⃗⃗ =(25,−25,45),进而有H(−35,35,45),从而BH⃗⃗⃗⃗⃗⃗=(25,85,45),因此cos <BH ⃗⃗⃗⃗⃗⃗ ,n 2>=BH⃗⃗⃗⃗⃗⃗ ⋅n 2|BH ⃗⃗⃗⃗⃗⃗ |⋅|n 2|=−√721. 所以,直线BH 和平面CEF 所成角的正弦值为√721.26.(2018·天津高考真题(理))如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ). 【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),//AD BC AD CD ⊥//EG AD //CD FG DG ABCD ⊥平面MN CDE 平面E BC F --103DA DC DGE (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n 0=(x ,y ,z )为平面CDE 的法向量,则 即不妨令z =–1,可得n 0=(1,0,–1).又=(1,,1),可得,又因为直线MN 平面CDE ,所以MN ∥平面CDE .(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n =(x ,y ,z )为平面BCE 的法向量,则 即 不妨令z =1,可得n =(0,1,1).设m =(x ,y ,z )为平面BCF 的法向量,则 即不妨令z =1,可得m =(0,2,1).因此有cos <m ,n>=,于是sin <m ,n.所以,二面角E –BC–F . 32DC DE 0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 20220y x z ,,=⎧⎨+=⎩MN 32-00MN n ⋅=⊄BC ()122BE =-,,CF 00n BC n BE ,,⎧⋅=⎨⋅=⎩0220x x y z -=⎧⎨-+=⎩,,00m BC m CF ⎧⋅=⎨⋅=⎩,,020x y z -=⎧⎨-+=⎩,,10⋅=m nm n(Ⅲ)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得. 易知,=(0,2,0)为平面ADGE 的一个法向量,故=sinh0,2].所以线段27.(2020届浙江省宁波市余姚中学高考模拟)如图,ABC 为正三角形,且2BC CD ==,CD BC ⊥,将ABC 沿BC 翻折.(1)若点A 的射影在BD 上,求AD 的长;(2)若点A 的射影在BCD 中,且直线AB 与平面ACD ,求AD 的长. 【答案】(1)2 (2【解析】(1)过A 作AE BD ⊥交BD 于E ,则AE ⊥平面BCD .取BC 中点O ,连接AO ,OE ,∵AE ⊥平面BCD ,BC ⊂平面BCD ,∴AE BC ⊥,又ABC 是正三角形,∴BC AO ⊥,又AE AO A =,AE ,AO ⊂平面AOE ,∴BC ⊥平面AOE ,∴BC OE ⊥.又BC CD ⊥,O 为BC 的中点,∴E 为BD 的中点.()12BP h =--,,DC BP DCcos BP DC BP DC h ⋅⋅==DP∵2BC CD ==,∴112OE CD ==,AO =BD =∴DE =AE =∴2AD =;(2)取BC 中点为,O 过点A 作平面BCD 的垂线,垂足为E ,连接AO ,因为,AB AC OE BC =∴⊥.以O 为原点,以BC 为x 轴,以OE 为y 轴,以平面BCD 的过O 的垂线为z 轴建立空间直角坐标系,如图所示:设二面角D BC A --为θ,因为AE ⊥平面BCD ,与(1)同理可证BC ⊥平面AOE ,OE BC ⊥,AOE θ∴∠=,AO则)A θθ,(1,0,0)B -,(1,0,0)C ,(1,2,0)D .∴(1,)BA θθ=,(0,2,0)CD =,(1)CA θθ=-,设平面ACD 的法向量为(,,)n x yz =,则200n CD y n CA x y z θθ⎧⋅==⎪⎨⋅=-⋅+⋅=⎪⎩, 令1z =,得(3sin ,0,1)n θ=.∴cos ,n BA <>==解得sin 6θ=. ∴1(0,,22A ,又(1,2,0)D ,∴AD ==。
专题12 立体几何小题拔高练(解析版)
【一专三练】 专题12 立体几何小题拔高练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·湖南岳阳·统考二模)已知直线,l m 和平面,αβ,若,l ααβ⊂⊥且m αβ= ,则“l m ⊥”是“l β⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【分析】由面面垂直的性质、线面垂直的定义结合充分必要条件的定义判断即可.【详解】当l m ⊥时,由,l ααβ⊂⊥且m αβ= ,得l β⊥;当l β⊥时,因为m αβ= ,所以m β⊂,所以l m ⊥.即“l m ⊥”是“l β⊥”的充要条件.故选:C2.(2023·浙江·永嘉中学校联考模拟预测)已知正方体1111ABCD A B C D -的棱长为1,P 是线段11B D 上的动点,则三棱锥1P A BD -的体积为( )A .18B .16C .15D .14.3.(2023·广东广州·统考一模)已知三棱锥-P ABC 的四个顶点都在球O 的球面上,4PB PC AB AC ====,2PA BC ==,则球O 的表面积为( )A .316π15B .79π15C .158π5D .79π5而,,AB AC A AB AC =⊂ 平面ABC ,因此在等腰ABC V 中,4,2AB AC BC ===,则215sin 1cos 4ABC ABC ∠=-∠=,故选:A4.(2023·江苏连云港·统考模拟预测)已知正四面体A BCD -,12AM MC =,点N 为线段BC 的中点,则直线MN 与平面BCD 所成角的正切值是( )ABCD由题意可知://MG AO 且MG 因为AO ⊥平面BCD ,所以则MNG ∠即为直线MN 与平面设正四面体的棱长为2,则所以222AO AN ON =-=5.(2023·山东·沂水县第一中学校联考模拟预测)如图,直三棱柱111ABC A B C -中,π2ACB ∠=,11AC AA ==,2BC =,点M 是BC 的中点,点P 是线段1A B 上一动点,点Q在平面1AMC上移动,则P,Q两点之间距离的最小值为()A B.12C.23D.16.(2023·湖南·校联考模拟预测)《九章算术》卷五《商功》中描述几何体“阳马”为“底-(如图),PA⊥平面面为矩形,一棱垂直于底面的四棱锥”,现有阳马P ABCDAB BC上,当空间四边形PEFD的周长,1,2,3===,点E,F分别在,ABCD PA AB AD最小时,三棱锥P ADF-外接球的表面积为()A.9πB.11πC.12πD.16πOO,则设三棱锥P ADF-外接球的半径为R,球心为O,连接17.(2023·湖南长沙·湖南师大附中校考一模)如图,已知正四棱台1111ABCD A B C D -中,6AB =,114A B =,12BB =,点,M N 分别为11A B ,11B C 的中点,则下列平面中与1BB 垂直的平面是( )A .平面11AC DB .平面DMNC .平面ACNMD .平面1AB C因为正四棱台1111ABCD A B C D -,所以因为6AB =,114A B =,12BB =所以111A B PB AB PB=,即11462PB PB =+所以6PB PA AB ===,即PAB V8.(2023·江苏苏州·苏州中学校考模拟预测)沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm ,细沙全部在上部,其高度为圆锥高度的23(细管长度忽略不计).假设该沙漏每秒钟漏下30.02cm 的沙,则该沙漏的一个沙时大约是( )()3.14π≈A .1895秒B .1896秒C .1985秒D .2528秒9.(2023·广东湛江·统考一模)元宵节是春节之后的第一个重要节日,元宵节又称灯节,很多地区家家户户都挂花灯.下图是小明为自家设计的一个花灯,该花灯由上面的正六棱台与下面的正六棱柱组成,若正六棱台的上、下两个底面的边长分别为40cm 和20cm ,正六棱台与正六棱柱的高分别为10cm 和60cm,则该花灯的体积为( )A .3B .3C .3D .310.(2023·浙江·模拟预测)在《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑为四个面都为直角三角形的三棱锥,如图,在堑堵111ABC A B C -中,1,2⊥=AC BC AA ,鳖臑111B A C B -的外接球,则阳马11B ACC A -体积的最大值为( )A .23B .43C .83D .4二、多选题11.(2023·浙江金华·浙江金华第一中学校考模拟预测)如图,在正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则下列结论正确的是( )A .113P AA D V -=B .点P 在线段1BC 上C .1BD ⊥平面11AC DD .直线AP 与侧面11BCC B 所成角的正弦值的范围为⎫⎪⎪⎭则()1,0,0A ,(),1,P x z ,()1,1,0B 01z ≤≤,所以()1,1,AP x z =- ,(11,BD =-- 因为1AP BD ⊥,所以11AP BD x ⋅=- 所以1CP xB C =-,即1B ,C ,P 三点共线,故点12.(2023·江苏南通·校联考模拟预测)在正方体1111ABCD A B C D -中,点P 满足111(01)B P B D λλ=≤≤,则( )A .若1λ=,则AP 与BD 所成角为4πB .若AP BD ⊥,则12λ=C .AP P 平面1BC D D .1A C AP⊥对选项B :如图建立空间直角坐标系,令(,1,1)AP λλ=-- ,(1,1,0)DB =对选项C :11D B BD ∥,11D B ⊄平面1BDC , BD ⊂平面1BDC ,故11D B P 平面1BDC ,同理可得1AD P 平面1C BD ,1111AD B D D ⋂=,故面11AD B P 面1C BD ,AP ⊂平面11AD B ,AP P 平面1C BD ,正确;对选项D :1(1,1,1)A C =--,1110AC AP λλ⋅=+--= ,1A C AP ⊥,正确.故选:BCD13.(2023·江苏连云港·统考模拟预测)折扇在我国已有三四千年的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”筹帷幄,决胜千里,大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若扇形的两个圆弧所在圆的半径分别是1和3,且120ABC ∠=︒,则该圆台( )A B .表面积为34π9C D .上底面积、下底面积和侧面积之比为1:9:24【答案】BCD【分析】求得圆台的上下底面半径,根据圆台的结构特征可求得圆台母线长和高,判断A ;根据圆台的侧面积以及体积公式求得表面积和体积,判断B ,C ;进而求得上底面14.(2023·江苏·统考一模)正方体1111ABCD A B C D -的棱长为3,E ,F 分别是棱11B C ,11C D 上的动点,满足11D F C E =,则( )A .BF 与DE 垂直B .BF 与DE 一定是异面直线C .存在点E ,F ,使得三棱锥F A BE -的体积为154D .当E ,F 分别是11B C ,11C D 的中点时,平面AEF 截正方体所得截面的周长为【答案】ACD【分析】设[]110,3C E D F a ==∈,利用坐标法可判断A ,利用特值法可判断B ,根据体积公式表示出三棱锥1F A BE -的体积可判断C ,作出截面结合条件可得周长判断D.【详解】如图建立空间直角坐标系,设[]110,3C E D F a ==∈,则()()()()0,0,0,3,3,0,,3,3,0,,3D B E a F a A :由题可得()(3,3,3,,3,3BF a DE a =--= 所以BF DE ⊥,即BF DE ⊥,故A 正确;B :当E ,F 为中点时,()3,3,0,DB FE = F ,E 四点共面,此时BF 与DE 不是异面直线,故C :由[]110,3C ED F a ==∈,可得19A EF S =-△111⎛4因为1B MG BMA V :V ,所以1B M BM =可得1112B M MB ==,同理可得1D15.(2023·江苏·二模)已知A BCD -是棱长均为1的三棱锥,则( )A .直线AB 与CD 所成的角90B .直线BC 与平面ACD 所成的角为60C .点C 到平面ABDD .能容纳三棱锥A BCD -所以,AE CD BE CD ⊥⊥,AE 又AB ⊂面ABE ,故AB CD ⊥B :若F 为面ACD 中心,连接所以直线BC 与平面ACD 所成的角为3CF 16.(2023·湖北·校联考模拟预测)如图,正方体1111ABCD A B C D -棱长为2,P 是直线1A D 上的一个动点,则下列结论中正确的是( )A .BPB .PA PC +的最小值为C .三棱锥1B ACP -的体积不变D .以点B 1AB C BP ∴的最小值为1BA D V 的高,对于B ,将1AA D △与矩形11111132B ACP A B CP B CP V V S AD --∴==⋅V 即三棱锥1B ACP -的体积不变,对于D ,设点B 到平面1AB C 的距离为11B AB C B ABC V V --= ,113AB C S d ∴⋅=V 得:233d =,17.(2023·湖北·统考模拟预测)如图,在棱长为4的正方体1111ABCD A B C D -中,E ,F ,G 分别为棱AD ,AB ,BC 的中点,点P 为线段1D F 上的动点,则( )A .两条异面直线1D C 和1BC 所成的角为45︒B .存在点P ,使得1//C G 平面BEP C .对任意点P ,平面1FCC ⊥平面BEPD .点1B 到直线1D F 的距离为4对于B ,当点P 与点1D 重合时,由题可知所以1111//,EG D C EG D C =,四边形又1C G ⊄平面BEP ,1DE ⊂平面又,,AE BF AB CB A CBF ==∠=∠90EBA CFB ∠+∠= ,故CF ⊥又1,CF CC 相交,1,CF CC ⊂平面意点P ,平面1FCC ⊥平面BEP 对于D ,由正方体的性质可得B 故选:BCD .18.(2023·湖北武汉·华中师大一附中校联考模拟预测)如图,在已知直四棱柱1111ABCD A B C D -中,四边形ABCD 为平行四边形,E ,M ,N ,P 分别是BC ,1BB ,1A D ,1AA 的中点,以下说法正确的是( )A .若1BC =,1AA =,则1DP BC ^B .//MN CDC .//MN 平面1C DED .若AB BC =,则平面11AA C C ⊥平面1A BD所以//MN 平面1C DE ,选项C 正确.若AB BC =,则四边形ABCD 为菱形,∴AC BD ⊥.又1CC BD ⊥,1AC CC C = ,1,AC CC ⊂平面11ACC A ∴BD ⊥平面11ACC A ,BD ⊂平面1A BD ,∴平面1A BD ⊥平面11ACC A ,选项D 正确.