岩石的物理性质
岩石力学
岩石力学岩石的物理性质 一、 岩石的分类火成岩:侵入岩和喷出岩。
沉积岩:砂岩(95%的油气储量)、页岩(待开采,如页岩气、煤层气)、石灰岩。
变质岩:不含油气。
二、 岩石的强度主要取决于:组成其矿物的强度、连接结构形式、岩石的结构和整体构造、胶结物的成分和胶结方式 三、岩石的物理性质孔隙度、渗透率、可压缩性、导电性、传热性的总称。
1、 孔隙度:绝对孔隙度:φ = V 孔/V 岩总 孔隙度越高,岩石的力学性质越差。
有效孔隙度: φ有效 =V 连通/V 孔总。
2、 渗透性:在一定压力作用下,孔隙具有让流体(油、气、水)通过的性质。
其大小用渗透率来描述,反映了流体在岩石孔隙中流动的阻力的大小。
达西定律:A LhK Q ∆=φ...K Φ——反应岩石性质系数 含义:以粘度为1厘泊的流体完全饱和于岩石孔隙中,在1个大气压差的作用下,以层流的方式用过截面积为1cm 2,长度为1cm 的岩样时,其流量为1cm 3/s 。
则渗透率为1达西(D )。
3、 岩石中的油、气、水饱和度。
…4、 岩石的粒度组成和比表面积:粒度组成的分析方法:筛分析法和沉降法。
通过粒度得孔隙度。
比表面积:单位体积岩石内颗粒的总表面积。
通过粒度组成估算比面。
孔隙度、粒度、比表三者之二求一岩石的力学性质岩石的类型、组成成分、结构构造、围压、温度、应变率、载荷等对其力学性质都有影响 一、 岩石变形性质的基本概念1、 弹性:… 基本弹性参数E 、υ。
2、 塑性3、 黏性:物体受力后,变形不能在瞬时完成,且应变率随应力的增加而增加的性质。
4、 脆性:受力后变形很小就发生破裂的性质。
(ε>5%就发生破裂的称为塑性材料,小于的称脆性材料)5、 延性:发生较大塑性变形,但不丧失其承载能力的性质。
岩石在常温,常压下,并不是理想的弹性或塑性材料,而是几种的复合体,如塑弹性、塑弹塑、弹塑蠕。
其本构关系略。
6、常温常压下岩石的典型应力-应变曲线:(重点)OA---塑性,应力增加快,但应变增加不多。
岩石的物理性质知识讲解
物理性质是指岩石由于三相组成的相对比例关 系不同所表现的物理状态。
1、岩石的密度
2、岩石的孔隙性
2020/5/24
岩石力学
(一)、岩石的密度
1、颗粒密度(ρs):岩石固体部分的质量与 其体积的比值。它不包含孔隙在内,因此 其大小仅取决于组成岩石的矿物密度及其 含量:
ρs= ms/Vs ρs—为岩石的颗粒密度 ms—为岩石固体部分的质量 Vs—为岩石固体部分的体积
常见矿物的比热容多为(0.7~1.2)×103J/kg·K 多孔含水岩石比热容计算:
C Cd x1 Cwx2 x1 x2
式中:Cd 和Cw 分别为干燥岩石和水的比热容,x1 和x2分别为岩石干重和水重。
2020/5/24
岩石力学
第三节 岩石的热学性质
二、岩石的导热系数
岩石传导热量的能力,称为热传导性,常用导热系
一、岩石的比热容 岩石的热容性:在岩石内部及其与外界进行热交 换时,岩石吸收热能的能力,称为岩石的热容性
如果设岩石温度由T1升高至T2所需要的热量为:
QCm(T1T2)
C(J/kg·K)即为比热容,是表征岩石热容性的指标
2020/5/24
岩石力学
第三节 岩石的热学性质
