浙教版初中数学知识点
浙教版初一数学知识点总结
浙教版初一数学知识点总结一、整数1. 正整数、负整数及零2. 整数的加、减法3. 整数的乘法4. 整数的除法5. 整数的绝对值6. 整数的比较大小二、分数1. 分数的概念2. 分数的加、减法3. 分数的乘法4. 分数的除法5. 分数的化简6. 分数的比较大小三、小数1. 小数的概念2. 小数的加、减法3. 小数的乘法4. 小数的除法5. 小数的比较大小6. 小数与分数的互化四、代数1. 代数的概念2. 代数式的概念3. 代数式的加、减、乘、除4. 代数式的因式分解5. 代数式的展开6. 代数式的合并同类项7. 代数式的化简五、方程与不等式1. 一元一次方程的概念2. 一元一次方程的解3. 一元一次不等式的概念4. 一元一次不等式的解5. 一元一次方程和不等式的应用六、平行线与全等1. 平行线的概念2. 平行线性质及判定方法3. 全等的概念4. 全等三角形的判定方法5. 全等三角形性质6. 全等三角形的证明七、相似1. 相似的概念2. 相似三角形的判定方法3. 相似三角形的性质4. 相似三角形的证明5. 相似多边形的性质八、直角三角形1. 直角三角形的概念2. 直角三角形的性质3. 勾股定理4. 正弦、余弦、正切的定义及性质5. 直角三角形的应用九、不规则图形的周长和面积1. 不规则图形的面积估算2. 不规则图形的周长的计算3. 简单多边形的周长和面积的计算4. 圆的周长和面积的计算5. 直角三角形和一般三角形的面积计算十、数据的收集与整理1. 数据的收集方法2. 数据的整理方法3. 数据的图形表示4. 数据的分析及应用综上所述,浙教版初一数学知识点主要包括整数、分数、小数、代数、方程与不等式、平行线与全等、相似、直角三角形、不规则图形的周长和面积以及数据的收集与整理。
这些知识点构成了初一数学的基础,对于后续学习中的数学知识有着重要的作用。
在学习过程中,学生不仅需要掌握这些知识点的概念和性质,还需要掌握其运用方法,以及学会将数学知识运用到日常生活中。
浙教版七年级(上册)数学知识点复习资料全
数轴上一点a到原点的距离表示a的绝对值。
绝对值的性质:
(1) 正数的绝对值是其本身, 0的绝对值是0, 负数的绝对值 是它的相反数
(2) 绝对值可表示为:
或
绝对值的问题经常分类讨论;
(3)
5.有理数大小的概念:
(1)正数的绝对值越大, 这个数越大;
(2)正数永远比0大, 负数永远比0小;
(2)常数项: 多项式中,不含字母的项叫做常数项.
(3)多项式次数: 多项式里,次数最高的项的次数,就是这个多项式的次数.
4.整式:
单项式和多项式统称整式。
5.同类项:
所含字母相同,并且相同字母的次数也相同的项,叫做同类项. 常数项都是同类项。
合并同类项法则: 同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
(3)整式的加减运算可归结为去括号和合并同类项。
7、常用的关系:
奇数2n-1或2n+1;偶数2n;三个连续的整数一般写作n-1, n, n+1;三个连续的偶数一般写作2n-2, 2n, 2n+2;三个连续的奇数一般写作2n-1, 2n+1, 2n+3
练习题
1.已知
与
是同类项, 则
A. 4 B. 37 C. 2或4 D. 2
A
B
4、下列说法,正确是( ) A、零是最小的自然数 B、零是最小的正整数 C、零是最小的有理数 D.零既是负数又是正数
A
1、下列各对数中,互为相反数是( ) A.2和
C.
和2 D.
和
D
5、火车上的车次号有两个意义,一是数字越小表示车速越快,1∽98次为特快列车,101∽198次为直快列车,301∽398次为普快列车,401∽498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京方向.根据以上规定,杭州开往北京的某一直快列车的车次号可能是( ) A、20 B、119 C、120 D.319
浙教版初中数学全套知识点汇总
七年级(上册)1.有理数1.1.从自然数到有理数分数都可以化为小数。
分数在化成小数时,结果可能是有限小数,也可能是无限循环小数。
大于0的数,叫正数;小于0的数,叫负数;0既不是正数也不是负数。
整数和分数统称为有理数。
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫负分数正分数分数负整数自然数零正整数整数有理数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数1.2.数轴像这样规定了原点、单位长度和正方向的直线叫做数轴。
任何一个有理数都可以用数轴上的点表示。
如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
0的相反数是0。
在数轴上,表示互为相反数(0除外)的两个点,位于原点的两侧,并且到原点的距离相等。
1.3.绝对值我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
一个数a 的绝对值表示为|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
互为相反数的两个数的绝对值相等。
1.4.有理数的大小比较在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于0,负数都小于0,正数大于负数。
两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
2.有理数的运算2.1.有理数的加法同号两数相加,取与加数相同的符号,并把绝对值相加。
异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
加法交换律:两个数相加,交换加数的位置,和不变。
a +b =b +a加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
(a +b )+c =a +(b +c )2.2.有理数的减法减去一个数,等于加上这个数的相反数。
有理数加减混合运算的一般步骤是先利用减法法则,将减法转换成加法,再运用加法交换律和结合律,使计算简便。
浙教版初中数学知识点
八年级上
第一章三角形的初步知识
1.认识三角形(三角形、三角形的内角、内角和;三角形按角分类;三角形三边关系;三角形的平分线、中线、高线);
2.定义与命题(定义、命题、命题的条件和结论、真命题、假命题、定理);3.证明(证明、三角形的外角、三角形的外角和);4.全等三角形(全等图形、全等三角形、对应边、对应顶点、对应角、全等三角形的性质);5.三角形全等的判:SSS(三角形的稳定性)、SAS(线段中垂线的定义及性质定理)、ASA、AAS(角平分线的性质);6.尺规作图
1、四边形的定义和性质
2、多边形的定义和性质
3、平行四边形的定义、性质和判定条件
1、定义:有两组对边分别平行的四边形叫做平行四边形。
2、性质:
(1)平行四边形的对边相等;
(2)平行四边形的对角相等;
(3)平行四边形的对角线互相平分。
3、判定:
第四章 特殊四边形
1、掌握正方形的性质、判定
2、掌握菱形的性质、判定
4.等腰三角形的判定、等边三角形的判定
5.逆命题和逆定理
6.直角三角形、直角三角形的性质及判定