故选:ACD.19.(2023·湖南·模拟预测)已知正四棱锥P ABCD -的所有棱长均为E ,F 分别是PC ,AB 的中点,M 为棱PB 上异于P ,B 的一动点,则以下结论正确的是( )A .异面直线EF 、PD 所成角的大小为3πB .直线EF 与平面ABCDC .EMF V +D .存在点M 使得PB ⊥平面MEF设正方形ABCD 的中心为O ,连接OC ,PO ,则PO ⊥平面ABCD ,2OC OP ==,设OC 的中点为H ,连接EH ,FH ,则EH OP P ,且EH ⊥平面ABCD ,所以EFH ∠为直线EF 与平面ABCD 所成角,所以112EH PO ==,20.(2023·湖南·湖南师大附中校联考模拟预测)如图,正方体ABCD A B C D -''''的棱长为3,点M 是侧面ADD A ''上的一个动点(含边界),点P 在棱CC '上,且1PC '=,则下列结论正确的有( )A .沿正方体的表面从点A 到点P 的最短路程为B .保持PM 与BD '垂直时,点M 的运动轨迹长度为C .若保持PM =M 的运动轨迹长度为4π3D .当M 在D ¢点时,三棱锥B MAP '-的外接球表面积为99π4连接AP ,则AP 对于B ,因为DD ,DD BD D DD '= 所以AC ⊥平面DD 所以AC ⊥BD ',同理可得由点P 在棱CC '上,且PC '=过点P 作PQ ⊥平面ADD '所以点M 在以Q 为圆心,点M 的运动轨迹长度为23对于D ,以D 为坐标原点,则()()(0,0,3,0,3,2,3,3,3M P B '(),,N x y z ,由22||||NM NP ==22222(3)(3)x y z x y ++-=+-解得:75,44x z y ===,21.(2023·广东佛山·统考一模)如图,在正方体1111ABCD A B C D -中,点M 是棱1DD 上的动点(不含端点),则( )A .过点M 有且仅有一条直线与AB ,11BC 都垂直B .有且仅有一个点M 到AB ,11BC 的距离相等C .过点M 有且仅有一条直线与1AC ,1BB 都相交D .有且仅有一个点M 满足平面1MAC ⊥平面1MBB连接AC 、BD 交于点O ,连接11BDB D ,又因为M ∈面1BDB D 点G ,即:过点M 有且仅有一条直线与对于选项D ,设正方体的边长为则(2,0,0)A ,1(0,2,2)C ,(2,2,0)B ,设(0,0,)M m ,(02)m ≤≤,则(2,0,)MA m =- ,1(2,2,2)AC =- ,设面1MAC 的一个法向量为11(,n x = 111020n MA x mz ⎧⋅=-=⎧⎪⇒⎨⎨22.(2023·广东湛江·统考一模)在棱长为2的正方体1111ABCD A B C D -中,点E ,F 分别为棱BC 与11D C 的中点,则下列选项正确的有( )A .1//AB 平面1AEC B .EF 与1BC 所成的角为30°C .EF ⊥平面1B ACD .平面1AEC 截正方体1111ABCD A B C D -的截面面积为23.(2023·广东·统考一模)在四棱锥S ABCD -中,SD ⊥平面ABCD ,四边形ABCD 是正方形,若SD AD =,则( )A .AC SD⊥B .AC 与SB 所成角为60︒C .BD 与平面SCD 所成角为45︒D .BD 与平面SAB 【答案】ACD【分析】对于选项A ,利用线面垂直的判定定理得到AC ⊥平面SBD ,进而可判定选项A 正确;对于选项B ,由AC ⊥平面SBD ,知AC SB ⊥,故可选项B 错误;对于选项C 和D ,利用线面的定义,找出线面角,从而转化成平面角,在相应的三角形中进行求解,即可判断选项的正误.【详解】选项A ,因为SD ⊥底面ABCD ,AC ⊂面ABCD ,所以AC SD ⊥,因为四边形ABCD 是正方形,所以AC BD ⊥,又BD SD D ⋂=,,BD SD ⊂平面SBD ,所以AC ⊥平面SBD ,又SB ⊂面SBD ,所以AC SB ⊥,选项A 正确.选项B ,因为AC ⊥平面SBD ,又SB ⊂面SBD ,所以AC SB ⊥,故选项B 错误.选项C ,因为SD ⊥底面ABCD ,BC ⊂面ABCD ,所以BC SD ⊥,故选:ACD24.(2023·浙江·校联考模拟预测)如图,在直三棱柱111ABC A B C -中,12AB BB BC ===,E ,F ,N 分别为AC ,1CC 和BC 的中点,D 为棱11A B 上的一动点,且11BF A B ⊥,则下列说法正确的是( )A .BF DE⊥B .三棱锥F DEN -的体积为定值C .13FD AA ⋅=D .异面直线1A C 与1B N 则()()(11,0,2,0,,2,0,A a B b B b -()()11,,1,,0BF A B a b a b a ⋅=-⋅= 对于A ,()(112,0,2,0,A B -()1112,2,0,A D A B λλλλ== 则()112,0,2DE A E A D =-=- ()(2,2,12BF DE ⋅=-⋅-25.(2023·浙江·模拟预测)如图,正方体1111ABCD A B C D -,若点M 在线段1BC 上运动,则下列结论正确的为( )A .三棱锥1M ACD -的体积为定值B .直线DM 与平面11BCC B 所成角的最大值为π3C .1AM A D⊥D .点M 到平面1CD D 与到平面ACD 的距离之和为定值【答案】ACD【分析】根据正方体中的直线与平面的关系,判断选项正误.【详解】对于选项A ,点M 在线段1BC 上运动,而11//BC AD ,1BC ⊄平面1ACD ,1AD ⊂平面1ACD ,所以1//BC 平面1ACD ,点M 到平面1ACD 的距离为定值,三棱锥1M ACD -的体积为定值,A 正确;26.(2023·浙江嘉兴·统考模拟预测)已知正方体1111ABCD A B C D -的棱长为2,M ,N 分别为AB ,1CC 的中点,且MN 与正方体的内切球O (O 为球心)交于E ,F 两点,则下列说法正确的是( )A.线段EFB .过O ,M ,N 三点的平面截正方体1AC 所得的截面面积为C .三棱锥O DEF -D .设P 为球O 上任意一点,则AP 与11A C 所成角的范围是π0,3⎡⎤⎢⎥⎣⎦【答案】BC【分析】过O ,M ,N 三点的截面为正六边形MGNHIJ ,球心O 为其中心,作出图形在正六边形中求出EF 判断A ,求出正六边形面积判断B ,由等体积法求出三棱锥体积判断C ,分析AP 与11A C 所成角的最大最小值判断D.【详解】过O ,M ,N 三点的截面为正六边形MGNHIJ ,球心O 为其中心,如图,三、填空题27.(2023·浙江·校联考三模)将两个形状完全相同的正三棱锥底面重合得到一个六面体,若六面体存在外接球,且正三棱锥的体积为1,则六面体外接球的体积为_____________.【分析】根据正三棱锥的几何性质,确定其形成六面体的外接球球心的位置及半径的长,从而列式求得半径,即可得六面体外接球的体积.【详解】如图所示,记两个形状完全相同的正三棱锥为三棱锥A BCD -和三棱锥A BCD-'设点A 在面BCD 上的投影为点O ,则A '、O 、A 三点共线.在三棱锥A BCD -和A BCD -'中,到几何体各顶点距离相等的点分别在AO 和A O '上若28.(2023·江苏南通·二模)已知一扇矩形窗户与地面垂直,高为1.5m ,下边长为1m ,且下边距地面1 m .若某人观察到窗户在平行光线的照射下,留在地面上的影子恰好为矩形,其面积为1.5 m 2,则窗户与地面影子之间光线所形成的几何体的体积为_______m 3.29.(2023·湖北·校联考模拟预测)已知正三棱锥的各顶点都在表面积为64π球面上,正三棱锥体积最大时该正三棱锥的高为______.【答案】163##153【分析】根据球的性质,结合导数的性质、棱锥的体积公式、球的表面积公式进行求解即可.【详解】因为2464V R ππ==球,所以正三棱锥外接球半径4R =,如图所示,设外接球圆心为O ,过PO 向底面作垂线垂足为D ,(04)OD a a =≤<,要使正三棱锥体积最大,则底面ABC 与P 在圆心的异侧,因为-P ABC 是正三棱锥,所以所以4,OP OA AD OA ===又因为23ADB π∠=,所以AB 1sin 23ABC S AB AC π=⨯⨯⨯△130.(2023·湖南郴州·统考三模)已知三棱锥-P ABC 的棱长均为4,先在三棱锥-P ABC 内放入一个内切球1O ,然后再放入一个球2O ,使得球2O 与球1O 及三棱锥-P ABC 的三个侧面都相切,则球2O 的表面积为__________.【答案】2π3##23π【分析】由等体积法求得内切球1O 半径,再根据比例求得球2O 的半径,则问题可解.【详解】如图所示:依题意得144sin 602ABC S =⨯⨯⨯︒=V 底面ABC 的外接圆半径为12sin r =点P 到平面ABC 的距离为24d =146162。
第14讲 立体几何知多少(含解析)-【高中数学】一题多解拔尖训练
一题多解第14讲立体几何知多少,位置关系空间角典型例题【例1】如图141 ,在矩形ABCD 中,E 为边AB 的中点,将ADE 沿直线DE 翻转成1A DE ,若M 为线段1A C 的中点,则在ADE 的翻转过程中,正确的命题是________.(1)BM 是定值;(2)点M 在球面上运动;(3)一定存在某个位置,使1DE A C ;(4)一定存在某个位置,使MB ∥平面1A DE .【例2】如图145 ,在Rt ABC中,4,3,,2AB AC A ,AP mPB AQ nQC (,0)m n ,且满足111,2M m n 是BC 的中点,对任意的,QP QM R 的最小值记为 f m ,则对任意的0,m f m 的最大值为________.【例3】如图147 ,在四棱锥P ABCD 中,E 为AD 上一点,PE 平面,,,2,ABCD AD BC AD CD BC ED AE F ∥为PC 上一点,且2CF FP (I)求证:PA ∥平面;BEF (证明略)(II)若PE ,求二面角F BE C 的平面角的大小.【例4】已知,a b 是异面直线,,,,,,A B a C D b AC b BD b ,且2,1AB CD ,则异面直线,a b 所成的角等于________.【例5】已知三棱锥P ABC 满足60APB BPC CPA ,三个侧面,,APB BPC CPA 的面积分别为,2,12,则这个三棱锥的体积是________.【例6】已知在四棱柱1111ABCD A B C D 中,侧棱1AA 底面1,2ABCD AA ,底面ABCD 的边长均大于2,且45DAB,点P 在底面ABCD 内运动且在,AB AD 上的射影分别为,M N ,若2PA ,则三棱锥1P D MN 体积的最大值为________.强化训练1.在四棱锥S ABCD 中,底面ABCD 是平行四边形,,M N 分别是,SA BD 上的点.有下列命题:(1)若SM DN MA NB,则MN ∥平面SCD ;(2)若SM DN MA NB ,则MN ∥平面SCB ;(3)若平面SDA 平面ABCD ,且平面SDB 平面ABCD ,则SD 平面ABCD .其中正确命题的序号为________.2.如图1426 ,在四棱锥P ABCD 中,E 为AD 上一点,PE 平面,ABCD //,AD BC AD ,CD 22,BC ED AE 3,EB F 为PC 上一点,且2CF FP .(I)求证://PA 平面BEF ;(II)若二面角F BE C 的平面角的大小为60,求直线PB 与平面ABCD 所成角的大小.3.如图1427 ,在三棱锥A BCD 中,3,2,AB AC BD CD AD BC M 是AD的中点,则异面直线,CM AB 所成角的大小为________.4.已知三棱锥P ABC 的体积为16,点,D E 分别在侧棱,PB PC 上,且2,PD DB 3PE EC ,则三棱锥P ADE 的体积为________.5.过凸四边形ABCD 的对角线交点O 作该四边形所在平面的垂线段SO ,使SO 3 ,若22,S AOD S BOC V a V b ,当S ABCD V 最小时,ABCD 的形状为________.一题多解第14讲立体几何知多少,位置关系空间角典型例题【例1】如图141 ,在矩形ABCD 中,E 为边AB 的中点,将ADE 沿直线DE 翻转成1A DE ,若M 为线段1A C 的中点,则在ADE 的翻转过程中,正确的命题是________.(1)BM 是定值;(2)点M 在球面上运动;(3)一定存在某个位置,使1DE A C ;(4)一定存在某个位置,使MB ∥平面1A DE .【解析】【解法1】设CD 中点为S ,则111=2MS A D MS A D ,∥,且MS 为定值,又因为,,DS BE DS BE ∥,所以四边形DSBE 是平行四边形,所以BS DE ∥且BS 为定值.由余弦定理可得2222212cos 2cos MB MS SB MS SB MSB MS SB MS SB A DE ,所以MB 是定值,(1)正确.因为B 是定点,所以点M 是在以B 为圆心,MB 为半径的球面上,所以(2)正确.若当DE EC 时,如图14-2:1110DE A C DE A E EC DE A E DE EC ,(3)错误因为1,SB DE MS A D ∥∥,又因为1,SB SM S DE A D D ∩∩,所以平面MSB ∥平面1A ED ,所以MB ∥平面1A ED ,(4)正确.【点拨】利用向量数量积判定线线的垂直关系.【解法2】如图 143,1 正确,由余弦定理可知MB 为定值,同【解法1】;(2)正确,同【解法1】;(3)错误,若2AB AD ,则DE EC .若1DE A C ,又因为1A C 在平面ABCD 的射影在AC 上,所以.DE AC 由题意知AC 与DE 不垂直,所以(3)不正确.(4)正确,取DC 中点F ,则11,,,FB DE MF A D FB MF F A D DE D ∩∩∥∥,所以平面//MFB 平面1A ED ,所以MB ∥平面1A ED .【点拨】先利用假设反证法证明不垂直再利用面面平行证明线段平行.【解法3】如图144 ,(1)正确,延长DE 交CB 的延长线于点N ,连结,AN DAN 绕着DN旋转,因为1A N 为定值,所以MB 为定值;(2)正确,点M 在以B 为圆心,MB 为半径的球面上运动;(3)错误,同【解法2】;(4)正确,取EC 中点P ,可以类似【解法2】证明平面MPB ∥平面1A ND ,所以MB ∥平面1.A ED 【点拨】从不同角度构造辅助线.【赏析】本题涉及立体几何的考点比较多,如线面平行、面面平行、线面垂直、面面垂直.熟练掌握线面、面面平行及垂直的判定和性质定理、线面角、二面角的定义及求法是解立体几何题的关键.【例2】如图145 ,在Rt ABC中,4,3,,2AB AC A ,AP mPB AQ nQC (,0)m n ,且满足111,2M m n 是BC 的中点,对任意的,QP QM R 的最小值记为 f m ,则对任意的0,m f m 的最大值为________.【解析】【解法1】设 ,0,0,P a Q b ,以A 为坐标原点,,AB AC 所在直线分别为x 轴,y 轴建立如图146 所示的平面直角坐标系.