直线电机应用以和伺服控制

合集下载

直线电机发展应用综述(一)(一)

直线电机发展应用综述(一)(一)

直线电机在数控机床上的应用综述所在学院:机械工程学院学科专业:机械工程学生:解瑞建学号:********指导教师:***天津科技大学机械工程学院二零一二年十二月二十七日摘要简述了直线电机工作原理及其驱动技术,并且举例说明了直线电机直接驱动与传统数控机床“旋转伺服电机+滚珠丝杠”的传动方式对比具有很大的优势。

利用直线电机结构简单、运动平稳、噪声小、运动部件摩擦小、磨损小、使用寿命长、安全可靠性等特性,采用直线电机的开放式数控系统使机床驱动控制技术获得新发展。

介绍几个直线电机应用的实例,指出直线电机进给驱动技术将是高速机床未来的发展方向。

关键词:直线电机数控机床驱动控制高速机床0 引言数控机床正在向高精密、高速、高复合、高智能和环保的方向发展。

高精密和高速加工对传动及其控制提出了更高的要求:更高的动态特性和控制精度,更高的进给速度和加速度,更低的振动噪声和更小的磨损。

在传统的传动链中,作为动力源的电动机要通过齿轮、蜗轮副,皮带、丝杠副、联轴器、离合器等中间传动环节才能将动力送达工作部件。

在这些环节中产生了较大的转动惯量、弹性变形、反向间隙、运动滞后、摩擦、振动、噪声及磨损。

虽然在这些方面通过不断的改进使传动性能有所提高,但问题很难从根本上解决,于是出现了“直接传动”的概念,即取消从电动机到工作部件之间的各种中间环节。

随着电机及其驱动控制技术的发展,电主轴、直线电机、力矩电机的出现和技术的日益成熟,使主轴、直线和旋转坐标运动的“直接传动”概念变为现实,并日益显示出巨大的优越性。

直线电机及其驱动控制技术在机床进给驱动上的应用,使机床的传动结构出现了重大变化,并使机性能有了新的飞跃。

图0 SUPT Motion公司生产的一种直线电机1直线电机1.0直线电机的发展史直线电机的发展史1840年Wheatsone开始提出和制作了略具雏形的直线电机。

从那时至今,在160多年的历史中,直线电机经历了三个时期。

1840~1955年为探索实验时期:从1840年到1955年的116年期间,直线电机从设想到实验到部分实验性应用,经历了一个不断探索,屡遭失败的过程。

伺服电机 直线电机工作原理

伺服电机 直线电机工作原理

伺服电机直线电机工作原理A servo motor is a rotary actuator or linear actuator that allows for precise control of angular or linear position, velocity and acceleration. 伺服电机是一种可以精确控制角度或线性位置、速度和加速度的转动致动器或直线致动器。

Servo motors are used in a variety of applications, such as robotics, CNC machinery, conveyor systems, and more. 伺服电机广泛应用于各种领域,如机器人技术、数控机械、输送系统等。

The working principle of a servo motor involves the use of a feedback control system to accurately position the motor shaft. 伺服电机的工作原理涉及使用反馈控制系统来精确定位电机轴。

This is achieved by continuously comparing the actual position of the shaft to the desired position and adjusting the motor's control inputs accordingly. 这是通过不断比较轴的实际位置和期望位置,并相应地调整电机的控制输入来实现的。

The feedback control system typically utilizes a rotary encoder or linear encoder to provide position feedback to the motor controller. 反馈控制系统通常使用旋转编码器或线性编码器向电机控制器提供位置反馈。

数控机床直线电机进给伺服系统的动态特性分析与研究

数控机床直线电机进给伺服系统的动态特性分析与研究

数控机床直线电机进给伺服系统的动态特性分析与研究1. 数控机床直线电机进给伺服系统概述随着科技的不断发展,数控机床在工业生产中扮演着越来越重要的角色。

为了提高数控机床的加工精度和效率,近年多的研究者开始关注直线电机进给伺服系统的研究与应用。

直线电机进给伺服系统是一种采用直线电机作为驱动源的高精度、高速度、高可靠性的伺服系统,广泛应用于数控机床、机器人、自动化生产线等领域。

直线电机进给伺服系统具有很多优点,如结构简单、体积小、重量轻、响应速度快、转矩大等。

这些优点使得直线电机进给伺服系统在数控机床中的应用越来越广泛。

由于直线电机本身的特点以及伺服系统的复杂性,对其进行动态特性分析与研究具有很大的挑战性。

本文将对数控机床直线电机进给伺服系统的动态特性进行深入研究,以期为实际应用提供理论依据和技术支撑。

1.1 研究背景随着现代制造业的快速发展,数控机床在各个领域的应用越来越广泛。

数控机床的性能和精度对于提高产品质量、降低生产成本具有重要意义。

直线电机进给伺服系统作为数控机床的关键部件之一,其动态特性直接影响到数控机床的加工精度、速度和稳定性。

研究数控机床直线电机进给伺服系统的动态特性,对于提高数控机床的整体性能具有重要的现实意义。

传统的数控机床进给伺服系统主要采用步进电机驱动,虽然在一定程度上满足了加工需求,但其动态特性较差,如速度响应慢、加速度范围窄、负载能力有限等。

这些问题限制了数控机床在高速、高精度加工方面的应用。

随着直线电机技术的不断发展,直线电机进给伺服系统逐渐成为数控机床领域的研究热点。

直线电机具有功率密度高、加速度响应快、速度快、转矩大等优点,可以有效提高数控机床的性能。

由于直线电机进给伺服系统涉及到多个学科领域,如电机学、控制理论、机械设计等,因此对其动态特性的研究具有较高的难度。

本论文旨在对数控机床直线电机进给伺服系统的动态特性进行分析与研究,以期为提高数控机床的性能和稳定性提供理论依据。

直线电机工作原理,特点及应用(数控大作业)