影响岩石比热容的因素:矿物组成、有机质含量 、含水状态。
(一)、岩石的密度
注意: (1)ρs与ρ的区别 (ρs>ρ) (2)ρs与ρ的单位 (g/cm3 kN/m3) (3)测试方法(ρs---比重瓶法;ρ--量积 法)
2020/5/24
岩石力学
常见岩石的密度
岩石名称
花岗岩 闪长岩 辉长岩 辉绿岩 砂岩 页岩
2020/5/24
密度 (g/cm3)
岩石的物理性质与性质分析
岩石的物理性质与性质分析岩石是地球表面最常见的地质材料之一,其物理性质和性质分析对于地质学研究以及工程建设都起到至关重要的作用。
本文将对岩石的物理性质进行介绍,并探讨如何对岩石的性质进行分析。
一、岩石的物理性质1. 密度密度是岩石的重要物理性质之一,通常用质量与体积的比值表示。
岩石的密度不仅与岩石的成分有关,还与其孔隙度和结构形态等因素密切相关。
不同类型的岩石其密度差异较大,例如火山岩的密度一般较低,而花岗岩和玄武岩的密度相对较高。
2. 弹性模量弹性模量是衡量岩石抗弹性变形能力的重要指标,通常用应力与应变的比值表示。
弹性模量可分为体积弹性模量、剪切模量和弯曲模量等。
不同类型的岩石其弹性模量也不同,例如砂岩的弹性模量相对较低,而页岩和石灰岩的弹性模量相对较高。
3. 磁性岩石的磁性是指岩石在外磁场作用下表现出的磁特性。
大部分岩石都具有不同程度的磁性,但具体的磁性表现与岩石的成分、结构以及成岩过程等因素有关。
通过对岩石的磁性分析,可以了解地质历史和构造变形。
4. 热性质岩石的热性质包括导热性、热膨胀系数和热导率等。
岩石的导热性取决于其成分、密度和孔隙度等因素,而热膨胀系数则决定了岩石在温度变化下的体积变化。
热导率是指岩石传导热量的能力,与岩石的矿物含量和孔隙度等因素有关。
二、岩石性质分析方法1. 物理试验常用的岩石性质分析方法之一是物理试验,包括密度测定、弹性模量测定和磁性测定等。
密度测定可通过称重和容器体积测量来完成,而弹性模量的测定通常使用弹性波速度的测量方法。
磁性测定则需要使用磁化强度计等仪器完成。
2. 岩心实验岩心是由地下取得的连续岩石样本,在岩石性质分析中起到非常重要的作用。
通过对岩心的观察和实验室分析,可以了解岩石的颜色、质地、孔隙度、矿物组成等特征,从而推测岩石的物理性质。
3. 地球物理勘探地球物理勘探是一种通过地球物理方法研究地壳结构和性质的方法。
它包括地震勘探、电磁测深、重力测量和磁力测量等。
岩石物理性质
岩石物理性质地球物理勘探中所涉及的各类岩石和矿物的物理性质。
岩石的密度、弹性波传播速度、磁化率、电阻率、热导率、放射性等,是形成各种地球物理场的基础(表1)。
磁性常用的岩石磁性参数是磁化率、磁化强度、剩余磁化强度矢量,以及剩余磁化强度同感应磁化强度的比值Q。
矿物按其磁性的不同可分为3类:①反磁性矿物,如石英、磷灰石、闪锌矿、方铅矿等。
磁化率为恒量,负值,且较小。
②顺磁性矿物,大多数纯净矿物都属于此类。
磁化率为恒量,正值,也比较小。
③铁磁性矿物,如磁铁矿等含铁、钴、镍元素的矿物。
磁化率不是恒量,为正值,且相当大。
也可认为这是顺磁性矿物中的一种特殊类型。
岩石的磁性主要决定于组成岩石的矿物的磁性,并受成岩后地质作用过程的影响。
一般说,橄榄石、辉长石、玄武岩等基性、超基性岩浆岩的磁性最强;变质岩次之;沉积岩最弱。