则 4,,3,a m a AP mPB b n b AQ nQC因为1112m n ,所以4312a b a b ,所以86551a b,所以直线PQ 过点86,55N ,结合向量模长的几何意义可知QP QM 可等价视为点0430,22M ,即32,2M与直线PQ 上点连线的距离,所以最大值 f m 就是点M 到直线PQ 的距离的最大值,当MN PQ 时,M 到直线PQ 距离最大.所以max 1()2f m MN.【点拨】依据题意建立平面直角坐标系,使向量坐标化,从而实现数量化运算.【解法2】由,AP mPB AQ nQC 可知1111AP AB m AQ AC n,取点N 使得45AN AM ,所以2121211555AP AQ AB AC AN m n ,因为21212111215552m n,所以,,P Q N 三点共线,下同【解法1】,可知max 11()52f m MN AM .【点拨】利用向量运算,添加必要的辅助线实现向量的转化.【赏析】本题考查向量坐标形式的运算及点到直线距离公式,【解法1】利用向量坐标运算,【解法2】添加必要的辅助线实现向量的转化,【解法1】是常用的基本方法,易上手好操作.【解法2】巧妙构造,要求对重要结论熟练掌握并能灵活运用.【例3】如图147 ,在四棱锥P ABCD 中,E 为AD 上一点,PE 平面,,,2,ABCD AD BC AD CD BC ED AE F ∥为PC 上一点,且2CF FP (I)求证:PA ∥平面;BEF (证明略)(II)若PE ,求二面角F BE C 的平面角的大小.【解析】【解法1】连结CE ,在平面PCE 内,过点F 作FH CE 于点H .因为FH PE ∥,所以FH 平面ABCD .过点H 作HM BE 于点M ,连结FM .由三垂线定理得FM BE ,所以FMH 为二面角F BE C 的平面角.因为FH 平面ABCD ,PE 平面ABCD ,所以FH PE ∥,所以23FH CF PE CP ,所以22333FH PE AE ,同理1233MH BC AE ,所以在Rt FHM 中,tan 3FH FMH HM所以3FMH ,即二面角F BE C 的平面角为3.【点拨】在平面内的一条直线如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直,当点F 在一个半平面上时,通常用三垂线定理法求二面角的大小.【解法2】排除多余信息,若我们只考虑二面角F BE C ,我们很快发现,直四棱锥P EBCD 可以补成长方体,如图149所示.连结EC ,在平面PEC 内,过点F 作FO EC 于点O ,过点O 作OM BE 于点M ,连结FM ,如图1410 .因为PE 平面EBCD ,PE 平面PEC ,所以平面PEC 平面EBCD ,且平面PEC 平面EBCD EC .因为FO 平面,PEC FO ED ,所以FO 平面EBCD ,所以FMO 是二面角F BE C 的平面角,设AE a,则2,(0)ED a PE a,因为PE 平面ACD ,FO 平面ACD ,所以PE FO ∥,所以23FO CO CF PE CE CP ,所以233FO a ,又因为OM BC ∥,所以13OM EO BC CE ,得23OM a ,所以3tan 23FO FMO OM a 所以3FMH ,所以二面角F BE C 的平面角为3.【点拨】利用图形的特征,采用补形方法解决问题.【解法3】如图1411 ,连结CE ,在平面PCE 内过点F 作FH CE 于点H .因为PE 平面ABCD ,CE 平面ABCD ,所以FH PE ∥,所以FH 平面ABCD .过点H 作HM BE 于点M ,连结FM .由三垂线定理得FMBE ,所以FMH 为二面角F BE C 的平面角.设(0)AE a a ,则2,BC ED a PE ,所以24,.33MH a FM a (同【解法2】)由射影面积法得Δ112cos ,1232HEB FEBBE MH S FMH FMH S BE FM 所以二面角F BE C 的平面角为3.【点拨】利用射影面积法求解.【解法4】延展平面BEF 为平面BEMF ,如图1412 所示,则平面BEF ∩平面PAD EM ,在平面PAD 中,作MO 平面ABCD 于点O ,如图1413.因为PE 平面ABCD ,所以MO PE ∥,所以MO 与PE 共面,因为M 平面PAD ,所以.O AD 则OE BE ,由三垂线定理知MEBE ,所以MEO 是所求二面角的平面角.由(I )可知//ME PA ,所以2DM DE MP EA,又因为MO PE ∥,所以23MO DO DM PE ED PD ,不妨设(0)AE a a ,则2,ED a PE,因此得2,,tan 3a MO MO OE MEO OE 3MEO ,所以二面角F BE C 的平面角为3.【点拨】延展平面BEF 为平面BEMF ,将过点F 作平面EBCD 垂线的间题转化为过点M 作平面EBCD 垂线的问题.如图1414 ,延长CB 至点M ,使得2MB BC ,所以,,MB BC AE MB AE MB AE ED∥,所以AEMB 是平行四边形.因为,AM EB AM ∥平面EFB ,EB 平面EFB ,所以AM ∥平面EFB .由 I 得PA ∥平面,EFB AM PA A ,所以平面PAM ∥平面FEB ,则二面角P AM C 的平面角即为二面角F EB C 的平面角,因为PE 平面,EBCD EA AM ,所以PAE 是二面角P AM C 的平面角.不妨设(0)AE a a ,由三垂线定理得PA AM ,则,tan PE PE PAE AE.所以二面角P AM C 的平面角是3,即二面角F EB C 的平面角是3.【点拨】寻找二面角的平面角较困难,根据平面平移不改变与另一个平面构成的角的大小的原理,如果能把二面角中的一个平面平移,找出辅助平面与另一个平面的交线,就可以作出二面角的平面角.【解法6】以E 为坐标原点,分别以,,EA EB EP 所在直线为x 轴、y 轴、z 轴,建立如图14-15所示的空间直角坐标系.不妨设(0),EA a a EB b ,则22,BC ED AE a PE易知0,0,0,,0,,0E P B b ,设平面ABCD 的法向量 1111,,n x y z ,因为2CF FP所以 223223,,,,,,0,,0,333333b b F a a EF a a EB b因为2200EF EB n n,即222220,3330,b ax y az by 令21z,则2x ,可得平面EBF的一个法向量2 n .设二面角F BE C 的平面角为 ,所以12121211cos cos ,22 n n n n n n ,所以3.所以二面角F BE C 的平面角为3.【点拨】设12,n n 分别是二面角l 的面, 的法向量,则向量12,n n 的夹角,即为l 的平面角或其补角(需要根据具体情况判断相等或互补).【赏析】本题主要考查与二面角有关的立体几何综合知识.推荐【解法5】为最佳解答.求二面角的平面角的常用方法有定义法、三垂线定理法、射影面积法、平移平面法、补形法、空间向量的坐标法等,以下对各个解法进行分析.【解法1】应用三垂线定理法解题.联系到PE 平面ABCD ,有的同学大胆猜想(像一个魔术师,下子从帽子里变出一只兔子),得出了正确的结论;相应地,还有很大一部分同学被复杂的空间图形吓退,找不到二面角的确切位置,无从下手.【解法2】应用构造补形法解题,联系到长方体,比【解法1】更易得出.FO EBCD 平面【解法3】应用射影面积法解题,联系到点F 在底面EBCD 的射影,依据射影公式求二面角.【解法4】应用垂线平移法解题,联系【解法3】,过F 点作垂线,那么垂足落在哪里?有很多同学是含糊不清、模棱两可的,那么我们为什么不换一个点呢?将过点F 作平面EBCD 垂线的问题转化为过点M 作平面EBCD 垂线的问题.【解法5】应用平面平移法解题,将求二面角F BE C 的平面角的问题转化为求二面角P AM C 的平面角的问题.【解法6】应用空间向量求解法,是一种十分简捷且传统的解法.当题目条件中垂直关系明显时,利用空间坐标系不失为一种更有效的方法.【例4】已知,a b 是异面直线,,,,,,A B a C D b AC b BD b ,且2,1AB CD ,则异面直线,a b 所成的角等于________.【解析】【解法1】如图1416 ,在长方体中,因为//BE CD ,所以ABE 就是异面直线,a b 所成的角,又因为,,,,A B a C D b BD b ,所以,,CE b AC b AC CE C ,所以b 平面ACE ,所以b AE ,所以BE AE ,所以ABE 是直角三角形.又因为2,1AB CD ,所以1BE ,所以1cos 2BE ABE AB ,所以60.ABE 【点拨】构造长方体求解.【解法2】如图1417 所示,过点A 作AE CD ∥,=AE CD ,连结BE ,则EAB 是异面直线,a b 所成的角,由题意知ACDE 是矩形,所以,AE DE AE BD ,因为DE BD D ,所以AE平面BED ,所以AE BE .所以ABE 是直角三角形,又因为2,1AB CD ,所以1cos 2EAB ,所以60EAB.【点拨】利用平移法把异面直线平移为相交直线.【解法3】以A 为坐标原点,分别以,,AC AE CD 方向为x 轴,y 轴,z 轴正方向,建立如图1418 所示的空间直角坐标系,所以 0,0,0,,0,0,0A C a a ,则,0,1,D a B ,所以,0,0,1AB CD ,所以1cos 2AB CD AB CD 又因为 0,90,所以异面直线,a b 所成的角为60.【点拨】在构造长方体的基础上建立空间直角坐标系解决问题.【赏析】本题是一道典型的异面直线成角间题,与常见问题不同的是,本题中的异面直线不是直接出现在立体几何图形中.【解法1】和【解法3】都是将两条异面直线放置在长方体中求解.【解法1】将直线CD 平移到BE 处,从而易解.【解法3】则借助空间向量的方法求解.【解法2】利用异面直线所成角的概念,将CD 平移至AE 处后,在Rt BAE 中求解.在求两条异面直线所成角的大小时,要注意异面直线所成角的范围是0,2.利用中位线或平行四边形来添加辅助线的方法,有时也可对空间图形使用.【例5】已知三棱锥P ABC 满足60APB BPC CPA ,三个侧面,,APB BPC CPA 的面积分别为3,2,12,则这个三棱锥的体积是________.【解析】【解法1】由各侧面的面积可得13sin6022APB S PA PB ,所以2PA PB ,同理8343,33PB PC PA PC ,所以833PA PB PC ,构造三棱锥P A B C ,使得60A PB A PC B PC ,2,PA PB PC 所以13P A B C V ,因为P ABC P A B C V PA PB PC V PA PB PC,所以269P ABC P A B C PA PB PC V V PA PB PC【点拨】由三角形面积公式求得三棱锥的侧棱长,构造一个特殊的三棱锥,利用体积关系解决问题.【解法2】由题意得1sin60242APB S PA PB PA PB (1),1sin60224BPC S PC PB PB PC (2)13sin60124CAP S PA PC PA PC (3)由(1)(2)(3)联立解得431,2,3PA PB PC.如图1420 ,过点B 作BD 平面APC 于点D ,作DE PA 于点E ,连结BE ,易证AP 平面BDE ,所以AP BE ,在Rt BPE 中,2,60PB BPA,所以1PE .因为60APB APC BPC,所以点D 在APC 的平分线上,即30APD CPD,所以在Rt PDE 中,易得233PD ,同理,3BD ,所以111114332626sin601332323239P ABC APC V S BD PA PC BD .【点拨】求出三条棱长,过某一顶点作高,直接法求解体积.【解法3】设,,PA PB PC 的长度分别为,,a b c ,同【解法2】,则易得431,2,3a b c .如图1421 ,设点A 在平面BPC 上的射影为点O ,因为60APB APC BPC,所以30BPO CPO,所以3cos 3 ,所以26sin 1cos 3,所以点A 到平面PBC 的距离6sin 3AO PA,所以11161626sin602.3323339P ABC PBC V S AO PB PB 【点拨】作出点A 在平面PBC 上的投影,利用三余弦定理解题.注:三余弦定理证明:如图14-22,在三棱锥A BCD 中,AO 平面BCD ,过点O 作OE BC 交BC 于点E ,连结AE ,易得BC 平面AOE ,所以BEAE .在Rt AOB 中,cos OB ABO AB ,在Rt ABE 中,cos BE ABE AB,在Rt BOE 中,cos BE OBE BO,所以cos cos cos BE OB BE OBE ABO ABE BO AB AB,所以cos cos cos .ABE OBE ABO 【赏析】【解法1】巧妙地补形成一个特殊的三棱锥,利用一个平面 截三棱锥P ABC ,分别交三棱锥的棱,,PA PB PC 于点,,D E F ,则.P ABC P DEF V PA PB PC V PD PE PF解法23、实质相同,都是求底面和高,【解法3】利用三余弦定理求出三棱锥的高.【例6】已知在四棱柱1111ABCD A B C D 中,侧棱1AA 底面1,2ABCD AA ,底面ABCD 的边长均大于2,且45DAB,点P 在底面ABCD 内运动且在,AB AD 上的射影分别为,M N ,若2PA ,则三棱锥1P D MN 体积的最大值为________.【解析】【解法1】如图1423 ,设AP ,0,45N ,所以sin 2sin ,sin 452sin 45PN PA PM PA ,所以1sin135sin 45,2PMN S PM PN111212sin 45sin 245333P D MN D PMN V V ,所以当22.5 时,1P D MN V 取得最大值1.3【点拨】引入角度为变量﹐建立体积的三角函数式,利用三角函数法求最值.【解法2】因为2PA ,知点P 在以点A 为圆心,半径为2的圆弧上,因为45,90,90,DAB PMA PNA所以,,,A M P N 四点在以AP 为直径的圆F 上,如图14-24,所以1190,2122MFN FM FN AP ,所以MN在PMN 中,2222||||2cos135MN PM PN PM PN 因为22||2PM PN PM PN ,当且仅当222PM PN 时取等号,所以22PN PM PN所以2PM PN 所以1112121223323D PMN PMN V S .所以1D PMN V 的最大值为213.【点拨】利用平面几何法求得MN 的值,进而可利用均值不等式法求得PMN 面积的最大值,最后求得体积的最大值.【解法3】1112233P D MN D PMN PMN PMN V V S S 如图1425 所示,设,BAP DAP ,122sin 2sin sin135cos cos 22PMN Scos 12222,当且仅当22.5 时取等号,所以1P D MN V 的最大值为13.【点拨】引入两个角度,建立体积的代数表达式,结合积化和差公式可由两角和与差的余弦公式解决问题.【赏析】本题依托立体几何背景﹐涉及线面垂直﹑线线垂直和棱锥体积的求法.