直线电机工作原理,特点及应用(数控大作业)

《数控技术》大作业二1.综述直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。

其中定子相当于直线电机的初级,转子相当于直线电机的次级,当初级通入电流后,在初次级线圈之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。

直线电机的工作原理设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应图电动机。

初级做得很长,延伸到运动所需要达到的位置,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动.通入交流电后在定子中产生的磁通,根据楞次定律,在动体的金属板上感应出涡流。

设产生涡流的感应电压为E,金属板上有电感L和电阻R,涡流电流和磁通密度将(费来明法则)产生连续的推力F。

2.工作原理直线电动机的初级三相绕组通入三相交流电后,就会在气隙中产生一个沿直线移动的正弦波磁场,其移动方向由三相交流电的相序决定,如图所示。

显然该行波磁场的移动速度与普通电机旋转磁场在定子内圆表面的线速度相等。

行波磁场切割次级上的导体后,在导体中感应出电动势和电流,该电流与气隙磁场作用,在次级中产生电磁力,驱动次级沿着行波磁场移动的方向作直线运行,或者利用反作用力驱动初级朝相反的方向运动。

如果改变直线电动机初级绕组的通电相序,即可改变电动机的运行方向。

因此直线电动机可实现往返直线运动。

3.直线电机的特点直线电机是一种将电能直接转换成直线运动机械能而不需通过中问任何转换装置的新颖电机,它具有系统结构简单、磨损少、噪声低、组合性强、维护方便等优点。

旋转电机所具有的品种,直线电机几乎都有相对应的品种,其应用范围正在不断扩大,并在一些它所能独特发挥作用的地方取得了令人满意的效果。

直线感应电动机的特点是:结构简单,维护方便;散热条件好,额定值高;适宜于高速运行;能承担特殊任务,如液态金属的运输、加工等。

其缺点是气隙大,功率因数低,力能指标差,低速运行时需采用低频电源,使控制装置复杂。

永磁同步直线电机伺服控制系统设计

永磁同步直线电机伺服控制系统设计
处理器 位 置检测
P S ML M因具有高效 、 高可靠 陛、 体积小 、 时 间常数小 、 响应快和可控性好等优 势, 而大量的 应用于小 功率设备, 作为伺服驱动和精度较高 的 定位控制[。 引 合理的伺服控制系统 的设计方案 ,
必将 推动 P S ML M进 一步 应 用。
伺 服 系统
力, 以获得单 向或双 向的有 限可控位移 [。 】 永磁 1
同步 直线 电机 ( ema e t g e ie rS n P r n n Ma n tLn a y —
Ke wor : r a e t a n tln a yn h o o y ds Pe m n n g e i e r s c r n us m
mo o S r o s s e tr e v -y t m Di i lsg a r c s o P st n g t i n lp o e s r a o ii o d tcin e e to
数 字信 号
中图分类号: TM3 1 文献标识码 : 5 A DOI 编码 : 03 6 /. s 0 62 0 .0 20 .0 1 .9 9ji nl 0 ・8 72 1 .20 8 s
Abs r c :Li e rm o o a b a n ln a o i n ta t n a t r c n o t i i e rm to c mp r d wi h o a y mo o , e ma e tma n tl e r o a e t t e r t r t r p r n n g e i a h n s n h o o s mo o sa l o d i e d r c l h q i me t y c r n u t r i b e t rv ie t t e e u p n y wh r i e rmo i n i e u r d o a q r he lm i d e e ln a to s r q i e ,t c uie t i t e c n r la l i p a e n . k n f d sg r g a o o t o l b e d s l c me t A i d o e i n p o r m f p r a e tma n tl e rs n h o o s mo o e v —y tm e m n n g e i a y c r n u t r s r o s se n wa r e u n t i a e , h s s l s o d t a h swo k d o t sp p r t e t t e u t h we t e i h e r h t

直线电机的应用

直线电机的应用

直线电机的应用直线电机凭借高速度、高加速、高精度及行程不受限制等特性在物流系统、工业加工与装配、信息及自动化系统、交通与民用以及军事等领域发挥着十分重要的作用。

直线电机主要应用场合:一是应用于自动控制系统,这类应用场合比较多;其次是作为长期连续运行的驱动电机;三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。

直线电机可以在几秒钟内把一架几千公斤重的直升飞机拉到每小时几百公里的速度,它在真空中运行时,其时速可达几千上万公里。

在军事上,人们利用它制成各种电磁炮,并试图将它用于导弹、火箭的发射;在工业领域,直线电机被用于生产输送线,以及各种横向或垂直运动的一些机械设备中;直线电机除具有高速、大推力的特点以外还具有低速、精细的另一特点,例如,步进直线电机,它可以做到步距为1μm的精度,因此,直线电机又被应用到许多精密的仪器设备中,例如计算机的磁头驱动装置、照相机的快门、自动绘图仪、医疗仪器、航天航空仪器、各种自动化仪器设备等。

除此之外,直线电机还被用于各种各样的民用装置中,如电动门、电动窗、电动桌、椅的移动,门锁、电动窗帘的开、闭等等,尤其在交通运输业中,人们利用直线电机制成了时速达500km以上的磁浮列车。