①岩浆岩的磁性取决于岩石中铁磁性矿物的含量。
结构构造相同的岩石,铁磁性矿物含量愈高,磁化率值愈大。
铁磁性侵入岩的天然剩余磁化强度,按酸性、中性、基性、超基性的顺序逐渐变大。
铁磁性侵入岩的特点是Q值一般小于1。
由接触交代作用而形成的岩石,Q 值可达1~3,甚至更大。
②沉积岩的磁性主要也是由铁磁性矿物的含量决定的。
分布最广的沉积岩造岩矿物,如石英、方解石、长石、石膏等,为反磁性或弱顺磁性矿物。
菱铁矿、钛铁矿、黑云母等矿物之纯净者是顺磁性矿物;含铁磁性矿物杂质者具有强顺磁性。
沉积岩的磁化率和天然剩余磁化强度值都比较小。
③变质岩的磁性是由其原始成分和变质过程决定的。
原岩为沉积岩的变质岩,磁性一般比较弱;原岩为岩浆岩的变质岩在变质作用相同时,其磁性一般比原岩为沉积岩的变质岩强。
大理岩和结晶灰岩为反磁性变质岩。
岩石变质后,磁性也发生变化。
蛇纹石化的岩石磁性比原岩强;云英岩化、粘土化、绢云母化和绿泥石化的岩石,磁性比原岩减弱。
岩石磁性的各向异性是岩石的层状结构造成的。
磁化率高,变质程度深的岩石,磁各向异性很明显。
岩石的物理力学性质
nb Vnb 100% V
(3)小开空隙率nl:即岩石试件内小开型空隙的体积(Vnl) 占试件总体积(V)的百分比。
nl Vnl 100% V
(4)总开空隙率(孔隙率)n0: 即岩石试件内开型空隙的 总体积(Vn0)占试件总体积(V)的百分比。
cf ) , 以
此强度下降值与融冻试验前的抗压强度 σ c之比的百
c cf Cf 100% c
可见:抗冻系数Cf 越小,岩石抗冻融破坏的能力越强。
7.岩石的碎胀性
岩石破碎后的体积VP 比原体积 V增大的性能称为岩石
的碎胀性,用碎胀系数ξ 来表示。
VP V
碎胀系数不是一个固定值,是随时间而变化的。 永久碎胀系数(残余碎胀系数)――不能再压密时 的碎胀系数称为永久碎胀系数.
岩石的软化性是指岩石在饱水状态下其强度相对 于干燥状态下降低的性能,可用软化系数η 表示。
软化系数指岩石试样在饱水状态下的抗压强度
σ
cb与在干燥状态下的抗压强度σ c之比,即
cb c c
各类岩石的η c=0.45~0.9之间。 η η
c c
Байду номын сангаас
>0.75,岩石软化性弱、抗水、抗风化能力强; <0.75,岩石的工程地质性质较差。
1 与 主 应 力 差 ( σ 1-
σ 3) 的关 系 曲 线 表 示 。
反复加卸载对岩石变形的影响
围压对岩石变形的影响
三轴应力状态下大理岩的应力-应变曲线
围压对岩石刚度的影响
砂岩:孔隙较多,岩性较软, σ3增大,弹性模量变大。 辉长岩:致密坚硬, σ3增大,弹性模量几乎不变。
岩石物理力学性质-知识归纳整理
1 岩石的物理力学性质岩石是由固体相、液体相和蔼体相组成的多相体系。
理论以为,岩石中固体相的组分和三相之间的比例关系及其相互作用决定了岩石的性质。
在研究和分析岩石受力后的力学表现时,必然要联系到岩石的某些物理性质指标。
岩石物理性质:岩石由于其固体相的组分和三相之间的比例关系及其相互作用所表现出来的性质。
主要包括基本物理性质和水理性质。
岩石在受到外力作用下所表现出来的性质称为岩石的力学性质。