如何求解PMN 的面积的最大值是本题的关键.【解法1】从角度出发,将各边长转为为三角函数形式,利用三角函数值的有界性解答.【解法2】从平面几何的角度出发,利用基本不等式取得最值.这两种方法都是处理解三角形问题的基本方法.【解法3】从两角的关系出发,使用积化和差公式,实质是利用角的变换,和【解法1】有异曲同工之妙.强化训练1.在四棱锥S ABCD 中,底面ABCD 是平行四边形,,M N 分别是,SA BD 上的点.有下列命题:(1)若SM DN MA NB,则MN ∥平面SCD ;(2)若SM DN MA NB ,则MN ∥平面SCB ;(3)若平面SDA 平面ABCD ,且平面SDB 平面ABCD ,则SD 平面ABCD .其中正确命题的序号为________.【解析】答案:①③2.如图1426 ,在四棱锥P ABCD 中,E 为AD 上一点,PE 平面,ABCD //,AD BC AD ,CD 22,BC ED AE 3,EB F 为PC 上一点,且2CF FP .(I)求证://PA 平面BEF ;(II)若二面角F BE C 的平面角的大小为60,求直线PB 与平面ABCD 所成角的大小.【解析】(Ⅰ)证明:连结AC 交BE 于点M ,连结FM .因为//EM CD ,所以12AM AE PF MC ED FC,所以//FM AP ,又因为FM 平面,BEF PA 平面BEF ,所以//PA 平面BEF(Ⅱ)解:以E 为坐标原点,EB ,EA ,EP 所在直线分別为x 轴,y 轴,z 轴建立空间直角坐标系,如答图141 所示.设点(0,0,)P t ,因为PE 平面ABCD ,则向量(0,0,PE ,t )即为平面BEC 的法向量.因为//,,22,3AD BC AD CD BC ED AE EB ,所以四边形BCDE 为矩形,(3,0,0),(3,2,0)B C ,因为F 为PC 上一点,且2CF FP ,则有22221,,,1,,,(3,0,0)3333F t EF t EB设平面BEF 的法向量(,,)n x y z ,则n EF ,即有n .0EF ,即22033x y zt ,又0EB n ,即30x ,所以10,1,n t.因为二面角F BE C 的平面角大小为60,则PE 与n 的夹角为120 ,所以21cos1202||||11n PE n PE t t ,解得t 33),933P PB .因为PE 平面ABCD ,所以PBE 即为直线PB 与平面ABCD 所成的角.在Rt PBE 中,3cos 223BE PBE PBE PB 6,所以直线PB 与平面ABCD 所成角为6.3.如图1427 ,在三棱锥A BCD 中,3,2,AB AC BD CD AD BC M 是AD的中点,则异面直线,CM AB所成角的大小为________.【解析】取BD 中点N ,连结MN ,CN ,如答图14-2因为3,2,AB AC BD CD AD BC M 是AD 的中点,所以//MN AB ,且1322MN AB ,所以(CMN 或其补角)是异面直线CM ,AB 所成的角.因为CM 2227cos 29BD CD BC BDC BD CD 所以222172cos 4CN DN CD DN CD BDC .所以2222cos 22MN CM CN CMN MN CM .所以4CMN .所以异面直线CM ,AB 所成角的大小为4.4.已知三棱锥P ABC 的体积为16,点,D E 分别在侧棱,PB PC 上,且2,PD DB 3PE EC ,则三棱锥P ADE 的体积为________.【解析】由答图143 可知:P ABC P ADE V PA PB V PA PD .34223PC PE ,所以8P ADE V .5.过凸四边形ABCD 的对角线交点O 作该四边形所在平面的垂线段SO ,使SO 3 ,若22,S AOD S BOC V a V b ,当S ABCD V 最小时,ABCD 的形状为________.【解析】由已知,易得22,AOD DOC S a S b .设,AOB COD S x S y ,则22.S ABCD V a b x y 因为22AOD COD AOB DOC S S a DO y x S OB S b,所以22xy a b .而2(x y xy ab 设0,0a b ),于是222()a b x y a b ,当且仅当x y ab 时取等号,这时2.AOD DOC S AO a a OC S y b 同理,DO a OB b ,所以AO OC DO OB,所以//AD BC .另一方面:当x y ab 时,2,AOD DOC S AO a a BO OC S y b OD 2DOC DOC S b b S y a(1)当a b b a ,即22,AOD COD a b S S 时,AO BO OC OD,所以//AB CD .此时,四边形ABCD 是平行四边形.(2)当a bb a,即22,AOD Da b S S时,AO BOOC OD,所以AB与CD不平行.此时,四边形ABCD是梯形.。
专题12 立体几何小题基础练(解析版)
【一专三练】 专题12 立体几何小题基础练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·广东·统考一模)已知一个圆锥和圆柱的底面半径和高分别相等,若圆锥的轴截面是等边三角形,则这个圆锥和圆柱的侧面积之比为( )A .12BC D2.(2023·山东济南·一模)已知正三角形边长为2,用斜二测画法画出该三角形的直观图,则所得直观图的面积为( )A B C .D .3.(2023·广东惠州·统考模拟预测)已知互不重合的三个平面α、β、γ,其中a αβ⋂=,b βγ= ,c γα= ,且a b P = ,则下列结论一定成立的是( )A .b 与c 是异面直线B .a 与c 没有公共点C .//b cD .b c P= 故选:D .4.(2023·浙江嘉兴·统考模拟预测)《九章算术·商功》中记载:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑,不易之率也.”我们可以翻译为:取一长方体,分成两个一模一样的直三棱柱,称为堑堵.再沿堑堵的一顶点与相对的棱剖开,得一个四棱锥和一个三棱锥,这个四棱锥称为阳马,这个三棱锥称为鳖臑.现已知某个鳖臑的体积是1,则原长方体的体积是( )A .8B .6C .4D .3【答案】B【分析】根据柱体和锥体体积公式求得正确答案.【详解】如图所示,原长方体1111ABCD A B C D -,设矩形11BCC B 的面积为S ,11C D h =,鳖臑11D BCC -的体积为1,5.(2023·辽宁阜新·校考模拟预测)已知矩形ABCD 中,AB =8,取AB 、CD 的中点E 、F ,沿直线EF 进行翻折,使得二面角A EF B --的大小为120°,若翻折后A 、B 、C 、D 、E 、F 都在球O 上,且球O 的体积为288π,则AD =( )A .45B .25C .4D .2记三角形CDF 外接圆的圆心为因为二面角A EF B --的大小为且,EF DF EF CF ⊥⊥,所以所以30DCF ∠=o ,由正弦定理可得sin DFDCF∠6.(2023·山东日照·统考一模)红灯笼,起源于中国的西汉时期,两千多年来,每逢春节人们便会挂起象征美好团圆意义的红灯笼,营造一种喜庆的氛围.如图1,某球形灯笼的轮廓由三部分组成,上下两部分是两个相同的圆柱的侧面,中间是球面除去上下两个相同球冠剩下的部分.如图2,球冠是由球面被平面截得的一部分,垂直于截面的直径被截得的部分叫做球冠的高,若球冠所在球面的半径为R,球冠的高为h,则球冠的面积=.如图1,已知该灯笼的高为58cm,圆柱的高为5cm,圆柱的底面圆直径为S Rh2π14cm,则围成该灯笼中间球面部分所需布料的面积为()A.21940πcm B.22540πcm2350πcm C.22400πcm D.27.(2023·山东·烟台二中校考模拟预测)已知圆锥的侧面积为,高为,若圆锥可在某球内自由运动,则该球的体积最小值为()A.B.8πC.9πD.【答案】D【分析】由圆锥侧面积公式及勾股定理可得圆锥半径r与母线l长,求该圆锥的外接球8.(2023·山东威海·统考一模)已知圆锥的侧面展开图是一个半径为4,弧长为4π的扇形,则该圆锥的表面积为( )A .4πB .8πC .12πD .20π9.(2023·山东聊城·统考一模)在正方体1111ABCD A B C D -中,直线m 、n 分别在平面ABCD 和11ABB A ,且m n ⊥,则下列命题中正确的是( )A .若m 垂直于AB ,则n 垂直于AB B .若m 垂直于AB ,则n 不垂直于ABC .若m 不垂直于AB ,则n 垂直于ABD .若m 不垂直于AB ,则n 不垂直于AB【答案】C【分析】根据线面垂直的判定定理及直线位置关系来判定选项即可.【详解】如图所示:A 选项,若m 垂直于AB ,则面11ABB A 内的所有直线均与m 垂直,无法证明,AB n 的关系,故A 选项错误,B 选项与A 同理;C 选项,若m 不垂直于AB ,因为1BB m ⊥,所以当m n ⊥时,1//BB n ,又因为1BB AB ⊥,所以n 垂直于AB ;D选项与C 同理.故选:C10.(2023·江苏徐州·徐州市第七中学校考一模)则三棱锥-P ABC 中,PA ⊥平面π,6,3,6ABC PA BC CAB ==∠=,则三棱锥-P ABC 的外接球半径为( )A .3B .C .D .611.(2023·湖北武汉·统考模拟预测)某车间需要对一个圆柱形工件进行加工,该工件底面半径15cm ,高10cm ,加工方法为在底面中心处打一个半径为r cm且和原工件有相同轴的圆柱形通孔.若要求工件加工后的表面积最大,则r 的值应设计为( )A .BC .4D .5【答案】D【分析】表示出表面积后,根据二次函数性质可得.【详解】大圆柱表面积为2215π10215π750π⨯+⨯⨯=小圆柱侧面积为102πr ⨯,上下底面积为22πr 所以加工后物件的表面积为2750π20π2πr r +-,当=5r 时表面积最大.故选:D12.(2023·湖北·统考模拟预测)截角四面体是一种半正八面体,可由四面体经过适当的截角而得到.如图,将棱长为6的正四面体沿棱的三等分点作平行于底面的截面截角得到所有棱长均为2的截角四面体,则该截角四面体的体积为()A.BC D.13.(2023·湖北·荆州中学校联考二模)甲、乙两个圆锥的底面积相等,侧面展开图的圆心角之和为2π,侧面积分别为S甲、S乙,体积分别为V甲、V乙,若2SS=甲乙,则VV甲乙等于()A B C D14.(2023·湖南湘潭·统考二模)已知,,A B C为球O球面上的三个点,若3AB BC AC===,球O的表面积为36π,则三棱锥O ABC-的体积为()A BC D15.(2023·湖南·湖南师大附中校联考模拟预测)如图所示,一个球内接圆台,已知圆台上、下底面的半径分别为3和4,球的表面积为100π,则该圆台的体积为()A .175π3B .75πC .238π3D .259π3因为圆台上、下底面的半径分别为所以4OB OA ==,1O B 所以2211OO OB O B =-所以127O O =,16.(2023·广东茂名·统考一模)蒙古包是蒙古族牧民居住的一种房子,建造和搬迁都很方便,适于牧业生产和游牧生活,蒙古包下半部分近似一个圆柱,高为2m ;上半部分近似一个与下半部分同底的圆锥,其母线长为,轴截面(过圆锥旋转轴的截面)是面积为2的等腰钝角三角形,则该蒙古包的体积约为( )A .321πmB .318πm C .(318πm+D .(320πm+因为其轴截面(过圆锥旋转轴的截面)是腰长为()2211sin 23sin 3l αα=⨯⨯=17.(2023·广东茂名·统考一模)已知菱形ABCD 的各边长为2,=60B ∠︒.将ABC V 沿AC 折起,折起后记点B 为P ,连接PD ,得到三棱锥P ACD -,如图所示,当三棱锥P ACD -的表面积最大时,三棱锥P ACD -的外接球体积为( )A 3B 3C .D 3【答案】D4【点睛】结论点睛:若三棱锥有两个面为共斜边的直角三角形,则三棱锥的外接球的球心为该斜边的中点.18.(2023·江苏·统考一模)已知正四面体-P ABC 的棱长为1,点O 为底面ABC 的中心,球О与该正四面体的其余三个面都有且只有一个公共点,且公共点非该正四面体的顶点,则球O 的半径为( )A B C D 【答案】B【分析】由题可知球O 与该正四面体的其余三个面都相切,然后利用P ABC O PABC O PBC O PAC V V V V ----=++,即得.【详解】因为正四面体-P ABC 的棱长为1,则正四面体-P ABC 的高为二、多选题19.(2023·浙江·统考一模)已知三棱柱ABC DEF -的棱长均相等,则( )A .AB CF ⊥B .AE BD ⊥C .60ABC ∠=︒D .60ADE ∠=︒20.(2023·江苏泰州·统考一模)在棱长为2的正方体1111ABCD A B C D -中,AC 与BD 交于点O ,则( )A .1AD //平面1BOC B .BD ⊥平面1COC C .1C O 与平面ABCD 所成的角为45D .三棱锥1C BOC -的体积为23因为,BD CO ⊥又1CC ⊥平面所以11,BD CC CD CC ⊥ BD ∴⊥平面1COC ,B 对;因为1C C ⊥平面,ABCD C 21.(2023·辽宁葫芦岛·统考一模)已知a ,b 为空间中两条不同直线,α,β为空间中两个不同的平面,则下列命题一定成立的是( )A .αβ∥,a α⊂,b a b β⊥⇒⊥B .αβ∥,a α⊥,b a b β⊥⇒∥C .αβ⊥,a αβ⋂=,b a b β⇒∥∥D .αβ⊥,a α⊥,b a b β⊥⇒⊥【答案】ABD【分析】利用面面平行的性质及线面垂直的性质,面面垂直的性质即可求解.【详解】对于A ,由αβ∥,a α⊂,得a β∥,又因为b β⊥,所以a b ⊥r r,故A 正确;对于B ,由αβ∥,a α⊥,得a β⊥,因为b β⊥,所以 a b ∥,故B 正确;对于C ,由αβ⊥,a αβ⋂=,b β∥,得a 与b 异面或平行,故C 错误;对于D ,由αβ⊥,a α⊥,得a β∥或a β⊂,又因为b β⊥,所以a b ⊥r r,故D 正确;故选:ABD.22.(2023·江苏南通·统考模拟预测)已知点P 是正方体1111ABCD A B C D -侧面11BB C C (包含边界)上一点,下列说法正确的是( )A .存在唯一一点P ,使得DP //1AB B .存在唯一一点P ,使得AP //面11AC D C .存在唯一一点P ,使得1A P ⊥1B D D .存在唯一一点P ,使得1D P ⊥面11AC D23.(2023·山东青岛·统考一模)下列说法正确的是( )A .若直线a 不平行于平面α,a α⊄,则α内不存在与a 平行的直线B .若一个平面α内两条不平行的直线都平行于另一个平面β,则αβ∥C .设l ,m ,n 为直线,m ,n 在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的充要条件D .若平面α⊥平面1α,平面β⊥平面1β,则平面α与平面β所成的二面角和平面1α与平面1β所成的二面角相等或互补【答案】AB【分析】对于选项ABC ,可根据线面平行的判定定理,面面平行的判定定理和线面垂直的判定定理进行判定;对于选项D ,可在长方体中寻找特殊平面进行排除.