直线电机可以认为是旋转电机在结构方面的一种变形,它可以看作是一台旋转电机沿其径向剖开,然后拉平演变而成。

近年来,随着自动控制技术和微型计算机的高速发展,对各类自动控制系统的定位精度提出了更高的要求,在这种情况下,传统的旋转电机再加上一套变换机构组成的直线运动驱动装置,已经远不能满足现代控制系统的要求,为此,近年来世界许多国家都在研究、发展和应用直线电机,使得直线电机技术发展速度加快,应用领域越来越广。

直线电机的优点是:结构简单、反应速度快、灵敏度高、随动性好、密封性好、不怕污染、适应性强(由于直线电机本身结构简单,又可做到无接触运行,因此容易密封,各部件用尼龙浸渍后,采用环氧树脂加以涂封,这样它就不怕风吹雨打,或有毒气体和化学药品的侵蚀,在核辐射和液体物质中也能应用)、工作稳定可靠、寿命长(直线电机是一种直接传动的特种电机,可实现无接触传递,故障少,几乎不需要维修,又不怕振动和冲击)、额定值高(直线电机冷却条件好,特别是长次级接近常温状态,因此线负荷和电流密度可以取得很高)、有精密定位和自锁的能力(和控制系统相配合,可做到0.001mm的位移精度和自锁能力)。

直线电机伺服系统在制造装备上的控制应用

直线电机伺服系统在制造装备上的控制应用

直线电机伺服系统在制造装备上的控制应用[摘要]近些年,国产高端装备市场份额逐年上升。

在国产装备同级别替代进口装备的行业中,系统性能稳定性竞争日益激烈,直线电机及其驱动系统无疑是高端制造装备的核心器件,在精密贴装,高精度检测,精密测量装备系统中,直线电机伺服系统以其低功耗、高速、高动态响应等优良的系统性能在各种精密装备上应用广泛。

本文主要围绕制造装备直线电机伺服系统控制应用开展深入的研究和探讨。

关键词:伺服系统、直线电机、制造装备、控制应用伴随制造业持续高速发展,各种高端制造装备控制系统控制面临着更高的挑战。

在系统速度与加速度毫秒必争的领域,直线电机伺服系统中的运动控制系统及其系统硬件的设计,对其系统性能整体提升起到至关作用。

ELMO是一款可以适配任意运动、任意控制的驱动器,搭载雅科贝思直线电机系统和雷尼绍光栅尺作为执行机构和位置反馈系统,即形成了一整套直线电机伺服系统的硬件架构。

ELMO的龙门算法是基于MIMO结构,即多输入多输出结构,处理X1/X2/Y轴的输入,图示如下:1. Y center = Y - Y方向当前位置2. X center = (X1+X2)/2 –龙门双驱X方向中心点位置3. θ = (X1-X2) –龙门双驱X方向两个轴的同步位置偏差1、直线电机与驱动选型应用直线电机相比于旋转伺服电机、无丝杆或者减速机、传动齿轮的能耗损失,在选型阶段,我们通常关注直线电机的峰值推力、持续推力、峰值电流、持续电流、配套驱动器选型,需要知道直线电机的力常数,出力电机数量、电机相数、磁极距、负载重量、速度指标、加速度指标、电机峰值推力和持续推力、电机峰值电流、反电动势常数,持续电流等指标,从而进行计算驱动器的母线电压、峰值功率和持续功率。

2、直线电机伺服系统控制应用2.1 直线电机伺服系统2.1.1直线电机伺服系统构建及配线本项目中采用ELMO驱动器作为龙门结构的驱动系统,龙门控制算法采用主从式控制方式,设计两个同型号驱动器驱动两个同型号直线电机,主从轴直线电机全部配置配光栅尺、模拟量编码器[1]。

直线电机运用

直线电机运用

直线电机主要应用于三个方面:一是应用于自动控制系统,这类应用场合比较多;二是作为长期连续运行的驱动电机;三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。

在实际工业应用中的稳定增长,证明直线电机可以放心的使用。

本期讨论直线电机的运用Linear motor:直线伺服电机应用昆山佳德锐自动化系统销售中心 交流论坛: www.hilife.me工业之美什么是直线电机特点1.什么是直线电机 直线电动机(或称线性马达)(Linear motor)是电动机的一种,其原理与传统的电动机不同,直线电机是直接把输入电力转化为线性动能,与传统的扭力及旋转动能不同。

直线电机又分为低加速及高加速两大类,当中低加速直线电机适用于磁悬浮列车及其他地面交通工具,而高加速直线电机能把物件在短时间内加至极高速度,适用于粒子加速器、制造武器等。

2.直线电机是如何工作的下面简单介绍直线电机类型和他们与旋转电机的不同,最常用的直线电机类型是平板式,U型槽式和管式。

线圈的典型组成是三相,有霍尔元件实现无刷换相,直线电机用HALL换相的相序和相电流。

直线电机经常简单描述为旋转电机被展平,而工作原理相同。

动子(forcer,rotor)是用环氧材料把线圈压缩在一起制成的,而且磁轨是把磁铁(通常是高能量的稀土磁铁)固定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度)和电子接口。

在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙(airgap)。

同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。

和旋转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直线编码器,它可以直接测量负载的位置从而提高负载的位置精度。