岩石的力学性质主要有变形性质和强度性质,在静荷载和动荷载作用时,岩石的力学性质是有所不同的,表如今性质指标的差异上。
岩石的物理力学性质通常经过岩石物理力学性质测试才干确定。
1.1 岩石的基本物理性质指标 反映岩石组分及结构特征的物理量称为岩石的物理性质指标,这里主要是指一些基本属性:密度、比重、孔隙性、水理性等。
反映了岩石的组分和三相之间的比例关系。
为了测定这些指标,一股都采用岩样在室内作试验,,必要时也可以在天然露头上或探洞(井)中举行现场试骀。
在选用岩样时应思量到它们对所研究地质单元的代表性并尽可能地保持其天然结构。
最好采用同一岩样逐次地测定岩石的各种物理性质指标。
下面分述各种物理性质指标。
1.1.1 岩石的密度和重度(容重)1、定义密度:单位体积岩石(包括岩石内空隙体积在内)所具有的质量。
重度(容重):单位体积岩石所受的重力。
2、计算式密度:V M =ρ(g/cm 3,t/m 3)容重度:V MgV W ==ρ(kN/m 3)密度与重度的关系:γ=ρg。
上述各式中,M —岩石质量;W —岩石分量;V —岩石体积(包括空隙在内);g 为重力加速度,g=9.8m/s 2,工程上普通取10m/s 2。
密度与容重的种类:天然密度ρ、干密度ρd 、饱和密度ρsat 。
天然密度与干密度的关系:ρ=ρd (1+0.01ω)(ω为含水率,以百分数计)。
3、影响因素 影响岩石密度大小的因素:矿物成分、孔隙及微裂隙发育程度、含水量。
岩石与岩体
首先取决于岩体的结构类型与特征, 其次才是组成岩体的岩石的性质。
其意义在于结构面的特征决定岩体
的性质。
不同结构类型岩体的工程地质性质:
整体块状结构: 强度高 各向同性 抗风化能力强
层状结构岩体: 强度较高 各向异性 层间滑动
碎裂结构岩体: 完整性差 强度低
散体结构岩体:
碎石土类 各向同性 强度最差
岩石的抗压强度最高,抗剪强度
居中,抗拉强度最小。抗剪强度约为
抗压强度的10%~40%;抗拉强度仅 为抗压强度的2%~16%。岩石越坚硬, 其值相差越大。 抗压和抗剪强度是评价岩石(岩
体)稳定性的指标。
(三)影响岩石工程性质的因素 1. 矿物成分: 应注意矿物对岩石强度影响 2. 结构 岩石按结构分类:结晶联结 胶结物联结 强度上的一般规律:
结构体:被结构面切割成的块体。
形状:柱状、块状、板状、楔状、锥状等 等 原因:与岩层的产状有关。 结构体大小可用体积裂隙数Jv来表示,指 岩体单位体积通过的总裂隙数。 Jv =1/S1+1/S2+1/S3+… …+1/Sn=∑1/Si Si :岩体内第i组结构面的间距 1/Si:该组结构面的裂隙数(裂隙数/m)
4.软化性 岩石吸水后,其强度和稳定性发生变化的性 质。 软化系数kd:等于岩石在饱和状态下的极限 抗压强度与在风干状态下极限抗压强度的比。 用小数表示。 5. 抗冻性 岩石抵抗冻胀压力作用的能力。一般用强度 降低率来表示。
(二)岩石的力学性质
变形特性:弹性模量 泊淞比
弹性模量E:应力和应变之比。 泊淞比:横向应变与纵向应变之比。 强度特性:岩石抵抗外力破坏的能力。 抗压强度Rc:抵抗压碎破坏的能力 抗拉强度Rt :约为0.02~0.16Rc 抗剪强度[]:约为0.1~0.4 Rc
岩石的物理性质
(一)、岩石的吸水性
