七年级数学上册整式加减的典型题

合集下载

《好题》初中七年级数学上册第二章《整式的加减》经典习题(含答案)

《好题》初中七年级数学上册第二章《整式的加减》经典习题(含答案)

1.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣7A解析:A【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可.【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.2.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009C 解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解. 【详解】解: 123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.3.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数D 解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意.故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.4.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -1D解析:D【分析】根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可.【详解】解:∵5y 3-4y -6-(3y 2-2y -5)= 5y 3-4y -6-3y 2+2y+5= 5y 3-3y 2-2y -1.故答案为D .【点睛】本题考查了整式的加减运算,掌握去括号、合并同类项是解答本题的关键.5.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++ B解析:B【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案.【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B.【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握. 6.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣4A 解析:A【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案.【详解】由题意,得3m =6,n =2.解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1,故选:A .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.7.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x + A 解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误;C. 1÷x 是分式,故错误;D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.8.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( )A .mB .nC .m n +D .m ,n 中较大者D 解析:D【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项.【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,m n x x 中指数大的,即m ,n 中较大的,故答案选D.【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.9.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( )A .2B .﹣2C .0D .4A 解析:A【分析】根据题意可以写出这组数据的前几个数,从而发现数字的变化规律,再利用规律求解.【详解】解:由题意可得,这列数为:0,2,2,0,﹣2,﹣2,0,2,2,…,∴这20个数每6个为一循环,且前6个数的和是:0+2+2+0+(﹣2)+(﹣2)=0, ∵20÷6=3…2,∴这20个数的和是:0×3+(0+2)=2.故选:A .【点睛】本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键.10.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B解析:B代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】 代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.11.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数A解析:A【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴cd =1,∵m 的绝对值等于1,∴m =±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.12.一个多项式与221a a -+的和是32a -,则这个多项式为( )A .253a a -+B .253a a -+-C .2513a a --D .21a a -+- B解析:B【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案.【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3,故选B.题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 13.多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D 解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关14.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( )A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.15.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A .3aB .6a +bC .6aD .10a -b C解析:C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a +b ,另一边为a -b ,∴长方形周长为:2(2a +b +a -b )=6a.故选C.本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.1.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.2.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n表示其规律代入n=2016即可求解【详解】解:观察发现第n个等式可以表示为:(3n-2)×3n+1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n表示其规律,代入n=2016即可求解.【详解】解:观察发现,第n个等式可以表示为:(3n-2)×3n+1=(3n-1)2,当n=2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.3.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 4.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.31【分析】根据题意找出折叠次的折痕条数的函数解析式再将代入求解即可【详解】折叠次的折痕为;折叠次的折痕为;折叠次的折痕为;……故折叠次的折痕应该为;折叠次将代入折痕为故答案为:31【点睛】本题考查解析:31【分析】根据题意找出折叠n 次的折痕条数的函数解析式,再将5n =代入求解即可.【详解】折叠1次的折痕为1,1121=-;折叠2次的折痕为3,2321=-;折叠3次的折痕为7,3721=-;……故折叠n 次的折痕应该为21n -;折叠5次,将5n =代入,折痕为52131-=故答案为:31.【点睛】本题考查了图形类的规律题,找出折叠n 次的折痕条数的函数解析式是解题的关键. 5.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 6.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算.7.已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a 由于k≠0先将式子左右同时除以(-4k )再移项系数化1即可表示出a 【详解】∵k≠0∴原式两边同时除以(-4x )得∴∴故答案为【点睛】本题考查的是代数式的表示 解析:2248b k k+ 【分析】将已给的式子作恒等式进行变形表示a ,由于k≠0,先将式子左右同时除以(-4k ),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x )得,224b k a k=-- ∴224b a k k=+, ∴2224828b k b k a k k+=+=, 故答案为2248b k k+. 【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.8.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.9.已知22211m mn n ++=,26mn n +=,则22m n +的值为______.5【分析】观察多项式之间的关系可知将已知两式相减再化简即可得到结果【详解】∵∴∴的值为5【点睛】本题考查整式的加减观察得出整式之间的关系再进行去括号化简是解题的关键解析:5【分析】观察多项式之间的关系可知,将已知两式相减,再化简即可得到结果.【详解】∵22211m mn n ++=,26mn n +=,∴()22222222221165mn m mn n m n n mn nm mn n ---=+++=++=-=+, ∴22m n +的值为5.【点睛】本题考查整式的加减,观察得出整式之间的关系再进行去括号化简是解题的关键. 10.观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考 解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯… ∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键.11.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.2【分析】根据四次三项式的定义可知该多项式的最高次数为4项数是3所以可确定m 的值【详解】解:∵多项式3x |m |y2+(m+2)x2y-1是四次三项式∴+2=4∴m=2故答案为2【点睛】本题考查了与多解析:2【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m 的值.【详解】解:∵多项式3x |m |y 2+(m +2)x 2y -1是四次三项式, ∴m +2=4,20m +≠∴m=2.故答案为2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.1.已知多项式22622452x mxyy xy x 中不含xy 项,求代数式32322125m m m m m m 的值.解析:-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m =3226m m .当m =2时,原式= 322226 =14-. 【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.2.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?解析:1099989;1199988;1299987;1399986;(1)如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.3.有这样一道题,计算()()4322433222422x x y x y x x y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么?解析:化简后为32y ,与x 无关. 【分析】原式去括号合并得到最简结果中不含x ,可得出x 的取值对结果没有影响.【详解】解:()()4322433222422x x y x y x x y y x y -----+=43224332224242x x y x y x x y y x y ---+++=32y ,原式化简后为32y ,跟x 的取值没有关系.因此不会影响计算结果.【点睛】本题考查了整式的加减——化简求值,正确的将原式去括号合并同类项是解决此题的关键.4.计算:(1)()223537a ab a ab -+-++;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭. 解析:(1)62ab --;(2)2321a a --+【分析】先去括号,然后合并同类项即可.【详解】解:(1)()223537a ab a ab -+-++ 223537a ab a ab =-+--- 2ab =-6-;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭ 2222261a a a a =+--+ 2321a a =--+.【点睛】本题考查了整式的加减运算,熟记去括号法则和合并同类项的法则是解决此题的关键.。

七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题2.1 第1课时单项式一、能力提升1.下列结论正确的是()A.a是单项式,它的次数是0,系数为1B.π不是单项式C.是一次单项式D.-是6次单项式,它的系数是-2.已知是8次单项式,则m的值是()A.4B.3C.2D.13.3×105xy的系数是,次数是.4.下列式子:①ab;②-;③;④-a2+a;⑤-1;⑥a-,其中是单项式的是.(填序号)5.写出一个含有字母x,y的五次单项式:.6.观察下面的单项式:a,2a2,4a3,8a4,…,根据你发现的规律,第8个式子是.7.某学校到文体商店买篮球,篮球单价为a元,买10个以上(包括10个)按8折优惠.用单项式填空:(1)购买9个篮球应付款元;(2)购买m(m≥10)个篮球应付款元.8.若单项式(k-3)x|k|y2是五次单项式,则k=.9.观察下列各数,用含n的单项式表示第n个数.-2,-4,-6,-8,-10,…,.二、创新应用10.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么吗?(4)请你根据猜想,写出第2020,2021个单项式.答案一、能力提升1.D a是单项式,次数、系数均为1,所以A错;因为π是单独的一个数,所以π是单项式,所以B错;的分母中含有字母,无法写成数字与字母的积,所以不是单项式,所以C错;对于D项,它的系数为-,次数为2+3+1=6,所以D正确.2.C由单项式的次数的定义,得2m+3+1=8,将A,B,C,D四选项分别代入验证知C为正确答案.3.3×105;2.4.①②⑤.5.-x4y(答案不唯一).6.128a8.7.(1)9a.(2)0.8ma.8.-3;由题意,得|k|+2=5,且k≠3,解得k=-3.9.-2n;-2,-4,-6,-8,-10,这些数都是负数,且都是偶数,因此第n个数为-2n.二、创新应用10.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1,故系数的规律是(-1)n(2n-1).(2)次数即x的指数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2020个单项式是4039x2020,第2021个单项式是-4041x2021.2.1 第2课时多项式一、能力提升1.下列说法正确的是()A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.-ab2,-x都是单项式,也都是整式D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项2.如果一个多项式是五次多项式,那么它任何一项的次数()A.都小于5B.都等于5C.都不小于5D.都不大于53.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,……其中第10个式子是()A.a10+b19B.a10-b19C.a10-b17D.a10-b214.若x n-2+x3+1是五次多项式,则n的值是()A.3B.5C.7D.05.-3x2y-2x2y2+xy-4的最高次项为.6.若一个关于a的二次三项式的二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.7.多项式的二次项系数是.8.如图(1)(2),某餐桌桌面可由圆形折叠成正方形(图中阴影部分表示可折叠部分).已知折叠前圆形桌面的直径为am,折叠成正方形后其边长为bm.如果一块正方形桌布的边长为am,并按图(3)所示把它铺在折叠前的圆形桌面上,那么桌布垂下部分的面积是多少?如果按图(4)方式把这块桌布铺在折叠后的正方形桌面上呢?并求当a=2,b=1.4时它们的面积大小(π取3.14).9.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.(1)请把游戏最后丁所报出的答案用整式的形式描述出来;(2)若甲取的数为19,则丁报出的答案是多少?二、创新应用10.如图,观察点阵图形和与之对应的等式,探究其中的规律:(1)请在④和⑤后面的横线上分别写出相应的等式:(2)通过猜想,写出与第n个图形相对应的等式.答案一、能力提升1.C.2.D;多项式的次数指的是次数最高项的次数,故一个五次多项式次数最高项的次数为5.3.B;根据多项式排列的规律,字母a的指数是按1,2,3,…的正整数排列,故第10个式子应为a10.字母b的指数是按1,3,5,7,…的奇数排列,故第10个式子应为b19.中间的符号第1个式子是正,第2个式子是负,这样正、负相间,故第10个式子应为a10-b19.4.C;由题意,得n-2=5,解得n=7.5.-2x2y2;6.2a2-3a-3.7.=-,二次项为,故二次项系数为.8.解:m2;(a2-b2)m2;2.04m2.当a=2,b=1.4时,a2-a2=22-×22=4-3.14=0.86(m2),a2-b2=22-1.42=2.04(m2).9.解:(1)由甲传给乙变为a+1;由乙传给丙变为(a+1)2;由丙传给丁变为(a+1)2-1.故丁所报出的答案为(a+1)2-1.(2)由(1)知,代入a=19,得399.二、创新应用10.解:(1)④4×3+1=4×4-3.⑤4×4+1=4×5-3.(2)4(n-1)+1=4n-3.2.2 第1课时合并同类项一、能力提升1.下列各组式子为同类项的是()A.x2y与-xy2B.0.5a2b与0.5a2cC.3b与3abcD.-0.1m2n与nm22.若-2a m b2m+n与5a n+2b2m+n可以合并成一项,则m-n的值是()A.2B.0C.-1D.13.若x a+2y4与-3x3y2b是同类项,则(a-b)2021的值是()A.-2021B.1C.-1D.20214.已知a=-2021,b=,则多项式3a2+2ab-a2-3ab-2a2的值为()A.1B.-1C.2021D.-5.若2x2y m与-3x n y3的和是一个单项式,则m+n=.6.若关于字母x的整式-3x2+mx+nx2-x+3的值与x的值无关,则m=,n=.7.把(x-y)和(x+y)各看作一个字母因式,合并同类项3(x+y)2-(x-y)+2(x+y)2+(x-y)-5(x+y)2=.8.合并下列各式的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy;(2)3x2y-4xy2-3+5x2y+2xy2+5.9.已知-2a m bc2与4a3b n c2是同类项,求多项式3m2n-2mn2-m2n+mn2的值.10.先合并同类项,再求值:(1)7x2-3+2x-6x2-5x+8,其中x=-2;(2)3x-4x3+7-3x+2x3+1,其中x=-2.二、创新应用11.有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”有一名同学指出,题目中给出的条件“a=0.35,b=-0.28”是多余的,他的说法有没有道理?为什么?答案一、能力提升1.D2.A;∵-2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m-n=2.故选A.3.C;由同类项的定义,得a+2=3,2b=4,解得a=1,b=2.所以(a-b)2021=(1-2)2021=(-1)2021=-1.4.A;把多项式合并同类项,得原式=-ab,当a=-2021,b=时,原式=1.5.5;2x2y m与-3x n y3的和是一个单项式,说明2x2y m与-3x n y3是同类项,即m=3,n=2,故m+n=5.6.1;3;算式的值与x的值无关,说明合并同类项后,所有含x项的系数均为0.-3x2+mx+nx2-x+3=(-3+n)x2+(m-1)x+3,则m=1,n=3.7.0.8.解:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy.(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2.9.解:由同类项定义,得m=3,n=1.3m2n-2mn2-m2n+mn2=(3-1)m2n+(-2+1)mn2=2m2n-mn2.当m=3,n=1时,原式=2×32×1-3×12=18-3=15.10.解:(1)原式=(7-6)x2+(2-5)x+(8-3)=x2-3x+5,当x=-2时,原式=(-2)2-3×(-2)+5=15.(2)原式=-2x3+8,当x=-2时,原式=-2×(-2)3+8=24.二、创新应用11.解:他的说法有道理.因为原式=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以原式的值与a,b的值无关.即题目中给出的条件“a=0.35,b=-0.28”是多余的.2.2 第2课时去括号一、能力提升1.三角形的第一条边长是(a+b),第二条边比第一条边长(a+2),第三条边比第二条边短3,这个三角形的周长为()A.5a+3bB.5a+3b+1C.5a-3b+1D.5a+3b-12.如果a-3b=-3,那么5-a+3b的值是()A.0B.2C.5D.83.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.【】处被钢笔水弄污了,则此处中的一项是()A.-7xyB.7xyC.-xyD.xy4.化简(3x2+4x-1)+(-3x2+9x)的结果为.5.若一个多项式加上(-2x-x2)得到(x2-1),则这个多项式是.6.已知a-b=3,c+d=2,则(b+c)-(a-d)的值为.7.某轮船顺水航行了5h,逆水航行了3h,已知船在静水中的速度为akm/h,水流速度为bkm/h,则轮船顺水航行的路程比逆水航行的路程多.8.先化简,再求值:(1)(x2-y2)-4(2x2-3y2),其中x=-3,y=2;(2)a-2[3a+b-2(a+b)],其中a=-21,b=1000.9.已知A=2x2+3xy-2x-1,B=-x2+kxy-1,且A+B的值与y无关,求k的值.10.观察下列各式:①-a+b=-(a-b);②2-3x=-(3x-2);③5x+30=5(x+6);④-x-6=-(x+6).探索以上四个式子内的括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.二、创新应用11.有理数a,b,c在数轴上的位置如图所示,试化简|a-b|-|c-a|+|b-c|-|a|.答案一、能力提升1.B;三角形的周长为a+b+(a+b+a+2)+(a+b+a+2-3)=a+b+a+b+a+2+a+b+a+2-3=5a+3b+1.2.D;由a-3b=-3,得-(a-3b)=3,即-a+3b=3.因此5-a+3b=5+3=8.3.C.4.13x-1;(3x2+4x-1)+(-3x2+9x)=3x2+4x-1-3x2+9x=13x-1.5.2x2+2x-1;(x2-1)-(-2x-x2)=x2-1+2x+x2=2x2+2x-1.6.-1;由a-b=3,可得a-b的相反数为-3,即-(a-b)=-3,即-a+b=-3,因此(b+c)-(a-d)=b+c-a+d=(-a+b)+(c+d)=-3+2=-1.7.(2a+8b)km轮船在顺水中航行了5(a+b)km,在逆水中航行了3(a-b)km,因此轮船顺水航行的路程比逆水航行的路程多5(a+b)-3(a-b)=5a+5b-3a+3b=(2a+8b)km.8.解:(1)原式=-x2+y2.当x=-3,y=2时,原式=-.(2)原式=2b-a.当a=-21,b=1000时,原式=2021.解:A+B=(2x2+3xy-2x-1)+(-x2+kxy-1)=2x2+3xy-2x-1-x2+kxy-1=x2+(3+k) xy-2x-2.因为A+B的值与y无关,所以3+k=0,解得k=-3.10.解:因为a2+b2=5,1-b=-2,所以-1+a2+b+b2=-(1-b)+(a2+b2)=-(-2)+5=7.二、创新应用11.解:由题意知a-b<0,c-a>0,b-c<0,a<0,因此原式=-(a-b)-(c-a)-(b-c)-(-a)=-a+b-c+a-b+c+a=a.2.3 第3课时整式的加减一、能力提升1.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1B.5x+1C.-13x-1D.13x+12.化简-3x-的结果是()A.-16x+B.-16x+C.-16x-D.10x+3.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()A.2a-3bB.4a-8bC.2a-4bD.4a-10b4.小明在复习课堂笔记时,发现一道题:=-x2-xy+y2,括号处被钢笔弄污了,则括号处的这一项是()A.y2B.3y2C.-y2D.-3y25.已知a3-a-1=0,则a3-a+2020=.6.多项式(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)的值与无关.(填“x”或“y”)7.若a2+ab=8,ab+b2=9,则a2-b2的值是.8.若2x-y=1,则(x2+2x)-(x2+y-1)=.9.先化简,再求值:2(a2b+ab2)-(2ab2-1+a2b)-2,其中a=-,b=-2.10.计算:(1)3(a2-4a+3)-5(5a2-a+2);(2)3x2-.11.规定一种新运算:a*b=a+b,求当a=5,b=3时,(a2b)*(3ab)+5a2b-4ab的值.二、创新应用12.扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是多少?并说明你的理由.13.小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.答案一、能力提升1.A;由题意,得(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.2.B.3.B;所得新长方形的长为a-b,宽为a-3b,则其周长为2[(a-b)+(a-3b)]=2(2a-4b)=4a-8b.4.C;=-x2+3xy-y2+x2-4xy-()=-x2-xy-y2-()=-x2-xy+y2,故括号处的这一项应是-y2.5.2021;由a3-a-1=0,得a3-a=1,整体代入得a3-a+2020=1+2020=2021.6.x;因为(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)=4xy-3x2-xy+x2+y2-3xy+2x2-2y2=-y2, 所以多项式的值与x无关.7.-1;a2+ab-(ab+b2)=a2+ab-ab-b2=a2-b2=8-9=-1.8.2;当2x-y=1时,(x2+2x)-(x2+y-1)=x2+2x-x2-y+1=2x-y+1=1+1=2.故答案为2.9.解:原式=2a2b+2ab2-2ab2+1-a2b-2=a2b-1,当a=-,b=-2时,原式=×(-2)-1=×(-2)-1=--1=-.10.解:(1)3(a2-4a+3)-5(5a2-a+2)=3a2-12a+9-25a2+5a-10=-22a2-7a-1.(2)3x2-=3x2-5x+x-3-2x2=x2-x-3.11.解:原式=a2b+3ab+5a2b-4ab=(1+5)a2b+(3-4)ab=6a2b-ab.当a=5,b=3时,原式=6×52×3-5×3=450-15=435.二、创新应用12.解:设第一步每堆各有x张牌;第二步左边有(x-2)张牌,中间有(x+2)张牌,右边有x张牌;第三步左边有(x-2)张牌,中间有x+2+1=x+3张牌,右边有(x-1)张牌;第四步中间有x+3-(x-2)=x+3-x+2=5张牌,因此中间一堆牌现有的张数是5.13.解:因为A+B=9x2-2x+7,B=x2+3x-2,所以A=9x2-2x+7-(x2+3x-2)=9x2-2x+7-x2-3x+2=8x2-5x+9,所以A-B=8x2-5x+9-(x2+3x-2) =8x2-5x+9-x2-3x+2=7x2-8x+11.。