3.直线电机分类管状直线电机圆柱形动磁体直线电机的磁路与动磁执行器相似。

区别在于线圈可以复制以增加行程。

典型的线圈绕组是三相组成的,使用霍尔装置实现无刷换相。

直线电机缺点

直线电机缺点

直线电机的缺点以下专业资料由精密丝杆供应商:雷研精密传动设备有限公司提供。

很多机械制造行业的技术人员想迫切了解直线电机能否完全替代滚珠丝杠,就目前来说,只能说是一个很好的发展方向,但尚有很多技术不是很成熟,直线电机的缺点,主要有以下方面:(1)伺服控制难度大直线电机传动的控制只能是全闭环控制。

这样,工作台的负荷(工件重盆、切削力等)及其变化,对一个稳定系统来说就是外界干扰,若自动调节不好会使系统失稳而展荡。

而回转电机传动可采用半闭环隔离这些干扰。

即使采用全闭环,由于存在着滚珠丝杆等这些弹性中间环节,它们既有刚性差而使加速度上不去的负面影响,又有吸收和抑制干扰的正面作用,而使伺服控制难度减小。

此外,由于是在高速、高精度下工作,还要求反馈用位置检测元件具备调速数据采集和响应能力和较高的分辨率。

(2)应用于垂直行程部件时,由于存在着重力加速度,故要求采取复杂的平衡措施,否则会造成电机过热。

由于是在高速、高精度下工作,要求快速响应,往往不是简单加平衡重锤所能解决的,而需在电机和伺服驱动电路上采取措施。

断电时的自锁措施也比回转电机传动复杂。

回转电机传动一般可在联轴节处装简单的超越离合器来解决自锁问题。

(3) 往往要采取冷却措施凡是电机都要发热的。

回转电机一般安装在机床的周边位置,有较好的散热条件, 远离构件, 难以造成构件的热变形, 因而一般不采取冷却措施。

而直线电机因安装在机床腹部,根据具体情况, 有时须采取风冷(自然风或压缩空气)或循环水冷的措施。

这时, 气管或水管还必须随工作台一起作高速运动。

(4) 装配和防护难度加大回转电机的磁场是闭式的, 而直线电机的是开式的。

特别是同步式, 定件上要安装一排或多排强磁的永久磁钢, 而床身等构件和装配用工具又都是磁性材料, 动不动就会被吸住,尘埃中的磁性物质, 钢铁等切屑都难抗拒强磁的吸力, 一旦尘屑堵住了不大的气隙, 电机就不能工作.1直线电机工作原理直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。

直线电机进给系统伺服参数与控制参数的设计

直线电机进给系统伺服参数与控制参数的设计

直线电机进给系统伺服参数与控制参数的设计高峰;斯迎军【摘要】简单介绍了直线电机的分类和优点,设计了一种直线电机伺服系统的结构,说明了驱动器的使用方法及其基本工作原理.研究了直线电机进给系统的控制响应特性,建立了系统的传递函数模型,分析了伺服参数对于响应特性的影响,采用PID控制器对电机位置输出进行控制以减小电机位置输出误差,运用Matlab/Simulink进行系统建模和仿真分析.【期刊名称】《山西电子技术》【年(卷),期】2018(000)003【总页数】4页(P34-37)【关键词】直线电机;伺服系统;速度环;位置控制;参数整定【作者】高峰;斯迎军【作者单位】中国电子科技集团公司第二研究所,山西太原030024;中国电子科技集团公司第二研究所,山西太原030024【正文语种】中文【中图分类】TM359.41 直线电机系统分类及其伺服系统的优点早在1845年,Wheatstone提出了直线电机的概念。

20世纪50年代中期,控制、材料技术的飞速发展为直线电机的应用提供了技术基础。

直至20世纪90年代,随着设备向高速化、精密化方向的发展,直线电机被用于设备伺服系统中,并且发展迅速[1]。

直线电机分为直线直流电动机、直线感应电动机、直线同步电动机、直线步进电动机、直线压电电动机、直线磁阻电动机。

目前使用比较广泛的是直线感应电动机和直线同步电动机。

直线同步电动机虽然比直线感应电动机工艺复杂、成本较高,但是效率较高、次级不用冷却、控制方便,更容易达到要求的性能。

因此随着钕铁硼永磁材料的出现和发展,永磁同步电机已成为主流。

在数控设备等需要高精度定位的场合,基本上采用的都是永磁交流直线同步电动机。

直线电机伺服系统的优点主要是结构简单、定位精度高、反应速度快、灵敏度高、随动性好。

2 直线电机伺服系统模型直线电机进给驱动系统结构如图1所示,主要由导轨、滑块、定子、动子、霍尔元件和光栅组成。

相对于传动的滚珠丝杠进给系统,它取消了中间的传动装置从而大大提高了电机的响应特性。

直线电机工作原理及其驱动技术的应用

直线电机工作原理及其驱动技术的应用

直线电机工作原理及其驱动技术的应用摘要:简述了直线电机工作原理及其驱动技术,并且举例说明了直线电机直接驱动与传统数控机床“旋转伺服电机+滚珠丝杠”的传动方式对比具有的巨大优势。

介绍了直线电机进给驱动技术在数控机床上的几个应用实例,指出直线电机进给驱动技术将是高速数控机床未来发展的方向。

引言随着航空航天、汽车制造、模具加工、电子制造行业等领域对高效率地进行加工的要求越来越高,需要大量高速数控机床。

机床进给系统是高速机床的主要功能部件。

而直线电机进给系统彻底改变了传统的滚珠丝杠传动方式存在的弹性变形大、响应速度慢、存在反向间隙、易磨损等先天性的缺点,并具有速度高、加速度大、定位精度高、行程长度不受限制等优点,令其在数控机床高速进给系统领域逐渐发展为主导方向。