7.勾股定理及逆定理
8.直角三角形全等的判定
熟练运用三线合一来解题;
熟练记忆几组特殊的勾股数。
第三章一元一次不等式
1.认识不等式(不等式的定义、不等号、不等式的数轴表示);2.不等式的基本性质;3.一元一次不等式的定义及解集、解一元一次不等式的一般步骤;4.一元一次不等式组及其解、解一元一次不等式组的一般步骤;5.不等式(组)应用题。
1.直线与圆的位置关系定理;
直线与圆相切的判定定理;
切线的性质;
2.切线长定理;
浙教版初中数学220个知识点汇总
浙教版初中数学知识点1、相反数:只有符号不同的两个数,我们说其中一个是另一个的相反数,也称为这两个数互为相反数。
0的相反数是0。
用数学语言表述为:若a 、b 互为相反数,则a+b=0即a b =-,反之也成立。
数a 的相反数是-a 。
2、倒数:若a 、b (a 、b 均不为0)互为倒数,则ab=1即1a b=,反之也成立。
a 的倒数是1a。
0没有倒数,1和-1的倒数是它们本身。
3、有理数和无理数统称为实数。
实数分为有理数和无理数,也可分为正实数、0、负实数。
实数与数轴上的点一一对应。
4、有理数分为正有理数、0、负有理数,它们均是有限小数或无限循环小数;也可分为整数和分数,整数又分为正整数、0、负整数;分数又分为正分数、负分数。
无理数分为正无理数和负无理数,它们都是无限不循环小数。
5、π是无理数,227是分数是小数是有理数,0是自然数。
6、绝对值的几何定义:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值,数a 的绝对值记为“|a|”。
代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
于是,|a|=a 0a ←−→≥;|a|=-a ←−→a≤0。
7、 任何一个实数的绝对值都是非负数,即|a|≥0。
(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩或(0)(0)a a a a a ≥⎧=⎨-<⎩,或(0)(0)a a a a a >⎧=⎨-≤⎩ 8、 若|x|=a(a≥0),则x=±a ,即绝对值的原数的双值性。
9、 数轴上两点A (A x )、B (B x )之间的距离为|AB|=|A x -B x |,其中点所表示的数为2A B x x +。
坐标平面内两点A (A x ,A y )、B (B x ,B y )的距离为:|AB|=22()()A B A B x x y y -+-,中点C 的坐标为(2A B x x +,2A B y y +),点A 到x 轴的距离为|A y |,到y 轴的距离为|A x |,到原点的距离为22A A x y +,如果A x =B x 且A y ≠B y ,则直线AB 平行于y 轴;如果A y =B y 且A x ≠B x ,则直线AB 平行于x 轴。
初中数学知识点总结浙教版
初中数学知识点总结浙教版一、数与代数1. 数的基本概念- 自然数、整数、有理数和无理数的定义及其性质。
- 整数的四则运算规则及其应用。
- 分数的加减乘除运算,分数的化简和比较大小。
- 代数式的基本概念,包括单项式、多项式、同类项和合并同类项。
2. 代数表达式与方程- 代数表达式的书写和简化。
- 一元一次方程、二元一次方程的解法及其应用。
- 不等式及其解集的表示,一元一次不等式和一元一次不等式组的解法。
3. 函数的初步认识- 函数的概念,函数的定义域和值域。
- 线性函数、二次函数的图像和性质。
- 函数的简单运算,包括加减乘除和复合函数。
二、几何1. 几何图形初步- 点、线、面的基本性质。
- 角的概念,包括邻角、对角、同位角等。
- 直线、射线、线段的性质和关系。
2. 平面图形- 三角形的分类和性质,包括等边三角形、等腰三角形和直角三角形。
- 四边形的分类和性质,重点是矩形、正方形、平行四边形、梯形。
- 圆的基本性质,包括圆心、半径、直径、弦、弧、切线等。
3. 几何图形的计算- 三角形、四边形和圆的面积计算公式。
- 矩形、正方形和圆的周长(或称“围长”)计算。
- 体积和表面积的计算,主要是长方体和圆柱体。
4. 几何变换- 平移、旋转和轴对称(反射)的概念及其在几何图形中的应用。
- 通过具体操作改变图形的位置和形状,理解变换的不改变性质。
三、统计与概率1. 统计- 数据的收集、整理和描述。
- 频数分布表和频数分布直方图的绘制和解读。
- 平均数、中位数和众数的概念及其计算方法。
2. 概率- 随机事件的概念和分类。
- 概率的初步认识,包括确定事件和随机事件的概率计算。
- 简单事件发生的可能性分析。
四、应用题1. 数的应用- 利用所学的数的知识解决实际问题,如购物、时间计算等。
- 利率、比例和百分数的应用。
2. 代数的应用- 一元一次方程和不等式在实际问题中的应用。
- 通过代数表达式简化和运算解决实际问题。
浙教版初中数学知识点总结
浙教版初中数学知识点总结初中数学是一门基础且重要的学科,对于培养学生的逻辑思维和解决问题的能力有着至关重要的作用。
浙教版初中数学涵盖了丰富的知识点,下面我们来进行详细的总结。
一、数与代数1、有理数有理数包括整数和分数。
整数又分为正整数、零和负整数;分数分为正分数和负分数。
有理数的运算包括加、减、乘、除、乘方。
需要注意的是,加法和乘法运算都满足交换律、结合律和分配律。
2、实数实数包括有理数和无理数。
无理数是无限不循环小数,如π、√2 等。
平方根和立方根的概念要清晰,一个正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
正数的立方根是正数,负数的立方根是负数,0 的立方根是 0。
3、代数式用运算符号把数和字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
整式包括单项式和多项式。
单项式是数字与字母的积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
4、整式的加减整式加减的实质是合并同类项。
同类项是所含字母相同,并且相同字母的指数也相同的项。
5、一元一次方程只含有一个未知数,并且未知数的次数是 1 的整式方程叫做一元一次方程。
解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为 1。
6、二元一次方程组由两个含有两个未知数,并且未知数的次数都是 1 的方程组成的方程组叫做二元一次方程组。
解二元一次方程组的基本方法是代入消元法和加减消元法。
7、不等式与不等式组用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个数或代数表达式的式子叫做不等式。
解不等式的步骤与解一元一次方程类似,但要注意在不等式两边乘或除以同一个负数时,不等号的方向要改变。
8、整式的乘除同底数幂的乘法、除法,幂的乘方、积的乘方等运算法则要熟练掌握。
单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的法则也要牢记。
9、因式分解把一个多项式化成几个整式的积的形式,叫做因式分解。
初中数学知识点总结浙江版