七年级上册 数学 第二章 整式的加减-专项练习100题含答案

七年级上册 数学 第二章 整式的加减-专项练习100题含答案

整式的加减专项练习1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab 9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p ;21、(5x 2y-7xy 2)-(xy 2-3x 2y ); 22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a].23、3a 2-9a+5-(-7a 2+10a-5); 24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2).25、(5a-3a 2+1)-(4a 3-3a 2); 26、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]27、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 28、(2x 2-21+3x )-4(x -x 2+21);29、3x 2-[7x -(4x -3)-2x 2]. 30、5a+(4b-3a )-(-3a+b );31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2); 32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].33、(2a 2-1+2a )-3(a-1+a 2); 34、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)].35、 -32ab +43a 2b +ab +(-43a 2b )-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy );37、2x -(3x -2y +3)-(5y -2); 38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3) 40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b ) 44、()[]{}y x x y x --+--3233245、(-x 2+5+4x 3)+(-x 3+5x -4) 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ). 48、4a 2+2(3ab-2a 2)-(7ab-1).49、 21xy+(-41xy )-2xy 2-(-3y 2x ) 50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]51、5m-7n-8p+5n-9m+8p 52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x2y-[2x2y-3(2xy-x2y)-xy] 54、5556、(a2+4ab-4b2)-3(a2+b2)-7(b2-ab).57、a2+2a3+(-2a3)+(-3a3)+3a2;58、5ab+(-4a2b2)+8ab2-(-3ab)+(-a2b)+4a2b2; 59、(7y-3z)-(8y-5z);60、-3(2x2-xy)+4(x2+xy-6).61、(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)62、-3x2y+2x2y+3xy2-2xy2; 63、3(a2-2ab)-2(-3ab+b2);64、5abc-{2a2b-[3abc-(4a2b-ab2]}.65、5m2-[m2+(5m2-2m)-2(m2-3m)].66、-[2m-3(m-n+1)-2]-1.67、31a-( 21a-4b-6c)+3(-2c+2b) 68、 -5a n -a n -(-7a n )+(-3a n ) 69、x 2y-3xy 2+2yx 2-y 2x70、 41a 2b-0.4ab 2- 21a 2b+ 52ab 2;71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-13177、化简、求值2(a2b+2b3-ab3)+3a3-(2ba2-3ab2+3a3)-4b3,其中a=-3,b=278、化简,求值:(2x3-xyz)-2(x3-y3+xyz)+(xyz-2y3),其中x=1,y=2,z=-3.79、化简,求值:5x2-[3x-2(2x-3)+7x2],其中x=-2.80、若两个多项式的和是2x2+xy+3y2,一个加式是x2-xy,求另一个加式.81、若2a2-4ab+b2与一个多项式的差是-3a2+2ab-5b2,试求这个多项式.82、求5x2y-2x2y与-2xy2+4x2y的和.83、求3x2+x-5与4-x+7x2的差.84、计算 5y+3x+5z2与12y+7x-3z2的和85、计算8xy2+3x2y-2与-2x2y+5xy2-3的差86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M87、当3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.88、化简再求值5abc-{2a 2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-4189、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ; (2)求41(B-A);90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B93、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .94、已知2 a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.95、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0.96、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x 2y+xyz )-3(x 2y-xyz )-4x 2y .97、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值.98、已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn )-7mn-5]的值99、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a 的值.100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.整式的加减专项练习答案:1、3(a+5b )-2(b-a )=5a+13b2、3a-(2b-a )+b=4a-b .3、2(2a 2+9b )+3(-5a 2-4b )=—11a 2+6b 2 4、(x 3-2y 3-3x 2y )-(3x 3-3y 3-7x 2y )= -2x 3+y 3+4x 2y5、3x 2-[7x-(4x-3)-2x 2] = 5x 2 -3x-36、(2xy-y )-(-y+yx )= xy7、5(a 22b-3ab 2)-2(a 2b-7ab ) = -a 2b+11ab 8、(-2ab+3a )-2(2a-b )+2ab= -2a+b9、(7m 2n-5mn )-(4m 2n-5mn )= 3m 2n10、(5a 2+2a-1)-4(3-8a+2a 2)= -3a 2+34a-1311、-3x 2y+3xy 2+2x 2y-2xy 2= -x 2y+xy 212、2(a-1)-(2a-3)+3.=413、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]= 7a 2+ab-2b 214、(x 2-xy+y )-3(x 2+xy-2y )= -2x 2-4xy+7y15、3x 2-[7x-(4x-3)-2x 2]=5x 2-3x-3 16、a 2b-[2(a 2b-2a 2c )-(2bc+a 2c )]= -a 2b+2bc+6a 2c17、-2y 3+(3xy 2-x 2y )-2(xy 2-y 3)= xy 2-x 2y18、2(2x-3y )-(3x+2y+1)=2x-8y-1 19、-(3a 2-4ab )+[a 2-2(2a+2ab )]=-2a 2-4a20、5m-7n-8p+5n-9m-p = -4m-2n-9p21、(5x 2y-7xy 2)-(xy 2-3x 2y )=4xy 2-4x 2y22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]=-18a 2 +7a+223、3a 2-9a+5-(-7a 2+10a-5)=10a 2-19a+1024、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2)= -4a 2b-64ab 225、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+126、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]=7a 2+ab-2b 2 27、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=028、(2x 2-21+3x )-4(x -x 2+21) = 6x 2-x-25 29、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -330、5a+(4b-3a )-(-3a+b )= 5a+3b31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2)= 4a 2-ab32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].= -133、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)]=-2x 2+5xy-2y 235、-32ab +43a 2b +ab +(-43a 2b )-1 = 31ab-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=037、2x -(3x -2y +3)-(5y -2)=-x-3y-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+439、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+441、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a42、 3x -[5x +(3x -2)]=-5x+243、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 244、()[]{}y x x y x --+--32332 = 5x+y45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x 3-x 2+5x+146、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-147、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab49、 21xy+(-41xy )-2xy 2-(-3y 2x )=41xy+xy 2 50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a51、5m-7n-8p+5n-9m+8p=-4m-2n59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x 2+7xy-24 61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=0 62、-3x 2y+2x 2y+3xy 2-2xy 2 = -x 2y+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a 2-2b 264、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 265、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m66、-[2m-3(m-n+1)-2]-1=m-3n+467、31a-( 21a-4b-6c)+3(-2c+2b)= -61a+10b 68、 -5a n -a n -(-7a n )+(-3a n )= -2a n69、x 2y-3xy 2+2yx 2-y 2x=3x 2y-4xy 271、 41a 2b-0.4ab 2- 21a 2b+ 52ab 2 = -41a 2b 71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy]= 2x 2-y 2 73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34 原式=2x 2+21y 2-2 =698 74、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32. 原式=-3x+y 2=694 75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121; 原式=x 3+x 2-x+6=683 76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-131 原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =2原式=-2ab 3+3ab 2=1278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3.原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.原式=-2x 2+x-6=-1680、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 281、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -984、计算 5y+3x+5z 2与12y+7x-3z 2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z 285、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差(8xy 2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x 2y+3xy 2+186、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M23y 87、当3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值. 原式=-8xy+y= —1588、化简再求值5abc-{2a 2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-41 原式=83abc-a 2b-2ab 2=3689、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2 (1)求A+B ;(2)求41(B-A); A+B=2a 2+2b 2 41(B-A)=ab 90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得 9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?A=10x 2+x+5 A+B=11x 2+4x+391、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .M-2N=5x 2-4x+392、已知222244,5A x xy y B x xy y =-+=+-,求3A -B3A -B=11x 2-13xy+8y 293、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .2A -3B= 5x 2+11xy +2y 294、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值. 原式=9ab 2-4a 2b=3495、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0. 原式=8abc-8a 2b=-3296、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值: 2(x 2y+xyz )-3(x 2y-xyz )-4x 2y .原式=-5x 2y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值. 原式=10a+10b-2ab=5098、已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn )-7mn-5]的值原式=2m 2+6mn+5=1599、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a 的值. B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A与B 的大小. A=2a 2-4a +1 B =2a 2-4a +3 所以A<B。

七年级上册数学整式加减计算题

七年级上册数学整式加减计算题

七年级上册数学整式加减计算题一、整式加减基础运算题(1 - 10)1. 计算:(3a + 2b)-(a - b)- 解析:- 去括号法则:括号前是正号,把括号和它前面的正号去掉后,原括号里各项的符号都不改变;括号前是负号,把括号和它前面的负号去掉后,原括号里各项的符号都要改变。

- 所以(3a + 2b)-(a - b)=3a + 2b - a + b。

- 然后合并同类项,3a - a+2b + b = 2a+3b。

2. 计算:2(x^2-3x + 1)-3(2x^2+x - 4)- 解析:- 先使用乘法分配律去括号,2(x^2-3x + 1)=2x^2-6x + 2,3(2x^2+x -4)=6x^2+3x - 12。

- 然后进行整式的减法:(2x^2-6x + 2)-(6x^2+3x - 12)=2x^2-6x + 2 - 6x^2-3x + 12。

- 合并同类项得(2x^2-6x^2)+(-6x - 3x)+(2 + 12)= - 4x^2-9x + 14。

3. 计算:(5a^2-3b^2)+(a^2+b^2)-(5a^2+3b^2)- 解析:- 先去括号,(5a^2-3b^2)+(a^2+b^2)-(5a^2+3b^2) = 5a^2-3b^2+a^2+b^2-5a^2-3b^2。

- 再合并同类项,(5a^2+a^2-5a^2)+(-3b^2+b^2-3b^2)=a^2-5b^2。

4. 计算:3x^2y-(2xy - 2(xy-(3)/(2)x^2y)+xy)- 解析:- 先去小括号,3x^2y-(2xy - 2(xy-(3)/(2)x^2y)+xy)=3x^2y-(2xy-2xy +3x^2y+xy)。

- 再去中括号,3x^2y - 2xy + 2xy - 3x^2y - xy=-xy。

5. 计算:(4m^3-2m^2+m - 1)-(2m^3+3m^2-m + 2)- 解析:- 去括号得4m^3-2m^2+m - 1 - 2m^3-3m^2+m - 2。

人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)

1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 9.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子. (4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+2a b a b a b=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.图中阴影部分的面积为______. 【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.2.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

初一数学(七年级上册)整式的加减运算100题(含答案)

初一数学(七年级上册)整式的加减运算100题(含答案)
65.(1)
(2)
66.(1)-6;(2) ,-2
67.(1)
(2)
68.(1)
(2)
69.(1)
(2)
70.(1)
(2)
71.(1)
(2)
72.(1)294;(2)
73.(1)1;(2) ,
74.(1)
(2)
75.(1)19;(2)3;(3) , .
76.(1)
(2)
(3)
(4)
77.(1)1
(2)
89.计算.
(1) ;
(2) ;
90.计算:
(1) ;
(2) .
91.计算:
(1)
(2)
(3)
(4)
92.(1)计算: ;
(2)计算: .
(3)先化简,再求值: ,其中 , .
93.计算:
(1) ;
(2)
94.计算:
(1) ;
(2) .
95.计算:
(1)
(2)已知 ,求 的值.
96.(1)计算: ;
1.(1) ;(2) ;
2.(1)
(2)
(3)
3.(1)
(2)
4.(1)
(2)
(3)
5.(1)3;(2)
6.(1)4;(2) ;14
7.(1)
(2)
8.(1)
(2)
(3)
(4)
9.
10.(1) ;(2) , .
11.(1)11
(2)
12.(1)4;(2) ;(3) ;6
13.(1)2
(2)
(3)
(4)
(2)计算: .
21.(1)计算:
(2)先化简,再求值: 值,其中 .

七年级数学整式加减计算题100道

七年级数学整式加减计算题100道

七年级数学整式加减计算题100道1.一个长方形的长为3x+5,宽为2x-1,求这个长方形的周长。

2.已知A=5x²+3x-2,B=3x²-2x+7,求A-B。

3.某商店第一天卖出m个文具,第二天比第一天多卖出2m-3个,两天一共卖出多少个文具?4.小明有5a元钱,花了3a-2元,还剩下多少钱?5.一个多项式加上2x²-3x+5等于4x²+5x-3,求这个多项式。

6.长方形的长是4a+3b,宽比长少2a-b,求长方形的面积。

7.化简求值:3(2x²-xy)-4(x²-xy-6),其中x=-1,y=2。

8.已知A=-2x³+3x²-1,B=3x³-2x²+5,求2A-3B。

9.某车队有大客车n辆,小客车比大客车的2倍多5辆,这个车队一共有多少辆车?10.一个多项式减去3x²-2x+1得-5x²+3x-2,求这个多项式。

11.三个连续整数中,中间的数为m,求这三个数的和。

12.已知a=3,b=-2,求(2a²-3ab+b²)-(a²-2ab+3b²)的值。

13.长方形的长是3x+2y,宽是x-y,求长方形的周长。

14.某商店进了一批货物,其中甲货物有a件,乙货物比甲货物的3倍少5件,求乙货物有多少件?15.一个多项式A加上-2x²+3x-1得3x²-5x+2,求A。

16.已知A=4x²-3x+1,B=2x²+5x-3,求A+B。

17.小明有x元钱,小红比小明多2x-3元,两人一共有多少钱?18.一个长方形的长为5a-3,宽为3a+1,求它的面积。

19.化简求值:2(3x²-2xy)-3(2x²-xy+1),其中x=2,y=-1。

20.已知A=-3x³+2x²-4,B=2x³-3x²+5,求A-B。

七年级上册整式的加减题

七年级上册整式的加减题

七年级上册整式的加减题一、整式的加减练习题。

1. 化简:3a + 2b - 5a - b- 解析:- 将同类项分别合并。

对于a的同类项有3a和-5a,对于b的同类项有2b和-b。

- 合并a的同类项:3a-5a=(3 - 5)a=-2a。

- 合并b的同类项:2b - b=(2 - 1)b = b。

- 所以,化简后的结果为-2a + b。

2. 计算:(2x^2-3x + 1)-( - 3x^2+5x - 7)- 解析:- 去括号时,括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。

- 所以(2x^2-3x + 1)-(-3x^2+5x - 7)=2x^2-3x + 1 + 3x^2-5x+7。

- 然后合并同类项,对于x^2的同类项有2x^2和3x^2,x的同类项有-3x和-5x,常数项有1和7。

- 合并x^2的同类项:2x^2+3x^2=(2 + 3)x^2=5x^2。

- 合并x的同类项:-3x-5x=(-3-5)x=-8x。

- 合并常数项:1 + 7=8。

- 所以结果为5x^2-8x + 8。

3. 先化简,再求值:(3a^2-ab + 7)-(5ab - 4a^2+7),其中a = 2,b=(1)/(3)- 解析:- 先化简式子,去括号得3a^2-ab + 7-5ab + 4a^2-7。

- 合并同类项,a^2的同类项有3a^2和4a^2,ab的同类项有-ab和-5ab,常数项7和-7相互抵消。

- 合并a^2的同类项:3a^2+4a^2=(3 + 4)a^2=7a^2。

- 合并ab的同类项:-ab-5ab=(-1-5)ab=-6ab。

- 所以化简后的式子为7a^2-6ab。

- 当a = 2,b=(1)/(3)时,代入式子得:- 7×2^2-6×2×(1)/(3)=7×4 - 4=28 - 4 = 24。

4. 化简:4(x^2+xy - 6)-3(2x^2-xy)- 解析:- 先使用乘法分配律去括号,4(x^2+xy - 6)=4x^2+4xy-24,3(2x^2-xy)=6x^2-3xy。

初一整式的加减计算题

初一整式的加减计算题

初一整式的加减计算题一、整式的加减计算题20题1. 计算:(3a + 2b - 5c)-(2a - 3b + 4c)- 解析:- 去括号法则:括号前是正号,去掉括号后各项不变号;括号前是负号,去掉括号后各项变号。

- 原式=3a + 2b-5c - 2a+3b - 4c- 然后合并同类项:- (3a - 2a)+(2b + 3b)+(-5c-4c)=a + 5b-9c。

2. 计算:2(2x - 3y)-3(x + y - 1)+2y- 解析:- 先运用乘法分配律去括号:- 原式=4x-6y-(3x + 3y-3)+2y- =4x - 6y - 3x-3y + 3+2y- 再合并同类项:- (4x-3x)+(-6y-3y + 2y)+3=x-7y + 3。

3. 计算:3x^2-[5x-( (1)/(2)x - 3)+2x^2]- 解析:- 先去小括号:- 原式=3x^2-[5x-(1)/(2)x + 3+2x^2]- 再去中括号:- =3x^2-5x+(1)/(2)x - 3 - 2x^2- 最后合并同类项:- (3x^2-2x^2)+(-5x+(1)/(2)x)-3=x^2-(9)/(2)x-3。

4. 计算:(4a^2b - 3ab^2)-( - a^2b+2ab^2)- 解析:- 去括号:- 原式=4a^2b-3ab^2+a^2b - 2ab^2- 合并同类项:- (4a^2b+a^2b)+(-3ab^2-2ab^2) = 5a^2b-5ab^2。

5. 计算:5a^2-[a^2+(5a^2-2a)-2(a^2-3a)]- 解析:- 原式=5a^2-[a^2+5a^2-2a - 2a^2+6a]- 再去中括号:- =5a^2-a^2-5a^2+2a + 2a^2-6a- 合并同类项:- (5a^2-a^2-5a^2+2a^2)+(2a - 6a)=a^2-4a。

6. 计算:2(a^2b + ab^2)-2(a^2b - 1)-3(ab^2+1)- 解析:- 先去括号:- 原式=2a^2b+2ab^2-2a^2b + 2-3ab^2-3- 合并同类项:- (2a^2b-2a^2b)+(2ab^2-3ab^2)+(2 - 3)=-ab^2-1。