岩石在一定的试验条件下吸收水分的能力,称为岩 石的吸水性。 1.吸水率(Wa):岩石试件在大气压力和室温条件下 自由吸入水的质量(mw1)与岩样干质量(ms)之比,用 百分数表示
m w1 Wa 100% mw2
VVb dWa nb 100% dWa V w
式中:Cd 和Cw 分别为干燥岩石和水的比热容,x1 和x2分别为岩石干重和水重。
2018/5/27 岩石力学
第三节 岩石的热学性质
二、岩石的导热系数
岩石传导热量的能力,称为热传导性,常用导热系
数来表示。
dT Q kA dt dx
研究表明,岩石的比热容(C)与导热系数(k) 间存在如下关系:
岩 岩
大 理 岩 板 岩
2018/5/27
岩石力学
岩石的物理性质
孔隙度:岩石中孔隙体积与岩石总体积之比 (多用
百分数表示)。 裂隙率:岩石中各种节理、裂隙的体积与岩石总体 积之比称裂隙率。 孔隙度与裂隙率含义相同,孔隙度多用于松散土、 石,裂隙率多用于结晶连接的坚硬岩石。 一般岩石的孔隙度在0.1-0.35之间
2018/5/27 岩石力学
例题:
岩石的饱和密度为2.65g/cm3,干密度为
2.49g/cm3,请计算岩石的孔隙比和颗粒
密度
2018/5/27
岩石力学
2018/5/27
岩石力学
五、岩石的水理性质
岩石在水溶液作用下表现出来的性质,称为 水理性质。主要有: 1.吸水性 2.软化性 3.抗冻性 4.透水性
过程中的能量转换与守恒服从热力学原理。在以上
几种热交换方式中,以热传导传热最为普遍控制着 几乎整个地壳岩石的传热状态,对流传热主要在地 下水渗流带内进行。辐射传热仅发生在地表面。
一、岩石性质
2、强度特性:反映岩石抵抗破坏的能力。用 单位面积上所受的力的大小来表示,单位为 Pa。 抗压强度排列顺序 三向等压﹥三向不等压﹥双向抗压﹥单向抗 压﹥抗剪﹥抗弯﹥单向抗拉 井下岩石的破坏方式主要有:软岩出现 曲线形破裂面;坚硬岩体沿结构面滑动;脆 性岩石突然破裂;软岩层被塑性挤出。
三、岩石的工程分级 我国煤矿常用的是按岩石坚固性和围岩 稳定性对岩石进行分级、分类。 普氏分级法用岩石的坚固系数f,表示岩 石破坏的相对难易程度。数值上等于单向抗 拉强度的1%,越大越难破坏。 1、公式: f=RC/100 RC:表示单向抗拉强度 2、常用坚固系数值 煤:1~3(软煤:1~1.5;硬煤:2~3) 岩:﹥2(最坚硬岩石15 ~20)
4、岩石的碎胀性:岩石破碎后的体积将比整 体状态下增大的性质,通常用碎胀系数表示。 碎胀系数指岩石破碎后处于松散状态的体积 与破碎前处于整体状态下的体积之比 碎胀系数与岩石的物理性质、破碎后的 块度大小、排列状态有关。例如,坚硬岩石 破碎后块度大而且排列整齐,则碎胀系数较 小;反之,则较大。
(二)岩石的力学性质 1、变形特征:反映岩石在载荷作用下改变自 己的形状或体积直至破坏的情况。 弹性变形:有载荷会变形,卸载后就恢复原 状,例如石灰岩。 塑性变形:有载荷会变形,卸载后不能恢复 原状,例如软岩。 脆性破坏:在载荷作用下,不经过明显的塑 性变形就突然破坏的性质。煤矿井下的大部 分岩石都是脆性岩石。 弹、塑性变形:同时具有弹性和塑性两种变 形性质。