初中数学知识点总结浙江版初中数学知识点总结(浙江版)一、数与代数1. 有理数- 有理数的定义:整数和分数统称为有理数。
- 有理数的分类:正有理数、负有理数和零。
- 有理数的运算:加法、减法、乘法、除法及混合运算。
2. 整数- 整数的性质:奇数与偶数、质数与合数。
- 整数的运算:加法、减法、乘法和除法。
- 整除与余数:整除的定义、最大公约数和最小公倍数。
3. 分数与小数- 分数的基本概念:真分数、假分数、带分数。
- 分数的运算:加减乘除运算法则。
- 小数的基本概念:小数的性质和四则运算。
4. 代数表达式- 代数式的概念:单项式与多项式。
- 代数式的运算:加减、乘除、因式分解。
5. 一元一次方程- 方程的建立:等式与不等式。
- 方程的解法:移项、合并同类项、系数化为1。
6. 二元一次方程组- 方程组的建立:二元一次方程组的概念。
- 解法:代入法、加减消元法。
7. 不等式与不等式组- 不等式的性质:基本性质。
- 不等式的解集:表示方法。
- 不等式组的解法:同向相加、交叉相减。
8. 函数- 函数的概念:定义、函数图像。
- 线性函数:斜率、截距、方程。
- 二次函数:顶点、对称轴、开口方向。
二、几何1. 平面图形- 点、线、面:基本概念。
- 角:分类、性质、角的计算。
- 三角形:分类、性质、内角和定理。
- 四边形:分类、性质、对角线关系。
2. 圆- 圆的基本性质:圆心、半径、直径。
- 圆的计算:周长、面积。
- 圆的位置关系:相离、相切、相交。
3. 空间图形- 立体图形的基本概念:多面体、旋转体。
- 棱柱、棱锥:体积计算。
- 圆柱、圆锥、球:体积与表面积计算。
4. 几何变换- 平移:基本概念、坐标变化。
- 旋转:基本概念、旋转角度。
- 轴对称:对称轴、对称点。
5. 相似与全等- 全等三角形:判定条件。
- 相似三角形:相似比、对应角相等。
- 相似多边形:判定条件、性质。
三、统计与概率1. 统计- 数据的收集与整理:普查、抽样。
浙教版初中数学知识点
浙教版初中数学知识点初中数学是一门重要的基础学科,对于培养学生的逻辑思维和解决问题的能力有着至关重要的作用。
浙教版初中数学教材涵盖了丰富的知识点,下面我们来详细梳理一下。
一、数与代数1、有理数有理数包括整数和分数。
整数包括正整数、零和负整数;分数包括正分数和负分数。
有理数的运算规则是学习数学的基础,如加法、减法、乘法、除法以及乘方运算。
2、实数实数包括有理数和无理数。
无理数是无限不循环小数,如π和√2等。
实数的运算与有理数类似,但要注意无理数的运算特点。
3、代数式代数式包括整式、分式和二次根式。
整式的运算包括加减乘除,其中乘法运算中的平方差公式和完全平方公式是重点。
分式要注意分母不能为零,以及分式的化简和运算。
二次根式要掌握其性质和运算规则。
4、方程与不等式一元一次方程、二元一次方程组、一元二次方程是方程部分的重点。
要学会解方程的方法,以及利用方程解决实际问题。
不等式包括一元一次不等式和一元一次不等式组,要掌握解不等式的方法和不等式的性质。
5、函数函数是初中数学的重点和难点,包括一次函数、反比例函数和二次函数。
要理解函数的概念、图像和性质,能够运用函数解决实际问题。
二、图形与几何1、线与角了解直线、射线、线段的概念和性质,掌握角的度量和角的平分线的性质。
2、三角形三角形的性质包括内角和定理、外角定理等。
三角形全等的判定方法(SSS、SAS、ASA、AAS、HL)是重点,要能够运用这些方法证明三角形全等。
3、四边形平行四边形、矩形、菱形、正方形的性质和判定方法要熟练掌握。
4、圆圆的相关概念,如圆心、半径、直径等。
圆的周长和面积公式,以及圆与直线的位置关系。
5、图形的变换平移、旋转、轴对称是图形变换的三种基本形式,要理解它们的性质和特点。
三、统计与概率1、数据的收集与整理学会收集、整理和描述数据的方法,如普查和抽样调查。
2、数据的分析平均数、中位数、众数是描述数据集中趋势的量,方差是描述数据离散程度的量,要能够根据数据选择合适的统计量进行分析。
浙教版初中数学知识点总结归纳
浙教版初中数学知识点总结归纳一、整数运算1.整数的概念及表示法2.整数的加法、减法、乘法、除法运算3.各种运算法则的应用4.合并同类项、去括号、去分子分母算式的能力二、小数运算1.小数的概念及表示法2.小数的加法、减法、乘法、除法运算3.小数的大小比较4.有限小数和循环小数的判断和处理5.小数的四舍五入和位数对齐三、分数运算1.分数的概念及表示法2.分数的加法、减法、乘法、除法运算3.分数的化简和比较4.加减混合数的运算5.分数的倒数和互换律的运用四、代数与方程1.代数式的概念及表示法2.代数式的合并同类项、合并同底数、约分公因式3.一元一次方程的概念及解法4.一元一次方程的应用:问题的转化、列方程、解方程5.二元一次方程组的概念及解法6.二元一次方程组的应用:实际问题的转化、列方程组、解方程组五、比例与百分数1.比例的概念及性质2.倍数与倍数关系3.比例的四则运算4.百分数的概念及表示法5.百分数与分数、小数的互化6.百分数的四则运算7.百分数的应用:百分比换算、增加和减少百分数、利息、折扣、税率等问题六、几何与图形1.各种平面图形的概念及性质2.三角形和四边形的面积计算3.圆的面积和周长计算5.三角形的概念、分类及性质6.四边形的概念、分类及性质7.圆的概念、性质及相关定理8.空间图形的概念及性质:长方体、正方体、球体、棱锥、棱柱、圆柱等9.相似与全等:相似的概念、相似三角形的性质、相似比例、全等的概念及性质10.几何变换:平移、旋转和翻折的概念及性质七、统计与概率1.数据的收集、整理、分析与表示2.统计图表的分析与应用3.概率的概念及基本性质4.概率的计算:实验法、几何法和古典概型5.事件的概念、对立事件及事件的发生规律八、函数与图像1.函数的概念、自变量、因变量及表示法2.函数的图像及性质3.函数的增减性与最值5.一次函数、一次函数的图像及性质6.二次函数、二次函数的图像及性质7.解一元一次方程和一元二次方程的图像法九、立体几何1.空间图形的概念、分类及性质2.空间图形的展开图及体积计算3.空间图形的表面积计算4.立体几何的应用问题。
浙教版初中数学知识点总结
浙教版初中数学知识点总结一、整数与有理数1.整数的比较和整数的加减法整数的加法:同号相加,异号相减,规定正数在前,负数在后。
整数的减法:减法的本质是加法的逆运算,减去一个整数等于加上这个整数的相反数。
2.整数的乘除法整数的乘法:同号得正,异号得负,乘法交换律。
整数的除法:除法的本质是乘法的逆运算,除以一个整数等于乘以这个整数的倒数,即分数。
3.三者关系正数大于零,零等于零,负数小于零。
4.数轴数轴上的点与有理数的对应关系,数轴上点的坐标。
5.有理数的运算有理数的加法、减法、乘法、除法,对运算法则的理解和运用。
6.有理数的乘方与开方幂的概念,有理数的乘方运算,主要是平方和立方。
有理数的开方运算,开二次方的有理数不能是负数。
7.数与式数与式,式与式之间的计算关系,运算法则的灵活应用。
8.数轴与有理数的运算数轴与有理数的加减法运算,数轴上点的坐标的减法和加法运算,数轴上两点距离的计算。
二、代数初步1.代数初步字母的概念,字母的用途和含义。
代数式与数的关系,代数式之间的计算关系。
与字母相关的关系,如a=1时,2a=22.平方与平方根二次幂的概念,立方根的概念,开平方根的计算。
3.开方与幂的运算开方的运算法则,开方与幂的关系。