七年级上册数学整式的加减题

七年级上册数学整式的加减题

七年级上册数学整式的加减题一、整式的加减练习题。

1. 化简:3a + 2b - 5a - b- 解析:将同类项进行合并。

同类项是指所含字母相同,并且相同字母的指数也相同的项。

在3a+2b - 5a - b中,3a和-5a是同类项,2b和-b是同类项。

- 合并同类项得:(3a - 5a)+(2b - b)=-2a + b。

2. 计算:(2x^2-3x + 1)-( - 3x^2+5x - 7)- 解析:去括号时,如果括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。

- 原式=2x^2-3x + 1+3x^2-5x + 7,然后合并同类项,(2x^2+3x^2)+(-3x-5x)+(1 + 7)=5x^2-8x+8。

3. 化简:4(a^2b - 2ab^2)-(a^2b+2ab^2)- 解析:先使用乘法分配律去括号,4(a^2b-2ab^2) = 4a^2b-8ab^2,-(a^2b +2ab^2)=-a^2b-2ab^2。

- 然后合并同类项得:(4a^2b-a^2b)+(-8ab^2-2ab^2) = 3a^2b-10ab^2。

4. 求整式2a^2-3a - 1与-3a^2+5a - 2的差。

- 解析:求差就是用第一个整式减去第二个整式,即(2a^2-3a - 1)-(-3a^2+5a - 2)。

- 去括号得2a^2-3a - 1 + 3a^2-5a + 2,合并同类项(2a^2+3a^2)+(-3a-5a)+(-1 + 2)=5a^2-8a+1。

5. 化简:3x^2y - [2xy^2-2(xy-(3)/(2)x^2y)+xy]+3xy^2- 解析:先去小括号,3x^2y-[2xy^2-2xy + 3x^2y+xy]+3xy^2,再去中括号3x^2y - 2xy^2+2xy - 3x^2y-xy + 3xy^2。

- 最后合并同类项(3x^2y-3x^2y)+(-2xy^2+3xy^2)+(2xy-xy)=xy^2+xy。

七年级数学(上)《整式的加减》测试题及答案

七年级数学(上)《整式的加减》测试题及答案

七年级数学(上)《整式的加减》测试题及答案(3)222232x y xy yx y x -+- (4))](32[52222b a ab ab b a ---(5)2222(2)3(2)4(32)ab a a ab a ab --+---3.先化简再求值(10分)(1)9y -{159-[4y -(11x -2y )-10x ]+2y },其中x =-3,y =2.(2) 2222222(23)(2)x y y x y x -+--+,其中1-=x ,2=y .4.一个四边形的周长是48厘米,已知第一条边长a 厘米,第二条边比第一条边的2倍长3厘米,第三条边等于第一、二两条边的和,写出表示第四条边长的整式.(6分)5.大客车上原有(3a -b )人,中途下去一半人,又上车若干人,使车上共有乘客(8a -5b )人,问中途上车乘客是多少人?当a =10,b =8时,上车乘客是多少人?(6分)6.若多项式24x -6xy+2x-3y 与2ax +bxy+3ax-2by 的和不含二次项,求a 、b 的值。

(5分)答案:一、选择题1.D 2.D 3.A 4.C 5.B 6.B 7.D二、填空题1.35-,六 2.五,五.432232,,5,,1a a b a b a --.23324152a a b a b a -+-++ 3.-12a 2b 2+2ab 4.(a+2b )cm <x <(3a +4b )cm 5.(6n +2) 6.22(2)44n n n +-=+ 7.x 2+3x +6三、解答题1.答:-ab 3c ,-ab 2c 2,-abc 3,-a 2b 2c ,-a 2bc 2,-a 3bc .2.解:(1)原式=2222523()a b ab ab a b -+-=22225233a b ab ab a b -+-=222a b ab +.(2)原式=2224263128ab a a ab a ab -++--+=24a ab -+.(1)9y -{159-[4y -(11x -2y )-10x ]+2y },其中x =-3,y =2.(2) 2222222(23)(2)x y y x y x -+--+,其中1-=x ,2=y .3.(1)原式=9y -{159-[6y -21x ]+2y }=9y -{159+21x -4y }=-21x +13y -159.当x =-3,y =2时,原式=-21×(-3)+13×2 -159=-70.(2)原式=2222222232x y y x y x -+---=222x y --.当1-=x ,2=y 时,原式=-2-4=-6.4.解:∵第一条边长a 厘米,第二条边长(2a +3)厘米,第三条边长[a +(2a +3)]=(3a +3)厘米,第四条边长[48-a -(2a +3)-(3a +3)]=48-a -2a -3-3a -3=(42-6a )厘米.∴第四条边长为(42-6a )厘米.5.解:(8a -5b )-12(3a -b )=8a -5b -3322a b +=13922a b -.当a =10,b =8时,上车乘客是29人.。

七年级上册数学第二章整式的加减-专项练习100题含答案

七年级上册数学第二章整式的加减-专项练习100题含答案

整式的加减专项练习1、3(a+5b)-2 (b-a ) 2 、 3a- (2b-a ) +b3、2(2a2+9b)+3( -5a 2-4b )4、( x3-2y 3-3x 2y)- (3x3 -3y 3-7x 2y) 5 、 3x2-[7x- ( 4x-3 ) -2x 2] 6、( 2xy-y )- (-y+yx ) 7、 5( a2b-3ab 2) -2 (a2b-7ab )8、( -2ab+3a) -2 (2a-b )+2ab2 29 、(7mn-5mn)- (4mn-5mn)10 、(5a2+2a-1)-4 ( 3-8a+2a2).11、-3x 2y+3xy2 +2x2y-2xy 2;12、2(a-1 )- (2a-3 )+3. 13、-2 (ab-3a 2)-[2b 2 - ( 5ab+a2) +2ab]14、( x2-xy+y )-3 ( x2 +xy-2y )15、 3x2-[7x- (4x-3 ) -2x 2]16、a2b-[2 (a2 b-2a 2c) - ( 2bc+a2c)] ;17、-2y 3+(3xy2-x 2y)-2 ( xy2-y 3).18、2(2x-3y ) - (3x+2y+1)19、- (3a2-4ab )+[a 2 -2 (2a+2ab) ] .120、5m-7n-8p+5n-9m-p;21、( 5x2y-7xy 2)- ( xy2-3x 2y);22 、3( -3a 2-2a )-[a 2 -2 (5a-4a 2 +1)-3a] .23、3a2-9a+5- ( -7a 2+10a-5);24 、-3a 2b- ( 2ab2-a 2b) - ( 2a2b+4ab2).25、( 5a-3a 2+1)- (4a3-3a 2);26 、 -2 (ab-3a 2)-[2b 2- (5ab+a2)+2ab]27、(8xy-x2+ y2)+- y2+x2-xy;、x2- 1 +x-4(x- x2+1);( 8 ) 28(2 3 )22x2-[x-(4x-3)- x2].30、()(-3a+b);29、37 2 5a+ 4b-3a -2 2 2 2 2 2 2 2.31、(3a -3ab+2b)+( a +2ab-2b);32、2a b+2ab -[2(a b-1 )+2ab +2]33 (、2a2 -1+2a)-3( a-1+a2); 34 、(2x2-xy )-3(2x2-3xy )-2[x 2(-2x2-xy+y 2)] .35、-2 ab+3 a2b+ ab+( -3 a2 b) -1 36 、(8 xy- x2+y2) +( -y2+x2-8xy) ;3 4 4237、2x-(3 x- 2y+3) -(5 y-2) ; 38 、-(3 a+2b) + (4 a-3b+ 1) -(2 a-b-3) 39、4x3-( -6x3 ) +( -9x3) 40 、 3- 2xy+ 2yx 2+6xy- 4x2y41、 1 - 3(2 ab+a) 十 [1 -2(2 a-3ab)] .42、 3 x-[5 x+(3 x-2)] ;43、(3 a2b-ab2)-ab2+a2b44、 2x3 y 3x 2 3x y( 3 )45 、( -x2+5+4x3 ) + ( - x3+5x- 4) 46 、( 5a2-2a+3 )-(1-2a+a2)+3(-1+3a-a 2).47 、 5( 3a2b-ab 2)-4 (-ab 2+3a2 b).48 、 4a2+2( 3ab-2a 2)- (7ab-1 ).49、1 xy+( -1 xy)-2xy 2- (-3y 2x)50 、5a2-[a 2- (5a2-2a )-2 ( a2-3a )]2 451 、 5m-7n-8p+5n-9m+8p 52 、( 5x2y-7xy 2)- (xy2-3x 2y)353、 3x 2y-[2x 2 y-3 ( 2xy-x 2y)-xy] 54 、 3x2-[5x-4( 1 x2-1)]+5x 2255、2a3b- 1 a3 b-a 2b+ 1 a2b-ab 2;2 256、( a2+4ab-4b2)-3 (a2+b2)-7 ( b2-ab ). 57、a2+2a3+(-2a 3)+(-3a 3) +3a2;58 、5ab+(-4a 2 b2)+8ab2- ( -3ab ) +( -a 2b)+4a2b2; 59 、( 7y-3z )- (8y-5z );60、 -3 (2x2-xy )+4( x2 +xy-6 ).61、(x3+3x2 y-5xy 2+9y3) +( -2y 3+2xy2+x2y-2x 3)- (4x2y-x 3 -3xy 2+7y3)62、-3x 2y+2x2y+3xy2-2xy 2;63 、3(a2-2ab ) -2 (-3ab+b2);2 2 2 2 2 2 264、5abc-{2a b-[3abc- (4a b-ab ]} .65、5m-[m +( 5m-2m) -2 (m-3m) ] .66、-[2m-3 (m-n+1) -2]-1 .467、1 a-(1 a-4b-6c)+3(-2c+2b)3 268、 -5a n-a n- (-7a n) +( -3a n)69 、x2y-3xy 2 +2yx2-y 2x70、1 a2b-0.4ab 2- 1 a2b+ 2 ab2;71、 3a-{2c-[6a-(c-b )+c+( a+8b-6)]}4 2 572、-3 ( xy-2x 2)-[y 2 - ( 5xy-4x 2)+2xy] ;73、化简、求值1 x2-2-(1 22 -3(-2 x2+1 y2),其中 x=-, y=-4 22 x +y ) 2 33 2 374、化简、求值1 x- 2( x-1 y2) +( -3 x+1 y2 ) ,其中 x=- 2, y=-22 3 2 3 375、1 x 3 3x2 2 x 3 1 x 2 (4x 6) 5x其中 x=- 1 1;3 2 3 2 276、化简,求值( 4m+n)-[1- (m-4n)] ,m=2 n=-1 15 3577、化简、求值 2( a2b+2b3-ab3 ) + 3a3- (2 ba2-3ab2+3a3) -4b3,其中 a=- 3,b=278、化简,求值:(2x3-xyz )-2 (x3-y 3 +xyz)+(xyz-2y 3),其中 x=1,y=2,z=-3 .79、化简,求值: 5x2-[3x-2 ( 2x-3 ) +7x2] ,其中 x=-2 .80、若两个多项式的和是2x2 +xy+3y2,一个加式是 x2-xy ,求另一个加式.81、若 2a2-4ab+b2与一个多项式的差是 -3a 2 +2ab-5b2,试求这个多项式.82、求 5x2y-2x2y 与- 2xy2+4x2 y 的和.83、求 3x2+x-5 与 4- x+ 7x2的差.84、计算 5y+3x+5z 2与 12y+7x-3z 2的和85、计算 8xy 2 +3x 2 y-2 与-2x 2 y+5xy 2 -3 的差686、多项式 -x 2 +3xy- 1 y 与多项式 M的差是 - 1 x2-xy+y ,求多项式 M2 212287、当 x=- , y=-3 时,求代数式 3(x -2xy )-[3x -2y+2 (xy+y)] 的值.88、化简再求值 5abc-{2a 2 b-[3abc- (4ab 2 -a 2 b)]-2ab 2 } ,其中 a=-2 ,b=3,1c=-489、已知 A=a2 -2ab+b 2,B=a2 +2ab+b2(1)求 A+B;(2)求1 (B-A) ;490、小明同学做一道题,已知两个多项式 A,B,计算 A+B,他误将 A+B看作 A-B,求得 9x2 -2x+7 ,若 B=x2+3x-2 ,你能否帮助小明同学求得正确答案?2 291、已知: M=3x+2x-1 ,N=-x -2+3x ,求 M-2N.92、已知 A 4x24xy y2 , B x2xy 5 y2,求 3A-B93、已知 A=x2+xy+ y2,B=- 3xy- x2,求 2A-3B.794、已知 a 2 +( b+ 1) 2= 0,求 5ab2-[2 a2b-(4 ab2-2a2b)] 的值.22295、化简求值: 5abc-2a b+[3abc-2 ( 4ab -a b)] ,其中 a、b、c 满足2|a-1|+|b-2|+c =0.96、已知 a,b, z 满足:(1)已知 |x-2|+ (y+3)2=0,(2)z 是最大的负整数,化简求值:2 ( x2 y+xyz)-3 ( x2y-xyz )-4x 2 y.97、已知 a+b=7,ab=10,求代数式( 5ab+4a+7b)+(6a-3ab )- (4ab-3b )的值.2 2 2 298、已知 m+3mn=5,求 5m-[+5m- (2m-mn)-7mn-5]的值99、设 A=2x2 -3xy+y 2+2x+2y,B=4x2-6xy+2y 2-3x-y ,若 |x-2a|+ ( y-3 )2 =0,且B-2A=a,求 a 的值.100、有两个多项式: A= 2a2- 4a+1,B=2( a2-2a) +3,当 a 取任意有理数时,请比较A 与 B 的大小.8整式的加减专项练习答案:1、 3( a+5b) -2 ( b-a ) =5a+13b2、 3a- ( 2b-a ) +b=4a-b .3、 2( 2a2+9b) +3( -5a 2-4b ) =—11a 2 +6b 23323323+3+424、( x -2y -3x y) - ( 3x -3y -7x y) = -2x y x y 6、( 2xy-y ) - ( -y+yx ) = xy7、 5( a 22b-3ab2 ) -2( a2b-7ab ) = -a2b+11ab8、( -2ab+3a ) -2 ( 2a-b ) +2ab= -2a+b9、( 7m2 n-5mn) - ( 4m2 n-5mn) = 3m 2 n10 、( 5a2+2a-1 ) -4 ( 3-8a+2a 2)= -3a 2+34a-1311 、 -3x 2 y+3xy 2 +2x 2 y-2xy 2 = -x 2 y+xy 212 、 2( a-1 ) - ( 2a-3 ) +3.=413、 -2 ( ab-3a 2) -[2b 2 - ( 5ab+a 2) +2ab]= 7a 2 +ab-2b 214、( x 2-xy+y ) -3 ( x 2 +xy-2y )= -2x 2 -4xy+7y15、 3x 2-[7x- ( 4x-3 ) -2x 2 ]=5x 2 -3x-316、 a2b-[2 (a2b-2a 2c) - ( 2bc+a2c)]= -a2b+2bc+6a2c 17、 -2y 3+( 3xy 2-x 2y) -2 ( xy 2-y 3) = xy 2-x 2y18、 2(2x-3y ) - ( 3x+2y+1)=2x-8y-119、-(3a2-4ab )+[a2-2 ( 2a+2ab) ]=-2a2 -4a20、 5m-7n-8p+5n-9m-p = -4m-2n-9p21、( 5x 2y-7xy 2) - ( xy 2-3x 2y) =4xy 2-4x 2y22、 3( -3a 2-2a )-[a 2-2 ( 5a-4a 2+1) -3a]=-18a 2 +7a+223、 3a2-9a+5- ( -7a 2+10a-5 ) =10a2-19a+1024、 -3a 2b- (2ab2-a 2b) - ( 2a2b+4ab2) = -4a 2b-64ab 225、( 5a-3a 2+1) - ( 4a3-3a 2) =5a-4a 2+126、 -2 ( ab-3a 2)-[2b 2 - ( 5ab+a2)+2ab]=7a 2 +ab-2b227、 (8 xy-x2+ y2) + ( -y2+ x2-8xy)=028、 (2 x2-1+3x) - 4( x- x2+1 )= 6x 2 -x- 52 2 229、 3x2-[ 7x- (4 x-3) - 2x2] = 5 x2- 3x- 330、 5a+( 4b-3a ) - ( -3a+b ) = 5a+3b31、( 3a 2 -3ab+2b 2) +( a 2 +2ab-2b 2) = 4a 2 -ab32、 2a 2 b+2ab 2 -[2 ( a 2 b-1 ) +2ab 2 +2] . = -1933 、( 2a 2-1+2a ) -3 ( a-1+a 2) = -a 2-a+234、 2( x 2-xy ) -3 ( 2x 2-3xy ) -2[x 2- ( 2x 2-xy+y 2) ]=-2x 2+5xy-2y 235、- 2+ 3 2 ++(-3 2 )-1 = 1ab-1 3 ab a b ab a b 3 4 436、 (8 xy -x 2+ y 2) + ( - y 2+ x 2- 8xy)=0 37、 2x - (3 x - 2y +3) - (5 y -2)=-x-3y-138、- (3 a + 2b) + (4 a - 3b +1) - (2 a -b - 3)= -a-4b+439、 3 3 3 x 3 4x - ( -6x ) + ( -9x ) =40、 3- 2xy + 2yx 2+ 6xy - 4x 2y = -2 x 2y+441、 1 - 3(2 ab + a) 十 [1 - 2(2 a -3ab)]=2-7a42、 3 - [5 x + (3 - 2)]=-5x+2x x43、 (3 a 2b - ab 2) - ( ab 2+ 3a 2b)= -2 ab 244、 2x3y 3x2 3x y= 5x+y45、(- x 2+5+4 x 3)+(- x 3+ 5 x -4)= 3x 3 - x 2+ 5 x+146、( 5a 2-2a+3 ) - ( 1-2a+a 2) +3( -1+3a-a 2) =a 2+9a-12 2 2 2 2 247、 5( 3a b-ab ) -4 ( -ab +3a b ). =3a b-ab48 、 4a 2+2( 3ab-2a 2) - ( 7ab-1 )=1-ab49、1xy+( - 1xy ) -2xy 2 -( -3y2x ) = 1xy+xy22 4 450 、 5a 2-[a 2- (5a 2-2a ) -2 ( a 2-3a ) ]=11a 2-8a 51 、 5m-7n-8p+5n-9m+8p=-4m-2n52、( 5x 2y-7xy 2) - ( xy 2-3x 2y ) =8x 2y-6xy 253 、 3x 2y-[2x 2y-3( 2xy-x 2y ) -xy]=-2x 2y+7xy54、 3x 2-[5x-4( 1 x 2-1)]+5x2 = 10x 2 -5x-4 255、 2a 3b- 1a 3b-a 2b+ 1a 2b-ab 2= 3a 3b- 1a 2b-ab 222 2 22 2 2 2 2 2 256、( a +4ab-4b ) -3 ( a +b ) -7 ( b -ab ) =-2a +11ab-14b58、 5ab+(-4a 2b 2) +8ab 2- ( -3ab ) +( -a 2b ) +4a 2b 2=8ab+8ab 2-a 2b 59 、( 7y-3z ) - ( 8y-5z ) =-y+2z60 、 -3 ( 2x 2-xy ) +4(x 2+xy-6 ) =-2x 2+7xy-24322 332 232 3 2 361、( x +3x y-5xy +9y ) +(-2y +2xy +x y-2x ) -(4x y-x -3xy +7y )=062、 -3x 2y+2x2y+3xy 2-2xy 2= -x 2y+xy263、 3( a2-2ab ) -2 ( -3ab+b 2) =3a 2 -2b 264、 5abc-{2a 2 2 2 2 2b-[3abc- ( 4a b-ab ]}=8abc-6a b+ab2 2 2 2 265、 5m-[m +(5m-2m) -2 ( m-3m)]=m -4m66、 -[2m-3( m-n+1) -2]-1=m-3n+467、1 a-( 1 a-4b-6c)+3(-2c+2b)=- 1 a+10b3 2 6n n n n n68、 -5a -a - ( -7a ) +( -3a ) = -2a1071、1 a 2b-0.4ab 2- 1 a 2b+2 ab 2=- 1 a 2b 4 2 5 4 71、 3a-{2c-[6a- ( c-b ) +c+( a+8b-6 ) ]}=10a+9b-2c-672、 -3 ( xy-2x 2) -[y2- (5xy-4x 2)+2xy]= 2x 2 -y 273、化简、求值 1 2 - 2- ( 1 2 2 )- 3 2 2 1 2 ) ,其中 x =- 2, y =- 42 x 2 x + y( - 3 x + 3 y 32 原式 =2x 2+ 1y 2- 2 =6 82 974、化简、求值 1x - 2( x - 1y 2) + ( - 3x + 1y 2) ,其中 x =- 2, y =-223 2 33原式 =-3x+y 2=6 4975、 1 x 33 x 2 2 x 3 1 x 2( 4x 6) 5x 其中 x =- 1 1; 32 32233276、 化简,求值( 4m+n ) -[1- ( m-4n ) ] , m=2n=-1 15 3原式 =5m-3n-1=577、化简、求值 2( a 2b +2b 3- ab 3) +3a 3- (2 ba 2- 3ab 2+ 3a 3) -4b 3,其中 a =- 3, b =2原式 =-2 ab 3+3ab 2= 1278、化简,求值: ( 2x 3-xyz ) -2 ( x 3-y 3+xyz ) +( xyz-2y 3),其中 x=1, y=2, z=-3 . 原式 =-2xyz=679、化简,求值: 5x 2-[3x-2 ( 2x-3 ) +7x 2] ,其中 x=-2 .原式 =-2x 2+x-6=-1680、若两个多项式的和是 2x 2+xy+3y 2,一个加式是 x 2-xy ,求另一个加式.( 2x 2+xy+3y 2)——( x 2-xy ) = x 2+2xy+3y 281、若 2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2)—( -3a 2+2ab-5b 2) =5a 2-6ab+6b 282、求 5x 2y -2x 2y 与- 2xy 2+ 4x 2y 的和.( 5x 2y - 2x 2y )+(- 2xy 2+ 4x 2y )=3xy 2+ 2x 2y 83、 求 3x 2+x - 5 与 4- x + 7x 2的差.( 3x 2+ x - 5)—( 4- x + 7x 2) =— 4x 2+2x - 9 84 、计算 5y+3x+5z 2与 12y+7x-3z 2的和( 5y+3x+5z 2) +( 12y+7x-3z 2) =17y+10x+2z 285、计算 8xy 2 +3x 2 y-2 与 -2x 2 y+5xy 2 -3 的差(8xy 2 +3x 2 y-2 )—( -2x 2 y+5xy 2 -3 ) =5x 2 y+3xy 2 +11186、 多项式 -x 2+3xy- 1 y 与多项式 M 的差是- 1 x 2-xy+y ,求多项式 M2 2M=- 1x 2+4xy — 3y2 287、当 x=- 1, y=-3 时,求代数式 3( x 2-2xy ) -[3x 2-2y+2 ( xy+y ) ] 的值.2原式 =-8xy+y= — 1588、化简再求值 5abc-{2a2 b-[3abc- (4ab 2-a 2b )]-2ab 2} ,其中 a=-2 ,b=3,c=- 1 原4式=83abc-a 2b-2ab 2=3689、已知 A=a 2-2ab+b 2, B=a 2+2ab+b 2(1)求 A+B ;( 2)求 1(B-A) ;4 A+B=2a 2 +2b 21 (B-A)=ab4290、小明同学做一道题, 已知两个多项式 ,A ,B ,计算 A+B ,他误将 A+B 看作 A-B ,求得 9x -2x+7若 B=x 2+3x-2 ,你能否帮助小明同学求得正确答案?A=10x 2+x+5 A+B=11x 2+4x+3 91、已知: M=3x 2+2x-1 , N=-x 2-2+3x ,求 M-2N .M-2N=5x 2- 4x+392、已知 A 4x 24xy y 2 , B x 2xy 5 y 2,求 3A - B 3A- B=11x 2-13xy+8y293、已知 A = x 2+ xy + y 2,B =- 3xy - x 2,求 2A - 3B .2A -2 2 3B= 5 x +11 xy + 2y 94、已知 a 2 +( b +1) 2= 0,求 5ab 2-[2 a 2b - (4 ab 2- 2a 2b)] 的值.原式 =9 2-4 2ab a b=3495、化简求值: 5abc-2a 2b+[3abc-2 ( 4ab 2-a 2b )] ,其中 a 、b 、c 满足 |a-1|+|b-2|+c2=0.原式=8abc-8a 2b=-3296、已知 a , b , z 满足:( 1)已知 |x-2|+( y+3) 2=0,(2) z 是最大的负整数,化简求值: 2( x 2y+xyz ) -3 (x 2y-xyz ) -4x 2y .原式 =-5x 2y+5xyz=9097、已知 a+b=7, ab=10,求代数式( 5ab+4a+7b ) +( 6a-3ab ) - ( 4ab-3b )的值.原式 =10a+10b-2ab=502 2 -[+5m 22298、已知 m+3mn=5,求 5m - ( 2m-mn) -7mn-5] 的值原式=2m+6mn+5=1599、设 A=2x2-3xy+y 2+2x+2y , B=4x2 -6xy+2y 2-3x-y ,若 |x-2a|+( y-3 )2 =0,且 B-2A=a,求a 的值.B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式: A=22-4+ 1, B=2(a2-2a)+3,当a取任意有理数时,请比较Aa a与 B 的大小.A=2 a2-4a+ 1 B = 2a2- 4a+3所以 A<B12。