【详解】选项A ,若存在直线,则由直线和平面平行的判定定理知直线a 与平面α平行,与条件相矛盾,故选项A 正确;选项B ,由面面平行的判定定理可知选项B 正确;选项C ,当直线,m n 不相交时,由线面垂直的判定定理知:l m ⊥且l n ⊥时,得不到l α⊥,故选项C 错误;选项D ,当11//αβ,αβ⊥时,可满足题设条件,此时平面α与平面β所成的二面角为90︒,平面1α与平面1β所成的二面角为0︒,故选项D 错误.故选:AB24.(2023·湖南常德·统考一模)已知平面α,β,直线l ,m ,则下列命题正确的是( )A .若αβ⊥,,,m l m l αβα⋂=⊥⊂,则l β⊥B .若l αβα⊂∥,,m β⊂,则//l mC .若m α⊂,则“l α⊥”是“l m ⊥”的充分不必要条件D .若m α⊂,l α⊄,则“l α∥”是“l m P ”的必要不充分条件25.(2023·广东茂名·统考一模)已知空间中三条不同的直线a 、b 、c ,三个不同的平面αβγ、、,则下列说法中正确的是( )A .若a b ∥,a α⊥,则b α⊥B .若a αβ⋂=,b βγ= ,c αγ⋂=,则a b c ∥∥C .若αβ⊥,a α⊄,a β⊥,则a αP D .若c β⊥,c γ⊥,则βγ∥【答案】ACD【分析】根据直线与平面、平面与平面的位置关系,结合图形判断求解.【详解】对于A ,a b ∥,a α⊥,则b α⊥一定成立,A 正确;对于B ,如图,正方体两两相交的三个平面ABCD ,平面11ABB A ,平面11ADD A ,平面ABCD ⋂平面11ABB A AB =,平面ABCD ⋂平面11ADD A AD =,平面11ABB A 平面111ADD A AA =,但1,,AB AD AA 不平行,故B 错误;对于C ,若αβ⊥,a β⊥,则a αP 或a α⊂,但a α⊄,所以a αP ,C 正确;对于D ,c β⊥,c γ⊥,则βγ∥,D 正确. 故选:ACD.三、填空题26.(2023·江苏南通·校联考模拟预测)中国某些地方举行婚礼时要在吉利方位放一张寓意粮食满园、称心如意、十全十美,下图为一种婚庆升斗的规格,该升斗外形是一个正四棱台,上、下底边边长分别为20cm ,10cm ,侧棱长为10cm ,忽略其壁厚,则该升斗的容积为_________3cm .【详解】上下底面对角线的长度分别为:202,10上底面的面积2120400S == ()2cm ,下底面的面积四棱台的体积27.(2023·江苏宿迁·江苏省沭阳高级中学校考模拟预测)在直角梯形ABCD 中,//AB CD ,AD AB ⊥,22AB DC ==,E 为AD 的中点.将EAB V 和ECD V 分别沿,EB EC折起,使得点A ,D 重合于点F ,构成四面体FBCE .若四面体FBCE 的四个面均为直角三角形,则其外接球的半径为_________.故答案为:324.28.(2023·山东·烟台二中校联考模拟预测)已知在正方体1111ABCD A B C D -中,12AM AD =,平面11A BC ⋂平面1CC M l =,则直线l 与1D M 所成角的余弦值为__________.延长DC 至E ,使得DC CE =,则1A AB △≌1C CE △,111D A C V ≌CBE △,故11A B C E =,11A C BE =,故四边形11A C EB 为平行四边形,连接BE ,延长MC ,BE 交于点G ,连接1C G ,则1C G 即为直线l .以D 为坐标原点,DA ,DC ,1DD 分别为x ,y ,z 轴建立如图所示的空间直角坐标系,设2AD =,过点G 作GN ⊥y 轴于点N ,则MDC △∽GNC △,且相似比为1:2,故24CN CD ==,22GN DM ==,则()10,2,2C ,()2,6,0G -,()1,0,0M ,()10,0,2D ,29.(2023·湖北·校联考模拟预测)葫芦是一种爬藤植物,在我国传统文化中,其枝密集繁茂,象征着儿孙满堂、同气连枝;其音近于“福禄”,寓意着长寿多福、事业发达;其果口小肚大,代表着心胸开阔、和谐美满.如图,一个葫芦的果实可以近似看做两球相交所得的几何体Ω,其中Ω的下半部分是半径为1O 的一部分,Ω的上半部分是半径为3的球2O 的一部分,且126O O =,则过直线12O O 的平面截Ω所得截面的面积为__________.30.(2023·湖北武汉·华中师大一附中校联考模拟预测)已知圆台的侧面积与轴截面的,若上、下底面的半径分别为1和2,则母线长为__________.。
高三数学立体几何中的最值问题四则
立体几何中的最值问题四则1. 用配方法求距离的最值例1. 如图1,正方形ABCD 、ABEF 边长都是1,且平面ABCD 、ABEF 互相垂直,点M 在AC 上移动,点N 在BF 上移动,若CM BN a a ==<<()02。
试求当a 为何值时,MN 的值最小。
图1分析:此题的解题关键是想用含a 的代数式表示距离,再用配方法求最值。
解:过M 作MH AB ⊥,垂足为H ,连结NH ,如图1所示。
在正方形ABCD 中,AB CB ⊥, 所以BC MH //,因为平面AC ⊥平面AE ,所以MH ⊥平面AE ,即MH NH ⊥。
因为CM BN a AB CB BE =====,1,所以AC BF ==2 即AM a =-2, MH AH a BH a ==-=12222,, 由余弦定理求得NH a =22。
所以MN MH NH =+22=-+=-+=-+<<()()()()12222212212022222a a a a a a当a =22时,MN =22,即M 、N 分别移到AC 、BF 的中点时,MN 的值最小,最小值为222. 结合实际找最值位置例2. 在一X 硬纸上,抠去一个半径为3的圆洞,然后把此洞套在一个底面边长为4,高为6的正三棱锥A —BCD 上,并使纸面与锥面平行,则能穿过这X 纸面的棱锥的高的最大值是________。
图2解:如图2所示,假设硬纸上的圆洞刚好卡在B'C'D'处。
设正三棱锥A BCD -的顶点A 在平面BCD 上的射影为A',在平面B'C'D'上的射影为O 。
连结BA'、B'O 并延长分别交CD 、C'D'于E 、E'点,则平面B C D '''//平面BCD ,所以B E BE BC BC''''=, B E B O BE BA ''''==3232,, 即B O BA B C BC ''''=。
立体几何—解答题专项练习
立体几何—解答题专项练习一.解答题(共40小题)1.如图,在三棱锥P﹣ABC中,PA⊥PC,AB=PB,E,F分别是PA,AC的中点.求证:(1)EF∥平面PBC;(2)平面BEF⊥平面PAB.2.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E 是PC的中点.(1)证明:PA∥平面EDB;(2)证明:BC⊥DE.3.如图,在正方体ABCD﹣A1B1C1D1中,E、F为棱AD、AB的中点.(Ⅰ)求证:EF∥平面CB1D1;(Ⅱ)求证:平面CAA1C1⊥平面CB1D1.4.如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.求证:(1)平面BDD1⊥平面PAC;(2)直线PB1⊥平面PAC.5.如图,在正方体ABCD﹣A1B1C1D1中,E是AA1的中点,求证:(Ⅰ)A1C∥平面BDE;(Ⅱ)平面A1AC⊥平面BDE.6.如图,四棱锥P﹣ABCD,底面ABCD为矩形,PA⊥平面ABCD,E为PD中点(1)证明:PB∥平面ACE(2)(文)证明:CD⊥平面PAD(3)(理)证明:平面PCD⊥平面PAD.7.如图所示,已知PA垂直于圆O所在平面,AB是圆O的直径,C是圆O的圆周上异于A、B的任意一点,且PA=AC,点E是线段PC的中点.求证:AE⊥平面PBC.8.如图,ABCD是正方形,O是该正方体的中心,P是平面ABCD外一点,PO⊥平面ABCD,E是PC的中点.(1)求证:PA∥平面BDE;(2)求证:BD⊥平面PAC.9.如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在上,且OM∥AC.(Ⅰ)求证:平面MOE∥平面PAC;(Ⅱ)求证:平面PAC⊥平面PCB.10.如图,在直三棱柱ABC﹣A1B1C1中,点M、N分别为线段A1B、AC1的中点.(1)求证:MN∥平面BB1C1C;(2)若D在边BC上,AD⊥DC1,求证:MN⊥AD.11.如图,在正方体ABCD﹣A1B1C1D1中,AB1,BC1上分别有两点E,F,且= =,求证:EF∥平面ABCD.12.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.(1)求证:PC∥平面BDE;(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.13.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.14.如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点H,将△DEF沿EF折到△D′EF的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B﹣D′A﹣C的正弦值.15.直三棱柱ABC﹣A1B1C1中,AC=AA1=4,AC⊥BC.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)当BC的长为多少时,直线A1B与平面ABC1所成角的正弦值为.16.如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.17.已知△ABC中,AB⊥BC,BC=2,AB=4,分别取边AB,AC的中点D,E,将△ADE沿DE折起到△AD1E的位置,使A1D⊥BD,设点M为棱A1D的中点,点P为A1B的中点,棱BC上的点N满足BN=3NC.(Ⅰ)求证:MN∥平面A1EC;(Ⅱ)求三棱锥N﹣PCE的体积.18.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.19.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.20.如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M﹣ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.21.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q ﹣ABP的体积.22.如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M﹣PA﹣C为30°,求PC与平面PAM所成角的正弦值.23.已知等腰直角△S′AB,S′A=AB=4,S′A⊥AB,C,D分别为S′B,S′A的中点,将△S′CD沿CD折到△SCD的位置,SA=2,取线段SB的中点为E.(I)求证:CE∥平面SAD;(Ⅱ)求二面角A﹣EC﹣B的余弦值.24.直三棱柱ABC﹣A1B1C1中,AC=BC=AA1=4,AC⊥BC.(Ⅰ)证明:AC1⊥平面A1BC;(Ⅱ)设四边形AA1C1C对角线的交点为D,求三棱锥C1﹣A1BD的体积.25.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.26.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.27.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.28.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.29.如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.30.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB ﹣D的余弦值.31.如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(Ⅰ)证明:AC⊥HD′;(Ⅱ)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′﹣ABCFE体积.32.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求四面体N﹣BCM的体积.33.如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P在平面ABC 内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.34.如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.35.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.36.如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.37.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.38.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.39.如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积.40.如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB= AB.(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.立体几何—解答题专项练习参考答案一.解答题(共40小题)1-12.略;13.;14.;15.4;16.;17.V N﹣PEC=V P﹣NCE= =;18.;19.存在,中点;20.;21.1;22.;23.﹣;24.;25.;26.4;27.;28.6+2;29.1;30.;31.;32.;33.;34.﹣;35.3+2;36.;37.;38.;39.1;40.;sin∠DFE=。
高中数学典型例题解析立体几何