幂的整数指数的性质和运算规则。
4.二元一次方程解一元一次方程的方法,应用一元一次方程解决实际问题。
解二元一次方程的常用方法。
三、图形的初步认识1.图形的初步认识图形的概念和分类,几何图形的共同特征和不同特点。
2.点、线、面分类讨论直线、线段、射线的特点和关系。
面的概念,平面与直线、线段、点之间的关系。
四、平面图形与变换1.角的初步认识角的概念和分类,余角的概念和性质。
2.三角形和四边形三角形和四边形的分类和特点,相应的性质。
3.平行线平行线的概念和性质,平行线之间的关系。
4.三角形的相似相似三角形的概念和性质,相似三角形之间的关系。
5.对称与中心对称对称的概念和性质,利用对称性解决问题。
浙教版初中数学知识点总结归纳
浙教版初中数学知识点总结归纳初中数学是一门重要的基础学科,对于培养学生的逻辑思维和解决问题的能力有着至关重要的作用。
浙教版初中数学教材涵盖了丰富的知识点,以下为大家进行系统的总结归纳。
一、数与代数1、有理数有理数的概念:包括正有理数、零和负有理数。
有理数的运算:加、减、乘、除、乘方运算及其混合运算。
有理数的大小比较。
2、实数平方根与立方根:平方根的定义、性质,立方根的定义、性质。
实数的概念:包括有理数和无理数。
实数的运算:与有理数运算类似,但要注意无理数的运算。
3、代数式整式:单项式、多项式的概念,整式的加减乘除运算。
因式分解:提公因式法、公式法(平方差公式、完全平方公式)。
分式:分式的概念、分式的基本性质、分式的运算。
4、方程与不等式一元一次方程:解法及应用。
二元一次方程组:解法(代入消元法、加减消元法)及应用。
一元二次方程:一般形式、解法(配方法、公式法、因式分解法)、根的判别式、韦达定理及应用。
不等式:不等式的性质、一元一次不等式(组)的解法及应用。
二、图形与几何1、三角形三角形的基本性质:内角和定理、外角性质。
全等三角形:判定方法(SSS、SAS、ASA、AAS、HL)。
相似三角形:判定方法、性质及应用。
直角三角形:勾股定理、直角三角形的性质。
2、四边形平行四边形:性质、判定方法。
矩形、菱形、正方形:性质、判定方法。
3、圆圆的基本性质:垂径定理、圆心角、弧、弦之间的关系。
圆周角定理。
圆与直线的位置关系:相离、相切、相交。
正多边形和圆。
4、图形的变换平移、旋转、轴对称:性质及作图。
位似:概念及性质。
三、函数1、一次函数一次函数的表达式:y = kx + b(k、b 为常数,k ≠ 0)。
一次函数的图像与性质。
一次函数的应用。
2、反比例函数反比例函数的表达式:y = k/x(k 为常数,k ≠ 0)。
反比例函数的图像与性质。
反比例函数的应用。
3、二次函数二次函数的表达式:一般式 y = ax²+ bx + c(a ≠ 0)、顶点式 y = a(x h)²+ k(a ≠ 0)。
(完整版)(完整版)浙教版初中数学知识点总结归纳,推荐文档
初中数学教学大纲七年级上册第1章有理数1.1从自然数到有理数正数负数0既不是正数也不是负数整数分数有理数1.2 数轴原点单位长度正方向数轴相反数1.3 绝对值1.4 有理数的大小比较第2章有理数的运算2.1有理数的加法加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)2.2 有理数的减法减去一个数,等于加上这个数的相反数2.3 有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘任何数与零相乘,积为零互为倒数乘法交换律:a*b=b*a乘法结合律:(a*b)*c=a*(b*c)分配率:a*(b+c)=a*b+a*c2.4 有理数的除法两数相除,同号得正,异号得负,并把绝对值相除0除以任何一个不等于0的数都得0除以一个数(不等于0),等于乘以这个数的倒数2.5 有理数的乘方幂底数指数科学记数法2.6 有理数的混合运算先算乘方,再算乘除,最后算加减,如有括号,先进行括号里的运算2.7 近似数准确数近似数第3章实数3.1 平方根平方根开平方算数平方根3.2 实数无理数3.3 立方根3.4 实数的运算先算乘方和开方,再算乘除,最后算加减,如果遇到括号,则先进行括号里的运算第4章代数式4.1 用字母表示数4.2 代数式4.3 代数式的值4.4 整式单项式系数次数多项式常数项4.5 合并同类项把同类项的系数相加,所得结果作为系数,字母和字母的指数不变4.6 整式的加减第5章一元一次方程5.1 一元一次方程5.2 等式的基本性质5.3 一元一次方程的解法5.4 一元一次方程的应用第6章图形的初步认识6.1 几何图形6.2 线段、射线和直线6.3 线段的长短的比较两点之间线段最短6.4 线段的和差中点6.5 角与角的度量6.6 角的大小比较直角锐角钝角6.7 角的和差角的平分线6.8 余角和补角同角或等角的余角相等同角或等角的补角相等6.9 直线的相交对顶角相等连接直线外一点与直线上各点的所有线段中,垂线段最短初中数学教学大纲七年级下册第1章平行线1.1平行线1.2同位角、内错角、同旁内角1.3 平行线的判定同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行在同一平面内,垂直于同一条直线的两条直线互相平行1.4 平行线的性质两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补1.5图形的平移第2章二元一次方程组2.1 二元一次方程2.2 二元一次方程组2.3 解二元一次方程组代入消元法加减消元法2.4 二元一次方程组的应用2.5 三元一次方程组及其解法第3章整式的乘除3.1 同底数幂的乘法同底数幂相乘,底数不变,指数相加幂的乘方,底数不变,指数相乘积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘3.2 单项式的乘法3.3 多项式的乘法(a+n)(b+m)=ab+am+nb+mn3.4 乘法公式(a+b)(a-b)=a ²-b ²(a+b) ²=a ²+2ab+b ²(a-b) ²=a ²+2ab+b ²3.5 整式的化简3.6 同底数幂的除法同底数幂相除,底数不变,指数相减3.7 整式的除法(a+b+c) ÷m=a÷m+b÷m+c÷m (m≠0)第4章因式分解4.1 因式分解4.2 提取公因式法4.3 用乘法公式分解因式第5章分式5.1 分式分式中字母的取值不能使分母为零,当分母的值为零时,分式就没有意义5.2 分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变最简分式5.3 分式的乘除5.4 分式的加减5.5 分式方程第6章数据与统计图表6.1 数据的收集与整理全面调查抽样调查总体个体样本样本的容量简单随机抽样 6.2 条形统计图和折线统计图6.3 扇形统计图6.4 频数与频率组距频数频数统计表频率6.5 