七年级上整式加减运算200题(1)

七年级上整式加减运算200题(1)

一、定义(共50题)1.给出下列判断,其中判断正确的是()(1)在数轴上,原点两旁的两个点所表示的数都是互为相反数;(2)任何正数必定大于它的倒数;(3)5ab,,都是整式;2.和统称为整式;和统称为有理数.3.观察下列各式:x,,-1,,a+b=b+a,x2-1,2x+1=3,,S=πr2,其中整式的个数是()A.4B.5C.6D.74.在y3+1,+1,-x2y,-1,-8z,0中,整式的个数是()5.在式子:-8,-,2a2+3a-1,(π-1)x2,,0中,下列结论正确的是()6.代数式:-x,中,单项式为,多项式有.7.把下列代数式分别填入它们所属的集合中:.单项式集合{ …}多项式集合{ …}整式集合{ …}.8.在代数式2b+bc,3x,m2n,4x2-2x-7,+3,-2,,中,单项式有个,多项式有个,整式有个.9.下列代数式中是整式的是,是多项式的是.(只填序号)①;②;③;④-0.32;⑤a+;⑥x3-y3;⑦.10.在代数式,+3,-2,,,中整式有个.11.在下列式子①2πR;②;③5x+6y>0;④23;⑤4x2-5y3中,代数式有,整式有,单项式有,一次单项式有,多项式有.(只填序号)12.指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?.13.下列代数式,哪些是整式?1-a,,32+42,,,,x2-8x+7..上是单项式.是单项式D.x的系数为1,次数为115.单项式-a m b2c()16.单项式-5ab的系数是,次数是.17.单项式-的系数是,次数是.18.单项式-32ab3c2的系数为,次数为.19.单项式-的系数是,-3×103ab5的次数是.20.单项式-的系数是;请写出它的一个同类项:.21.下列语句中错误的是().单项式a的系数与次数都是1.的系数是.0、b、都是整式.单项式a没有系数24.下列说法不正确的是().是多项式.x2y4是六次单项式25.下列说法正确的是().-1,a,0都是单项式.x-是多项式.-πx2yz是五次单项式,系数是-126.下列说法正确的有()①-mn2和-3n2m是同类项②3a-2的相反数是-3a+2 ③5mR2的次数是3 ④34x3是7次单项式.27.已知单项式2x m-1y2的次数是5,则m=.28.是关于x,y的三次单项式,则它的系数为,次数为.29.若x|k-2|y3是关于x、y的6次单项式,那么k=.30.4x3+3xy2-5x2y3+y是次项式.31.多项式-x2+2x-5的二次系数、一次项系数和常数分别为.32.多项式x2y-12xy+8的次数是,常数项是,单项式的系数是.33.的系数是,次数是;多项式x+y-xy+23是次________项式.34.多项式7a2b-14ab2-5ab+6的次数是次,项数是,其中二次项是.35.多项式-a2b-ab+1是次项式,最高次项为,二次项系数为,常数项是.x2y2πr237.指出下列多项式是几次几项式.(1);(2);(3);(4).38.下列代数式,哪些是多项式,并指出它是几次几项式.(1)x4+2x2-1(2)2xy+(3)a3+2ab+b3-a3b.39.已知下列式子:;.(1)其中哪些是单项式?分别指出它们的系数和次数;(2)其中哪些是多项式?分别指出它们的项和次数;(3)其中哪些是整式?40.把多项式7xy2-2x2y+cy3-ax3重新排列.(1)按x的升幂排列;(2)按x的降幂排列;(3)按y的降幂排列;(4)按y的升幂排列.41.请写一个系数为-2,只含字母x、y的三次单项式(只写一个即可)42.写出一个整式,具备以下两个条件:(1)它是一个关于字母x的二次三项式;(2)各项系数的和等于10;43.一个关于b的二次三项式的二次项系数是-2,一次项系数是-0.5,常数项是3,则这个多项式是.44.写出同时满足下列4个条件的一个多项式:①该多项式含有字母x和y;②该多项式第一项是常数项;③该多项式是三次四项式;④该多项式各项系数和为零.45.已知多项式-2x2y+5y2-10xy-□x是个四项式,并且各项的系数和为-5,那么□内数字为.46.如果关于x的多项式x4-(a-1)x3+5x2-(b+1)x-1不含x3项和x项,求a,b的值.47.当a=时,多项式5x2-(a-)xy-3y2+6中不含xy项.48.已知多项式3a2b3-8ab+5与的常数项相同,求n2-n+3的值.49.已知单项式3x2y n的次数为5,多项式6+x2y-x2-x2y m+3的次数为6,求单项式(m+n)x m y n的次数与系数的和.50.若多项式6x n+2-x2-n+2是一个五次三项式,求代数式n2-2n+1的值.二、整式的加减运算--合并同类项、去括号、化简求值(共117题)51.=.52.-6x+3x2-(-x2)+(-4x)=.53.(-y2)+(-4y2)-(-y2)-(-3y)=.54.2(4x2-5x)-3x2=.55.(2x-4y)+2y=.56.=.57.(2x-4y)+2y=.58.=.59.(-7x3-2x2)+(-3x2+5x3)=.60.(7a2-7ab-6)+(2-4a2)=.61.(3a2+b2-5ab)+(4ab-b2+7a2)=.62.3x-2(x-y)=.63.5x2-(5x2+2)=.64.a-(a+1)+(a-1)=______.65.(2xy-y)-(-y+xy)=.66.(7y-3z)-(8y-5z)=.67.(5x-3y)-(2x+5y)=.68.(8a-7b)-(4a-5b)=.69.(5a-3b)-3(2a-4b)=.70.(3a2-b2)-3(a2-2b2)=.71.(3a2-14b)-3(a2+2b)=.72.3(a-3b)-7(2a+5b)=.73.-(m-2n)-(-m+n)=.74.-3x-(x+1)+(4x+2)=.75.(x2-2xy)-(xy+x2)=.76.(a-b)-(a+b)=.77.(x2+y2)-3(x2-2y2)=.78.3(4x-2)-3(-1+8x)=.79.(2x2-x+3)-(-x2+4x-1)=.80.a-(2a-3b)+(3a-4b)=.81.-(-3x+y)-2(x-y)=.82.(2a-b)-(3a-2b)-2(a-2b)=.83.(4x2-5x+2)-(x2+2x+7)=.84.(13x-11y+10z)-(15x+10y-15z)=.85.2x-(5a-7x-2a)=.86.(x3-y3)-(x3+y3)+(y3-1)=.87.-(-a)2-b2-(-b2)=.88.3a-(4a-5b)+2(a-2b)=.89.5(a+b)+-5(a-b)=.90.5ab-4a2b2-(8a2b2+3ab)=.91.3(2x-y)-2(4x+y)+4=.92.(4a2-3a)+(2+4a-a2)-(2a2+a)=.93.-7x2+(6x2-5xy)-(3y2+xy-x2)=________________.94.(2xy2+3x2y)-(6x2y-3xy2)=.95.2x3-(7x2-9x)-2(x3-3x2+4x)=.96.(x2-2y)+(x-y2)-(x2+y2)=.97.计算(2x2-3x+1)-(-3x2+5x-7)并将结果按x的降幂排列.98.a-[-2a-(a-b)]=.99.3x-[5x-(2x-1)]=.100.3xy-3(4yx-2x)+(2xy-2x)=.101.(2x3-x2-x)-(2x3-x2+x)=.102.(2x2-5x)-(3x+5-2x2)=__________.103.4xy-2(x2-2xy)-4(2xy-x2)=.104.4a2-3a+3-3(-a3-2a3+1)=.105.4(a2b-2ab2)-(a2b+2ab2)=.106.a2-3ab+4b2-(2b2-3ab-3a2)=.107.-(-7x3-2x2)-(-3x2+5x3)=.108.(-3ax2-ax+3)-(-ax2-ax-1)=.109.-2(a2b-ab2+a3)-(-2a2b+3ab2)=.110._________.111.x2-5x+3- =7x+9.112.-(3a2-b2+5ab)=a2-ab+b2.113.-(c-d)=(a-c)-(-b+d).114.(2x2-x-5)-()=x2-2x+1.115.-(3x2-4xy+y2)=-xy+3y2.116.a-(a-4b-6c)+3(-2c+2b)=.117.3+[3a-2(a-10)]=.118.-[-(0.1x-y)+2(x+0.2y)]=.119.-[-(0.1x-y)]+2(x+0.2y)=.120.-8m2-[4m-2m2-(3m-m2-7)-8]=.121.2-[2(x+3y)-3(x-2y)]=.122.x2-[x2-(x2-1)]-1=.123.x+{3y-[2y-(2x-3y)]}=.124.m-{3n-4m+[m-5(m-n)+m]}=.125.-{-[-(-a2)-b2]}-[-(-b2)]=.126.-a3+2b3-3ab+2=- =2-a3- .127.(1)-7ab-14abx+49aby=-7ab(),(2)mn(m-n)2-n(n-m)3=n(m-n)2().128.整式2a2+ab+3b3与a2-2ab+b2的差是.129.整式2a-3ab+4b与-2a+5ab-b的差为.130.整式x2-3xy+4减去-x2+xy-所得的差为________________.131.多项式2x-3y+5z与-2x+4y-6z的差是.132.减去的差是.133.若x2-7xy+y2-B=2x2-y2,则B=.134.减去-x2+6x-5等于4x2+3x-5的多项式是.135.与多项式7a2-5ab-3b2的和是3a2-4ab+7b2的多项式是.136.一个多项式减去(-3+x-2x2)得到x2-1,这个多项式是.137.若A=x2-2x+3,B=3x2+x-5,C=5x2-x,则A+B-C=.138.已知A=2x2-3xy-y2,B=-x2+2xy-3y2,则2A-3B=.139.已知A+B=C,且B=(3x-6),C=(x-4),求A.140.计算:设A=x3-2x2+4x+3、B=x2+2x-6、C=x3+2x-3,则A-(B+C)=.141.如果M=-12p+3q,N=3q-5p,那么M+N=,M-2N =.142.已知:a-c=2,b-c=3,则a+b-2c=.143.如果a2+ab=2,ab+b2=-1,那么a2+2ab+b2=;a2-b2=.144.若a2+ab=5,ab+b2=4,则a2+3ab+2b2的值为.145.已知4a-3b3=7,3a+2b3=9,则10a+b3=.146.已知(3x2-3x+2)-(-x2+3x-3)=Ax2-Bx+C,则A=,B=,C=.147.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x2+3xy-y2)-(-x2+4xy-y2)=x2______+y2,空格的地方被钢笔水弄污了,请你帮他补上.148.若-x+[2x+3()+5y]=-5x+8y,则括号中的多项式为.149.[()+6x-7]+[3x2-4x+()]=x2+2x+1.150.有理数a、b在数轴上位置如图所示,试化简:|a-b|-|a+b|+2|b-2a|=.151.有理数a、b在数轴上的位置如图所示:化简:|a-2|+|b+2|+|a|-|b|=.152.若A是一个五次多项式,B也是一个五次多项式,则A+B一定是,3A-2B一定是,AB一定是.A.五次多项式B.不高于五次的整数C.不高于五次的多项式D.十次多项式E.不高于四次的单项式F.二十五次多项式.153.若多项式3x3-2x2+3x-1与多项式x2-2mx3+2x+3的差是关于x的二次三项式,则m=.154.如果x p-2+4x3-(q-2)x2-2x+5是关于x的五次四项式,那么p+q=.155.若3x3m-2n y4+nx m+1y4=2x m+1y4,则n=,m=.156.把(a-2b)看作一个“字母”,化简多项式-3a(a-2b)5+6b(a-2b)5-5(-a+2b)3,并求当a-2b=-1时的值.157.将四个数a、b、c、d排成2行2列,两边各加上一条竖线记成,定义=ad-bc,叫做2阶行列式,若=-6,则11x2-5的值是.158.对于有理数a,b,定义一种新运算“※”,即a※b=3a+2b,则式子[(x +y)※(x-y)]※3x化简后得到.159.若关于字母x的代数式32+mx+nx2-x+10的值与x的取值无关,则m =,n=.160.若3x2-2x+b+(-x-bx+1)中不存在含x的项,则b=.161.若计算(x2+ax-3)-(bx2-2x+9)的结果是一个常数,则a+b的值是.162.已知:A=2x2+3xy-2x-1,B=-x2+xy-1,且3A+6B的值与x无关,则y的值为.163.若代数式(2x2+3ax-y)-2(bx2-3x+2y-1)的值与字母x的取值无关,则代数式(a-b)-(a+b)的值是.164.多项式2(x2-3xy-y2)-(x2+2mxy+2y2)中不含xy项,则m=.165.关于x,y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求6m-2n+2的值.166.已知2x+5y+4z=15,7x+y+3z=14,则4x+y+2z的值为.167.如图,面积分别为25和9的两个正方形叠合在一起,所形成的两个阴影部分的面积分别为a,b(a>b),则代数式(a+5b)-4(a+b)的值是.三、列代数式(共14题)168.“a的2倍与1的和”用代数式表示是.169.列代数式:(1)x除y的商与z的倒数的差是;(2)a的20%与b的25%的和除以a、b的积是.170.三角形三边的长分别是(2a+1),(a2-2),(a2-2a+1),则这个三角形的周长是.171.长方形一边长为2a+b,另一边长比它大a-b,则周长为.172.如图是某月份的日历,用方框圈出了9个数.设最中间一个是x,则用x 表示这9个数的和是.173.一个两位数,十位数字为a,个位数比十位数2倍少3,则这个两位数是.174.客车上原有(2a-b)人,中途下车一半人,又上车若干人,使车上共有乘客(8a-5b)人,问上车乘客是人.175.笔记本的单价是x元,圆珠笔的单价是y元.小刚买了5本笔记本和2支圆珠笔,小明买笔记本和圆珠笔的钱比小刚少花(2x+y)元,则小刚和小明一共花了元钱.176.某食杂店从面包加工厂以每个0.7元的价格,购进了a个面包,先以每个1元的价格售出了b个面包,再以八折优惠价售出了c个面包,最后将过期的面包以每个0.4元的价格退回给厂家,在这一过程中,食杂店卖面包收入元.177.张师傅下岗再就业,做起了小商品生意,第一次进货时,他以每件a元的价格购进了20件甲种小商品,每件b元的价格购进了30件乙种小商品(a>b);回来后,根据市场行情,他将这两种小商品都以每件元的价格出售,在这次买卖中,张师傅赚元钱.178.某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m,那么该商品现在的价格是元(结果用含m的代数式表示).179.某企业今年5月份产值为a(1-10%)(1+15%)万元,比4月份增加了15%,4月份比3月份减少了10%,则3月份的产值是万元.180.如图,空白部分面积可表示为.181.如图是一所住宅的建筑平面图,这所住宅的建筑面积为米2.