长春市高考数学一模试卷(理科)C卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长春市高考数学一模试卷(理科)C卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分)
设复数z满足=i,则|z|=()
A . 1
B .
C .
D . 2
2. (2分)(2016·襄阳模拟) “0≤a≤4”是“命题‘∀x∈R,不等式x2+ax+a>0成立’为真命题”的()
A . 充分不必要条件
B . 必要不充分条件
C . 充要条件
D . 既不充分也不必要条件
3. (2分) (2017高一下·池州期末) 当a=3时,如图的程序段输出的结果是()
A . 9
B . 3
D . 6
4. (2分)(2017·潍坊模拟) 函数f(x)= 的图象与函数g(x)=log2(x+a)(a∈R)的图象恰有一个交点,则实数a的取值范围是()
A . a>1
B . a≤﹣
C . a≥1或a<﹣
D . a>1或a≤﹣
5. (2分)已知则()
A .
B .
C .
D .
6. (2分) (2017高三下·武威开学考) 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积为()
B . 11π
C . 12π
D . 13π
7. (2分)已知双曲线中心在原点且一个焦点为F1(-,0),点P位于该双曲线上,线段PF1的中点坐标为(0,2),则双曲线的方程为()
A .
B .
C .
D .
8. (2分) (2017高一上·武汉期末) f(x)=Asin(ωx+ωπ)(A>0,ω>0)在上单调,则ω的最大值为()
A .
B .
C . 1
D .
9. (2分) (2017高一上·焦作期末) 如图为一个几何体的三视图,三视图中的两个不同的正方形的边长分别为1和2,则该几何体的体积为()
A . 6
B . 7
C . 8
D . 9
10. (2分)如图,在平行六面体ABCD-A1B1C1D1中,底面是边长为1的正方形,若∠A1AB=∠A1AD=60º,且A1A=3,则A1C的长为()
A .
B .
C .
D .
11. (2分) (2017·浙江模拟) 已知F为抛物线4y2=x的焦点,点A,B都是抛物线上的点且位于x轴的两侧,若• =15(O为原点),则△ABO和△AFO的面积之和的最小值为()
A .
B .
C .
D .
12. (2分) (2019高二下·哈尔滨月考) 直线与相切,实数的值为()
A .
B .
C .
D .
二、填空题 (共4题;共4分)
13. (1分)若数a1 , a2 , a3 , a4 , a5的标准差为2,则数3a1﹣2,3a2﹣2,3a3﹣2,3a4﹣2,3a5﹣2的方差为________
14. (1分)从边长为1的正方形的中心和顶点这五个点中,随机(等可能)取两点,则该两点间的距离为的概率是________.
15. (1分) (2019高三上·上海月考) 如图,在中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点 .若,则的值是________.
16. (1分)有一支队伍长L米,以一定的速度匀速前进,排尾的传令兵因传达命令赶赴排头,到达排头后立
即返回,且往返速度不变,如果传令兵回到排尾后,整个队伍正好前进了L米,则传令兵所走的路程为________.
三、解答题 (共5题;共45分)
17. (5分)(2018·绵阳模拟) 已知数列的前项和满足: .
(Ⅰ)求数列的通项公式;
(Ⅱ)若,数列的前项和为,试问当为何值时,最小?并求出最小值.
18. (15分) (2019高二上·杭州期中) 如图,已知直三棱柱,,E是棱
上动点,F是AB中点,,.
(1)求证:平面;
(2)当是棱中点时,求与平面所成的角;
(3)当时,求二面角的大小.
19. (5分)(2017·济宁模拟) 甲、乙、丙三人玩抽红包游戏,现将装有5元、3元、2元的红包各3个,放入一不透明的暗箱中并搅拌均匀,供3人随机抽取.
(Ⅰ)若甲随机从中抽取3个红包,求甲抽到的3个红包中装有的金额总数小于10元的概率.
(Ⅱ)若甲、乙、丙按下列规则抽取:
①每人每次只抽取一个红包,抽取后不放回;
②甲第一个抽取,甲抽完后乙再抽取,丙抽完后甲再抽取…,依次轮流;
③一旦有人抽到装有5元的红包,游戏立即结束.
求甲抽到的红包的个数X的分布列及数学期望.
20. (10分) (2017高二上·海淀期中) 已知圆与直线交于,两点,点
为线段的中点,为坐标原点.
(1)如果直线的斜率为,求实数的值.
(2)如果,且,求圆的方程.
21. (10分)(2018·鄂伦春模拟) 已知函数的图象在与轴的交点处的切线方程为 .
(1)求的解析式;
(2)若对恒成立,求的取值范围.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共4分)
13-1、
14-1、