频数直方图初中数学教学大纲八年级上册第1章三角形的初步认识1.1认识三角形三角形三个内角的和等于180°三角形任何两边的和大于第三边三角形的角平分线三角形的中线三角形的高线1.2定义与命题定义命题条件结论真命题假命题定理1.3证明三角形的外角等于与它不相邻的两个内角的和1.4全等三角形全等三角形的对应边相等,对应角相等1.5三角形全等的判定三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)两边及其夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)两个角及其夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)两角及其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)线段垂直平分线上的点到线段两端的距离相等角平分线上的点到角两边的距离相等1.6 尺规作图第2章特殊三角形2.1 图形的轴对称对称轴垂直平分连结两个对称点的线段成轴对称的两个图形是全等图形2.2 等腰三角形2.3等腰三角形的性质定理等腰三角形的两个底角相等在同一个三角形中,等边对等角等边三角形的各个内角都等于60°等腰三角形的顶角平分线、底边上的中线和高线互相重合,简称等腰三角形的三线合一2.4 等腰三角形的判定定理如果一个三角形有两个角相等,那么这个三角形是等腰三角形在同一个三角形中,等角对等边三个角都相等的三角形是等边三角形有一个角是60°的等腰三角形是等边三角形2.5 逆命题和逆定理2.6 直角三角形直角三角形的两个锐角互余直角三角形斜边上的中线等于斜边的一半有两个角互余的三角形是直角三角形2.7 探索勾股定理直角三角形两条直角边的平方和等于斜边的平方a²+b²=c²如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形2.8 直角三角形全等的判定斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”“HL”)角的内部,到角两边距离相等的点,在这个角的平分线上第3章一元一次不等式3.1 认识不等式3.2不等式的基本性质a>b→a+c>b+c,a-c>b-ca<b→a+c<b+c,a-c<b-ca>b,且c>0→ac>bc,a/c>b/ca>b,且c<0→ac<bc,a/c<b/c3.3 一元一次不等式3.4 一元一次不等式组第4章图形与坐标4.1 探索确定位置的方法4.2 平面直角坐标系4.3 坐标平面内图形的轴对称和平移在直角坐标系中,点(a,b)关于x轴的对称点的坐标为(a,-b),关于y轴的对称点的坐标为(-a,b)第5章一次函数5.1 常量与变量5.2 函数5.3 一次函数一般地,函数y=kx+b(k,b都是常数,且k≠0) 叫做一次函数正比例函数比例系数待定系数法5.4 一次函数的图像对于一次函数y=kx+b(k,b为常数,且k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
浙教版初中数学知识点
浙教版初中数学知识点一、数与代数1.数的性质及运算:整数、有理数、无理数的概念与性质,加减乘除、乘方、开方等运算法则的应用。
2.整式的加减乘除:整数幂运算法则的应用,整式的加减乘除的规则及运算应用,整式的系数、次数、和展开式等概念。
3.整式的因式分解与乘法公式:根据整式的特点进行因式分解,利用乘法公式进行整式的简化和计算。
4.一元一次方程与不等式:一元一次方程与不等式的概念、解法及应用,包括两个方程及不等式的等价性质及解析解法。
5.二元一次方程组:二元一次方程组的概念、解法以及应用,包括二元一次方程组的图像表示法、解集等。
6.分式的概念与应用:分式的概念、运算规则以及应用,包括分式方程与不等式的解法等。
7.百分数与比例:百分数与比例的概念与运算,百分数方程与比例方程的解法,比例的应用解题等。
二、几何1.平面图形:平面图形的基本概念与性质,包括直线、线段、射线、角的概念等,计算线段长度、角的度数等。
2.三角形:三角形的性质、分类及计算,包括三角形的内角和、外角和、三角形的面积等。
3.圆:圆的性质与计算,包括圆周长、圆面积的计算等。
4.直线与线段的位置关系:直线与线段相交的情况,包括垂直、平行、相交等关系的判断与应用。
5.平面镶嵌:平面镶嵌的概念、判断方法及应用,包括平面镶嵌的构造、计数等问题。
6.三视图与展开图:三视图的概念与应用,展开图的概念、构造与计数等。
三、函数与方程1.一元二次函数:一元二次函数的概念、图像特点及应用,包括抛物线的开口方向、顶点坐标、零点、最值等的计算与应用。
2.图像的平移、翻转与旋转:平移、翻转与旋转的概念与应用,包括图像的变化规律、坐标的计算等。
3.实际问题的函数模型:根据实际问题建立函数模型,包括线性函数、二次函数等。
4.算法与程序设计:算法的概念与设计,面向实际问题的编程思维,包括流程图、拆解问题、编写代码等。
四、统计与概率1.数据的整理与表示:数据的收集与整理方法,包括频数表、频率分布表、条形统计图等。
浙教版初中数学知识点
1.投影;2简洁几何体的三视图;3.由三视图描绘几何体;4.简洁几何题的外表绽开图。
会画三视图;驾驭圆锥侧面积及外表积计算公式。
平方根、算术平方根定义的把握;无理数的整数局部和小数局部;实数的简便运算。
第四章代数式
1.用字母表示数(把数和数量关系一般化);2.代数式(留意代数式的书写标准);3.代数式的值;4.整式、单项式、多项式;5.同类项、合并同类项及其法则;6.去括号法则
娴熟驾驭单项式、多项式的系数、次数、项数(留意:计算次数的时候只算字母的次数);规律题;应用题(电费、收入等)
本章概念性的东西比拟多,娴熟驾驭概念是重点。
八年级上
第一章三角形的初步学问
1.相识三角形(三角形、三角形的内角、内角和;三角形按角分类;三角形三边关系;三角形的平分线、中线、高线);
2.定义与命题(定义、命题、命题的条件和结论、真命题、假命题、定理);3.证明(证明、三角形的外角、三角形的外角和);4.全等三角形(全等图形、全等三角形、对应边、对应顶点、对应角、全等三角形的性质);5.三角形全等的判:SSS(三角形的稳定性)、SAS(线段中垂线的定义及性质定理)、ASA、AAS(角平分线的性质);6.尺规作图
娴熟驾驭因式分解的一般步骤;
娴熟驾驭公式法进展因式分解。
第五章分式
分式的定义及分式有(无)意义须要满意的条件;分式的根本性质、约分、最简分式;分式的乘除;分式的加减、通分;分式方程、解分式方程。
会解决分式无解和增根问题。
驾驭分式方程的解题步骤。
第六章数据与统计图表
数据的搜集与整理、划记法、全面调查、抽样调查、总体、个体、样本、样本容量、简洁随机抽样;条形统计图和折线统计图;扇形统计图;频数与频率、组距、频数统计表;频数直方图
浙教版初中数学知识点总结归纳