四、规律探究(共19题)182.化简----…-的结果为.183.(a+3a+5a+…+2007a)-(2a+4a+6a+…+2008a)=.184.观察下面这列数:3,-7,11,-15,19,-23,….则这列数的第7个数是______,第n个数是______.185.观察这一列数:,,,,,依此规律下一个数是.186.根据图中数字的规律,在图形中填空.(3处空白)187.观察下列单项式:x,-3x2,5x3,-7x4,9x5…按此规律,可以得到第6个单项式是,第7个单项式怎样表示.188.有一个多项式为,按这种规律写下去,写出它的第七项和最后一项,这个多项式是几次几项式?189.下列是有规律排列的一列数:,,,,,…,请观察此数列的规律,按此规律,第n个数应是.190.我们把分子为1的分数叫做理想分数,如,,,…,任何一个理想分数都可以写成两个不同理想分数的和,如;;;…根据对上述式子的观察,请把写成两个不同理想分数的和= ;如果理想分数(n是不小于2的正整数),那么a+b= .(用含n 的式子表示)191.观察下列等式:(1)62-12=5×7,(2)72-22=5×9,(3)82-32=5×11,(4)92-42=5×13,…,则第n(n是正整数)个等式是.192.已知S1=x,S2=2S1-1,S3=2S2-1,S4=2S3-1,…,S2012=2S2011-1,则S2012= (用含x的代数式表示).193.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可以发现,任何一个大于1的“正方形数”都可以写成两个相邻“三角形数”之和.即:(1)4=1+3,(2)9=3+6,(3)16=6+10,…按这一规律,请你写出第2012个图中的一条等式:.194.将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是.195.观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳.196.观察如图中的各图形,则第五个图形中有个正方形,第n个图形中有个正方形.197.观察下列图形的排列规律(其中☆、□、●分别表示五角星、正方形、圆)●□☆●●□☆●□☆●●□☆●…若第一个图形是圆,则第2009个图形是(填名称).198.现有若干个★与O的图形,按一定的规律排列如下:★O★★O★★★O★O★★O★★★O★O★★O★★★O★O★…则前2009个图形中有个O的图形.199.如图是用围棋子摆成的一列具有一定规律的“山”字(1)摆第一个图形用枚围棋子,摆第二个图形用枚围棋子,摆第三个图形用______枚围棋子.(2)按照这种方式摆下去,摆第n个图形用枚围棋子.(3)当摆放502枚围棋子时是第几个“山”字?200.数学大师化罗庚说过:“数形结合百般好,数形分离万事难”,图形是研究数学的重要工具,有一些复杂的运算若用图形表示出来,一看便知其结果.如计算:,结果表示为图形,即为图中的阴影部分,显然为.你能创造一个图形来描述1+3+5+7+9的结果吗?利用画出的图形你能得出1+3+5+…+(2n-1)(其中n为正整数)的结果吗?1.解:数轴两侧到原点的距离相等的两数才互为相反数.故(1)错误.对于小于1的正数,它的倒数大于本身;故(2)错误.(3)中的三个都符合整式的定义;故(3)正确;81的平方根为±9,故(4)正确;故选C.2.解:(1)整式包括单项式和多项式.(2)有理数可分为整数和分数.故答案为:单项式,多项式.整数,分数.3.解:根据整式的概念可知,整式有x,,-1,x2-1,,共5个.故选B.4.解:y3+1,-x2y,-8z,0是整式.故选C.5.解:单项式有:-8,-,(π-1)x2,0,共4个.多项式2a2+3a-1,,共2个.故选C.6.解:根据整式,单项式,多项式的概念可知,单项式有:-x,acb,π,;多项式有:.7.解:单项式集合{ y,-,,π …}多项式集合{ m2-m,-x2-2x+1,a-b …}整式集合{ m2-m,-x2-2x+1,y,-,,π,a-b,…}.8.解:代数式2b+bc,3x,m2n,4x2-2x-7,+3,-2,,中,单项式有3x,m2n,-2,共3个,多项式有:2b+bc,4x2-2x-7,+3,共4个,整式共有:7个.9.解:根据整式的定义,除数不能含有字母,故整式有①④⑥⑦,根据多项式的定义,若干个单项式的和组成的式子叫多项式,故多项式有⑥⑦,故答案为①④⑥⑦,⑥⑦.10.解:其中的,+3,-2,是整式.故答案为:4.11.解:①2πR是一次单项式;②是分式;③5x+6y>0不是代数式;④23是单项式;⑤4x2-5y3是多项式.故答案为代数式有①②④⑤,整式有①④⑤,单项式有①④,一次单项式有①.多项式有⑤.12.解:的分母中含有字母,不是单项式,也不是多项式,更不是整式.单项式有:;多项式有:;整式有:.13.解:根据题意可知:整式有:1-a,,32+42,,x2-8x+7.14.解:A、xy+1是两个单项式的和,是多项式,故本选项错误;B、是分式,故本选项错误;C、是两个单项式的和,是多项式,故本选项错误;D、x的系数为1,次数为1,故本选项正确.故选D.15.解:∵单项式-a m b2c的数字因数是-1,所有字母指数的和=m+2+1=3+m,∴此单项式的系数是-1,次数是3+m.故选D.16.解:单项式-5ab的系数是-5,次数是2.17.解:单项式-的系数是-,次数是2.18.解:单项式-32ab3c2的系数为:-32,次数为:1+3+2=6,19.解:单项式-的系数-,-3×103ab5的次数为6.20.解:单项式-的系数是-;写出它的一个同类项,如2x3y2z.21.解:A、0是单独的一个数,故是单项式,故本选项正确;B、单项式a的系数与次数都是1,故本选项正确;C、-2x2y2是四次单项式,故本选项错误;D、-xy的系数是-,故本选项正确.故选C.22.解:A、2是单独的一个数,故是单项式,故本选项错误;B、-2是常数,没有次数,故本选项错误;C、x的指数是1,故本选项错误;D、x的系数是1,故本选项正确.故选D.23.解:A、0、b都是整式;而不是整式,故本选项错误;B、单项式a的系数是1,故本选项错误;C、如代数式没有加减运算,但它不是单项式,故本项错误;D、x2-2xy-y2由x2、-2xy、-y2三项组成,故选项正确.故选D.24.解:A、正确;B、不是单项式,故不是多项式,命题错误;C、正确;D、正确.故选B.25.解:A、-1,a,0都是单项式,故正确;B、x-不是整式,是分式,故错;C、-πx2yz是4次单项式,系数是-π,故错;D、2x2+3x3是3次2项式,故错.故选A.26.解:①根据定义可得:-mn2与-3n2m是同类项,故①正确;②3a-2的相反数是-(3a-2)=-3a+2,故②正确;③单项式5mR2的次数是1+2=3,故③正确;④34x3的次数是3次,是3次单项式,故④错误.综上所述,正确的说法有3个.故选C.27.解:由题意得,m-1+2=5,解得:m=4.28.解:∵是关于x,y的三次单项式,∴1+n=3,解得:n=2,则它的系数为-,次数为3.29.解:根据单项式的次数的定义,可得|k-2|+3=6,即|k-2|=3,∴k-2=+3或-3,解得k=5或-1.30.解:多项式4x3+3xy2-5x2y3+y是五次四项式.31.解:多项式-x2+2x-5的二次系数、一次项系数和常数分别为-1,2,-5,32.解:多项式x2y-12xy+8中x2y的次数最高为3,次多项式的次数即为3.单项式πx2y3的系数为π.33.解:依题意得的系数是,次数是2+3+1=6;多项式x+y-xy +23是二次四项式.34.解:∵多项式的次数是“多项式中次数最高的项的次数”,∴多项式7a2b-14ab2-5ab+6中次数最高的项是3次,有4个单项式组成,∵单项式的次数是单项式中所有字母指数的和,∴二次项是-5ab.故填空答案:3;4;-5ab.35.解:由题意得:-a2b-ab+1是3次3项式,最高次项-a2b,二次项系数为-,常数项是1.36.x2y2πr24 3 237.解:(1)三次三项式;(2)四次三项式;(3)五次四项式;(4)四次三项式.38.解:(2)中含有分式,不是和的形式,所以不是多项式;(1)x4+2x2-1是四次三项式;(3)a3+2ab+b3-a3b是四次四项式.39.解:(1)①、②、⑦是单项式,系数分别为、-5.8、1,次数分别是3、4、1.(2)④、⑥是多项式,④的项分别是a2、-ab、-2b2,次数为2,⑥的项分别为,次数为3.(3)①、②、④、⑥、⑦是整式.40.解:(1)按x的升幂排列:cy3+7xy2-2x2y-ax3;(2)按x的降幂排列:-ax3-2x2y+7xy2+cy3;(3)按y的降幂排列:cy3+7xy2-2x2y-ax3;(4)按y的升幂排列:-ax3-2x2y+7xy2+cy3.41.解:系数为-2,只含字母x、y的三次单项式为-2x2y.42.解:开放型题目,无固定答案.如x2+x+8该整式总共三项最高项是2次,各项系数和为:1+1+8=10.所以该整式满足条件.43.解:依题意得此多项式是:-2b2-0.5b+3.44.解:3-x+2y-4xy2(答案不唯一).45.解:设□内数字为a,根据题意得-2+5-10-a=-5,解得a=-2.46.解:根据题意得-(a-1)=0,-(b+1)=0,解得a=1,b=-1.47.解:∵多项式5x2-(a-)xy-3y2+6中不含xy项,∴a-=0,解得a=.48.解:∵多项式3a2b3-8ab+5与的常数项相同,∴-n+2=5,解得:n=-3,∴原式=9+3+3=15.49.解:∵单项式3x2y n的次数为5,多项式6+x2y-x2-x2y m+3的次数为6,∴2+n=5,2+m+3=6,解得:m=1,n=3,∴(m+n)x m y n=4xy3系数是4,次数是1+3=4,4+4=8,即单项式(m+n)x m y n的次数与系数的和是8.50.解:∵多项式6x n+2-x2-n+2是一个五次三项式,∴n+2=5或2-n=5,当n+2=5时,n=3,此时n2-2n+1=9-6+1=4;当2-n=5时,n=-3,此时6x n+2是分式,不合题意.二、整式的加减运算--合并同类项、去括号、化简求值(共117题)51.解:原式=(-)mn=-mn.52.解:原式=-6x+3x2+x2-4x=4x2-10x.53.解:原式=-y2-4y2+y2+3y=-3y2+3y.54.解:原式=8x2-10x-3x2=5x2-10x.55.解:原式=x-2y+2y=x.56.解:原式=2x-3y+2x=4x-3y.57.解:(2x-4y)+2y=x-2y+2y=x.58.解:原式=-2x+x-3=-x-3.59.解:原式=-7x3-2x2-3x2+5x3=-2x3-5x2.60.解:原式=7a2-7ab-6+2-4a2=7a2-7ab-4.61.解:原式=3a2+b2-5ab+4ab-b2+7a2=10a2-5ab.62.解:原式=3x-2x+2y=x+2y.63.解:原式=5x2-5x2-2=-2.64.解:原式=a-a-+a-=-.65.解:(2xy-y)-(-y+xy)=2xy-y+y-xy=xy.66.解:原式=7y-3z-8y+5z=2z-y.67.解:原式=5x-3y-2x-5y=3x-8y.68.解:原式=8a-7b-4a+5b=4a-2b.69.解:原式=5a-3b-6a+12b=-a+9b.70.解:原式=3a2-b2-3a2+6b2=5b2.71.解:原式=3a2-14b-3a2-6b=(-14-6)b=-20b.72.解:3(a-3b)-7(2a+5b)=3a-9b-14a-35b=-11a-44b.73.解:原式=-m+2n+m-n=n.74.解:原式=-3x-x-1+4x+2=1.75.解:(x2-2xy)-(xy+x2)=x2-2xy-xy-x2=-3xy.76.解:(a-b)-(a+b)=a-b-a+b=-2b.77.解:原式=x2+y2-3x2+6y2=-2x2+7y2.78.解:原式=12x-6+3-24x=12x-24x+3-6=-12x-3.79.解:原式=2x2-x+3+x2-4x+1=3x2-5x+4.80.解:原式=a-2a+3b+3a-4b=2a-b.81.解:原式=3x-y-x+2y=x+y.82.解:原式=2a-b-3a+2b-2a+4b=-3a+5b.83.解:原式=4x2-5x+2-x2-2x-7=3x2-7x-5.84.解:(13x-11y+10z)-(15x+10y-15z)=13x-11y+10z-15x-10y+15z =-2x-21y+25z.85.解:2x-(5a-7x-2a)=2x-5a+7x+2a=9x-3a.86.解:原式=x3-y3-x3-y3+y3-1=(1-1)x3-(1+1-1)y3-1=-y3-1.87.解:-(-a)2-b2-(-b2)=-a2-b2-+b2=-a2.88.解:3a-4a+5b+-4b=-a+b.89.解:5(a+b)+-5(a-b)=(5-)(a+b)+(-5)(a-b)=a+b-a+b=b.90.解:5ab-4a2b2-(8a2b2+3ab)=5ab-4a2b2-8a2b2-3ab=-12a2b2+2ab.91.解:3(2x-y)-2(4x+y)+4=6x-3y-8x-y+4=-2x-4y+4.92.解:原式=4a2-3a+2+4a-a2-2a2-a=a2+2.93.解:原式=-7x2+6x2-5xy-3y2-xy+x2=-6xy-3y2.94.解:原式=2xy2+3x2y-6x2y+3xy2=5xy2-3x2y.95.解:原式=2x3-7x2+9x-2x3+6x2-8x=-x2+x.96.解:原式=x2-y+x-y2-x2-y2=x2-y2-y+x.97.解:原式=2x2-3x+1+3x2-5x+7=5x2-8x+8将多项式5x2-8x+8按字母x的降幂排列是5x2-8x+8.98.解:原式=a+2a+a-b=4a-b.99.解:原式=3x-(5x-2x+1)=3x-5x+2x-1=-1.100.解:3xy-3(4yx-2x)+(2xy-2x)=3xy-12yx+6x+2xy-2x=4x-7xy.101.解:原式=2x3-x2-x-2x3+x2-x=-2x.102.解:原式═2x2-5x-3x-5+2x2=4x2-8x-5.103.解:原式=4xy-2x2+4xy-8xy+4x2=2x2.104.解:4a2-3a+3-3(-a3-2a3+1)=4a2-3a+3+3a3+6a3-3=9a3+4a2-3a.105.解:4(a2b-2ab2)-(a2b+2ab2)=4a2b-8ab2-a2b-2ab2=3a2b-10ab2.106.解:原式=a2-3ab+4b2-2b2+3ab+3a2=4a2+2b2.107.解:原式=7x3+2x2+3x2-5x3=(7-5)x3+(2+3)x2=2x3+5x2.108.解:(-3ax2-ax+3)-(-ax2-ax-1)=-ax2-ax+1+ax2+ax+1 =ax+2.109.解:原式=-2a2b+ab2-a3+2a2b-3ab2=-ab2-a3.110.解:-3xy+y2+(x2+xy)=-3xy+y2+x2+xy=x2-2xy+y2.111.解:(x2-5x+3)-(7x+9)=x2-5x+3-7x-9=x2-12x-6.112.