1 直线电机及其驱动技术现代先进的驱动技术主要分为两大类:一类为电磁式的,另一类则为非电磁式的。

电磁类的现代先进的驱动技术主要由现代电磁类驱动器与现代控制系统组成,它的驱动器包括传统改进型的电磁驱动器与新发展型的电磁驱动器。

它们中有旋转的、直线的、磁浮的、电磁发射的等等。

除了在一般通用电机技术基础上改进获得的电机技术外,还有更多的是在通用电机技术基础上进一步发展的新型电机技术,如直线电机技术、无刷直流电机技术、开关磁阻电机技术和各种新型永磁电机技术等。

直线电机是一种将电能直接转换成直线运动机械能而不需通过中问任何转换装置的新颖电机,它具有系统结构简单、磨损少、噪声低、组合性强、维护方便等优点。

旋转电机所具有的品种,直线电机几乎都有相对应的品种,其应用范围正在不断扩大,并在一些它所能独特发挥作用的地方取得了令人满意的效果。

直线电机结构示意图如下图所示。

直线电机是将传统圆筒型电机的初级展开拉直,变初级的封闭磁场为开放磁场,而旋转电机的定子部分变为直线电机的初级,旋转电机的转子部分变为直线电机的次级。

在电机的三相绕组中通入三相对称正弦电流后,在初级和次级间产生气隙磁场,气隙磁场的分布情况与旋转电机相似,沿展开的直线方向呈正弦分布。

190 交流永磁直线电机及其伺服控制系统的设计

190  交流永磁直线电机及其伺服控制系统的设计

交流永磁直线电机及其伺服控制系统的设计摘 要直线电机在各行各业中发挥着越来越重要的作用,特别是在机床进给驱动系统中。

本文以平板式交流永磁同步直线电机为研究对象,从电机机体到伺服驱动系统的软、硬件设计作了深入研究。

本文首先介绍了交流永磁同步直线电机机体设计过程中电枢绕组、铝芯和定子磁钢的设计和改进方法,较大程度上减小了推力波动,并且结合大推力直线电机的特点设计了方便有效的装配过程。

建立交流永磁同步直线电机的数学模型,在此基础上分析了当今最通用的伺服控制策略,选择了矢量控制方法。

确定 0 = d i 的矢量控制实现形式。

通过 SVPWM 方法进行脉宽调制,合成三相正弦波。

选用 TI 公司2000 系列最新 DSP TMS320F2812,深入研究了以上算法在 DSP 中的实现形式。

采用了 C 语言和汇编语言混合编程的实现方法。

在功率放大装置中, 以智能功率模块 IPM 为核心,设计了功率伺服驱动系统。

还包括电流采样、光电隔离、过压欠压保护和电源模块等。

由于知识和能力的限制,本次课题只对直线电机做一些理论研究。

关键词:永磁同步直线电机 DSP SVPWM 矢量控制AbstractLine motors are playing a more and more important role in all kinds of trade ,especially in machine tool feed system. We carry out our study in motor , softwareand hardware servo system based on flat AC permanent magnet synchronous linearmotor(PMSLM).First introduce the design method of armature ,core of al and magnet whichcan minish the thrust ripples, then introduce the means of assembly base on highthrust permanent magnet synchronous motors.To ensure the accuracy to a high requirements and get a wide speed range, wechoose the dsp of Texas Instruments named TMS320F2812 which is the core of theservo system .In the paper we set up mathematical model of PMSLM, then analysethe current control strategies and choose the vector control method which is realizedby the method of 0 = d i .The three phase sine wave is compounded by spacevoltage pulse width modulation(SVPWM).The arithmetic realized by C language andassembly language in DSP. Intelligent Power Model (IPM) is the core of the poweramplification circuit system which also contains current sampling circuit,photoelectric­isolation circuits, over­voltage protection circuits, under­voltageprotection circuits and power supply.As a result of the knowledge and ability limit, this topic only does a fundamentalresearch to the linear motor.Key words: permanent magnet synchronous linear motor(PMSLM), DSP ,SVPWM, vector control目 录摘要 中文 (I)英文 (II)第一章 绪 论 (I)1.1 研究背景和意义 (1)1.2 直线电机的运行原理及特点 (2)1.2.1 直线电机的基本运行原理 (2)1.2.2 直线电机进给系统优缺点分析 (3)1.3 直线电机发展历史及其伺服控制系统的研究综述 (4)1.3.1 国内外直线电机历史、现状及发展 (4)1.3.2 直线电机伺服控制系统的研究综述 (7)1.3.3 试验研究 (10)1.4 本文主要研究内容 (10)第二章 永磁永磁直线同步电机基本结构 (11)2.1 实验用交流永磁同步电机基本结构........................................................错误!未定义书签。

直线电机的应用领域及优势

直线电机的应用领域及优势

直线电机的应⽤领域及优势直线电机的应⽤领域及优势直线电机驱动技术⾄诞⽣发展⾄今已越来越成熟,它以精度⾼、⽆磨损、噪⾳低、效率⾼、响应快、节省空间等优点使其在各领域应⽤⼴泛,直线电机在民⽤、⼯业、军事等⾏业中都得到⼴泛应⽤。

1.在交通运输业中我国于2002年成功⽣产出由直线电机拖动的磁悬浮列车,该车采⽤全新的外形曲线,流线型前围。

车长15⽶,宽3⽶,空重20吨,内设44个座位,可载负100⼈,载重量为16吨,设计时速150公⾥/⼩时,试验时速80公⾥/⼩时,我国已成为掌握磁悬浮技术的少数地⽅之⼀。