高中数学典型例题分析 第六章 立体几何初步§6.1 两条直线之间的位置关系一、知识导学1. 平面的基本性质.公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论1:经过一条直线和这条直线外的一点,,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面. 2. 空间两条直线的位置关系,包括:相交、平行、异面.3. 公理4:平行于同一条直线的两条直线平行.定理4:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.4. 异面直线.异面直线所成的角;两条异面直线互相垂直的概念;异面直线的公垂线及距离.5. 反证法.会用反证法证明一些简单的问题. 二、疑难知识导析1.异面直线是指不同在任何一个平面内,没有公共点.强调任何一个平面.2.异面直线所成的角是指经过空间任意一点作两条分别和异面的两条直线平行的直线所成的锐角(或直角).一般通过平移后转化到三角形中求角,注意角的范围. 3.异面直线的公垂线要求和两条异面直线垂直并且相交,4.异面直线的距离是指夹在两异面直线之间公垂线段的长度.求两条异面直线的距离关键是找到它们的公垂线.5.异面直线的证明一般用反证法、异面直线的判定方法:如图,如果b α⊂,A α∈且A b ∉,a A =⋂α,则a 与b 异面. 三、经典例题导讲[例1]在正方体ABCD-A 1B 1C 1D 1中,O 是底面ABCD 的中心,M 、N 分别是棱DD 1、D 1C 1的中点,则直线OM( ).A .是AC 和MN 的公垂线.B .垂直于AC 但不垂直于MN. C .垂直于MN ,但不垂直于AC.D .与AC 、MN 都不垂直. 错解:B.错因:学生观察能力较差,找不出三垂线定理中的射影. 正解:A. [例2]如图,已知在空间四边形ABCD 中,E,F 分别是AB,AD 的中点,G,H 分别是BC,CD 上的点,且2==HCDH GCBG,求证:直线EG,FH,AC相交于一点.错解:证明:E 、F 分别是AB,AD 的中点,EF ∴∥BD,EF=21BD,又2==HCDH GCBG ,∴ GH ∥BD,GH=31BD,∴四边形EFGH 是梯形,设两腰EG,FH 相交于一点T,2=HCDH ,F 分别是AD.∴AC 与FH 交于一点.∴直线EG,FH,AC 相交于一点正解:证明:E 、F 分别是AB,AD 的中点,EF ∴ ∥BD,EF=21BD,又2==HCDH GCBG ,∴GH ∥BD,GH=31BD,∴四边形EFGH 是梯形,设两腰EG,FH 相交于一点T, ⊂EG 平面ABC,FH ⊂平面ACD,∴T ∈面ABC,且T ∈面ACD,又平面ABC 平面ACD=AC, AC T ∈∴,∴直线EG,FH,AC 相交于一点T.[例3]判断:若a,b 是两条异面直线,P 为空间任意一点,则过P 点有且仅有一个平面与a,b 都平行.错解:认为正确.错因:空间想像力不够.忽略P 在其中一条线上,或a 与P 确定平面恰好与b 平行,此时就不能过P 作平面与a 平行. 正解:假命题.[例4] 如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线(在同一条直线上). 分析:先确定一个平面,然后证明相关直线在这个平面内,最后证明四点共线. 证明 ∵ AB//CD , AB ,CD 确定一个平面β. 又∵AB ∩α=E ,AB β,∴ E ∈α,E ∈β, 即 E 为平面α与β的一个公共点. 同理可证F ,G ,H 均为平面α与β的公共点. ∵ 两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴ E,F ,G ,H 四点必定共线.点 评:在立体几何的问题中,证明若干点共线时,先证明这些点都是某两平面的公共点,而后得出这些点都在二平面的交线上的结论.[例5]如图,已知平面α,β,且α∩β=l.设梯形ABCD 中,AD∥BC,且AB α,CDβ,求证:AB ,CD ,l共点(相交于一点).分析:AB ,CD 是梯形ABCD 的两条腰,必定相交于一点M ,只要证明M 在l 上,而l 是两个平面α,β的交线,因此,只要证明M∈α,且M∈β即可.证明: ∵ 梯形ABCD 中,AD∥BC, ∴AB,CD 是梯形ABCD 的两条腰. ∴ AB,CD 必定相交于一点, 设 AB ∩CD=M .又∵ AB α,CD β,∴ M∈α,且M∈β. ∴ M∈α∩β. 又∵α∩β=l ,∴ M∈l ,即AB ,CD ,l 共点.点 评:证明多条直线共点时,与证明多点共线是一样的.[例6]已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面. 分析:弄清楚四条直线不共点且两两相交的含义:四条直线不共点,包括有三条直线共点的情况;两两相交是指任何两条直线都相交.在此基础上,根据平面的性质,确定一个平面,再证明所有的直线都在这个平面内.证明 1º若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点 A ∴ 直线d 和A 确定一个平面α.又设直线d 与a ,b ,c 分别相交于E ,F ,G , 则 A ,E ,F ,G∈α. ∵ A ,E∈α,A ,E∈a, ∴ a α. 同理可证 b α,c α. ∴ a,b ,c ,d 在同一平面α内. 2º当四条直线中任何三条都不共点时,如图. ∵ 这四条直线两两相交, 则设相交直线a ,b 确定一个平面α. 设直线c 与a ,b 分别交于点H ,K , 则 H ,K∈α.又∵ H,K∈c,∴ c α. 同理可证 d α.∴ a,b ,c ,d 四条直线在同一平面α内.点 评:证明若干条线(或若干个点)共面的一般步骤是:首先由题给条件中的部分线(或点)确定一个平面,然后再证明其余的线(或点)均在这个平面内.本题最容易忽视“三线共点”这一种情况.因此,在分析题意时,应仔细推敲问题中每一句话的含义. [例7] 在立方体ABCD -A 1B 1C 1D 1中,(1)找出平面AC 的斜线BD 1在平面AC 内的射影; (2)直线BD 1和直线AC 的位置关系如何?(3)直线BD 1和直线AC 所成的角是多少度?解:(1)连结BD, 交AC 于点O 上的射影在平面就是斜线平面AC BD BD AC DD 11,∴⊥ . (2)BD 1和AC 是异面直线.(3)过O 作BD 1的平行线交DD 1于点M ,连结MA 、MC ,则∠MOA 或其补角即为异面直线AC 和BD 1所成的角.不难得到MA =MC ,而O 为AC 的中点,因此MO ⊥AC ,即∠MOA =90°,∴异面直线BD 1与AC 所成的角为90°.[例8] 已知:在直角三角形ABC 中,∠A 为直角,PA⊥平面ABC ,BD⊥PC,垂足为D ,求证:AD⊥PC 证明:∵ PA ⊥平面ABC∴ PA⊥BA 又∵ BA⊥AC ∴ BA⊥平面PAC ∴ AD 是BD 在平面PAC 内的射影又∵ BD ⊥PC ∴ AD ⊥PC .(三垂线定理的逆定理) 四、典型习题导练1.如图, P 是△ABC 所在平面外一点,连结PA 、PB 、PC 后,在包括AB 、BC 、CA 的六条棱所在的直线中,异面直线的对数为( )A.2对B.3对C.4对D.6对2. 两个正方形ABCD 、ABEF 所在的平面互相垂直,则异面直线AC 和BF 所成角的大小为 .3. 在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,体对角线DB 1与面对角线BC 1所成的角是 ,它们的距离是 .4.长方体ABCD A B C D -1111中,BC CD DD ===2214251,,,则A C B D 111和所成角的大小为_ ___.5.关于直角AOB 在定平面α内的射影有如下判断:①可能是0°的角;②可能是锐角;③可能是直角;④可能是钝角;⑤可能是180°的角. 其中正确判断的序号是_____.(注:把你认为正确的序号都填上).6.在空间四边形ABCD 中,AB ⊥CD ,AH ⊥平面BCD ,求证:BH ⊥CD7.如图正四面体中,D 、E 是棱PC 上不重合的两点;F 、H 分别是棱PA 、PB 上的点,且与P 点不重合. 求证:EF 和DH 是异面直线.§6.2直线与平面之间的位置关系一、知识导学1.掌握空间直线与平面的三种位置关系(直线在平面内、相交、平行).2.直线和平面所成的角,当直线与平面平行或在平面内时所成的角是 0,当直线与平面垂直时所成的角是9 0,当直线与平面斜交时所成的角是直线与它在平面内的射影所成的锐角.3.掌握直线与平面平行判定定理(如果平面外的一条直线和平面内的一条直线平行,那么这条直线和平面平行)和性质定理(如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行).4.直线与平面垂直的定义是:如果一条直线和一个平面内所有直线垂直,那么这条直线和这个平面垂直;掌握直线与平面垂直的判定定理(如果一条直线和平面内的两条相交直线都垂直,那么这条直线垂直于这个平面)和性质定理(如果两条直线同垂直于一个平面,那么这两条直线平行).5.直线与平面的距离(一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离).6.三垂线定理(在平面内的一条直线,如果和这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直)、逆定理(在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在这个平面内的射影垂直).7.从平面外一点向这个平面所引的垂线段和斜线段中:①射影相等的两条斜线段相等,射影较长的斜线段也较长;②相等的斜线段的射影相等,较长的斜线段的射影也较长;③垂线段比任何一条斜线段都短.二、疑难知识导析1.斜线与平面所成的角关键在于找射影,斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.2.在证明平行时注意线线平行、线面平行及面面平行判定定理和性质定理的反复运用.3.在证明垂直时注意线线垂直、线面垂直及面面垂直判定定理和性质定理的反复运用,同时还要注意三垂线定理及其逆定理的运用.要注意线面垂直的判定定理中的“两条相交直线”,如果用“无数”或“两条”都是错误的.4.直线与平面的距离一般是利用直线上某一点到平面的距离.“如果在平面的同一侧有两点到平面的距离(大于0)相等,则经过这两点的直线与这个平面平行.”要注意“同一侧”、“距离相等”.三、经典例题导讲l⊂平面α,点P∈直线l,平面α、β间的距离为8,则在β内[例1]已知平面α∥平面β,直线l的距离为9的点的轨迹是()到点P的距离为10,且到A.一个圆B.四个点C.两条直线 D .两个点错解:A.错因:学生对点线距离、线线距离、面面距离的关系掌握不牢.正解:B.[例2] a和b为异面直线,则过a与b垂直的平面( ).A .有且只有一个B .一个面或无数个C .可能不存在D .可能有无数个 错解:A.错因:过a 与b 垂直的平面条件不清. 正解:C.[例3]由平面α外一点P 引平面的三条相等的斜线段,斜足分别为A,B,C ,O 为⊿ABC 的外心,求证:OP α⊥.错解:因为O 为⊿ABC 的外心,所以OA =OB =OC ,又因为PA =PB =PC ,PO 公用,所以⊿POA ,⊿POB ,⊿POC 都全等,所以∠POA =∠POB=∠POC =2π,所以OP α⊥. 错因:上述解法中∠POA =∠POB =∠POC =RT ∠,是对的,但它们为什么是直角呢?这里缺少必要的证明.正解:取BC 的中点D ,连PD 、OD ,,,,,,,AB PO PO .PB PC OB OC BC PD BC OD BC POD BC PO α==∴⊥⊥∴⊥∴⊥⊥∴⊥面同理,[例4]如图,在正三棱柱ABC-A 1B 1C 1中,AB=3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 点的最短路线长为29,设这条最短路线与C 1C 的交点为N,求: (1)该三棱柱的侧面展开图的对角线长;(2)PC 和NC 的长;(3)平面NMP 和平面ABC 所成二面角(锐角)的大小(用反三角函数表示)错因:(1)不知道利用侧面BCC 1 B 1展开图求解,不会找29 的线段在哪里;(2)不会找二面角的平面角.正解:(1)正三棱柱ABC-A 1B 1C 1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为974922=+(2)如图,将侧面BC 1旋转120使其与侧面AC 1在同一平面上,点P 运动到点P 1的位置,连接MP 1 ,则MP 1就是由点P 沿棱柱侧面经过CC 1到点M 的最短路线. 设PC =x ,则P 1C =x ,在2,292)3221==+∆x x MAP Rt +中,(54,5211=∴==∴NC A P C P MA NC (3)连接PP 1(如图),则PP 1就是平面NMP 与平面ABC 的交线,作NH 1PP ⊥于H ,又CC 1⊥平面ABC ,连结CH ,由三垂线定理的逆定理得,1PP CH ⊥.所成二面角的平面角。
高一数学立体几何初步试题答案及解析
高一数学立体几何初步试题答案及解析1.点B是点A(1,2,3)在坐标平面内的射影,则OB等于()A.B.C.D.【答案】B【解析】点A(1,2,3)在坐标平面内的射影为B(0,2,3),所以|OB|=,故选B。
【考点】本题主要考查空间直角坐标系的概念及两点间距离公式的应用。
点评:理解好射影的概念,用熟两点间距离公式。
2.两等角的一组对应边平行,则()A.另一组对应边平行B.另一组对应边不平行C.另一组对应边也不可能垂直D.以上都不对【答案】D【解析】两等角的一组对应边平行,另一组对应边由多种情况,如平行、相交、异面等,关系D。
【考点】本题主要考查直线的位置关系。
点评:视野要开阔,考虑多种可能情况。
3.经过平面外两点与这个平面平行的平面()A.只有一个B.至少有一个C.可能没有D.有无数个【答案】C【解析】经过平面外两点与这个平面平行的平面可能没有,如两点所在直线与平面相交时,关系C。
【考点】本题主要考查点线面的关系—--平行关系。
点评:考虑点与平面的多种可能情况思考,结合实物模型探究。
4.如图所示,平面M、N互相垂直,棱l上有两点A、B,AC M,BD N,且AC⊥l,AB=8cm,AC=6 cm,BD=24 cm,则CD=_________.【答案】26 cm;【解析】连接AD,∵平面M、N互相垂直,AC⊥l,∴AC⊥平面N∴AC⊥CD;∵AB=8cm,AC=6cm,∴BC=10cm,又∵BD=24cm,∴CD=26cm。
【考点】本题主要考查点、线、面间的距离计算、面面垂直。
点评:考查的知识点是空间点到点之间的距离,其中根据面面垂直及线面垂直的性质得到△ABC,△ACD均为直角三角形,是解答本题的关键。
5.下面的图形可以构成正方体的是()【答案】C【解析】从选项出发,还原成正方体的只有C。
【考点】本题主要考查正方体的展开图。
点评:从选项出发,看能否还原成正方体。
6.下列命题中正确的是()A.由五个平面围成的多面体只能是四棱锥B.棱锥的高线可能在几何体之外C.仅有一组对面平行的六面体是棱台D.有一个面是多边形,其余各面是三角形的几何体是棱锥【答案】B【解析】由五个平面围成的多面体除四棱锥外,还可以是三棱台;棱锥的高线应是其顶点向底面所作垂线段,斜棱锥的高即在几何体外,故选B。
北京市第一七一中学2021年高中数学立体几何多选题100附解析