解:(3a2-b2+5ab)+(a2-ab+b2)=3a2-b2+5ab+a2-ab+b2=4a2+4ab.113.解:(c-d)+(a-c)-(-b+d)=c-d+a-c+b-d=a+b-2d.114.解:根据题意得:(2x2-x-5)-(x2-2x+1)=2x2-x-5-x2+2x-1=x2+x-6.115.解:(3x2-4xy+y2)+(-xy+3y2)=3x2-4xy+y2-xy+3y2=3x2-5xy+4y2.116.解:a-(a-4b-6c)+3(-2c+2b)=a-a+4b+6c-6c+6b=()a+(4+6)b+(6-6)c=-a+10b.117.解:原式=3+3a-2a+20=23+a.118.解:原式=-(-0.1x+y+2x+0.4y)=-(1.9x+1.4y)=-1.9x-1.4y.119.解:原式=0.1x-y+2x+0.4y=2.1x-0.6y.120.解:-8m2-[4m-2m2-(3m-m2-7)-8]=-8m2-[4m-2m2-3m+m2+7-8] =-8m2-(-m2+m-1)=-8m2+m2-m+1=-7m2-m+1.121.解:原式=2-2x-6y+3x-6y=2+x-12y.122.解:x2-[x2-(x2-1)]-1=x2-x2+(x2-1)-1=x2-x2+x2-1-1=x2-2.123.解:原式=x+{3y-[2y-2x+3y]}=x+{3y-2y+2x-3y}=x+3y-2y+2x-3y =3x-2y.124.解:原式=m-{3n-4m+[m-5m+5n+m]}=m-{3n-4m+5n-3m}=m-3n+4m-5n+3m=8m-8n.125.解:原式=-(-a2+b2)-b2=a2-b2-b2=a2-2b2.126.解:原式=-(a3-2b3+3ab-2)=2-a3-3ab+2b3.127.解:(1)-7ab-14abx+49aby=-7ab(1+2x-7y);(2)mn(m-n)2-n(n-m)3=n(m-n)2(2m-n).128.解:根据题意得:(2a2+ab+3b3)-(a2-2ab+b2)=2a2+ab+3b3-a2+2ab-b2=a2+3ab+2b2.129.解:(2a-3ab+4b)-(-2a+5ab-b)=2a-3ab+4b+2a-5ab+b =4a-8ab+b.130.解:原式=(x2-3xy+4)-(-x2+xy-)=x2-3xy+4+x2-xy+=(+)x2-(3+1)xy+(4+)=x2-4xy+.131.解:2x-3y+5z-(-2x+4y-6z)=2x-3y+5z+2x-4y+6z=4x-7y+11z.132.解:(4a+3ab-b)-(-2a-ab+b)=4a+3ab-b+2a+ab-b=6a+ab-b.133.解:B=(x2-7xy+y2)-(2x2-y2)=x2-7xy+y2-2x2+y2=-x2+2y2-7xy134.解:根据题意得:(-x2+6x-5)+(4x2+3x-5)=-x2+6x-5+4x2+3x-5=3x2+9x-10.135.解:根据题意得:3a2-4ab+7b2-(7a2-5ab-3b2)=3a2-4ab+7b2-7a2+5ab+3b2=-4a2+ab+10b2 .136.解:设这个多项式为M,则M=x2-1+(-3+x-2x2)=(1-2)x2+x-4=-x2+x-4.137.解:原式=(x2-2x+3)+(3x2+x-5)-(5x2-x)=x2-2x+3+3x2+x-5-5x2+x=-x2-2.138.解:∵A=2x2-3xy-y2,B=-x2+2xy-3y2,∴2A-3B=2(2x2-3xy-y2)-3(-x2+2xy-3y2)=4x2-6xy-y2+3x2-6xy+9y2=7x2-12xy+y2.139.解:∵A+B=C,且B=(3x-6),C=(x-4),∴A=C-B=(x-4)-(3x-6)=x-2-x+1=-1.140.解:A-(B+C)=x3-2x2+4x+3-(x2+2x-6+x3+2x-3)=x3-2x2+4x+3-x2-2x+6-x3-2x+3=-3x2+12.141.解:∵M=-12p+3q,N=3q-5p,∴M+N=(-12p+3q)+(3q-5p)=-12p+3q+3q-5p=-17p+6q,M-2N=(-12p+3q)-2(3q-5p)=-12p+3q-6q+10p=-2p-3q.142.解:∵a-c=2,b-c=3,∴a+b-2c=(a-c)+(b-c)=2+3=5.143.解:∵a2+ab=2,ab+b2=-1,∴①两式相加得:(a2+ab)+(ab+b2)=2+(-1),∴a2+2ab+b2=1,②两式相减得:(a2+ab)-(ab+b2)=2-(-1),∴a2-b2=3.144.解:∵a2+ab=5,ab+b2=4,∴a2+3ab+2b2=(a2+ab)+2(ab+b2)=5+8=13.145.解:∵4a-3b3=7,3a+2b3=9,∴,由①+2×②得10a+b3=7+2×9=25.146.解:(3x2-3x+2)-(-x2+3x-3)=3x2-3x+2+x2-3x+3=4x2-6x+5=Ax2-Bx+C,可得A=4,B=6,C=5.147.解:原式=-x2+3xy-y2+x2-4xy+y2=x2-xy+y2∴空格处是-xy.148.解:根据题意得:(-5x+8y+x-2x-5y)=(-6x+3y)=-2x+y.149.解:设二次项系数为a,常数项为b,则ax2+6x-7+[3x2-4x+b]=x2+2x+1,∴,∴a=-2,b=8,∴二次项为-2x2,常数项是8.150.解:根据题意得:b<0<a,且|b|>|a|,∴a-b>0,a+b<0,b-2a<0,则|a-b|-|a+b|+2|b-2a|=a-b+a+b-2b+4a=6a-2b.151.解:由有理数a、b在数轴上的位置可得:a<2,b<-2,∴a-2<0,b+2<0,∴|a-2|+|b+2|+|a|-|b|=-(a-2)-(b+2)+a-(-b)=-a+2-b-2+a+b=0.152.解:若五次项是同类项,且系数相同或互为相反数,则A+B或3A-2B的次数不高于五次;否则A+B或3A-2B的次数一定是五次,也就是次数不高于五次的多项式;AB一定是十次多项式.故选C、C、D.153.解:根据题意得,3x3-(-2m)x3=0,∴3-(-2m)=0.解得m=-.154.解:由于x p-2+4x3-(q-2)x2-2x+5是关于x的五次四项式,则p、q需满足,解得;故p+q=9.155.解:由题意得,3+n=2,3m-2n=m+1,解得,n=-1,m=.156.解:-3a(a-2b)5+6b(a-2b)5-5(-a+2b)3=(a-2b)5(-3a+6b)+5(a-2b)3=-3(a-2b)6+5(a-2b)3.当a-2b=-1时,原式=-3×(-1)6+5(-1)3=-3×1+5×(-1)=-8.157.解:∵=ad-bc,∴-5(x2-3)-2(3x2+5)=-6,-5x2+15-6x2-10=-6,-11x2+5=-6,11x2-5=6.158.解:由题意得(x+y)※(x-y)=3(x+y)+2(x-y)=5x+y,所以[(x+y)※(x-y)]※3x=(5x+y)※3x=3(5x+y)+2•3x=21x+3y.159.解:由代数式的值与x值无关,得x2及x的系数均为0,n=0,m-1=0,解得m=1,n=0.160.解:3x2-2x+b+(-x-bx+1)=3x2-2x+b-x-bx+1=3x2+(-2-1-b)x+1,∵3x2-2x+b+(-x-bx+1)中不存在含x的项,∴-2-1-b=0,∴b=-3.161.解:原式=x2+ax-3-bx2+2x-9=(1-b)x2+(a+2)x-12,由结果为常数,得到1-b=0,a+2=0,解得:a=-2,b=1,则a+b=-2+1=-1.162.解:∵A=2x2+3xy-2x-1,B=-x2+xy-1,∴3A=3(2x2+3xy-2x-1)=6x2+9xy-6x-3,∴6B=6(-x2+xy-1)=-6x2+6xy-6,∴3A+6B=(6x2+9xy-6x-3)+(-6x2+6xy-6)=6x2+9xy-6x-3-6x2+6xy-6=15xy-6x-9=3x(5y-2)-9.∵3A+6B的值与x无关,∴5y-2=0,解得:y=.163.解:原代数式可化简为(2-2b)x2+(3a+6)x-5y+2,∵其值与字母x的取值无关,∴2-2b=0,3a+6=0,所以a=-2,b=1,则代数式(a-b)-(a+b)=-2b=-2.164.解:∵多项式2(x2-3xy-y2)-(x2+2mxy+2y2)=2x2-6xy-2y2-x2-2m xy-2y2=x2+(-6-2m )xy-4y2,又∵多项式2(x2-3xy-y2)-(x2+2mxy+2y2)中不含xy项,∴-6-2m=0,解得m=-3.165.解:∵多项式6mx2+4nxy+2x+2xy-x2+y+4=(6m-1)x2+(4n+2)xy+2x+y+4不含二次项,即二次项系数为0,即6m-1=0,∴m=;∴4n+2=0,∴n=-,把m、n的值代入6m-2n+2中,∴原式=6×-2×(-)+2=4.166.解:由于2x+5y+4z=15,7x+y+3z=14;令4x+y+2z=m(2x+5y+4z)+n(7x+y+3z)=(2m+7n)x+(5m+n)y+(4m+3n)z;由于左边=右边,则可列方程组;解得:.因此4x+y+2z=m(2x+5y+4z)+n(7x+y+3z)=×15+×14=9.167.解:设空白出面积为c,根据题意得:a+c=25,b+c=9,即b-a=-16,则原式=a+5b-2a-4b=b-a=-16.三、列代数式(共14题)168.解:2•a+1=2a+1.169.解:(1)根据题意列得:-;(2)根据题意列得:.170.解:根据题意得:(2a+1)+(a2-2)+(a2-2a+1)=2a+1+a2-2+a2-2a+1=2a2.171.解:另一边的长为:(2a+b)+(a-b)=3a.∴周长为[(2a+b)+3a]×2=10a+2b.172.解:根据题意得:方框圈出的9个数为x-8,x-7,x-6,x-1,x,x+1,x+6,x+7,x+8,则这9个数之和为x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x.173.解:由十位数字为a,根据题意得个位数字为2a-3,则这个两位数是10a+(2a-3)=10a+2a-3=12a-3.174.解:设上车乘客x人,根据题意,得,2a-b-(2a-b)+x=8a-5b解此方程得,x=(14a-9b)175.解:根据题意得:5x+2y+5x+2y-(2x+y)=10x+4y-2x-y=8x+3y(元),则小刚与小明一共花了(8x+3y)元.176.解:食杂店卖面包收入=b+0.8c+0.4(a-b-c)-0.7a=0.6b+0.4c-0.3a.177.解:根据题意列得:20(-a)+30(-b)=20×+30×=10(b-a)+15(a-b)=10b-10a+15a-15b=5(a-b)(元),则这次买卖中,张师傅赚5(a-b)元.178.解:第一次降价后价格为100(1-m)元,第二次降价是在第一次降价后完成的,所以应为100(1-m)(1-m)元,即100(1-m)2元.179.解:由题意可知:5月份是4月份的1+15%,4月份是3月份的1-10%,利用5月份产值a(1-10%)(1+15%)依次除以(1+15%)得出四月份,再除以(1-10%)得出三月份的产值即可.a(1-10%)(1+15%)÷(1+15%)÷(1-10%)=a(万元).答:3月份的产值是a万元.180.解:把阴影部分进行平移后,空白部分是边长为(20-a)的正方形,面积为:(20-a)2.181.解:由图可知,这所住宅的建筑面积=三个长方形的面积+一个正方形的面积.这所住宅的建筑面积为x2+2x+12+6=x2+2x+18(米2).四、规律探究(共19题)182.解:原式=b3-b3+b3-b3+…+b3-b3+b3;共2009项.其中第1项、第2项的和为0,第3项和第4项的和为0,…第2007项和第2008项的和为0.所以原式=b3.183.解:原式=a+3a+5a+…+2007a-2a-4a-6a-…-2008a=-1004a.184.解:根据题意得:这列数的第7个数是27,第n个数为(-1)n-1•(4n-1).185.解:符号是一负一正间隔出现,分母是依次大3,分子是依次大2,4,8,16,…,按此规律得出下一个数为.186.解:观察数字变化规律可知:第n个上面的数为2n-1,左下的数为2n,右下的数为(2n)2-1.187.解:单项式为(-1)n+1(2n-1)x n,则第6个单项式-11x6,第7个单项式为13x7.188.解:观察得到奇数项系数为1,偶数系数为-1,a与b的指数和为10,并且字母b的指数比项数小1,然后根据此规律得到第七项和最后一项,再判断这个多项式是几次几项式.第七项为a4b6;最后一项为b10,这个多项式是十次十一项式.189.解:第奇数个数是负数,第偶数个数是正数,那么第n个数的符号为(-1)n,第1个数的分子是1,分母为21,第2个数的分子为2,分母为22,可得第n个数的分子与分母.第n个数的符号为(-1)n,分子为n,分母为2n,∴第n个数应是.190.解:∵;;,∴写成两个不同理想分数的和=+,∵=+,有(2+1)2=3+6;在=+,有(3+1)2=4+12;∴如果理想分数=+,那么a+b=(n+1)2.191.解:∵(1)62-12=5×7,(2)72-22=5×9,(3)82-32=5×11,(4)92-42=5×13,…,∴第n(n是正整数)个等式是(n+5)2-n2=5•(2n+5).192.解:∵S1=x,S2=2S1-1=2x-1,S3=2S2-1=2(2x-1)-1=4x-3,S4=2S3-1=8x-7,S5=2S4-1=16x-15,…,S2012=2S2011-1,20=1,21=2,22=4…;1=21-1,3=22-1,7=23-1,15=24-1…则S2012=22011x-22011+1.193.解:∵4=22=1+2+1,9=32=1+2+3+2+1,16=42=1+2+3+4+3+2+1,∴36=62=1+2+3+4+5+6+5+4+3+3+2+1=15+21;(n+1)2=1+2+3+4+...+(n-1)+n+(n+1)+n+(n-1)+(n-2)+...+1 =[1+2+3+4+...+(n-1)+n]+[(n+1)+n+(n-1)+(n-2)+ (1)=n(n+1)+(n+1)(n+2),∴第2012个图中:∴20132=+.故答案为:20132=+.194.解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n次得到4n+1个正方形,195.解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳,第二行小太阳的个数是1、2、4、8、…、2n-1,第5个图形有24=16个太阳,所以第5个图形共有5+16=21个太阳.196.解:第1个图形有3个正方形,第2个图形有7个正方形,第3个图形有11个正方形,…,第n个图形有(4n-1)个正方形,当n=5时,第5个图形有4×5-1=19个正方形.197.解:根据题意分析可得:圆、正方形、五角星前七个一组,依次循环;且2009除以7没有余数;故第2009个图形是五角星.2009÷7=287,没有余数,那么第2009个图形是第七个,也就是五角星.。