2.在建筑⾏业中例如,现在智能⼤厦⼴泛使⽤直线电机驱动的电梯。

世界上较早使⽤直线电机驱动的电梯是1990年4⽉安装于⽇本东京都关岛区万世⼤楼,该电梯载重600kg,速度为105m/min,提升⾼度为22.9m。

由于直线电机驱动的电梯没有曳引机组,因⽽建筑物顶的机房可省略。

如果建筑物的⾼度增⾄1000⽶左右,就得使⽤⽆钢丝绳电梯,这种电梯采⽤⾼温超导技术的直线电机驱动,线圈装在井道中,轿厢外装有⾼性能永磁材料。

3.在半导体⾏业中直线电机以其⾼速、⾼精度的特点,⼴泛应⽤于光刻机、IC 粘接机、IC 塑封机等多种加⼯设备,⽽且单台设备往往需要多台直线电机。

4.在医疗⾏业中直线电机也崭露头⾓,⼤到电动护理床、X光床、电动⼿术台,⼩到⼼脏起搏器都有直线电机的应⽤实例。

5.在数控加⼯⾏业中传统的“旋转电机+滚珠丝杠”的传动形式所能达到的进给速度为30m/min,加速度仅为3m/2s。

直线电机驱动⼯作台,速度为传统传动⽅式的30倍,加速度是传统传动⽅式的10倍,可达10g;刚度提⾼了7倍;直线电机直接驱动的⼯作台⽆反向⼯作死区;由于电机传动惯量⼩,由其构成的直线伺服系统可以达到较⾼的频率响应.6.在军事⾏业中美电⽓与电⼦⼯程师(IEEE)学会《SPECTRUM ONLINE⽹站》2004年11⽉12⽇报道,美海军开始测试两套使航空母舰弹射飞机的⽅式发⽣⾰命性变化的系统。

直线电机应用以及伺服控制

直线电机应用以及伺服控制

演讲结速谢谢观赏
Thank you.
PPT常用编辑图使用方法
1.取消组合
2.填充颜色
3.调整大小
商务 图标元素
Hale Waihona Puke 商务 图标元素商务 图标元素
商务 图标元素
Excellent handout training template
直线电机应用以及伺服控制
缺点: 伺服控制和速度规划分开实现无法用速度规划的信息做前馈控制伺服响应较慢单轴跟随误差大 各轴伺服控制分开实现无法自动实现各轴伺服响应的匹配得到高精度的轨迹控制 无法补偿反向摩擦力 无法主动消除轨迹误差 无法进行耦合控制实现高同步的龙门控制
直线电机及驱动器相关品牌 中国大陆:大族、华嶺、维纳、同日等 中国台湾:Hiwin等 美国:Parker、Copley、GlenTek等 以色列:Elmo、Megafabs 德国:西门子、路斯特LST等 日本:安川、松下等 新加坡:PBA
直线电机选型引用华嶺机电资料
直线电机选型还要注意 温升冷却 工作电流 行程 霍尔元器件没有霍尔上电需要驱动器寻找磁场相序
减小单轴跟随误差对减小轮廓误差有作用但是也有很多限制例如上图中同时减小XY的跟随误差后其轮廓误差并没有明显减少反倒有可能增大平且一味的减少单轴跟随误差还有可能导致系统太灵敏而不稳定
变增益交叉耦合控制: 以减小轨迹误差为目标的控制算法
直线电机优点无铁芯无刷直线电机 高精度:无传动误差高分辨率光栅尺全闭环控制定位精度±4um、重复定位精度±1um 高速度:高达5m/s 300m/min 高加速度:可达5G 高刚性动态响应快直线电机系统的单轴跟踪误差比传统旋转电机可以小10倍以上 无反向间隙 无磨损寿命长

直线电机伺服控制系统研究

直线电机伺服控制系统研究

直线电机伺服控制系统研究张乾;谭立杰;宋婉贞;陈国兴【摘要】通过直线电机的伺服控制分析,研究了伺服控制策略;以激光划切工作台为应用平台,针对x向电机位置环进行深入分析来解决实际问题,并根据激光划切机性能指标要求设计xy精密工作台运动控制系统,实现工作台的精密控制.【期刊名称】《电子工业专用设备》【年(卷),期】2018(047)002【总页数】4页(P67-70)【关键词】直线电机;伺服控制;激光划切【作者】张乾;谭立杰;宋婉贞;陈国兴【作者单位】中国电子科技集团公司第四十五研究所,北京 100176;中国电子科技集团公司第四十五研究所,北京 100176;中国电子科技集团公司第四十五研究所,北京 100176;中国电子科技集团公司第四十五研究所,北京 100176【正文语种】中文【中图分类】TM359.4伺服控制系统又称随动系统,用来控制被控对象的转角或者位移,被控对象能够自动、连续、精确地复现输入指令的变化规律。

伺服控制系统的性能好坏可以从控制精度、抗干扰能力、动态响应速度等方面来评估。

一个良好的伺服控制系统须具备宽范围的调节能力、较高的控制精度、较快的动态响应速度和较强的抗干扰能力。

伺服控制系统通常是包括电流环、速度环和位置环的三环结构,其中闭环控制就是在开环控制的交直流电机的基础上将速度信号和位置信号通过位置检测装置给驱动器做闭环负反馈的PID调节控制。

精密运动平台中使用的伺服控制器,它的功能水平主要体现在硬件方案、核心控制算法以及应用软件,硬件平台水平国内和国际相差不大,而软件的控制算法,控制策略以及控制算法的有效性、快速性以及易用性是国内外软件平台的重大区别。