初中数学教学大纲七年级上册第1章有理数1.1从自然数到有理数正数负数 0既不是正数也不是负数整数分数有理数1.2 数轴原点单位长度正方向数轴相反数1.3 绝对值1.4 有理数的大小比较第2章有理数的运算2.1有理数的加法加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)2.2 有理数的减法减去一个数,等于加上这个数的相反数2.3 有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘任何数与零相乘,积为零互为倒数乘法交换律:a*b=b*a乘法结合律:(a*b)*c=a*(b*c)分配率:a*(b+c)=a*b+a*c2.4 有理数的除法两数相除,同号得正,异号得负,并把绝对值相除0除以任何一个不等于0的数都得0除以一个数(不等于0),等于乘以这个数的倒数2.5 有理数的乘方幂底数指数科学记数法2.6 有理数的混合运算先算乘方,再算乘除,最后算加减,如有括号,先进行括号里的运算2.7 近似数准确数近似数第3章实数3.1 平方根平方根开平方算数平方根3.2 实数无理数3.3 立方根3.4 实数的运算先算乘方和开方,再算乘除,最后算加减,如果遇到括号,则先进行括号里的运算第4章代数式4.1 用字母表示数4.2 代数式4.3 代数式的值4.4 整式单项式系数次数多项式常数项4.5 合并同类项把同类项的系数相加,所得结果作为系数,字母和字母的指数不变4.6 整式的加减第5章一元一次方程5.1 一元一次方程5.2 等式的基本性质5.3 一元一次方程的解法5.4 一元一次方程的应用第6章图形的初步认识6.1 几何图形6.2 线段、射线和直线6.3 线段的长短的比较两点之间线段最短6.4 线段的和差中点6.5 角与角的度量6.6 角的大小比较直角锐角钝角6.7 角的和差角的平分线6.8 余角和补角同角或等角的余角相等同角或等角的补角相等6.9 直线的相交对顶角相等连接直线外一点与直线上各点的所有线段中,垂线段最短初中数学教学大纲七年级下册第1章平行线1.1平行线1.2同位角、内错角、同旁内角1.3 平行线的判定同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行在同一平面内,垂直于同一条直线的两条直线互相平行1.4 平行线的性质两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补1.5图形的平移第2章二元一次方程组2.1 二元一次方程2.2 二元一次方程组2.3 解二元一次方程组代入消元法加减消元法2.4 二元一次方程组的应用2.5 三元一次方程组及其解法第3章整式的乘除3.1 同底数幂的乘法同底数幂相乘,底数不变,指数相加幂的乘方,底数不变,指数相乘积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘3.2 单项式的乘法3.3 多项式的乘法(a+n)(b+m)=ab+am+nb+mn3.4 乘法公式(a+b)(a-b)=a ²-b ²(a+b) ²=a ²+2ab+b ²(a-b) ²=a ²+2ab+b ²3.5 整式的化简3.6 同底数幂的除法同底数幂相除,底数不变,指数相减3.7 整式的除法(a+b+c) ÷m=a÷m+b÷m+c÷m (m≠0)第4章因式分解4.1 因式分解4.2 提取公因式法4.3 用乘法公式分解因式第5章分式5.1 分式分式中字母的取值不能使分母为零,当分母的值为零时,分式就没有意义5.2 分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变最简分式5.3 分式的乘除5.4 分式的加减5.5 分式方程第6章数据与统计图表6.1 数据的收集与整理全面调查抽样调查总体个体样本样本的容量简单随机抽样6.2 条形统计图和折线统计图6.3 扇形统计图6.4 频数与频率组距频数频数统计表频率6.5 频数直方图初中数学教学大纲八年级上册第1章三角形的初步认识1.1认识三角形三角形三个内角的和等于180°三角形任何两边的和大于第三边三角形的角平分线三角形的中线三角形的高线1.2定义与命题定义命题条件结论真命题假命题定理1.3证明三角形的外角等于与它不相邻的两个内角的和1.4全等三角形全等三角形的对应边相等,对应角相等1.5三角形全等的判定三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)两边及其夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)两个角及其夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)两角及其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)线段垂直平分线上的点到线段两端的距离相等角平分线上的点到角两边的距离相等1.6 尺规作图第2章特殊三角形2.1 图形的轴对称对称轴垂直平分连结两个对称点的线段成轴对称的两个图形是全等图形2.2 等腰三角形2.3等腰三角形的性质定理等腰三角形的两个底角相等在同一个三角形中,等边对等角等边三角形的各个内角都等于60°等腰三角形的顶角平分线、底边上的中线和高线互相重合,简称等腰三角形的三线合一2.4 等腰三角形的判定定理如果一个三角形有两个角相等,那么这个三角形是等腰三角形在同一个三角形中,等角对等边三个角都相等的三角形是等边三角形有一个角是60°的等腰三角形是等边三角形2.5 逆命题和逆定理2.6 直角三角形直角三角形的两个锐角互余直角三角形斜边上的中线等于斜边的一半有两个角互余的三角形是直角三角形2.7 探索勾股定理直角三角形两条直角边的平方和等于斜边的平方a²+b²=c²如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形2.8 直角三角形全等的判定斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”“HL”)角的内部,到角两边距离相等的点,在这个角的平分线上第3章一元一次不等式3.1 认识不等式3.2不等式的基本性质a>b→a+c>b+c,a-c>b-ca<b→a+c<b+c,a-c<b-ca>b,且c>0→ac>bc,a/c>b/ca>b,且c<0→ac<bc,a/c<b/c3.3 一元一次不等式3.4 一元一次不等式组第4章图形与坐标4.1 探索确定位置的方法4.2 平面直角坐标系4.3 坐标平面内图形的轴对称和平移在直角坐标系中,点(a,b)关于x轴的对称点的坐标为(a,-b),关于y轴的对称点的坐标为(-a,b)第5章一次函数5.1 常量与变量5.2 函数5.3 一次函数一般地,函数y=kx+b(k,b都是常数,且k≠0) 叫做一次函数正比例函数比例系数待定系数法5.4 一次函数的图像对于一次函数y=kx+b(k,b为常数,且k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
浙教版初中七年级(上)数学各章知识点汇总
浙教版初中七年级(上)数学各章知识点汇总第一章有理数- 有理数的概念:是整数和分数的统称。
- 有理数的比较:可以比较大小,使用大于、小于、等于的符号。
- 有理数的加减法:可以进行加法和减法运算。
- 有理数的乘法:可以进行乘法运算。
- 有理数的除法:可以进行除法运算。
第二章整数- 整数的概念:是正整数、负整数和0的统称。
- 整数的绝对值:正整数的绝对值等于它本身,负整数的绝对值等于它的相反数。
- 整数的加减法:可以进行加法和减法运算。
- 整数的乘法:可以进行乘法运算。
- 整数的除法:可以进行除法运算。
第三章代数式- 代数式的概念:由数、字母和运算符号组成的式子。
- 代数式的加减法:可以进行加法和减法运算。
- 代数式的乘法:可以进行乘法运算。
- 代数式的除法:可以进行除法运算。
- 代数式的化简:可以进行合并同类项、提取公因式等化简操作。
第四章图形的初步认识- 点、线、面的概念:点没有长度、线没有宽度、面有长和宽。