北京市第一七一中学2021年高中数学立体几何多选题100附解析一、立体几何多选题1.已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在平面1111D C B A 内,若||5AE =,AC DF ⊥,则( )A .点E 的轨迹是一个圆B .点F 的轨迹是一个圆C .EF 21-D .AE 与平面1A BD 所成角的正弦值的最大值为153015【答案】ACD 【分析】对于A 、B 、C 、D 四个选项,需要对各个选项一一验证. 选项A :由2211||5AE AA A E =+=1||1A E =,分析得E 的轨迹为圆;选项B :由AC DBF ⊥,而点F 在11B D 上,即F 的轨迹为线段11B D ,; 选项C :由E 的轨迹为圆,F 的轨迹为线段11B D ,可分析得min ||EF d r =-; 选项D :建立空间直角坐标系,用向量法求最值. 【详解】 对于A:2211||5AE AA A E =+=221|25A E +=1||1A E =,即点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上;故A 正确;对于B: 正方体1111ABCD A B C D -中,AC ⊥BD ,又AC DF ⊥,且BD ∩DF=D ,所以AC DBF ⊥,所以点F 在11B D 上,即F 的轨迹为线段11B D ,故B 错误;对于C:在平面1111D C B A 内,1A 到直线11B D 的距离为2,d=当点E ,F 落在11A C 上时,min ||21EF =-;故C 正确; 对于D:建立如图示的坐标系,则()()()()10,0,0,2,0,0,0,0,2,0,2,0A B A D因为点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上,可设()cos ,sin ,2E θθ 所以()()()1cos ,sin ,2,2,0,2,2,2,0,AE A B BD θθ==-=-设平面1A BD 的法向量(),,n x y z =,则有1·220·220n BD x y n A B x z ⎧=-+=⎪⎨=-=⎪⎩不妨令x =1,则()1,1,1n =, 设AE 与平面1A BD 所成角为α,则:22|||sin |cos ,|||||5315n AE n AE n AE πθα⎛⎫++ ⎪⎝⎭====⨯⨯当且仅当4πθ=时,sin α2215301515=, 故D 正确故选:CD 【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证.2.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P =,则满足条件的P 点有且只有一个 B .若12A P =,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B D C ,则1A P 长的最小值为2D .若12A P =且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π【答案】ABD 【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 长的最大值为2;结合以上条件点P 与B 或D 重合,利用12sin 60A P r =︒,求出63r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =,知点P 在以1A 为球心,半径为3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=,则只有唯一一点C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 60333A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD 【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.3.在直角梯形ABCD 中,2ABC BCD π∠=∠=,1AB BC ==,2DC =,E 为DC 中点,现将ADE 沿AE 折起,得到一个四棱锥D ABCE -,则下列命题正确的有( ) A .在ADE 沿AE 折起的过程中,四棱锥D ABCE -体积的最大值为13B .在ADE 沿AE 折起的过程中,异面直线AD 与BC 所成的角恒为4π C .在ADE 沿AE 折起的过程中,二面角A EC D --的大小为45︒D .在四棱锥D ABCE -中,当D 在EC 上的射影恰好为EC 的中点F 时,DB 与平面ABCE所成的角的正切为155【答案】ABD 【分析】对于A ,四棱锥D ABCE -的底面面积是固定值,要使得体积最大,需要平面DAE ⊥平面ABCE ,此时DE CE ⊥,可求得1133D ABCE ABCE V S DE -=⋅=可判断A ;对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC所成角,由翻折前可知4DAE π∠=可判断B ;对于C ,利用线面垂直的判定定理,结合翻折前可知AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的在大小为2π判断C ;对于D ,利用线面垂直的判定定理可知DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,15tan DF DBF BF ∠==,可判断D 正确;【详解】对于A ,ADE 沿AE 折起得到四棱锥D ABCE -,由四棱锥底面面积是固定值,要使得体积最大,需要四棱锥的高最大,即平面DAE ⊥平面ABCE ,此时DE CE ⊥,由已知得1DE =,则111111333D ABCE ABCE V S DE -=⋅=⨯⨯⨯=,故A 正确; 对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC 所成角,又1AB BC ==,2DC =,E 为DC 中点,可知4DAE π∠=,即异面直线AD 与BC 所成的角恒为4π,故B 正确; 对于C ,由翻折前知,,AE EC AE ED ⊥⊥,且ECED E =,则AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的大小为2π,故C 错误; 对于D ,如图连接,DF BF ,由C 选项知,AE ⊥平面DEC ,又DF ⊂平面DEC ,则AE DF ⊥,又由已知得EC DF ⊥,且EC AE E ⋂=,则DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,222222113122152tan 5511122DE CE DFDBF BFBC CE ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∠=====⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以DB 与平面ABCE 所成的角的正切为155,故D 正确; 故选:ABD 【点睛】关键点睛:本题考查立体几何综合问题,求体积,求线线角,线面角,面面角,解题的关键要熟悉几种角的定义,通过平移法找到线线角,通过证垂直找到线面角和面面角,再结合三角形求出角,考查了学生的逻辑推理能力,转化能力与运算求解能力,属于难题.4.如图,正方体1111ABCD A B C D -的棱长为3,线段11B D 上有两个动点,E F ,且1EF =,以下结论正确的有( )A .AC BE ⊥B .异面直线,AE BF 所成的角为定值C .点A 到平面BEF 的距离为定值D .三棱锥A BEF -的体积是定值 【答案】ACD 【详解】由AC BD ⊥,1AC DD ⊥可证AC ⊥平面11D DBB ,从而AC BE ⊥,故A 正确; 取特例,当E 与1D 重合时,F 是F ',AE 即1AD ,1AD 平行1BC ,异面直线,AE BF '所成的角是1C BF '∠,当F 与1B 重合时,E 是E ',BF 即1BB ,异面直线,AE BF '所成的角是1A AE '∠,可知1C BF '∠与1A AE '∠不相等,故异面直线,AE BF 所成的角不是定值,故B 错误;连结BD 交AC 于O ,又AC ⊥平面11D DBB ,点A 到平面11BDD B 的距离是2=2AO ,也即点A 到平面BEF 的距离是22,故C 正确; 2=2AO 为三棱锥A BEF -的高,又1111224BEFS =⨯⨯=△,故三棱锥A BEF -的体积为112234224⨯⨯=为定值,D 正确. 故选:ACD 【点睛】求空间中点到平面的距离常见方法为: (1)定义法:直接作平面的垂线,求垂线;(2)等体积法:不作垂线,通过等体积法间接求点到面的距离; (3)向量法:计算斜线在平面的法向量上的投影即可.5.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )A .侧面11CDD C 上存在点F ,使得11B F CD ⊥ B .直线1B F 与直线BC 所成角可能为30︒C .平面1A BE 与平面11CDD C 所成锐二面角的正切值为2D .设正方体棱长为1,则过点E ,F ,A 5【答案】AC 【分析】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,易证得平面1//B MN 平面1A BE ,可得点F 的运动轨迹为线段MN .取MN 的中点F ,根据等腰三角形的性质得1B F MN ⊥,即有11B F CD ⊥,A 正确;当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,可判断B 错误;根据平面1//B MN 平面1A BE ,11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,计算可知C 正确;【详解】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,则易证得11//B N A E ,1//MN A B ,从而平面1//B MN 平面1A BE ,所以点F 的运动轨迹为线段MN .取MN 的中点F ,因为1B MN △是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 正确;设正方体的棱长为a ,当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,此时11tan C B F ∠=1tan 3023︒<=,所以B 错误; 平面1//B MN 平面1A BE ,取F 为MN 的中点,则1MN C F ⊥,1MN B F ⊥,∴11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,11111tan B C B FC C F∠==22,所以C 正确;因为当F 为1C E 与MN 的交点时,截面为菱形1AGC E (G 为1BB 的交点),面积为62,故D 错误. 故选:AC.【点睛】本题主要考查线面角,二面角,截面面积的求解,空间几何中的轨迹问题,意在考查学生的直观想象能力和数学运算能力,综合性较强,属于较难题.6.(多选题)如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是( )A .113P AA D V -=B .点P 必在线段1BC 上 C .1AP BC ⊥D .AP ∥平面11AC D【答案】BD 【分析】 对于A ,1111111113326P AA D AA DV S CD -=⋅=⨯⨯⨯⨯=, 对于B,C,D ,如图以D 为坐标原点可建立空间直角坐标系,利用空间向量判即可. 【详解】对于A ,因为点P 在平面11BCC B ,平面11BCC B ∥平面1AA D , 所以点P 到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长, 所以1111111113326P AA D AA DV S CD -=⋅=⨯⨯⨯⨯=,A 错误; 对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则11(1,0,0),(,1,),(1,1,0),(0,0,1),(1,1,1),(0,1,0)A P x z B D B C 所以11(1,1,),(1,1,1),(1,0,1)AP x z BD BC =-=--=--, 因为1AP BD ⊥,所以1110AP BD x z ⋅=--+=,所以x z =,即(,1,)P x x , 所以(,0,)CP x x =,所以1CP xBC =-,即1,,B C P 三点共线, 所以点P 必在线段1B C 上,B 正确;对于C ,因为1(1,1,),(1,0,1)AP x x BC =-=-, 所以111AP BC x x ⋅=-+=, 所以1AP BC ⊥不成立,C 错误;对于D ,因为11(1,0,1),(0,1,1),(0,0,0)A C D , 所以11(1,0,1),(0,1,1)DA DC ==, 设平面11AC D 的法向量为(,,)n x y z =,则110n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,则1,1z y =-=,所以(1,1,1)n =-, 所以110AP n x x ⋅=-+-=,所以AP n ⊥, 所以AP ∥平面11AC D ,D 正确, 故选:BD 【点睛】此题考查了空间线线垂直的判定,线面平行的判定,三棱锥的体积,考查空间想象能力,考查计算能力,属于较难题.7.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 的最小值为355B .DP 5C .1AP PC +6D .1AP PC +170【答案】AD 【分析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可.【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知115,2A B A D BD ===,所以1A B 边上的高为355h =111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知11122,2,cos AA AC AAC ''==∠=-, 所以217042222()105AC '=+-⨯⨯⨯-=. 故选:AD. 【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.8.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π 【答案】BD 【分析】对于选项A ,取AD 中点E ,取1AB 中点K ,连结KN ,BK ,通过假设CN AB ⊥,推出AB ⊥平面BCNK ,得到AB BK ⊥,则22AK AB BK AB =+>,即可判断;对于选项B ,在判断A 的图基础上,连结EC 交MD 于点F ,连结NF ,易得1NEC MAB ∠=∠,由余弦定理,求得CN 为定值即可;对于选项C ,取AM 中点O ,1B O ,DO ,由线面平行的性质定理导出矛盾,即可判断; 对于选项D ,易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,说明此时AD 中点E 为外接球球心即可. 