特别是随着计算机的出现,全数字伺服控制系统的核心算法研究是我国自动化控制发展的难题,成为了需要迫切解决的问题。

目前我国伺服运动控制平台主要的控制器和驱动器都来自国外,比较知名的厂家主要有日本的三菱电机、松下、富士、安川,美国的PMAC、Parker、GALIL,以色列的 ACS运动控制器,德国西门子、倍福。

伺服电机设计步骤

伺服电机设计步骤

伺服电机设计步骤一、确定应用需求在设计伺服电机之前,首先需要明确应用需求,包括以下几点:1. 负载类型:确定电机需要承受的负载类型,如扭矩、力、力矩等。

2. 运动方式:确定电机的运动方式,如直线、旋转等。

3. 控制精度:确定电机需要达到的控制精度。

4. 速度范围:确定电机需要承受的最大和最小速度范围。

5. 环境条件:考虑电机所处的环境条件,如温度、湿度、尘埃、振动等。

二、选择电机类型根据应用需求,选择适合的电机类型。

伺服电机通常分为以下几种类型:1. 直流伺服电机:适用于对控制精度和速度范围要求不高的应用场景。

2. 交流伺服电机:适用于对控制精度和速度范围要求较高的应用场景。

3. 步进电机:适用于对精度要求不高的应用场景,具有价格优势。

4. 直线电机:适用于直线运动控制的应用场景。

5. 旋转电机:适用于旋转运动控制的应用场景。

三、确定电机规格根据应用需求和选择的电机类型,确定电机的规格,包括以下几点:1. 功率:根据负载类型和运动方式,选择合适的电机功率。

2. 转速:根据最大和最小速度范围,选择合适的电机转速。

3. 扭矩:根据负载类型和控制精度要求,选择合适的电机扭矩。

4. 尺寸:根据安装空间和使用环境,选择合适的电机尺寸。

5. 质量:根据负载要求和使用环境,选择合适的电机质量。

6. 可靠性:考虑电机的可靠性和寿命,选择符合应用需求的电机。

7. 成本:考虑电机的成本和性价比,选择符合预算的电机。

四、设计控制系统根据应用需求和选择的电机类型及规格,设计控制系统,包括以下几点:1. 选择合适的控制器:根据应用需求和电机的控制特点,选择合适的控制器,如PLC、运动控制卡等。

2. 设计控制电路:根据控制器和电机的特点,设计控制电路,包括电源电路、速度控制电路、位置控制电路等。

3. 编写控制程序:根据控制需求,编写控制程序,实现电机的速度、位置和运动轨迹控制。

4. 调试控制程序:在实验室环境中对控制程序进行调试和优化,确保控制系统能够准确、稳定地控制电机运动。

直线电机原理及应用

直线电机原理及应用
✓ 单边型直线电机产 生法向吸力 ✓ 在钢次级时约为推 力的10倍左右 ✓ 双边型直线电机抵 消法向吸力
信号检测与数字控制技术
• 提高直线电机的运动精度
✓ PID控制模块 (比例-积分-微分控制器) ✓ 驱动器 ✓ 电动 ✓ 按修正表 输入反馈信号 ✓ 相当于反向力,降低了系统波动的程度
信号检测与数字控制技术
信号检测与数字控制技术
• 直线电机的往复运动
三相绕组的相序相反,行波磁场的移动方向 就相反了,运动方向也会反过来。周期:
信号检测与数字控制技术
• 直线电机的往复运动
信号检测与数字控制技术
• 单边型直线电机
✓ 短初级长次级 ✓ 长初级短次级 ✓ 一般采用短初 级长次级
信号检测与数字控制技术
• 双边型直线电机
• 什么是直线电机
直线电机是一种能将电信号直接转换 成为直线位移的电机。无需转换机构即 可直接获得直线运动,没有传动机械的 磨损,并且噪音低、结构简单、操作维 护方便。
目前直线电机主要应用的机型有直 流直线电机、交流直线电机以及直线步 进电机等,在实际中应用较多的是交流 直线电机。
信号检测与数字控制技术
边端效应:开断的铁芯和安装在其槽中的绕组在两端不连续,三相电流在各相绕组中 也将产生不对称的电流,使得边端气隙中的磁通密度发生畸变,出现了附加损耗。
信号检测与数字控制技术
• 直线电机的应用——磁悬浮列车
✓ 长次级、短初级式 ✓ 长初级、短次级式
直线电机的推进原理是:当初级线圈接通电流后, 产生磁场,沿轨道方向平行移动,次级线圈切割磁 场产生的电流(或给次级线圈通电流),电磁力作 用使初级和次级间产生相对直线运动。推进力的大 小取决于初级磁场的强度、次级线圈的电流以及线 圈的长度。

伺服控制及其应用ppt课件

伺服控制及其应用ppt课件

LOS系统
系统组成
有效载荷
可见光、红外、激光
框架平台
2框架、4框架、5框架
伺服系统
电机伺服
图像系统
目标识别、目标跟踪
LOS系统
视轴控制目的
视轴稳定
相对于惯性系 隔离运动 抵抗扰动 多框架
视轴跟踪
目标跟踪 捕获与跟踪 火控铰链
LOS系统
视轴控制原理
视轴稳定
速度稳定回路 单位反馈控制 精度40urad
交流电机
异步电机 同步电机 步进电机 无刷电机
特殊电机
直线电机、旋转变压器
系统组成
直流电机
力矩电机
力矩控制 低速平稳 应用-雷达天线
伺服电机
齿轮减速 输出力矩大 应用-舵机
系统组成
PWM电机控制
双极性控制
50%占空比 低速平稳 分辨率低
单极性控制
换向信号 分辨率高
空间矢量PWM
反馈控制
反馈通道
前馈控制
前馈补偿、改善动态性
内模控制
模型抵消、提高鲁棒性
系统组成
控制系统组成
被控对象
执行机构、负载
传感器
反馈信号
控制器
模拟控制器、数字控制器
系统组成
被控对象
电机
电能机械能
电磁阀
液压系统
其他
电磁线圈、加热、压电陶瓷
军工