- 点、线、面的分类:可以根据特点进行分类。
- 图形的相似:具有相同形状但大小不同的图形。
- 图形的共线与共面:共线是指位于同一直线上,共面是指位于同一个平面上。
- 图形的投影:物体在光线下形成的阴影。
第五章小数- 小数的概念:是有限小数和无限小数的统称。
- 小数的读法和写法:可以读、写不完整的小数。
- 小数的比较:可以比较大小,使用大于、小于、等于的符号。
- 小数的加减法:可以进行加法和减法运算。
- 小数的乘法:可以进行乘法运算。
- 小数的除法:可以进行除法运算。
第六章几何图形的认识- 线段的概念:直线两点之间的部分。
- 射线的概念:起点是一个点,另一端无限延伸的部分。
- 角的概念:由两条边和一个顶点组成的图形。
- 三角形的分类:根据边长和角度可以分类。
- 四边形的分类:根据边长和角度可以分类。
第七章比例- 比例的概念:比较两个或多个有关数量之间的关系。
- 比例的性质:比例具有对称性和平移性。
初中浙教版数学知识点总结
初中浙教版数学知识点总结一、数与代数1. 有理数的运算- 正数、负数、整数、分数、小数的概念- 有理数的加、减、乘、除运算- 乘方、开方运算- 绝对值的概念及运算- 有理数的比较大小2. 整式的运算- 单项式、多项式的概念- 整式的加减、乘法、除法运算- 因式分解:提公因式、公式法、分组分解法3. 代数式的化简与求值- 代数式的化简- 代数式的求值:直接代入、化简后代入4. 一元一次方程与不等式- 方程的建立、解法:移项、合并同类项、系数化为1 - 不等式的建立、解法:移项、合并同类项、系数化为1 - 线性方程组的解法:代入法、消元法5. 二元一次方程组- 二元一次方程组的建立- 解法:代入法、消元法(加减消元、代数乘法消元)6. 一元二次方程- 一元二次方程的建立- 解法:直接开平方法、配方法、公式法、因式分解法7. 函数的概念与性质- 函数的定义、表示法- 函数的性质:定义域、值域、映射、单调性、奇偶性- 函数图像的绘制与识别8. 一次函数与反比例函数- 一次函数的概念、图像(直线)与性质- 反比例函数的概念、图像(双曲线)与性质9. 二次函数- 二次函数的概念、图像(抛物线)与性质- 顶点、对称轴的求法- 最大值、最小值问题10. 序列与数列- 等差数列的概念、通项公式、前n项和公式- 等比数列的概念、通项公式、前n项和公式- 数列的求和:分组求和、错位相减法二、几何1. 平面图形的认识- 点、线、面的基本性质- 角的概念:邻角、对顶角、同位角、内错角- 直线与角的关系:平行、相交、垂直2. 三角形- 三角形的分类:按边分类、按角分类- 三角形的性质:内角和定理、外角性质、三角形的中位线- 等腰三角形、等边三角形的性质与判定 - 直角三角形的性质与勾股定理3. 四边形- 四边形的分类与性质- 平行四边形的性质与判定- 矩形、菱形、正方形的性质与判定- 梯形的性质与中位线定理4. 圆的基本性质- 圆的定义、圆心、弦、直径、半径- 圆的基本性质:弧、弦、直径的关系 - 圆周角定理、圆心角定理5. 圆的计算- 扇形、弧长、圆锥的体积计算- 切线的性质与判定- 圆与圆、圆与多边形的位置关系6. 空间几何- 空间图形的基本概念:点、线、面、体 - 空间直线与平面的位置关系- 空间图形的计算:体积、表面积7. 相似与全等- 全等三角形的判定与性质- 相似三角形的判定与性质- 相似多边形的判定与性质- 相似比的计算与应用8. 解析几何初步- 坐标系的建立与应用- 直线、圆的解析表达式- 点、线、圆之间的距离与角度计算三、统计与概率1. 统计- 数据的收集、整理与描述- 频数、频率、频数分布表的概念与绘制 - 平均数、中位数、众数的计算与意义 - 方差、标准差的概念与计算2. 概率- 随机事件的概念与分类- 概率的定义与计算-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版初中数学知识点1、相反数:只有符号不同的两个数,我们说其中一个是另一个的相反数,也称为这两个数互为相反数。
0的相反数是0。
用数学语言表述为:若a 、b 互为相反数,则a+b=0即a b =-,反之也成立。
数a 的相反数是-a 。
2、倒数:若a 、b (a 、b 均不为0)互为倒数,则ab=1即1a b=,反之也成立。
a 的倒数是1a 。
0没有倒数,1和-1的倒数是它们本身。
3、有理数和无理数统称为实数。
实数分为有理数和无理数,也可分为正实数、0、负实数。
实数与数轴上的点一一对应。
4、有理数分为正有理数、0、负有理数,它们均是有限小数或无限循环小数;也可分为整数和分数,整数又分为正整数、0、负整数;分数又分为正分数、负分数。
无理数分为正无理数和负无理数,它们都是无限不循环小数。
5、π是无理数,227是分数是小数是有理数,0是自然数。
6、绝对值的几何定义:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值,数a 的绝对值记为“|a|”。
代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
于是,|a|=a 0a ←−→≥;|a|=-a ←−→a≤0。
7、 任何一个实数的绝对值都是非负数,即|a|≥0。
(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩或(0)(0)a a a a a ≥⎧=⎨-<⎩,或(0)(0)a a a a a >⎧=⎨-≤⎩ 8、 若|x|=a(a≥0),则x=±a ,即绝对值的原数的双值性。
9、 数轴上两点A (A x )、B (B x )之间的距离为|AB|=|A x -B x |,其中点所表示的数为2A B x x +。
坐标平面内两点A (A x ,A y )、B (B x ,B y )的距离为:,中点C 的坐标为(2A B x x +,2A B y y +),点A 到x 轴的距离为|A y |,到y 轴的距离为|A x |,如果A x =B x 且A y ≠B y ,则直线AB 平行于y 轴;如果A y =B y 且A x ≠B x ,则直线AB 平行于x 轴。
10、 科学记数法:把一个数写成±a×10n 的形式(其中1≤a<10,n 是整数)这种记数法叫做科学记数法。
记数的方法:(1)确定a ;a 是只有一位整数数位的数;(2)确定n ;当原数≥1时,n 等于原数的整数位数减1;当原数<1时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零)。
11、 近似数:按某种接近程度由四舍五入得到的数或大约估计数叫做近似数。
一般地,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。
一个数的近似数,常常要用科学记数法来表示。
12、 有效数字:一个近似数,从左边第一个不是零的数字起,到精确到的位数止,所有的数字都叫做这个数的有效数字。
精确度的形式有两种:(1)精确到哪一位数;(2)保留几个有效数字。
近似数非零数之间的0和尾巴上的0都是有效数字。
13、 实数大小的比较:在数轴上表示的两个数,右边总比左边的大;正数大于零;负数小于零;正数大于一切负数;两个负数,绝对值大的反而小。
14、 实数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