【详解】如图1,取AD 中点E ,取1AB 中点K ,连结EC 交MD 于点F ,连结NF ,KN ,BK ,则易知1//NE AB ,1//NF B M ,//EF AM ,//KN AD ,112NE AB =,EC AM = 由翻折可知,1MAB MAB ∠=∠,1AB AB =,对于选项A ,易得//KN BC ,则K 、N 、C 、B 四点共面,由题可知AB BC ⊥,若CN AB ⊥,可得AB ⊥平面BCNK ,故AB BK ⊥,则22AK AB BK AB =+>,不可能,故A 错误;对于选项B ,易得1NEC MAB ∠=∠,在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+, 故CN 为定值,故B 正确;如图2,取AD 中点E ,取AM 中点O ,连结1B E ,OE ,1B O ,DO ,,对于选项C ,由AB BM =得1B O AM ⊥,若1AM B D ⊥,易得AM ⊥平面1B OD ,故有AM OD ⊥,从而AD MD =,显然不可能,故C 错误;对于选项D ,由题易知当平面1AB M 与平面AMD 垂直时,三棱锥B 1﹣AMD 的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =,故22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,表面积为4π,故D 正确. 故选:BD. 【点睛】本题主要考查了立体几何中的翻折问题以及空间图形的位置关系,考查了空间想象能力,属于较难题.9.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111D C B A 上的动点,给出下列四个结论中正确结论为( )A .若3PD =,则满足条件的P 点有且只有一个B .若3PD =,则点P 的轨迹是一段圆弧C .若PD ∥平面1ACB ,则DP 长的最小值为2D .若PD ∥平面1ACB ,且3PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π【答案】ABD 【分析】若3PD =,由于P 与1B 重合时3PD =,此时P 点唯一;()313PD =∈,,则12PD =,即点P 的轨迹是一段圆弧;当P 为11A C 中点时,DP 有最小值为3=,可判断C ;平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为32=,可得D . 【详解】 如图:∵正四棱柱1111ABCD A B C D -的底面边长为2, ∴1122B D =,又侧棱11AA =, ∴()2212213DB =+=,则P 与1B 重合时3PD =,此时P 点唯一,故A 正确;∵()313PD =∈,,11DD =,则12PD =,即点P 的轨迹是一段圆弧,故B 正确; 连接1DA ,1DC ,可得平面11//A DC 平面1ACB ,则当P 为11A C 中点时,DP 有最小值为()22213+=,故C 错误;由C 知,平面BDP 即为平面11BDD B ,平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为2221322122++=,面积为94π,故D 正确. 故选:ABD . 【点睛】本题考查了立体几何综合,考查了学生空间想象,逻辑推理,转化划归,数学运算的能力,属于较难题.10.如图,已知P 为棱长为1的正方体对角线1BD 上的一点,且()()10,1BP BD λλ=,下面结论中正确结论的有( )A .11A D C P ⊥;B .当1A P PD +取最小值时,23λ=;C .若()0,1λ∈,则7,312APC ππ⎛⎫∠∈⎪⎝⎭; D .若P 为1BD 的中点,四棱锥11P AA D D -的外接球表面积为94π. 【答案】ABD 【分析】以D 为坐标原点建立如图空间直角坐标系,利用向量关系可判断ABC ;根据几何体外接球关系建立方程求出球半径即可判断D. 【详解】以D 为坐标原点建立如图空间直角坐标系, 则()1,1,0B ,()10,0,1D ,设(),,P x y z ,()()10,1BP BD λλ=,1BP BD λ∴=,即()()1,1,1,1,1x y z λ--=--,则可解得()1,1,P λλλ--, 对A ,()()()111,0,1,0,0,0,0,1,1A D C ,()11,0,1A D ∴=--,()11,,1C P λλλ=---,则()()()()11110110A D C P λλλ⋅=-⨯-+⨯-+-⨯-=,则11A D C P ⊥,故A 正确;对B ,()()()()()2222221111111A P PD λλλλλλ+=--+-+--+-+222223422333λλλ⎛⎫=-+=-+ ⎪⎝⎭则当23λ=时,1A P PD +取最小值,故B 正确; 对C ,()()1,0,0,0,1,0A C ,(),1,PA λλλ∴=--,()1,,PC λλλ=--,则222321cos 1321321PA PCAPC PA PC λλλλλλ⋅-∠===--+-+⋅, 01λ<<,则2232123λλ≤-+<,则2111123212λλ-≤-<-+, 即11cos 22APC -≤∠<,则2,33APC ππ⎛⎤∠∈ ⎥⎝⎦,故C 错误; 对于D ,当P 为1BD 中点时,四棱锥11P AA D D -为正四棱锥,设平面11AA D D 的中心为O ,四棱锥11P AA D D -的外接球半径为R ,所以2221222R R ⎛⎛⎫-+= ⎪ ⎝⎭⎝⎭,解得34R =,故四棱锥11P AA D D -的外接球表面积为94π,所以D 正确. 故选:ABD. 【点睛】关键点睛:本题考查空间相关量的计算,解题的关键是建立空间直角坐标系,利用向量建立关系进行计算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.如图1,四边形ABCD 为菱形,且 60=∠A ,2=AB E 分别为边AB 的中点.现将四边形
EBCD 沿DE 折起至EBHD ,如图
2.
图1 图2
(1)证明:由于2=AB ,则1,2==AE AD .
60=∠A ,∴由余弦定理,有3cos 222=∠⋅⋅-+=A AE AD AE AD DE .显然222AD DE AE =+,故由勾股定理,可知AB DE ⊥,则在图2,BE DE AE DE ⊥⊥,.又 直线AE 和直线BE 是平面ABE 内两条相交直线,⊥∴DE 平面ABE .
(2)解法一:以点E 为原点,分别以直线EA ED ,为y x ,轴,再以过点E
且垂直于平面ADE 且向上的直线为z 轴,建立如图的空间直角坐标
系.由⊥DE 平面ABE ,可知AEB ∠为二面角H DE A --的平面角,
即有 60=∠AEB ,则⎪⎪⎭
⎫ ⎝⎛23,21,0B .而()()()0,0,0,0,0,3,0,1,0E D A ,则()()
0,0,3,0,1,3=-=ED AD .设()000,,z y x H ,即()000,,3z y x DH -=.由ED HD ⊥,有0=⋅ED HD ,即30=x .由⎩⎨⎧==2
2HD HB ,可得()
⎪⎪⎩⎪⎪⎨⎧=++-=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+4342321202020202020z y x z y x ,将30=x 带入,可得3,100==z y ,即()3,1,3H ,那么⎪⎪⎭⎫ ⎝⎛=23,21,3BH .而()3,0,3=AH ,设平面ABH 的法向量为()1111,,z y x n =,则⎪⎩
⎪⎨⎧=++=+02321303311111z y x z x ,即⎩⎨⎧-=-=11113x z x y .令11=x ,可得1,311-=-=z y ,即()
1,3,11--=n .而平面ADE 的一个法向量为()1,0,02=n .于是平面ABH 与平面ADE
所
成锐二面角θ的余弦值为55511cos 2
121=⋅-=⋅⋅=n n n n θ. 解法二:分别取,AE AD 中点K O ,,连结OB OK ,.由⊥
DE 平面ABE ,可知AEB ∠为二面角H DE A --的平面角,即有
60=∠AEB .
O 为AE 中点,AE BO ⊥∴.DE BO ⊥ ,⊥∴BO 平面
ADE .则以点O 为坐标原点,分别以直线OB OE KO ,,为z y x ,,轴,
建立空间直角坐标系,如右图.则由条件,易得
⎪⎭⎫ ⎝⎛-0,21,0A ,⎪⎪⎭
⎫ ⎝⎛23,0,0B ,⎪⎭⎫ ⎝⎛-0,21,3D ,⎪⎭⎫ ⎝⎛0,21,0E .再设()000,,z y x H ,而()
0,0,3-=ED ,⎪⎭⎫ ⎝⎛-+=000,21,3z y x DH ,则由DH ED ⊥,有0=⋅DH ED ,得30-=x .由⎩⎨⎧==22HD HB ,可得()
⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛-++=⎪⎪⎭⎫ ⎝⎛-++421342320020202020z y x z y x .将30-=x 带入,可得3,2100=-=z y ,即⎪⎭⎫ ⎝⎛--3,21,3H ,则⎪⎪⎭⎫ ⎝⎛--=23,21,3BH .而()
3,0,3-=AH ,设平面ABH 法向量为()1111,,z y x n =,则⎪⎩
⎪⎨⎧=+--=+-02321303311111z y x z x ,即⎩⎨⎧=-=11113x z x y .令11=x ,得1,311=-=z y ,即()
1,3,11-=n .而平面ADE 的一个法向量为()1,0,02=n .于是平面ABH 与平面ADE 所成锐二面角θ的余弦值为55511cos 2
121=⋅-=⋅⋅=n n n n θ. 解法三:过点A 作DH AA //''且DH AA =''至点''A ,延长EB 至点'E ,使'''AA EE =. 连结H E H A E A ','',''',则H E A AED '''-为三棱柱.延长AB E A ,'''交于点'A ,连结'HA 由三棱柱性质,易知DE HE //',
则⊥'HE 平面''E BA .过点B 作''E A BM ⊥于点M ,过M 作
H A MN '⊥于点N .
⊂BM 平面''E BA ,BM HE ⊥∴',
''E A BM ⊥ ,⊥∴BM 平面H E A '',即
H A BM '⊥,MN BM ⊥
.
H A MN '⊥ ,⊥∴H A '平面BMN ,故BNM ∠为平面H A A '''与平面AH A '所成锐二面角的一个平面角,即为平面ADE 与平面ABH 所成锐二面角的一个平面角.
易得a E A B E B A ==='''',即''BE A ∆为正三角形.
''E A BM ⊥ ,2
1',23==∴M A BM .'''E A HE ⊥ ,3'tan =∠∴HAE ,则 60'=∠HAE ,故41',43==N A MN .N A BN '⊥ ,4
15''22=-=∴N A B A BN . 故5
5cos ==∠BN MN BNM ,即平面ADE 与平面ABH 所成锐二面角的余弦值为55. 解法四:延长DE HB ,交于点L ,连结AL ,取AE 的中点O ,过点O 作
AL OM ⊥于点M ,连结MB ,如右图.由⊥DE 平面ABE ,可知AEB ∠为
二面角H DE A --的一个平面角,即有 60=∠AEB .
O 为AE 中点,AE BO ⊥∴.DE BO ⊥ ,⊥∴BO 平面ADE ,即
AL BO ⊥且MO BO ⊥.又 AL OM ⊥,⊥∴AL 平面B O M ,即
BMO ∠为平面ADE 与平面ABH 所成锐二面角的一个平面角.
而2
1,23==AO BO .易得3=LE ,而 90,1=∠=AEL AE , 60=∠∴EAL ,则4
3=MO .由勾股定理,得415432322=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=MB ,则55cos ==∠MB MO BMO ,即平面ADE 与平面ABH 所成锐二面角的余弦值为5
5. 解法五:延长DE HB ,交于点L ,连结AL ,过点D 作AE
DQ //且与LA 延长线交于点Q ,连结QH .取DQ 中点M ,过点M 作
QL MN ⊥于点N ,连结HN ,如右图.
BE HD AE QD //,// 且HD QD ,为平面HDQ 内两条相交直
线,BE AE ,平面ABE 内两条相交直线,∴平面//HDQ 平面ABE .
⊥DE 平面ABE ,⊥∴DE 平面HDQ ,即HDQ ∠为二面角H DE A --的一个平面
角,即有 60=∠HDQ . M 为QD 中点,QD HM ⊥∴.DE HM ⊥ ,⊥∴HM 平面
ADE ,即QL HM ⊥且NM HM ⊥.又 QL NM ⊥,⊥∴QL 平面HMN ,即HNM ∠
为平
面ADE 与平面ABH 所成锐二面角的一个平面角.而2=HD ,则1,3==QM HM .易得3=LE ,而 90,1=∠=AEL AE , 60=∠∴EAL .EA DQ // , 60=∠∴QDL ,则23=NM .由勾股定理,得()2152332
2=⎪⎪⎭⎫ ⎝⎛+=HM ,则55cos ==∠HM NM HNM ,即平面ADE 与平面ABH 所成锐二面角的余弦值为5
5. 解法六:延长DE HB ,交于点L ,连结AL ,过点D 作AE DQ //且与LA 延长线交于点Q ,连结QH .分别取AE DQ ,中点O M ,,连结BO AM ,.再取MD 中点'O ,连结'OO .
BE HD AE QD //,// 且HD QD ,为平面HDQ 内两条相交直线,BE AE ,平面ABE 内两条相交直线,∴平面//HDQ 平面ABE .⊥DE 平面
ABE ,⊥∴DE 平面HDQ ,即HDQ ∠为二面角H DE A --的
一个平面角,即有 60=∠HDQ . 由2=HD ,得
1,3==MD HM ,则2
1'-=MO . M 为QD 中点,QD HM ⊥∴.DE HM ⊥ ,⊥∴HM 平
面ADE .则以点O 为坐标原点,分别以直线OB OE O O ,,'为
z y x ,,轴,建立空间直角坐标系,如右图.易得⎪⎭
⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-3,21,3,23,0,0,0,21,0H B A ,则有⎪⎪⎭
⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=23,21,3,23,21,0BH AB .设平面ABH 法向量为()1111,,z y x n =,则⎪⎪⎩⎪⎪⎨⎧=+--=+0232130232111111z y x z y ,即⎩⎨⎧=-=11113x z x y .令11=x ,得1,311=-=z y ,即()
1,3,11-=n .而平面ADE 的一个法向量为()1,0,02=n .于是平面ABH 与平面ADE 所成锐二面角θ的余弦值为55511cos 212
1=⋅
-=⋅⋅=n n n n θ.。