系统组成
电机分类
直流电机
力矩电机-直接驱动 伺服电机-齿轮减速
LOS系统
旋转变压器
极对数
单级、多级
工作原理
V=A*SIN(Wt) 励磁电源:1KHz、28V
角位置解调
滤波法、鉴相法 旋变解调模块

直线电机和伺服电机的区别

直线电机和伺服电机的区别

直线电机和伺服电机的区别直线电机和伺服电机是工业自动化领域中常用的两种电机类型,它们在应用场景、工作原理和性能特点等方面有着明显的差异。

下面将分别介绍直线电机和伺服电机的主要区别。

直线电机直线电机是一种将电能转换为直线运动的电动机,其工作原理类似于旋转电机,但是输出的是直线运动而非旋转运动。

直线电机通常由定子和活子组成,利用电磁感应生成磁场以产生直线运动。

直线电机的特点•高速、高精度:直线电机具有较高的速度和精度,适用于需要高速直线定位的场合。

•无间隙传动:直线电机采用非接触式传动,消除了传统机械传动中的摩擦和间隙,提高了传动效率和精度。

•稳定性强:直线电机结构简单,运动稳定,寿命长,维护成本低。

伺服电机伺服电机是一种能够控制位置、速度和加速度的电机,通过反馈控制系统实现精准的运动控制。

伺服电机通常作为执行元件,配合控制器实现精确的运动控制。

伺服电机的特点•高精度、高响应:伺服电机具有极高的响应速度和精度,适用于对运动控制精度要求较高的场合。

•闭环控制:伺服电机通过反馈控制系统实现闭环控制,能够实时调整控制参数以保持系统稳定性。

•多功能性:伺服电机可以根据应用需求灵活配置控制模式和参数,适用范围广泛。

直线电机和伺服电机的区别1.运动方式不同:直线电机产生直线运动,而伺服电机通常产生旋转运动。

2.结构不同:直线电机结构简单,通常由线圈、磁场和导轨组成;伺服电机通常包括电机、编码器、控制器等部件。

3.应用场景不同:直线电机适用于高速直线定位和传送系统;伺服电机适用于对位置精度和速度要求较高的控制系统。

综上所述,直线电机和伺服电机在工作原理、特点和应用场景上存在较大的差异,选择合适的电机类型取决于具体的应用需求和工作环境。

在实际应用中,需要根据具体情况选择适合的电机类型,以实现更高效、更稳定的运动控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 霍尔元器件(没有霍尔,上电需要驱动器 寻找磁场相序)
调试时与旋转电机注意:
• 电机类型选:直线电机
• 输入直线电机最大速度
• 没有霍尔的直线电机,sv on 时会来回动一下,以搜寻磁 场相序
• 把直线电机模型参数输入驱 动器(例如:电机电感、电 阻、最大平均电流、负载质 量等)
• 先优化驱动器电流环(一般 带宽可达到2000-3000HZ)
– 中国大陆:大族、华嶺、维纳、同日等 – 中国台湾:Hiwin等 – 美国:Parker、Copley、GlenTek等 – 以色列:Elmo、Megafabs – 德国:西门子、路斯特(LST)等 – 日本:安川、松下等 – 新加坡:PBA
直线电机选型(引用华嶺机电资料)
• 直线电机选型还要注意 – 温升(冷却) – 工作电流 – 行程
– 高精度:(无传动误差,高分辨率光栅尺,全闭环控制)定位 精度(±4um)、重复定位精度(±1um)
– 高速度:高达5m/s (300m/min) – 高加速度:可达5G
– 高刚性(动态响应快),直线电机系统的单轴跟踪误差比传统 旋转电机可以小10倍以上
– 无反向间隙
– 无磨损,寿命长
• 直线电机及驱动器相关品牌
• 然后优化驱动器速度环
• 最后调整FSCUT4000的PID参 数,使用“PID自动调整”
• 自动调整时使用“高级自动 调整”,尽量使用高一些的 刚性等级
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
缺点: • 伺服控制和速度规划分开实现,无法用速度规划的信息做前馈控制,伺服响应较慢,单轴跟随误差大 • 各轴伺服控制分开实现,无法自动实现各轴伺服响应的匹配,得到高精度的轨迹控制。 • 无法补偿反向摩擦力 • 无法主动消除轨迹误差 • 无法进行耦合控制,实现高同步的龙门控制
减小单轴跟随误差对减小轮廓误差有作用,
但是也有很多限制。例如上图中,同时减小 XY的跟随误差后,其轮廓误差并没有明显减 少,反倒有可能增大。平且一味的减少单轴 跟随误差还有可能导致系统太灵敏而不稳定。
变增益交叉耦合控制: 以减小轨迹误差为目标的控制算法
Y
圆心(X0,Y0)
θ
RHale Waihona Puke P* (Rx,Ry)Ey
ε
Ex
P
(Px,Py)
θ
X
• 直线电机优点(无铁芯无刷直线电机)
相关文档
最新文档