部编数学七年级上册专题02整式的加减(解析版)含答案

部编数学七年级上册专题02整式的加减(解析版)含答案

专题02 整式的加减一、单选题1.下列代数式属于二次三项式的是( )A .2231x y x ++B .21x y x ++C .2x y xy ++D .22xy yx +-2.下列运算错误的是( )A .﹣5x 2+3x 2=﹣2x 2B .5x +(3x ﹣1)=8x ﹣1C .3x 2﹣3(y 2+1)=﹣3D .x ﹣y ﹣(x +y )=﹣2y 【答案】C【分析】根据整式的加减计算法则,进行逐一求解判断即可.【解析】解:A 、222532x x x -+=-,故此选项不符合题意;B 、5(31)53181x x x x x +-=+-=-,故此选项不符合题意;C 、222233(1)333x y x y -+=--,故此选项符合题意;D 、()2x y x y x y x y y --+=---=-,故此选项不符合题意;故选C .【点睛】本题主要考查了整式的加减运算,解题的关键在于能够熟练掌握相关计算法则.3.下列说法中正确的有( )个.①27xy -的系数是7;②2xy -与3x 没有系数;③23ab c 的次数是5;④3m -的系数是1-;⑤2323m n -的次数是232++;⑥213r h p 的系数是13.A .0B .1C .2D .34.下列各组中的两个单项式不是同类项的是( )A .32a b 与3ba-B .-3与0C .3212m n 与232m n -D .26m a 与29ma -5.已知23x y +=,则多项式241x y +-的值是( )A .7B .2C .1-D .5【答案】D【分析】根据已知23x y +=可得()22246x y x y +=+=,代入计算后即可求得结果.【解析】解:∵23x y +=,∴()2224236x y x y +=+=´=,∴241615x y +-=-=.故选:D .【点睛】此题考查了代数式求值,利用了整体代入的思想,能准确判断代数式之间的关系是解题的关键.6.黑板上有一道题,是一个多项式减去2351x x -+,某同学由于大意,将减号抄成加号,得出结果是2537x x +-,这道题的正确结果是( ).A .2826x x --B .214125x x --C .2288x x +-D .2139x x -+-【答案】D【分析】先利用加法的意义列式求解原来的多项式,再列式计算减法即可得到答案.【解析】解:()22537351x x x x +---+22=537351x x x x +--+-2288x x =+-所以的计算过程是:()22288351x x x x +---+22288351x x x x =+---+2139x x =-+-故选:.D 【点睛】本题考查的是加法的意义,整式的加减运算,熟悉利用加法的意义列式,合并同类项的法则是解题的关键.7.如果一个多项式是三次多项式,那么( )A .这个多项式至少有两项,并且最高次项的次数是3B .这个多项式一定是三次四项式C .这个多项式最多有四项D .这个多项式只能有一项次数是3【答案】A【分析】根据多项式次数和多项式的概念,逐一判断选项即可.【解析】解:如果一个多项式是三次多项式,那么这个多项式至少有两项,并且最高次项的次数是3,如果一个多项式是三次多项式,这个多项式不一定是三次四项式,如果一个多项式是三次多项式,这个多项式不一定有四项,如果一个多项式是三次多项式,这个多项式不一定只有一项次数是3,故选A .【点睛】本题主要考查多项式相关概念,掌握多项式次数和项数的定义是解题的关键.8.已知多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则C 为( )A .2225x y z --B .22235x y z --C .22233x y z --D .22235x y z +-【答案】B【分析】由题意得222222=()3)24(2C x y z z A y B x +--+-+=---,进行计算即可得.【解析】解:由于多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则222222=()3)24(2C x y z z A y B x +--+-+=---=2222222432x y z x y z ++----=22235x y z --,故选:B .【点睛】本题考查了整式的加减,解题的关键是掌握整式加减的步骤.9.若3223323M x x y xy y =-++,322325N x x y xy y =-+-,则322327514x x y xy y -++的值为( ).A .M N+B .M N -C .3M N -D .3N M -【答案】C【分析】分别计算:M N +,M N -,3M N -,3N M -化简后可得答案.【解析】解:32232532M N x x y xy y +=-+-,故A 不符合题意;2238M N x y xy y -=-++,故B 不符合题意;322332233396925M N x x y xy y x x y xy y -=-++-+-+3223=27514x x y xy y -++,故C 符合题意;322332233=36315323N M x x y xy y x x y xy y --+--+--3223=2318x x y xy y -+-,故D 不符合题意;故选:.C 【点睛】本题考查的是整式的加减运算,掌握合并同类项的法则与去括号的法则是解题的关键.10.在学校温暖课程数字兴趣课中,嘉淇同学将一个边长为a 的正方形纸片(如图1)剪去两个相同的小长方形,得到一个的图案(如图2),剪下的两个小长方形刚好拼成一个“T”字形(如图3),则“T”字形的外围周长(不包括虚线部分)可表示为( )A .35a b-B .58a b -C .57a b -D .46a b-二、填空题11.在下列各式①235a bc ,②0,③3x y -,④3p ,⑤2s r p =,⑥75x -+,⑦24b ac -,⑧m ,⑨11a +中,其中单项式是_______,多项式是_______,整式是_______.(填序号)【点睛】本题主要考查单项式、多项式、整式的定义,熟练掌握上述定义是解题的关键.12.多项式3251x x -+-是______次______项式,其中三次项是______,二次项系数是______,一次项系数是______,常数项是______.【答案】 三##3 三##3 32x - 0 5 1-【分析】根据多项式的次数、项、系数的定义写出即可.【解析】多项式3251x x -+-是三次三项式,其中三次项是32x -,二次项系数是0,一次项系数是5,常数项是1-.故答案为:三;三;32x -;0;5;1-.【点睛】本题考查了多项式的项数,系数,此时,掌握多项式的定义是解题的关键.多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数,一个多项式的项数就是合并同类项后用“+”或“-”号之间的多项式个数,次数就是次数和最高的那一项的次数; 一个多项式中,次数最高的项的次数,叫做这个多项式的次数;多项式的项数就是多项式中包含的单项式的个数.13.添括号:(1)22916a b -+=-();(2)23()b a a b -+-=-()23()a b +-.【答案】 22916a b - -a b【分析】(1)(2)利用添括号法则计算得出答案.【解析】解:(1)()2222916916a b a b -+=--,(2)()223()3()b a a b a b a b -+-=--+-,故答案为:(1)22916a b -;(2)-a b .【点睛】此题主要考查了添括号,正确把握运算法则是解题关键.14.若单项式2+7m n a b -与单项式443a b -的和仍是一个单项式,则m -n =_______.【答案】9【分析】直接利用合并同类项法则得出m ,n 的值,进而得出答案.【解析】由题意知:单项式2+7m n a b -与单项式443a b -是同类项,∴m -2=4,n +7=4,解得:m =6,n =-3,故m -n =6-(-3)=9.故答案为:9.【点睛】此题主要考查了合并同类项,正确得出m ,n 的值是解题关键.15.某超市搞促销活动,对一种软皮本的销售方式是买一赠一,即买一本软皮本赠送一支铅笔,这种软皮本每本定价2元,铅笔每支定价0.3元,若小明的爸爸买回软皮本x 本,铅笔y 支,则需要付______________元钱【答案】2x 或1.70.3x y+【分析】根据题意列式计算即可得.【解析】解:当x y ³时:2x (元);当x <y 时:[]20.3()(1.70.3)x y x x y +-=+(元),故答案为:2x 或1.70.3x y +.【点睛】本题考查了代数式,解题的关键是找出题意中的关系列出代数式.16.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如 ()2222153x x x x --+=-+-,则所捂住的多项式是_____.【答案】232+-x x 【分析】根据加减法互为逆运算移项,然后去括号、合并同类项即可.【解析】解: 捂住的多项式是:()2253221x x x x -+-+-+=2253221x x x x -+-+-+=232+-x x 故答案为: 232+-x x .【点睛】此题考查的是整式的加减法,掌握去括号法则和合并同类项法则是解决此题的关键.17.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.【答案】3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【解析】解:()221325x k xy y xy +----=()22335x k xy y +---,∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.18.已知22251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.三、解答题19.下列代数式中哪些是单项式?哪些是多项式?分别填入所属的圈中.指出其中各单项式的系数;多项式中哪个次数最高?次数是多少?222223315,,23,44,,2x a b x y a b ab b a x y xp ---+-+-20.已知多项式212336m x y xy x ++--是六次四项式,单项式256n m x y -的次数与这个多项式的次数相同,求m n +的值.【答案】5m n +=.【分析】根据多项式的次数和项数以及单项式的次数的定义求得,m n 的值,进而求得m n +的值.【解析】因为多项式212336m x y xy x ++--是六次四项式,所以216m ++=, 解得3m =.因为单项式256n m x y -的次数与这个多项式的次数相同,所以256n m +-=,所以2134n =+=,解得2n =.故325m n +=+=.【点睛】本题考查了多项式的次数和项数,掌握多项式的次数和项数是解题的关键.21.计算:(1)3323235912322ab a b a b ab a b a b -+----(2)()2246312x x x x éù----ëû(2)原式=()2246312x x x x --+-=2246312x x x x -+-+=2631x x --.【点睛】本题主要考查整式的加减运算,掌握去括号,再合并同类项是解题的关键.22.已知 A −B =7a 2−7ab +1,且B =−4a 2+6ab +5,(1)求A ;(2)若2|1|(2)0a b ++-=,求A B +的值.【答案】(1)3a 2−ab +6;(2)A +B =0.【分析】(1)根据A =A -B +B ,代入计算即可;(2)根据非负数的性质得到a 和b ,求出A +B ,代入计算即可.【解析】解:(1)∵A −B =7a 2−7ab +1,B =−4a 2+6ab +5,∴A =A -B +B=7a 2−7ab +1+(−4a 2+6ab +5)=7a 2−7ab +1−4a 2+6ab +5=3a 2−ab +6;(2)∵|a +1|+(b −2)2=0,∴a +1=0,b -2=0,∴a =-1,b =2,∴A +B=3a 2−ab +6−4a 2+6ab +5=−a 2+5ab +11=−(−1)2+5×(−1)×2+11=0.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.小刚在计算一个多项式A 减去多项式22b -3b-5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是2b 3b-2+.(1)求这个多项式A ;(2)求出这两个多项式运算的正确结果;(3)当b =﹣2时,求(2)中结果的值.【答案】(1)3b 2+6b +3;(2)b 2+9b +8;(3)-6.【分析】(1)依题意得A =(b 2+3b ﹣2)+(2b 2+3b +5)即可计算;(2)利用整式的加减运算即可求解;(3)把b =﹣2代入即可求解.【解析】(1)A =(b 2+3b ﹣2)+(2b 2+3b +5),=b 2+3b ﹣2+2b 2+3b +5,=3b 2+6b +3;(2)(3b 2+6b +3)﹣(2b 2﹣3b ﹣5)=3b 2+6b +3﹣2b 2+3b +5,=b 2+9b +8;(3)当b =﹣2时,原式=(﹣2)2+9×(﹣2)+8=4-18+8=-6.【点睛】此题主要考查整式的加减运算,解题的关键是熟知整式的加减运算法则.24.(1)已知2223,1A x x B x x =-=-+,求当1x =-时代数式3A B -的值.(2)已知,a b 为常数,且三个单项式234,,3b xy axy xy -相加得到的和仍然是单项式.那么a b +的值可能是多少?请你说明理由.【答案】(1)-4;(2)-3或-1【分析】(1)先把A 、B 代入得出(2x 2-3x )-3(x 2-x +1),去括号、合并同类项后得出-x 2-3,把x =-1代入求出即可.(2)根据已知得出4xy 2,axy 3-b ,3xy 是同类项,根据同类项定义得出a =-4,3-b =2或a =-3,3-b =1,代入求出即可.【解析】解:(1)∵A =2x 2-3x ,B =x 2-x +1,∴A -3B=(2x 2-3x )-3(x 2-x +1)=2x 2-3x -3x 2+3x -3=-x 2-3,当x =-1时,原式=-(-1)2-3=-4.(2)∵4xy 2,axy 3-b ,3xy 的和仍是一个单项式,∴a =-4,3-b =2,解得:b =1,则a +b =-4+1=-3;或a =-3,3-b =1,解得:b =2,则a +b =-3+2=-1.故a +b 的值可能是-3或-1.【点睛】本题考查了整式的加减,求代数式的值等知识点,解此题的关键是正确化简,题目具有一定的代表性,是一道比较好的题目.25.已知关于x 、y 的多项式mx2+4xy ﹣x ﹣3x2+2nxy ﹣4y 合并后不含有二次项,求n ﹣m 的值.【答案】-5【解析】试题分析:由于多项式mx 2+4xy ﹣x ﹣2x 2+2nxy ﹣4y 合并后不含有二次项,即二次项系数为0,在合并同类项时,可以得到二次项为0,由此得到故m 、n 的方程,即m ﹣3=0,4+2n=0,解方程即可求出m ,n ,然后把m 、n 的值代入n ﹣m ,即可求出代数式的值.试题解析:解:mx2+4xy ﹣x ﹣3x2+2nxy ﹣4y=(m ﹣3)x2+(4+2n )xy ﹣x ﹣4y ,∵合并后不含二次项,∴m ﹣3=0,4+2n=0,∴m=3,n=﹣2,∴n ﹣m=﹣2﹣3=﹣526.(1)先化简,再求值: 22225(3)4(3)a b ab ab a b ---+,其中2,3a b =-=.(2)已知226,2a b ab +==-,求代数式2222(43)(752)a ab b a ab b +---+的值.【答案】(1)3a 2b -ab 2,54;(2)-34【分析】(1)原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把已知等式代入计算即可求出值.【解析】解:(1)原式=15a 2b -5ab 2+4ab 2-12a 2b=3a 2b -ab 2,当a =-2,b =3时,原式=()()2232323´-´--´=54;(2)原式=4a 2+3ab -b 2-7a 2+5ab -2b 2=-3(a 2+b 2)+8ab ,当a 2+b 2=6,ab =-2时,原式=-18-16=-34.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.27.(1)某同学做一道数学题:“两个多项式A 、B ,其中2231B x x =--,试求2A B +”,这位同学把“2A B +”看成“2A B -”,结果求出答案是2571x x -++,那么2A B +的正确答案是多少?(2)已知781a b c +=+=-,求代数式222()()()b a c b c a -+-+-的值.【答案】(1)2353x x --;(2)146【分析】(1)先根据条件求出多项式A ,然后将A 和B 代入A +2B 中即可求出答案.(2)对所给的等式变形,分别求出b -a ,c -b ,c -a 的值,再整体代入所求代数式中,求值即可.【解析】解:(1)由题意可得:A =()225712231x x x x -+++--=22571462x x x x -+++--=21x x -+-∴A +2B =()2212231x x x x -+-+--=221462x x x x -+-+--=2353x x --;(2)∵781a b c +=+=-,∴b -a =-1,c -b =9,c -a =8,∴原式=(-1)2+92+82,=1+81+64,=146.【点睛】本题考查的是整式的加减,代数式求值,利用整体代入求代数式的值比较关键.28.定义:若a b ab +=,则称a 、b 是“白马湖数”例如:3 1.5315+=´.,因此3和1.5是一组“白马湖数”(1)1-与_____是一组“白马湖数”;(2)若m 、n 是一组“白马湖数”,112323622mn m n m mn éùæö-+-+-ç÷êúèø的值.29.小方家住房户型呈长方形,平面图如下(单位:米),现准备铺设地面,三间卧室铺设木地板,其它区域铺设地砖.(1)a的值为_______.(2)铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)?(3)已知卧室2的面积为21平方米,按市场价格,木地板单价为400元/平方米,地砖单价为10元/平方米,求铺设地面总费用.【答案】(1)3;(2)木地板(75-7x)平方米;地砖(7x+53)平方米;(3)25070元【分析】(1)根据长方形的对边相等可得a+5=4+4,即可求出a的值;(2)根据三间卧室铺设木地板,其它区域铺设地砖,可知将三间卧室的面积的和为木地板的面积,用长方形的面积-三间卧室的面积,所得的差为地砖的面积;(3)先根据卧室2的面积为21平方米求出x,再求出所需的费用即可.【解析】解:(1)根据题意得a+5=4+4,解得a=3;(2)铺设地面需要木地板:4×2x+a[10+6-(2x-1)-x-2x]+6×4=8x+3(17-5x)+24=(75-7x)平方米;铺设地面需要地砖:16×8-(75-7x)=128-75+7x=(7x+53)平方米;(3)∵卧室2的面积为21平方米,∴3[10+6-(2x-1)-x-2x]=21,∴3(17-5x)=21,∴x=2,∴铺设地面需要木地板:75-7x=75-7×2=61,铺设地面需要地砖:7x+53=7×2+53=67.铺设地面的总费用:61×400+67×10=25070(元).故铺设地面的总费用为25070元.【点睛】本题考查了列代数式,长方形的面积,分别求出铺设地面需要木地板与地砖的面积是解题的关键.30.如图,某校的“图书码”共有7位数字,它是由6位数字代码和校验码构成,其结构分别代表“种类代码、出版社代码、书序代码和校验码”.其中校验码是用来校验图书码中前6位数字代码的正确性.它的编制是按照特定的算法得来的.以上图为例,其算法为:a=++=;步骤1:计算前6位数字中偶数位数字的和a,即91313b=++=;步骤2:计算前6位数字中奇数位数字的和b,即6028c=´+=;步骤3:计算3a与b的和c,即313847d=;步骤4:取大于或等于c且为10的整数倍的最小数d,即50X=-=.步骤5:计算d与c的差就是校验码X,即50473请解答下列问题:(1)《数学故事》的图书码为978753Y,则“步骤3”中的c的值为______,校验码Y的值为______.(2)如图①,某图书码中的一位数字被墨水污染了,设这位数字为m,你能用只含有m的代数式表示上述步骤中的d吗?从而求出m的值吗?写出你的思考过程.(3)如图②,某图书码中被墨水污染的两个数字的差是4,这两个数字从左到右分别是多少?请直接写出结果.【答案】(1)73,7;(2)3,过程见解析;(3)4、0或9、5或2、6【分析】(1)根据特定的算法代入计算计算即可求解;(2)根据特定的算法依次求出a,b,c,d,再根据d为10的整数倍即可求解;(3)根据校验码为8结合两个数字的差是4即可求解.【解析】(1)∵《数学故事》的图书码为978753Y,∴a=7+7+3=17,b=9+8+5=22,则“步骤3”中的c的值为3×17+22=73,校验码Y的值为80-73=7.故答案为:73,7;(2)依题意有:a=m+1+2=m+3,b=6+0+0=6,c=3a+b=3(m+3)+6=3m+15,d=c+X=3m+15+6=3m+21,∵d为10的整数倍,∴3m的个位数字只能是9,∴m的值为3;(3)可设这两个数字从左到右分别是p,q,依题意有:a=p+9+2=p+11,b=6+1+q=q+7,c=3(p+11)+(q+7)=3p+q+40,∵校验码是8,则3p+q的个位是2,∵|p-q|=4,∴p=4,q=0或p=9,q=5或p=2,q=6.故这两个数字从左到右分别是4,0或9,5或2,6.【点睛】本题考查了列代数式以及整式的加减,正确理解题意,学会探究规律、利用规律是解题的关键.。

七年级上数学整式的加减计算题

七年级上数学整式的加减计算题

七年级上数学整式的加减计算题一、整式加减的直接运算。

1. 计算:(3a + 2b)-(a - b)- 解析:- 先去括号,括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“ - ”号,把括号和它前面的“ - ”号去掉后,原括号里各项的符号都要改变。

- 所以(3a + 2b)-(a - b)=3a+2b - a + b。

- 然后合并同类项,3a - a+2b + b = 2a+3b。

2. 计算:2x^2-3x + 1-(5 - 3x + x^2)- 解析:- 去括号得2x^2-3x + 1 - 5+3x - x^2。

- 合并同类项,(2x^2-x^2)+(-3x + 3x)+(1 - 5)=x^2-4。

3. 计算:(4m^3n - 2mn^2)-(m^3n+mn^2)- 解析:- 去括号得4m^3n-2mn^2-m^3n - mn^2。

- 合并同类项,(4m^3n - m^3n)+(-2mn^2-mn^2) = 3m^3n-3mn^2。

4. 计算:3(a^2b + ab^2)-(3a^2b - 1)-ab^2-1- 解析:- 去括号得3a^2b+3ab^2-3a^2b + 1 - ab^2-1。

- 合并同类项,(3a^2b-3a^2b)+(3ab^2-ab^2)+(1 - 1)=2ab^2。

5. 计算:(5x^2-3y^2)-[(5x^2-2xy - y^2)-(x^2-2xy + 3y^2)]- 解析:- 先去小括号,(5x^2-3y^2)-[(5x^2-2xy - y^2)-(x^2-2xy + 3y^2)]=(5x^2-3y^2)-(5x^2-2xy - y^2-x^2+2xy - 3y^2)。

- 再去中括号得5x^2-3y^2-5x^2+2xy + y^2+x^2-2xy + 3y^2。

- 合并同类项,(5x^2-5x^2+x^2)+(2xy - 2xy)+(-3y^2+y^2+3y^2)=x^2+y^2。

人教新课标七年级上册数学整式的加减练习题50道

人教新课标七年级上册数学整式的加减练习题50道

人教新课标七年级上册数学整式的加减练习题50道1、6a^2b+1ab^2-4ab^2-7a^2b^2合并同类项得:-7a^2b^2+2a^2b-3ab^22、-3x^2y+2x^2y+3xy^2-2xy2合并同类项得:-3x^2y+5xy^23、-2(a^2-3a)+5a^2-2a展开得:-2a^2+6a+5a^2-2a合并同类项得:3a^2+4a4、2x-(x+3y)-(-x-y)-(x-y)化简得:2x-x-3y+x+y-x+y合并同类项得:-y5、(2x^4-5x^2-4x+1)-(3x^3-5x^2-3x)化简得:2x^4-3x^3+4x^2-x+16、-[-(x+1)]-(x-1)化简得:x+1-x+1合并同类项得:27、-3(x^2-2xy+y^2)+(2x^2-xy-2y^2)展开得:-3x^2+6xy-3y^2+2x^2-xy-2y^2合并同类项得:-x^2+5xy-5y^28、5ab-2[3ab-(4ab^2+ab)]-5ab^2,其中a=,b=。

化简得:5ab-2[3ab-4ab^2-ab]-5ab^2展开得:5ab-6ab+8ab^2+5ab^2合并同类项得:13ab^2-a9、3ab-4ab+8ab-7ab+ab合并同类项得:ab10、7x-(5x-5y)-y化简得:7x-5x+5y-y合并同类项得:2x+4y11、23a^3bc^2-15ab^2c+8abc-24a^3bc^2-8abc合并同类项得:-a^3bc^2-15ab^2c-8abc12、-7x^2+6x+13x^2-4x-5x^2合并同类项得:x^2+2x13、2y+(-2y+5)-(3y+2)化简得:2y-2y+5-3y-2合并同类项得:-y+314、(2x^2-3xy+4y^2)+(x^2+2xy-3y^2)合并同类项得:3x^2-xy+y^215、2a-(3a-2b+2)+(3a-4b-1)合并同类项得:2a-3a+3a-2b-4b+2-1合并同类项得:-3b+116、-6x^2-7x^2+15x^2-2x^2合并同类项得:x^217、2x-(x+3y)-(-x-y)-(x-y)与第4题重复,已删除18、2x+2y-[3x-2(x-y)]化简得:2x+2y-3x+4x-2y合并同类项得:3x19、5-(1-x)-1-(x-1)化简得:5-1+x-1-1-x+1合并同类项得:320、一个多项式减去3m^4-m^3-2m+5得-2m^4-3m^3-2m^2-1,那么这个多项式等于______。