一、岩石 (一)岩石的物理性质 1、密度:单位体积(不包括空隙)岩石的质 量。一般而言,岩石的密度接近于其主要矿 物成分的密度。 2、孔隙性:岩石中也洞和裂隙的发育程度, 通常用孔隙率表示。孔隙率就是岩石中的各 种孔洞、裂隙体积的总和与岩石总体积之比。 裂隙导致冒顶片帮、导水和瓦斯。 3、吸水性:指遇水不崩解的岩石在一定试验 条件下吸入水分的能力,以吸水率表示。工 程上常用吸水性的大小来评价岩石的抗冻性
第二章 岩石的物理性质
wsa
Ww2 100% Ws
2.2 基本性质指标
岩石的水理性质: 饱水系数
岩石的吸水率( a )与饱和吸水率( sa )之比,称为饱水系数。
K
a sa
它反映了岩石中开口孔隙的发育程度。一般说来,饱 水系数愈大,岩石中的开口孔隙相对愈多。
饱水系数大,说明常压下吸水后余留的孔隙就愈少, 岩石愈容易被冻胀破坏,因而其抗冻性差。
Vvc nc 100% V
总孔隙率与开口和封闭孔隙率的关系
n no nc
(读2-3)
2.2 基本性质指标
岩石的水理性质: 岩石在水溶液作用下表现出来的性质,称为水理性质。主要有吸水 性、抗冻性、软化性、渗透性、膨胀性及崩解性等。
岩石的吸水性
岩石在一定的试验条件下吸收水分的能力,称为岩石的吸水性。常 用吸水率,饱和吸水率(饱水率)与饱水系数等指标表示。
导电性:岩石介质传导电流的能力,常用电导率或电阻率表示。
学科内应用较少
导电性复杂易变:矿物成分,结构,孔隙溶液的多少、化学组成、浓度等 电阻率岩浆岩高,变质岩次之,沉积岩变化范围大、垂直层理较高
2.4
概述
岩石的渗透性
在水力坡降作用下,水在岩体 孔隙和裂隙中的流动,即渗流; 该过程称为渗透。 而岩石的渗透性就是指在水压 力作用下,岩石的孔隙和裂隙 透过水的能力。
影响因素:取决于矿物成分及含量,可作常数看。 水的影响重要 含水状态岩石的比热可用干试样的比热等指标来进行换算,公式如下:
CS
m C mwt Cwt m mwt
2.3
岩石的热学和电学性质
导热性:岩石传导热量的能力
导热系数(热导率)λ:温度梯度为1时,单位时间内通过单位面积岩石所传 导的热量(cal/(cm2· s· ℃)) 多数造岩矿物λ介于0.40~0.80~4.00~7.00之间(2.10, 0.63, 0.021),岩石λ与岩石 密度有关(沉积岩骨架密度15~20%,一倍),注意各向异性岩石λ的差异(顺高 10~30%)。
岩石的物理性质
作业
岩石的物理性质
密度:是指岩(矿)石的致密程度,通常以单位体积物质的质量来表示,单位是:g/cm3或kg/m3。
决定岩石密度的主要因素有:岩石中各种矿物成分及其含量,岩石的孔隙度及孔隙中的充填物,岩石所受的压力。
通常情况下,只有其中某一种或二种因素起主导作用。
磁性:由于岩石由矿物组成,所以岩石的磁性强弱与矿物的磁性有直接关系。
而矿物磁性特征为抗磁性矿物的磁化率都很小,在磁力勘探中通常视为无磁性的;顺磁性矿物的磁化率要比抗磁性矿物大得多,约两个数量级。
电阻率:电流通过每边长度为1m的立方体均匀物质时所遇到的电阻值。
岩石的电阻率越小,它的导电性越好,岩石的电阻率越大,其导电性越差。
岩(矿)石的电阻率变化除了与其矿物成分、含量、矿物颗粒结构、构造有关外,很大程度上取决于它们的孔隙度或裂隙度及其中所含水分的多少。
