锐角三角函数公式和面积公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锐角三角函数公式

正弦:sin α=∠α的对边/∠α的斜边

余弦:cos α=∠α的邻边/∠α的斜边

正切:tan α=∠α的对边/∠α的邻边

余切:cot α=∠α的邻边/∠α的对边

面积公式

长方形,正方形以及圆的面积公式

面积公式包括扇形面积共式,圆形面积公式,弓形面积公式,菱形面积公式,三角形面积公式,梯形面积公式等多种图形的面积公式。

扇形面积公式

在半径为R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR^2,所以圆心角为n°的扇形面积:

S=nπR^2÷360

比如:半径为1cm的圆,那么所对圆心角为135°的扇形的周长:

C=2R+nπR÷180

=2×1+135×3.14×1÷180

=2+2.355

=4.355(cm)=43.55(mm)

扇形的面积:

S=nπR^2÷360

=135×3.14×1×1÷360

=1.1775(cm^2)=117.75(mm^2)

扇形还有另一个面积公式

S=1/2lR

其中l为弧长,R为半径

三角形面积公式

任意三角形的面积公式(海伦公式):S=√p(p-a)(p-b)(p-c), p=(a+b+c)/2,a.b.c,为三角形三边。

证明:证一勾股定理

分析:先从三角形最基本的计算公式S△ABC = aha入手,运用勾股定理推导出海伦公式。

证明:如图ha⊥BC,根据勾股定理,得: x = y = ha = = = ∴S△ABC = aha= a× = 此时S△ABC为变形④,故得证。

证二:斯氏定理

分析:在证一的基础上运用斯氏定理直接求出ha。

斯氏定理:△ABC边BC上任取一点D,若BD=u,DC=v,AD=t.则t 2 = 证明:由证一可知,u = v = ∴ha 2 = t 2 = -∴S△ABC = aha = a × = 此时为S△ABC的变形⑤,故得证。

证三:余弦定理

分析:由变形②S = 可知,运用余弦定理c2 = a2 + b2 -2abcosC 对其进行证明。

证明:要证明S = 则要证S = = = ab×sinC 此时S = ab×sinC为三角形计算公式,故得证。

证四:恒等式分析:考虑运用S△ABC =r p,因为有三角形内接圆半径出现,可考虑应用三角函数的恒等式。恒等式:若∠A+∠B+∠C =180○那么tg · tg + tg · tg + tg · tg = 1 证明:如图,tg = ①tg = ②tg = ③根据恒等式,得:+ + = ①②③代入,得:∴r2(x+y+z) = xyz ④如图可知:a+b-c = (x+z)+(x+y)-(z+y) = 2x ∴x = 同理:y = z = 代入④,得:r 2 · = 两边同乘以,得:r 2 · = 两边开方,得:r · = 左边r · = r·p= S△ABC 右边为海伦公式变形①,故得证。

证五:半角定理半角定理:tg = tg = tg = 证明:根据tg = = ∴r = × y ①同理r = × z ②r = × x ③①×②×③,得:r3 = ×xyz

圆面积公式

设圆半径为:r 面积为:S

则面积S= π·r ² π 表示圆周率

既圆面积等于圆周率乘圆半径的平方

弓形面积公式

设弓形AB所对的弧为弧AB,那么:

当弧AB是劣弧时,那么S弓形=S扇形-S△AOB(A、B是弧的端点,O是圆心)。

当弧AB是半圆时,那么S弓形=S扇形=1/2S圆=1/2×πr^2。

当弧AB是优弧时,那么S弓形=S扇形+S△AOB(A、B是弧的端点,O是圆心)

计算公式分别是:

S=nπR^2÷360-ah÷2

S=πR^2/2

S=nπR^2÷360+ah÷2

椭圆面积计算公式

椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

菱形面积公式

定理简述及证明

菱形面积=对角线乘积的一半,即S=(a×b)÷2

菱形的面积也可=底乘高

抛物线弓形面积公式

抛物线弦长公式及应用

本文介绍一个公式,可以简捷准确地求出直线被抛物线截得的弦长,还可以利用它来判断直线与抛物线位置关系及解决一些与弦长有关的题目.方法简单明了,以供参考.

抛物线弓形面积公式等于:以割线为底,以平行于底的切线的切点为顶点的内接三角形的3/4,即:

抛物线弓形面积=S+1/4*S+1/16*S+1/64*S+……=4/3*S

定理直线y=kx+b(k≠0)被抛物线y2=2Px截得的弦AB的长度为

∣AB∣= ①

证明由y=kx+b得x=代入y2=2Px得y2-+=0

∴y1+y2=,y1y2=.

∣y1-y2∣==2,

∴∣AB∣=∣y1-y2|=

当直线y=kx+b(k≠0)过焦点时,b=-,代入①得∣AB∣=P(1+k2),

于是得出下面推论:

推论1 过焦点的直线y=kx-(k ≠0)被抛物线y2=2Px截得的弦

AB的长度为

∣AB∣=P(1+k2) ②

在①中,由容易得出下面推论:

推论2 己知直线l: y=kx+b(k≠0)及抛物线C:y2=2Px

Ⅰ)当P>2bk时,l与C交于两点(相交);

Ⅱ)当P=2bk时,l与C交于一点(相切);

Ⅲ)当P<2bk时,l与C无交点(相离).

定理应用

下面介绍定理及推论的一些应用:

例1 (课本P.57例1)求直线y=x+被抛物线y=x2截得的线段的长?

分析:题中所给方程与定理中的方程形式不一致,可把x看成y用①即可.

解曲线方程可变形为x2=2y则P=1,直线方程可变形为x=y-,

即k=1,b=-.由①得∣AB∣=4.

例2 求直线2x+y+1=0到曲线y2-2x-2y+3=0的最短距离.

分析:可求与已知直线平行并和曲

线相切的直线,二直线间距离即为要求的最短距离.

解曲线可变形为(y-1)2=2(x-1)则P=1,由2x+y+1=0知k=-2.由推论2,令2bk=P,解得b=-.∴所求直线方

程为y-1=-2(x-1)-,即2x+y-=0. ∴.

故所求最短距离为.

例3 当直线y=kx+1与曲线y=-1有交点时,求k的范围.

解曲线可变形为(y+1)2=x+1

(x≥-1,y≥-1) ,则P=1/2.直线相应地可变为y+1=k(x+1)-k+2,∴b=2-k.由推论2,令2bk≤P,即2k(2-k)≤,解得k≤1-或k≥1+.故k≤1-或k≥1+时直线与曲线有交点.

注:曲线作怎样变形,直线也必须作相应平移变形,否则会出现错误.

例4 抛物线y2=2Px内接直角三角形,一直角边所在直线为y=2x,斜边长为5.求抛物线的方程.

解设直角三角形为AOB.由题设知kOA=2,kOB=-.由①, |OA|=,

|OB|=4P.由|OA|2+|OB|2=|AB|2,得P=.∴抛物线方程为y2=x.

例5设O为抛物线的顶点,F为焦点,PQ为过的弦,己知∣OF∣=a,∣PQ∣=b,.求SΔOPQ

解以O为原点,OF为x轴建立直角坐标系(见图),依题设条件,抛物线方程为y2=4ax(P=2a),设PQ的斜率为k,由②|PQ|=,

已知|PQ|=b,k2=.∵k2=tg2θ∴sin2θ=.即sinθ=,

∴SΔOPQ=SΔOPF+SΔOQF =a|PF|sinθ+a|FQ|sin(π-θ)=ab sinθ=.

常见的面积定理

相关文档
最新文档