15、 加法交换律a+b=b+a ;加法结合律(a+b)+c=a+(b+c)16、 减去一个数,等于加上这个数的相反数;即a-b= a +(- b )17、 减法运算的步骤:(1)将减号变成加号,把减数的相反数变成加数;(2)按照加减运算的步骤进行运算。
18、两数相乘,同号得正,异号得负,并把绝对值相乘。
实数乘法与加法运算步骤一样,第一步确定符号,第二步确定绝对值。
零乘以任何数都得0。
19、乘法交换律ab=ba;乘法结合律(ab)c=a(bc);乘法分配律a(b+c)=ab+ac20、两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0;除以一个数等于乘以这个数的倒数,即a÷ b=a·1(b≠0)b21、乘方运算的性质:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)任何数的偶次幂都是非负数;(4)-1的偶次幂是1,-1的奇次幂是-1;(5)1的任何次幂都是1,0的任何非零次幂都是0;(6)负整数指数幂(7)零指数幂22、列代数式及代数式的求值:用运算符号把数与表示数的字母连接而成的式子,叫做代数式,单独一个数或一个字母也是代数式;代数式分为有理式、无理式,有理式又分为整式、分式,整式分为单项式、多项式。
列代数式时,要注意问题的语言叙述所直接或间接表示的运算顺序。
一般来说,先读的先写;要正确使用表明运算顺序的括号;列代数式时,出现乘法时,通常省略乘号,数与字母相乘,要将数写在字母前面;带分数要化成假分数,然后再与字母相乘;数字与数字相乘仍用“×”号:出现除法运算时,一般按分数的写法来写。
代数式的求值是用代数值代替代数式里的字母,按照代数式指明的运算顺序计算出结果。
列代数式时,如果代数式后跟单位,应该将含有加减运算的代数式用括号括起来。
23、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项,把同类项合并成一项就叫做合并同类项。
合并同类项的法则就是字母及字母的指数不变,系数相加。
同类项与系数的大小没有关系。
24、单项式:数与字母的乘积的代数式叫做单项式,单项式中的数字因数叫做单项式的系数,一个单项式中,所有字母的指数和叫做这个单项式的次数。
单独一个数或一个字母也是单项式。
单独一个非零数的次数是0。
25、多项式:几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,一个多项式中,次数最高的项的次数,叫做这个多项式的次数,单项式和多项式统称为整式。
26、π是数,是一个具体的数,而不是一个字母。
0是单项式,也是整式。
27、整式的加减法则:整式的加减实质上是合并同类项。
几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接起来,一般步骤是:(1)如果遇到括号,按去括号法则先去括号;(2)合并同类项。
28、同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即a m·a n=a m+n(m、n都是正整数)29、幂的乘方与积的乘方法则:幂的乘方,底数不变,指数相乘,即(a m)n=a mn(m、n都是正整数);积的乘方,等于把积的每一个因式分别乘方,再把所得的幂的相乘,即(ab)n =a m b n(n是正整数)30、单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
单项式与多项式相乘,就是根据分配律用单项式去乘以多项式的每一个项,再把所得的积相加,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
31、平方差公式:(a+b)(a-b)=a2-b2;完全平方公式:(a±b)2=a2±2ab+b232、完全平方式:a2±2ab+b2,特别注意交叉项的正负性和2倍。
(a+b)2=(a-b)2+4ab33、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即a m÷a n=a m-n(a≠0,m、n都是正整数,m>n)34、 零次幂、负整数次幂的意义:a 0=1(a≠0);a -p =1p a(a≠0,p 是正整数) 35、 单项式除以单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
36、 多项式除以单项式:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
37、 应该注意整式乘法与除法中的符号运算。
38、 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式,多项式的因式分解常用的方法有:提取公因式法、公式法。
39、 分解因式的公式:平方差公式: a 2-b 2= (a+b)(a-b);完全平方公式:a 2±2ab+b 2=(a±b)240、 分解因式的一般步骤:提公因式;二项考虑平方差公式,三项的考虑完全平方公式或十字相乘法;四项及以上考虑分组分解法。
有时得用换元法(整体考虑)或者比较系数法。
41、 几个整式相乘,所有最高次项相乘得最高次项,最低次项相乘得最低次项。
42、 分式:如果除式B 中含有字母,那么称A B为分式。
当B=0时,分式无意义;当A=0且B≠0时,分式的值为0;当B≠0时,分式有意义。
43、 分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即(0,0)A A M A M B M B B M B M⋅÷==≠≠⋅÷。
44、 分式的乘除法:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子与分母颠倒位置后现与被除式相乘。
即;a c ac a c a d ad b d bd b d b c bc⋅=÷=⋅=。
45、 约分:把一个分式的分子和分母的公因式约去,这种变形叫做分式的约分。
46、 分子、分母和分式三个符号的同时改变两个,其结果不变,分数线有时起着括号的作用,即A A A A B B B B---==-=--。
47、 分式的加减法:同分母的加减,分母不变,把分子相加加减;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。
即;a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±=。
48、 分式的乘方:n n n a a b b⎛⎫= ⎪⎝⎭ 49、 混合运算:先乘方,再乘除,最后加减,有括号的先算括号里面的。
50、 解分式方程的一般步骤:去分母,将分式方程化为整式方程;解这个整式方程;验根,把整式方程的根代入最简公分母,若值不为0,则是原方程的根,若值为0,则是原方程的增根,舍去。
51、 分式方程的应用:分式方程应用题与一元方程应用题类似,不同的是注意双检验:(1)检验所求的解是不是原方程的解;(2)检验所求的解是否符合题意。
注意已知增根,求待定字母的取值。
52、 分式方程有解的条件为:去分母后的整式方程有解;去分母后的整式方程的解不能都为增根。