速度:地震波速度既与岩石的弹性性质相关,又是反映岩石物理性质的重要参数。
影响因素为孔隙度及孔隙填充物性质,密度,埋藏深度,构造历史和地质年代,温度。
岩石的物理性质与性质分析
岩石的物理性质与性质分析岩石是地壳中主要的固体物质,由矿物粒子和胶结物质组成。
岩石的物理性质是指岩石在外部作用下所表现出的性质,包括密度、硬度、磁性、导电性等。
岩石的性质分析是对岩石物理性质的具体研究,通过对岩石的性质分析,可以更好地了解岩石的组成和结构,为勘探、开采和利用岩石资源提供参考。
1. 密度分析岩石的密度是指单位体积岩石的质量,通常以g/cm³或kg/m³为单位。
密度是岩石的一个重要物理性质,可以通过密度的测定来判断岩石的成分和结构。
常见的岩石密度范围在2.4-3.0g/cm³之间,不同种类的岩石其密度也会有所差异。
例如,花岗岩的密度较高,大理石的密度较低,通过密度分析可以区分不同种类的岩石。
2. 硬度分析岩石的硬度是指岩石抵抗外力破坏的能力,通常以莫氏硬度来表示。
莫氏硬度是一个用来标定矿物硬度的量值,取值范围从1到10,硬度越大表示矿物的抗压能力越强。
常见的岩石硬度在2-7之间,硬度较高的岩石如石英、玄武岩等在建筑和工程领域中有重要的应用。
通过硬度分析可以进行岩石分类和评价。
3. 磁性分析岩石的磁性是指岩石在外磁场作用下表现出的性质,包括磁化强度、剩磁、磁化率等。
岩石的磁性与岩石的矿物成分密切相关,一些含铁矿物的岩石具有较强的磁性。
通过磁性分析可以对岩石中的矿物组成和结构进行识别和研究,为地质勘探和矿产资源调查提供基础数据。
4. 导电性分析岩石的导电性是指岩石导电能力的强弱,不同类型的岩石具有不同的导电性。
一些含水的岩石、矿石等具有较好的导电性,通过导电性分析可以进行矿石探测和地下水勘探。
导电性分析还可以用于岩石的工程评价和建筑设计,对岩石的稳定性和耐久性进行评估。
综上所述,岩石的物理性质与性质分析对于岩石资源的开发利用具有重要的意义。
通过对岩石的密度、硬度、磁性和导电性等方面的分析,可以更加深入地了解岩石的成分和结构,为岩石资源的综合利用提供科学依据。
岩石的物理性质
Vs d
5
工程意义:
是岩石物理性质的 一个重要指标。
对岩块和岩体的水 理、热学性质及力学 性质影响很大。
空隙率愈大→岩石
中的孔隙和裂隙愈多
→岩石的力学性质越
差(岩石的强度愈小、
塑性变形越大),渗
透性愈大,抗风化能
力愈差等。
6
三、吸水性
定义:岩石在一定的试验条件下吸收水
分的能力,称为岩石的吸水性。
KR
cw c
• 岩石中含有较多的亲水性和可溶性矿物,且含大开空
隙较多时,岩石的软化性较强,软化系数较小。
• 软化系数KR>0.75时,岩石的软化性弱,同时也说明 岩石的抗冻性和抗风化能力强。而KR<0.75的岩石则 是软化性较强和工程地质性质较差的岩石
10
•工程意义:
岩石的软化系数愈小, 说明岩石吸水饱和后其抗压 强度降低的越多,岩石软化性 愈强。如粘土岩和泥质胶结 的 岩 石 , 其 KR 一 般 为 0 . 4 ~ 0.6。对水下建筑影响大。
另外,软化系数是评价 岩石力学性质的一个重要物 理性质指标。
11
五、抗冻性
• 岩石抵抗冻融破坏的能力,称为抗冻性。
• 抗冻系数(Rd)是指岩石试件经反复冻融后的干抗压强