七年级上册数学整式的加减计算题50道(含答案)

七年级上册数学整式的加减计算题50道(含答案)

七年级数学整式的加减计算题50道1.化简求值:−12a−2(a−12b2)−(32a−13b2),其中a=−2,b=32.2.已知a、b互为相反数,x、y互为倒数,m的绝对值是2,求:13(a+b)2−6xy+m3的值。

3.已知代数式A=x2+xy−2y,B=2x2−2xy+x−1(1)求2A−B;(2)若2A−B的值与x的取值无关,求y的值.4.计算:(1)12+(−34)+(−23)(2)(3x2−xy−2y2)−2(x2+xy−2y2)5.先化简,再求值:(3a2−ab+7)−(−4a2+2ab+7),其中a=−1,b=26.化简:(1)−3m+3n−5m−7n(2)5a2−[3a−2(a−3)+4a2]7.若−2a m b与a2b n是同类项,求2mn2−[2m2n−3(m2n−2mn2)]的值.8.化简下列各式(1)3ab−a2−2ab−3a2(2)−2(x2−3xy)+6(x2−12 xy)9.计算与化简:(1)30−48×(16+34−112)(2)−14−2×(−3)2÷(−16)(3)5(x+y)−4(3x−2y)+3(2x−y)(4)6ab2−[a2b+2(a2b−3ab2)]10.化简11.先化简,再求值:5x2−[2xy−3(13xy+2)+4x2]。

其中x=−2,y=12。

12.化简(1)4x2y−8xy2−9−4x2y+12xy2+5;(2)−(2a2b−5ab)+2(−ab+a2b−1).13.计算:(1)(3a−2)−3(a−5)(2)(4a2b−5ab2)−(3a2b−4ab2)14. 合并下列多项式中的同类项:(1)3a 2+4b 2+ab −3a 2−4b 2;.15. 已知A =3ax 3−bx ,B =−ax 3−2bx +8.(1)求A +B ;(2)当x =−1时,A +B =10,求代数式3b −2a 的值.16. 计算:(1)16÷(−12)×(−38)−(+4)(2)−12020÷(−5)2×(−53)−|0.8−1| (3)2a +(3a 1)(a 5)(4)3x 2y 4xy 23+5x 2y +2xy 2+5.17.化简.(1)(8a−7b)−(−4a+5b)(2)a+(2a+b)−2(a−2b)18.化简:(l)m−2n+3(m+n);(2)5(a2b−ab)−2(−a2b+3ab)。

七年级上册数学整式加减法计算题

七年级上册数学整式加减法计算题

七年级上册数学整式加减法计算题一、整式加法计算题。

1. 计算:(3x + 2y)+(4x - 3y)- 解析:- 去括号法则:括号前是正号,去掉括号后,括号里的各项不变号。

- 所以原式=3x + 2y+4x - 3y。

- 合并同类项:同类项的系数相加,字母和指数不变。

- 对于x的同类项3x和4x,系数相加得(3 + 4)x=7x;对于y的同类项2y和-3y,系数相加得(2-3)y=-y。

- 最终结果为7x - y。

2. 计算:(2a^2+3a - 1)+(a^2-2a + 3)- 解析:- 去括号得2a^2+3a - 1+a^2-2a + 3。

- 合并同类项:对于a^2的同类项2a^2和a^2,系数相加得(2 +1)a^2=3a^2;对于a的同类项3a和-2a,系数相加得(3-2)a=a;常数项-1和3相加得2。

- 结果为3a^2+a + 2。

3. 计算:(5m+3n)+( - 3m - 2n)- 解析:- 去括号得5m + 3n-3m - 2n。

- 合并同类项:m的同类项5m和-3m合并得(5-3)m = 2m;n的同类项3n和-2n合并得(3 - 2)n=n。

- 结果为2m + n。

4. 计算:(x^2y+3xy^2)+( - 2x^2y+xy^2)- 解析:- 去括号得x^2y+3xy^2-2x^2y+xy^2。

- 合并同类项:对于x^2y的同类项x^2y和-2x^2y,系数相加得(1-2)x^2y=-x^2y;对于xy^2的同类项3xy^2和xy^2,系数相加得(3 + 1)xy^2=4xy^2。

- 结果为-x^2y + 4xy^2。

5. 计算:(4a^3-2a^2+a)+( - 3a^3+a^2-2a)- 解析:- 去括号得4a^3-2a^2+a - 3a^3+a^2-2a。

- 合并同类项:对于a^3的同类项4a^3和-3a^3,系数相加得(4-3)a^3=a^3;对于a^2的同类项-2a^2和a^2,系数相加得(-2 + 1)a^2=-a^2;对于a的同类项a和-2a,系数相加得(1-2)a=-a。

七年级数学上册数学 3.6 整式的加减(四大题型)(解析版)

七年级数学上册数学 3.6 整式的加减(四大题型)(解析版)

3.6整式的加减分层练习考察题型一整式的加减运算1.下列各式计算正确的是()A .336x y xy +=B .22451xy xy -=-C .2(3)26x x --=-+D .223a a a +=【详解】解:A .3x ,3y 不是同类项,不能合并,选项错误,不合题意;B .22245xy xy xy -=-,选项错误,不合题意;C .2(3)26x x --=-+,选项正确,符合题意;D .23a a a +=,选项错误,不合题意.故本题选:C .2.一个多项式与2210x x --+的和是32x -,则这个多项式为.【详解】解:由题意得:232(210)x x x ----+232210x x x =-++-2512x x =+-.故本题答案为:2512x x +-.3.已知多项式222A x y =+,2243B x y =-+且0A B C ++=,则C 为.【详解】解:222A x y =+ ,2243B x y =-+,0A B C ++=,C A B ∴=--,2222(2)(43)x y x y =-+--+2222243x y x y =--+-2235x y =-.故本题答案为:2235x y -.4.已知22x xy +=,23xy y -=,则代数式2232x xy y +-=.【详解】解:当22x xy +=,23xy y -=时,222232()2()268x xy y x xy xy y +-=++-=+=.故本题答案为:8.5.已知22x xy +=-,239xy y +=-,则式子222104x xy y --的值是.【详解】解:当22x xy +=-,239xy y +=-时,222221042(52)x xy y x xy y --=--222[()2(3)]x xy xy y =+-+2[22(9)]=⨯--⨯-2(218)=⨯-+216=⨯32=.故本题答案为:32.6.化简:(1)22224823x y xy x y xy --+-;(2)223(32)2(4)a ab a ab ---.【详解】解:(1)原式2222(42)(83)x y x y xy xy =-++--22211x y xy =--;(2)原式229682a ab a ab=--+22(98)(62)a a ab ab =-+-+24a ab =-.7.佳佳做一道题“已知两个多项式A ,B ,计算A B -”.佳佳误将A B -看作A B +,求得结果是2927x x -+.若232B x x =+-,请解决下列问题:(1)求出A ;(2)求A B -的正确答案.【详解】解:(1)2927A B x x +=-+ ,232B x x =+-,22927(32)A x x x x ∴=-+-+-2292732x x x x =-+--+2859x x =-+;(2)22859(32)A B x x x x -=-+-+-2285932x x x x =-+--+27811x x =-+.8.(1)在数轴上有理数a ,b ,c 所对应的点位置如图,化简:|||2|2||a b a c b c +--++;(2)已知多项式22A x xy =-,26B x xy =+-.化简:43A B -.【详解】解:(1)由数轴可得:0a b c <<<,||||||b c a <<,0a b ∴+<,20a c -<,0b c +>,故原式222a b a c b c a b c =--+-++=++;(2)22A x xy =- ,26B x xy =+-,22434(2)3(6)A B x xy x xy ∴-=--+-22843318x xy x xy =---+25718x xy =-+.考察题型二借助整式的加减求参或求代数式的值1.将多项式2222(3)2(2)x xy y x mxy y ---++化简后不含xy 的项,则m 的值是.【详解】解:原式22223224x xy y x mxy y =-----22(32)5x m xy y =--+-,令320m +=,1.5m ∴=-.故本题答案为: 1.5-.2.已知226A x kx x =+-,21B x kx =-+-.若2A B +的值与x 的取值无关,则k =.【详解】解:226A x kx x =+- ,21B x kx =-+-,222262(1)A B x kx x x kx ∴+=+-+-+-2226222x kx x x kx =+--+-(36)2k x =--,2A B + 的值与x 的取值无关,360k ∴-=,解得:2k =.故本题答案为:2.3.如果整式A 与整式B 的和为一个常数a ,我们称A ,B 为常数a 的“和谐整式”,例如:6x -和7x -+为数1的“和谐整式”.若关于x 的整式296x mx -+与23(3)x x m --+为常数k 的“和谐整式”(其中m 为常数),则k 的值为()A .3B .3-C .5D .15【详解】解: 整式296x mx -+与23(3)x x m --+为常数k 的“和谐整式”,223(3)933x x m x x m --+=-+-,3m ∴-=-,解得:3m =,39m ∴-=-,6(9)3∴+-=-,即k 的值为3-.故本题选:B .考察题型三借助整式的加减解决几何问题1.现有1张大长方形和3张相同的小长方形卡片,按如图所示两种方式摆放,则小长方形的长与宽的差是()A .a b -B .2a b -C .3a b -D .3a b +【详解】解:设小长方形的长为x 、宽为y ,大长方形的长为m ,则2a y x m +=+,2x b y m +=+,2x a y m ∴=+-,2y x b m =+-,(2)(2)x y a y m x b m ∴-=+--+-,即33x y a b -=-,3a bx y -∴-=,即小长方形的长与宽的差是3a b-.故本题选:C .2.如图,把两个边长不等的正方形放置在周长为m 的长方形ABCD 内,两个正方形的周长和为n ,则这两个正方形的重叠部分(图中阴影部分所示)的周长可用代数式表示为()A .2n m -B .n m -C .2m n -D .42n m-【详解】解:设较小的正方形边长为x ,较大的正方形边长为y ,阴影部分的长和宽分别为a 、b , 两个正方形的周长和为n ,44x y n ∴+=,14x y n ∴+=,BC x y b ∴=+-14n b =-,AB x y a =+-14n a =-,长方形ABCD 的周长为m ,12BC AB m ∴+=,11114422n b n a n a b m ∴-+-=--=,1()2a b n m ∴+=-,2()a b n m ∴+=-,∴阴影部分的周长为()n m -.故本题选:B .3.图1是长为a ,宽为()b a b >的小长方形纸片将6张如图1的纸片按图2的方式不重叠地放在长方形ABCD 内,已知CD 的长度固定不变,BC 的长度可以变化,图中阴影部分(即两个长方形)的面积分别表示为1S ,2S ,若12S S S =-,且S 为定值,则a ,b 满足的关系是()A .2a b =B .3a b =C .4a b =D .5a b=【详解】解:设BC n =,则1(4)S a n b =-,22()S b n a =-,12(4)2()(2)2S S S a n b b n a a b n ab ∴=-=---=--, 当BC 的长度变化时,S 的值不变,S ∴的取值与n 无关,20a b ∴-=,即2a b =.故本题选:A .考察题型四整式的加减——化简求值1.化简求值:2233[22()]2x y xy xy x y xy ---+,其中3x =,13y =-.【详解】解:2233[22()]2x y xy xy x y xy ---+223(223)x y xy xy x y xy =--++2.已知多项231A x x =-+,22(22)B kx x x =-+-.(1)当1x =-时,求A 的值;(2)小华认为无论k 取何值,A B -的值都无法确定.小明认为k 可以找到适当的数,使代数式A B -的值是常数.你认为谁的说法正确?请说明理由.【详解】解:(1)231A x x =-+ ,当1x =-时,∴原式23(1)(1)1=⨯---+3111=⨯++5=;(2)小明说法对;22231(22)A B x x kx x x -=-+-++-2223122x x kx x x =-+-++-2(5)1k x =--,当50k -=,即5k =时,1A B -=-.3.已知含字母x ,y 的多项式是:22223[2(2)]3(2)4(1)x y xy x y xy x ++--+---.(1)化简此多项式;(2)若x ,y 互为倒数,且恰好计算得多项式的值等于0,求x 的值.【详解】解:(1)原式222236(2)36444x y xy x y xy x =++----++22223661236444x y xy x y xy x =++----++248xy x =+-;(2)x ,y 互为倒数,1xy ∴=,则24824846xy x x x +-=+-=-,4.已知单项式123a x y -与312b xy ---是同类项.(1)填空:a =,b =;(2)在(1)的条件下,先化简,再求值:225()2(2)2a b b a b +-++.【详解】解:(1)由题意可得:11a -=,231b =--,解得:2a =,1b =-,故本题答案为:2,1-;(2)原式2255242a b b a b =+--+25a b =+,将2a =,1b =-代入,原式225(1)=+⨯-1=-.5.已知多项式222A x xy x =+++,2233B x xy y =-+-.(1)若2(2)|5|0x y -++=,求2A B -的值.(2)若2A B -的值与y 的值无关,求x 的值.6.已知关于x 的代数式221262x bx y --+和1751ax x y +--的值都与字母x 的取值无关.(1)求a ,b 的值.(2)若2244A a ab b =-+,2233B a ab b =-+,求4[(2)3()]A A B A B +--+的值.7.阅读材料:对于任何数,我们规定符号a b cd的意义是a b ad bc c d=-.例如:121423234=⨯-⨯=-.(1)按照这个规定,请你计算5628-的值;(2)按照这个规定,请你计算当2|3|(1)0m n ++-=时,223212m nm n+--的值.∴原式18927=--=.1.一个四位数100010010m a b c d =+++(其中1a ,b ,c ,9d ,且均为整数),若()a b k c d +=-,且k 为整数,则称m 为“k 型数”.例如:7241m =,因为()72341+=⨯-,则7241为“3型数”;4635m =,因为465(35)+=-⨯-,则4635为“5-型数”.若四位数m 是“3型数”,3m -是“1-型数”,将m 的百位数字与十位数字交换位置,得到一个新的四位数n ,n 也是“3型数”,则满足条件的最小四位数m 的值为.6a b ∴+=,又b c = ,666(2)4a b c d d ∴=-=-=-+=-,3d < ,∴当d 最大2=时,a 最小2=,此时24c d =+=,4b c ==,∴最小2442m =.故本题答案为:2442.2.材料:对于一个四位正整数m ,如果满足百位上数字的2倍等于千位与十位的数字之和,十位上数字的2倍等于百位与个位的数字之和,那么称这个数为“相邻数”.例如:3579 中,253710⨯=+=,725914⨯=+=,3579∴是“相邻数”.(1)判断7653,3210是否为“相邻数”,并说明理由;(2)若四位正整数100010010n a b c d =+++为“相邻数”,其中a ,b ,c ,d 为整数,且19a ,09b ,09c ,09d ,设()2F n c =,()2G n d a =-,若3()()2317F nG n -+为整数,求所有满足条件的n 值.综上,所有满足条件的n的值为1234,8642,9999.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的加减典型题
板块一 单项式与多项式
1.下列说法正确的是( )
A .单项式23
x -的系数是3- B .单项式324
2π2ab -的指数是7 C .1x
是单项式 D .单项式可能不含有字母 2.多项式2332320.53x y x y y x ---是 次 项式,关于字母y 的最高次数项
是 ,关于字母x 的最高次项的系数 ,把多项式按x 的降幂排列 。

3.已知单项式4312
x y -的次数与多项式21228m a a b a b +++的次数相同,求m 的值。

4.若A 和B 都是五次多项式,则( )A .A B +一定是多式 B .A B -一定是单项式
C .A B -是次数不高于5的整式
D .A B +是次数不低于5的整式
5.若m 、n 都是自然数,多项式222m n m n a b ++-的次数是( )
A .m
B .2n
C .2m n +
D .m 、2n
中较大的数
6.同时都含有字母a 、b 、c ,且系数为1的7次单项式共有( )个。

A .1
B .3
C .15
D .36
板块二 整式的加减
7.若2222m a b +与3334
m n a b +--是同类项,则m n += 。

8.单项式21412
n a b --与283m m a b 是同类项,则100102(1)(1)n m +⋅-=( ) A .无法计算 B .14
C .4
D .1
9.若5233m n x y x y -与的和是单项式,则n m = 。

10.下列各式中去括号正确的是( )
A
.()222222a a b b a a b b --+=--+ B .()()2
22222x y x y x y x y -+--+=-++- C .()22235235x x x x --=-+ D .()3232413413a a a a a a ⎡⎤---+-=-+-+⎣⎦
11.已知222223223A x xy y B x xy y =-+=+-,,求(2)A B A --
12.若a 是绝对值等于4的有理数,b 是倒数等于2-的有理数。

求代数式
()22223224a b a b ab a a ab ⎡⎤-----⎣⎦
的值。

13.已知a 、b 、c 满足:⑴()253220a b ++-=;⑵211
3
a b c x y -++是7次单项式;求多项式()22222234a b a b abc a c a b a c abc ⎡⎤------⎣⎦的值。

14.已知三角形的第一边长是2a b +,第二边比第一边长(2)b -,第三边比第二边小5。

则三
角形的周长为 。

15.李明在计算一个多项式减去2245x x -+时,误认为加上此式,计算出错误结果为
221x x -+-,试求出正确答案。

16.有这样一道题“当22a b ==-,时,求多项式()()
22233322a ab b a ab b -----+的值”,马小虎做1题时把2a =错抄成2a =-时,王小明没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由。

板块三 整体思想
整体思想就是从问题的整体性质出发,把某些式子或图形看成一个整体,进行有目的、有意识的整体处理。

整体思想方法在代数式的化简与求值有广泛的应用,整体代入、整体设元、整体处理等都是整体思想方法在解数式的化简与求值中的具体运用。

17.把()a b +当作一个整体,合并22()5a b +-2()b a ++2()a b +的结果是( )
A .2()a b +
B .2()a b -+
C .22()a b -+
D . 22()a b +
18.计算5()2()3()a b b a a b -+---= 。

19.化简:22233(2)(2)(1)(1)x x x x x +---+-+-= 。

20.已知
32c a b =-,求代数式22523
c a b a b c ----的值。

21.如果225a ab +=,222ab b +=-,则224a b -= ,22252a ab b ++= 。

22.己知:2a b -=,3b c -=-,5c d -=;求()()()a c b d c b -⨯-÷-的值。

23.当2x =时,代数式31ax bx -+的值等于17-,那么当1x =-时,求代数式31235
ax bx --的值。

24.若代数式2237x y ++的值为8,求代数式2698x y ++的值。

25.已知
3xy x y =+,求代数式3533x xy y x xy y -+-+-的值。

相关文档
最新文档