度(σc2)与冻融前干抗压强度(σc1)之比,用百分数表
示,即
Rd
c2 c1
100%
• 质量损失率(Km)是指冻融试验前后干质量之差(ms1- ms2)与试验前干质量(ms1)之比,以百分数表示,即
的渗透流速,cm/s或m/d
U KJ
渗透流速
水力梯度
•渗透系数大小主要取决于岩石空隙的数量、大小、方向及其
连通性等,水只能通过连同的空隙渗透。因此,裂隙岩体的渗 透系数(透水性)远大于岩块的渗透系数,
工程岩土与测试:岩石的物理性质
(1)颗粒密度(ρs):岩石固体部分的质量与其体积的比值。它不包含孔隙 在内,因此其大小仅取决于组成岩石的矿物密度及其含量。
表达式:
ρs= ms/Vs ρs—为岩石的颗粒密度
ms—为岩石固体部分的质量 Vs—为岩石固体部分的体积 单位: g/cm3或kg/m3
岩石的颗粒密度属实测指标,常用比重瓶法进行测定。
nb
Vvb 100% V
na
Vva V
100% n0
nb
nc
Vv c V
100% n n0
岩石的物理性质
3.岩石的空隙性
一般提到的岩石空隙率系指总空隙率,其大小受岩石的
成因、时代、后期改造及其埋深的影响,其变化范围很大。常见 岩石的空隙率见表1,由表可知,新鲜结晶岩类的n一般小于3%, 沉积岩的n较高,为1%~10%,而一些胶结不良的砂砾岩,其n可 达10%~20%,甚至更大。
岩石的物理性质
3.岩石的空隙性
Байду номын сангаас
岩石的空隙
(裂隙、孔隙)
开空隙 闭空隙
岩石 空隙 率
总空隙率(n) 总开空隙率(no) 大开空隙率(nb) 小开空隙率(na) 闭空隙率(nc)
隙比
e VV s 1
Vs
d
大开空隙 小开空隙
n Vv V
100% (1
d s
) 100%
n0
Vv 0 V
100%
岩石的空隙性指标一般不能实测,只能通过密度与吸水性等指标 换算求得,其计算方法将在后续课程中讨论。
岩石的物理性质
表1常见岩石的物理性质指标值
岩石的物理性质
岩石的空隙性对岩块及岩体的水理、热学性质影响很大。一般说来,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业
岩石的物理性质
密度:是指岩(矿)石的致密程度,通常以单位体积物质的质量来表示,单位是:g/cm3或kg/m3。
决定岩石密度的主要因素有:岩石中各种矿物成分及其含量,岩石的孔隙度及孔隙中的充填物,岩石所受的压力。
通常情况下,只有其中某一种或二种因素起主导作用。
磁性:由于岩石由矿物组成,所以岩石的磁性强弱与矿物的磁性有直接关系。
而矿物磁性特征为抗磁性矿物的磁化率都很小,在磁力勘探中通常视为无磁性的;顺磁性矿物的磁化率要比抗磁性矿物大得多,约两个数量级。
电阻率:电流通过每边长度为1m的立方体均匀物质时所遇到的电阻值。
岩石的电阻率越小,它的导电性越好,岩石的电阻率越大,其导电性越差。
岩(矿)石的电阻率变化除了与其矿物成分、含量、矿物颗粒结构、构造有关外,很大程度上取决于它们的孔隙度或裂隙度及其中所含水分的多少。
速度:地震波速度既与岩石的弹性性质相关,又是反映岩石物理性质的重要参数。
影响因素为孔隙度及孔隙填充物性质,密度,埋藏深度,构造历史和地质年代,温度。